Please provide complete and well-written solutions to the following exercises.
Due January 24, in the discussion section.

Homework 2

Exercise 1. Let P, Q be stochastic matrices of the same size. Show that $P Q$ is a stochastic matrix. Conclude that, if r is a positive integer, then P^{r} is a stochastic matrix.

Exercise 2. Let A, B be events in a sample space. Let C_{1}, \ldots, C_{n} be events such that $C_{i} \cap C_{j}=\emptyset$ for any $i, j \in\{1, \ldots, n\}$ with $i \neq j$, and such that $\cup_{i=1}^{n} C_{i}$ is the whole sample space. Show:

$$
\mathbf{P}(A \mid B)=\sum_{i=1}^{n} \mathbf{P}\left(A \mid B, C_{i}\right) \mathbf{P}\left(C_{i} \mid B\right)
$$

(Hint: consider using the Total Probability Theorem and that $\mathbf{P}(\cdot \mid B)$ is a probability law.)
Exercise 3. Let $0<p, q<1$. Let $P=\left(\begin{array}{cc}1-p & p \\ q & 1-q\end{array}\right)$. Find the (left) eigenvectors of P, and find the eigenvalues of P. By writing any row vector $x \in \mathbf{R}^{2}$ as a linear combination of eigenvectors of P (whenever possible), find an expression for $x P^{n}$ for any $n \geq 1$. What is $\lim _{n \rightarrow \infty} x P^{n}$? Is it related to the vector $\pi=(q /(p+q), p /(p+q))$?
Exercise 4. Let $G=(V, E)$ be a graph. Let $|E|$ denote the number of elements in the set E, i.e. $|E|$ is the number of edges of the graph. Prove: $\sum_{x \in V} \operatorname{deg}(x)=2|E|$.
Exercise 5. Let A, B be events such that $B \subseteq\left\{X_{0}=x_{0}\right\}$. Show that $\mathbf{P}(A \mid B)=\mathbf{P}_{x_{0}}(A \mid B)$.
More generally, if A, B are events, show that $\mathbf{P}_{x_{0}}(A \mid B)=\mathbf{P}\left(A \mid B, X_{0}=x_{0}\right)$.
Exercise 6. Suppose we have a Markov Chain with state space Ω. Let $n \geq 0, \ell \geq 1$, let $x_{0}, \ldots, x_{n} \in \Omega$ and let $A \subseteq \Omega^{\ell}$. Using the (usual) Markov property, show that

$$
\begin{gathered}
\mathbf{P}\left(\left(X_{n+1}, \ldots, X_{n+\ell}\right) \in A \mid\left(X_{0}, \ldots, X_{n}\right)=\left(x_{0}, \ldots, x_{n}\right)\right) \\
=\mathbf{P}\left(\left(X_{n+1}, \ldots, X_{n+\ell}\right) \in A \mid X_{n}=x_{n}\right) .
\end{gathered}
$$

Then, show that

$$
\mathbf{P}\left(\left(X_{n+1}, \ldots, X_{n+\ell}\right) \in A \mid X_{n}=x_{n}\right)=\mathbf{P}\left(\left(X_{1}, \ldots, X_{\ell}\right) \in A \mid X_{0}=x_{n}\right)
$$

(Hint: it may be helpful to use the Multiplication Rule.)
Exercise 7. Suppose we have a Markov chain X_{0}, X_{1}, \ldots with finite state space Ω. Let $y \in \Omega$. Define $L_{y}:=\max \left\{n \geq 0: X_{n}=y\right\}$. Is L_{y} a stopping time? Prove your assertion.
Exercise 8. Let x, y be points in the state space of a finite Markov Chain $\left(X_{0}, X_{1}, \ldots\right)$. Let $T_{y}=\min \left\{n \geq 1: X_{n}=y\right\}$ be the first arrival time of y. Let j, k be positive integers. Show that

$$
\mathbf{P}_{x}\left(T_{y}>k j \mid T_{y}>(k-1) j\right) \leq \max _{z \in \Omega} \mathbf{P}_{z}\left(T_{y}>j\right)
$$

(Hint: use Exercise 6)

