
Stochastic Processes Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due February 21, in the discussion section.

Homework 6

Exercise 1. Let Ω = [0, 1]. Let P be the uniform probability law on Ω. Let X : [0, 1]→ R
be a random variable such that X(t) = t2 for all t ∈ [0, 1]. Let

A = {[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1]}

Compute explicitly the function E(X|A). (It should be constant on each of the partition
elements.) Draw the function E(X|A) and compare it to a drawing of X itself.

Now, for every integer k > 1, let s = 2−k, and let Ak := {[0, s), [s, 2s), [2s, 3s), . . . , [1−2s, 1−
s), [1− s, 1)}. Try to draw E(X|Ak). Convince yourself of the following fact (you can prove
it if you want, but you do not have to): for every t ∈ [0, 1]

lim
k→∞

E(X|Ak)(t) = X(t).

The purpose of this exercise is to demonstrate that E(X|A) is given by averaging X over
each partition element, such that E(X|A) is constant on each partition element of A.

Exercise 2. Let X be a random variable with finite variance, and let t ∈ R. Consider the
function f : R → R defined by f(t) = E(X − t)2. Show that the function f is uniquely
minimized when t = EX. That is, f(EX) < f(t) for all t ∈ R such that t 6= EX. Put
another way, setting t to be the mean of X minimizes the quantity E(X − t)2 uniquely.

The conditional expectation, being a piecewise version of taking an average, has a similar
property. Let A1, . . . , Ak ⊆ Ω such that Ai ∩ Aj = ∅ for all i, j ∈ {1, . . . , k} with i 6= j, and
∪ki=1Ai = Ω. Write A = {A1, . . . , Ak}. By definition, for each 1 ≤ i ≤ k, E(X|A) is constant
on Ai. Now, let Y be any other random variable such that, for each 1 ≤ i ≤ k, Y is constant
on Ai. Show that the quantity E(X − Y )2 is uniquely minimized by such a Y only when
Y = E(X|A).

Exercise 3. Let Ω = [0, 1]. Let P be the uniform probability law on Ω. Let X : [0, 1]→ R be
a random variable such that X(t) = t2 for all t ∈ [0, 1]. For every integer k > 1, let s = 2−k,
let Ak := {[0, s), [s, 2s), [2s, 3s), . . . , [1− 2s, 1− s), [1− s, 1)}, and let Mk := E(X|Ak). Show
that the increments M2 −M1,M3 −M2, . . . are orthogonal in the following sense. For any
i, j ≥ 1 with i 6= j,

E(Mi+1 −Mi)(Mj+1 −Mj) = 0.

This property is sometimes called orthogonality of martingale increments. This prop-
erty holds for many martingales, but we will not prove this.
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Exercise 4. Let X0 = 0. Let (X0, X1, . . .) such that P(Xi = 1) = P(Xi = −1) = 1/2 for all
i ≥ 1. For any n ≥ 0, let Yn = X0 + · · ·+Xn. So, (Y0, Y1, . . .) is a symmetric simple random
walk on Z. Show that Y 2

n − n is a martingale (with respect to (X0, X1, . . .)).

Exercise 5. Let 1/2 < p < 1. Let (X0, X1, . . .) such that P(Xi = 1) = p and P(Xi = −1) =
1 − p for all i ≥ 1. For any n ≥ 0, let Yn = X0 + · · · + Xn. Let T0 = min{n ≥ 1: Yn = 0}.
Prove that P1(T0 = ∞) > 0. Then, deduce that P0(T0 = ∞) > 0. That is, there is a
positive probability that the biased random walk never returns to 0, even though it started
at 0.

Exercise 6. Let X1, . . . be independent identically distributed random variables with P(Xi =
1) = P(Xi = −1) = 1/2 for every i ≥ 1. For any n ≥ 1, let Mn := X1 + · · · + Xn. Let
M0 = 0. For any n ≥ 1, define

Wn := M0 +
n∑

m=1

Hm(Mm −Mm−1).

Show that if you have an infinite amount of money, then you can make money by using the
double-your-bet strategy in the game of coinflips (where if you bet $d, then you win $d with
probability 1/2, and you lose $d with probability 1/2). For example, show that if you start
by betting $1, and if you keep doubling your bet until you win (which should define some
betting strategy H1, H2, . . . and a stopping time T ), then EWT = 1, for a suitable stopping
time T .


