Please provide complete and well-written solutions to the following exercises.
Due February 21, in the discussion section.

Homework 6

Exercise 1. Let $\Omega=[0,1]$. Let \mathbf{P} be the uniform probability law on Ω. Let $X:[0,1] \rightarrow \mathbf{R}$ be a random variable such that $X(t)=t^{2}$ for all $t \in[0,1]$. Let

$$
\mathcal{A}=\{[0,1 / 4),[1 / 4,1 / 2),[1 / 2,3 / 4),[3 / 4,1]\}
$$

Compute explicitly the function $\mathbf{E}(X \mid \mathcal{A})$. (It should be constant on each of the partition elements.) Draw the function $\mathbf{E}(X \mid \mathcal{A})$ and compare it to a drawing of X itself.

Now, for every integer $k>1$, let $s=2^{-k}$, and let $\mathcal{A}_{k}:=\{[0, s),[s, 2 s),[2 s, 3 s), \ldots,[1-2 s, 1-$ $s),[1-s, 1)\}$. Try to draw $\mathbf{E}\left(X \mid \mathcal{A}_{k}\right)$. Convince yourself of the following fact (you can prove it if you want, but you do not have to): for every $t \in[0,1]$

$$
\lim _{k \rightarrow \infty} \mathbf{E}\left(X \mid \mathcal{A}_{k}\right)(t)=X(t)
$$

The purpose of this exercise is to demonstrate that $\mathbf{E}(X \mid \mathcal{A})$ is given by averaging X over each partition element, such that $\mathbf{E}(X \mid \mathcal{A})$ is constant on each partition element of \mathcal{A}.

Exercise 2. Let X be a random variable with finite variance, and let $t \in \mathbf{R}$. Consider the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(t)=\mathbf{E}(X-t)^{2}$. Show that the function f is uniquely minimized when $t=\mathbf{E} X$. That is, $f(\mathbf{E} X)<f(t)$ for all $t \in \mathbf{R}$ such that $t \neq \mathbf{E} X$. Put another way, setting t to be the mean of X minimizes the quantity $\mathbf{E}(X-t)^{2}$ uniquely.

The conditional expectation, being a piecewise version of taking an average, has a similar property. Let $A_{1}, \ldots, A_{k} \subseteq \Omega$ such that $A_{i} \cap A_{j}=\emptyset$ for all $i, j \in\{1, \ldots, k\}$ with $i \neq j$, and $\cup_{i=1}^{k} A_{i}=\Omega$. Write $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$. By definition, for each $1 \leq i \leq k, \mathbf{E}(X \mid \mathcal{A})$ is constant on A_{i}. Now, let Y be any other random variable such that, for each $1 \leq i \leq k, Y$ is constant on A_{i}. Show that the quantity $\mathbf{E}(X-Y)^{2}$ is uniquely minimized by such a Y only when $Y=\mathbf{E}(X \mid \mathcal{A})$.

Exercise 3. Let $\Omega=[0,1]$. Let \mathbf{P} be the uniform probability law on Ω. Let $X:[0,1] \rightarrow \mathbf{R}$ be a random variable such that $X(t)=t^{2}$ for all $t \in[0,1]$. For every integer $k>1$, let $s=2^{-k}$, let $\mathcal{A}_{k}:=\{[0, s),[s, 2 s),[2 s, 3 s), \ldots,[1-2 s, 1-s),[1-s, 1)\}$, and let $M_{k}:=\mathbf{E}\left(X \mid \mathcal{A}_{k}\right)$. Show that the increments $M_{2}-M_{1}, M_{3}-M_{2}, \ldots$ are orthogonal in the following sense. For any $i, j \geq 1$ with $i \neq j$,

$$
\mathbf{E}\left(M_{i+1}-M_{i}\right)\left(M_{j+1}-M_{j}\right)=0 .
$$

This property is sometimes called orthogonality of martingale increments. This property holds for many martingales, but we will not prove this.

Exercise 4. Let $X_{0}=0$. Let $\left(X_{0}, X_{1}, \ldots\right)$ such that $\mathbf{P}\left(X_{i}=1\right)=\mathbf{P}\left(X_{i}=-1\right)=1 / 2$ for all $i \geq 1$. For any $n \geq 0$, let $Y_{n}=X_{0}+\cdots+X_{n}$. So, $\left(Y_{0}, Y_{1}, \ldots\right)$ is a symmetric simple random walk on \mathbf{Z}. Show that $Y_{n}^{2}-n$ is a martingale (with respect to $\left(X_{0}, X_{1}, \ldots\right)$).

Exercise 5. Let $1 / 2<p<1$. Let $\left(X_{0}, X_{1}, \ldots\right)$ such that $\mathbf{P}\left(X_{i}=1\right)=p$ and $\mathbf{P}\left(X_{i}=-1\right)=$ $1-p$ for all $i \geq 1$. For any $n \geq 0$, let $Y_{n}=X_{0}+\cdots+X_{n}$. Let $T_{0}=\min \left\{n \geq 1: Y_{n}=0\right\}$. Prove that $\mathbf{P}_{1}\left(T_{0}=\infty\right)>0$. Then, deduce that $\mathbf{P}_{0}\left(T_{0}=\infty\right)>0$. That is, there is a positive probability that the biased random walk never returns to 0 , even though it started at 0 .

Exercise 6. Let X_{1}, \ldots be independent identically distributed random variables with $\mathbf{P}\left(X_{i}=\right.$ $1)=\mathbf{P}\left(X_{i}=-1\right)=1 / 2$ for every $i \geq 1$. For any $n \geq 1$, let $M_{n}:=X_{1}+\cdots+X_{n}$. Let $M_{0}=0$. For any $n \geq 1$, define

$$
W_{n}:=M_{0}+\sum_{m=1}^{n} H_{m}\left(M_{m}-M_{m-1}\right)
$$

Show that if you have an infinite amount of money, then you can make money by using the double-your-bet strategy in the game of coinflips (where if you bet $\$ d$, then you win $\$ d$ with probability $1 / 2$, and you lose $\$ d$ with probability $1 / 2$). For example, show that if you start by betting $\$ 1$, and if you keep doubling your bet until you win (which should define some betting strategy H_{1}, H_{2}, \ldots and a stopping time T), then $\mathbf{E} W_{T}=1$, for a suitable stopping time T.

