
Mathematics of Finance Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due May 2, in the discussion section.

Homework 3

Exercise 1 (Binomial Option Pricing Model). Let u, d > 0. Let 0 < p < 1. Let (X1, X2, . . .)
be independent random variables such that P(Xn = log u) =: p and P(Xn = log d) = 1− p
∀ n ≥ 1. Let X0 be a fixed constant. Let Yn := X0 + · · · + Xn, and let Sn := eYn ∀ n ≥ 1.
In general, S0, S1, . . . will not be a martingale, but we can still compute ESn, by modifying
S0, S1, . . . to be a martingale.

First, note that if n ≥ 1, then Yn has a binomial distribution, in the sense that

P(Yn = X0 + i log u+ (n− i) log d) =

(
n

i

)
pi(1− p)n−i, ∀ 0 ≤ i ≤ n.

Now define
r := p(u− d)− 1 + d.

Here we chose r so that p = 1+r−d
u−d . For any n ≥ 1, define

Mn := (1 + r)−nSn.

Show that M0,M1, . . . is a martingale with respect to X0, X1, . . .. Consequently,

(1 + r)−nESn = ES0, ∀n ≥ 0.

(This presentation might be a bit backwards from the financial perspective. Typically, r is
a fixed interest rate, and then you choose p such that p = 1+r−d

u−d . That is, you adjust how
the random variables behave in order to get a martingale.)

Exercise 2 (MFE Sample Question). For a two-period binomial model (i.e. the binomial
option pricing model with n = 2), you are given:

(i) Each period is one year.
(ii) The current price for a nondividend-paying stock is 20.

(iii) u = 1.2840.
(iv) d = 0.8607.
(v) The continuously compounded risk-free interest rate is 5%. (That is, 1 + r = e.05.)

Calculate the price of an American call option on the stock with a strike price of 22. (That
is, compute (1 + r)−2Emax(S2 − 22, 0). Here Sn is the stock price at time n.)

Exercise 3. Let X0 = 0. Let (X0, X1, . . .) such that P(Xi = 1) = P(Xi = −1) = 1/2 for all
i ≥ 1. For any n ≥ 0, let Yn = X0 + · · ·+Xn. So, (Y0, Y1, . . .) is a symmetric simple random
walk on Z. Show that Y 2

n − n is a martingale (with respect to (X0, X1, . . .)).
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Exercise 4. Let 1/2 < p < 1. Let (X0, X1, . . .) such that P(Xi = 1) = p and P(Xi = −1) =
1 − p for all i ≥ 1. For any n ≥ 0, let Yn = X0 + · · · + Xn. Let T0 = min{n ≥ 1: Yn = 0}.
If X0 = 1, prove that P(T0 =∞) > 0. Then, deduce that, if X0 = 0, then P(T0 =∞) > 0.
That is, there is a positive probability that the biased random walk never returns to 0, even
though it started at 0.

Exercise 5. LetX1, . . . be independent identically distributed random variables with P(Xi =
1) = P(Xi = −1) = 1/2 for every i ≥ 1. For any n ≥ 1, let Mn := X1 + · · · + Xn. Let
M0 = 0. For any n ≥ 1, define

Wn := M0 +
n∑

m=1

Hm(Mm −Mm−1).

Show that if you have an infinite amount of money, then you can make money by using the
double-your-bet strategy in the game of coinflips (where if you bet $d, then you win $d with
probability 1/2, and you lose $d with probability 1/2). For example, show that if you start
by betting $1, and if you keep doubling your bet until you win (which should define some
betting strategy H1, H2, . . . and a stopping time T ), then EWT = 1, for a suitable stopping
time T .

Exercise 6. Prove the following variant of the Optional Stopping Theorem. Assume that
(M0,M1, . . .) is a submartingale, and let T be a stopping time such that P(T < ∞) = 1.
Let c ∈ R. Assume that |Mn∧T | ≤ c for all n ≥ 0. Then EMT ≥ EM0. That is, you can
make money by stopping a submartingale.

Exercise 7 (Ballot Theorem). Let a, b be positive integers. Suppose there are c votes cast
by c people in an election. Candidate 1 gets a votes and candidate 2 gets b votes. (So
c = a + b.) Assume a > b. The votes are counted one by one. The votes are counted in a
uniformly random ordering, and we would like to keep a running tally of who is currently
winning. (News agencies seem to enjoy reporting about this number.) Suppose the first
candidate eventually wins the election. We ask: with what probability will candidate 1
always be ahead in the running tally of who is currently winning the election? As we will
see, the answer is a−b

a+b
.

To prove this, for any positive integer k, let Sk be the number of votes for candidate 1,
minus the number of votes for candidate 2, after k votes have been counted. Then, define
Xk := Sc−k/(c − k). Show that X0, X1, . . . is a martingale (with respect to Sc, Sc−1, . . .).
Then, let T such that T = min{0 ≤ k ≤ c : Xk = 0}, or T = c− 1 if no such k exists. Apply
the Optional Stopping theorem to XT to deduce the result.

Exercise 8. Let (X0, X1, . . .) be the simple random walk on Z. For any n ≥ 0, define
Mn = X3

n − 3nXn. Show that (M0,M1, . . .) is a martingale with respect to (X0, X1, . . .)

Now, fix m > 0 and let T be the first time that the walk hits either 0 or m. Show that, for
any 0 < k ≤ m, if X0 = k, then

E(T |XT = m) =
m2 − k2

3
.
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(You can apply the Optional stopping theorem without verifying that the martingale is
bounded.)

Exercise 9. Let X1, X2, . . . be independent random variables with EXi = 0 for every i ≥ 1.
Suppose there exists σ > 0 such that Var(Xi) = σ2 for all i ≥ 1. For any n ≥ 1, let
Sn = X1 + · · · + Xn. Show that S2

n − nσ2 is a martingale with respect to X1, X2, . . .. (We
let X0 = 0.)

Let a > 0. Let T = min{n ≥ 1: |Sn| ≥ a}. Using the Optional Stopping Theorem, show
that ET ≥ a2/σ2. Observe that a simple random walk on Z has σ2 = 1 and ET = a2 when
a ∈ Z.

(When applying the Optional Stopping Theorem, you do not have to show that the martin-
gale is bounded.)


