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Exercise 0.1. Let f : R→ R be a function. Show that

∪y∈R{x ∈ R : f(x) = y} = R.
Also, show that the union on the left is disjoint. That is, if y1 6= y2 and y1, y2 ∈ R, then
{x ∈ R : f(x) = y1} ∩ {x ∈ R : f(x) = y2} = ∅.

0.1. Probabilistic Models.

Definition 0.2. A probabilistic model consists of

• A universal set Ω, which represents all possible outcomes of some random process.
• A probability law P. Given a set A ⊆ Ω, the probability law assigns a number

P(A) to the set A. A set A ⊆ Ω is also called an event. The number P(A) denotes
the probability that the event A will occur. The probability law satisfies the axioms
below.

Axioms for a Probability Law:

(i) For any A ⊆ Ω, we have P(A) ≥ 0. (Nonnegativity)
(ii) For any A,B ⊆ Ω such that A ∩B = ∅, we have

P(A ∪B) = P(A) + P(B).

If A1, A2, . . . ⊆ Ω and Ai∩Aj = ∅ whenever i, j are positive integers with i 6= j, then

P

(
∞⋃
k=1

Ak

)
=
∞∑
k=1

P(Ak). (Additivity)

(iii) We have P(Ω) = 1. (Normalization)

Remark 0.3. Since P(A) + P(Ac) = 1, choosing A = ∅ shows that P(∅) + P(Ω) = 1,
so that P(∅) = 0 by Axiom (iii). Consequently, suppose n is a positive integer, and let
A1, . . . , An ⊆ Ω with Ai ∩ Aj = ∅ whenever i, j ∈ {1, . . . , n} and i 6= j. For any i > n, let
Ai = ∅. Then Axiom (ii) implies that

P

(
n⋃
k=1

Ak

)
= P

(
∞⋃
k=1

Ak

)
=
∞∑
k=1

P(Ak) =
n∑
k=1

P(Ak).

This identity also follows from the first part of Axiom (ii) and by induction on n.

Theorem 0.4 (Total Probability Theorem). Let A1, . . . , An be disjoint events in a sam-
ple space Ω. That is, Ai ∩Aj = ∅ whenever i, j ∈ {1, . . . , n} satisfy i 6= j. Assume also that
∪ni=1Ai = Ω. Let P be a probability law on Ω. Then, for any event B ⊆ Ω, we have

P(B) =
n∑
i=1

P(B ∩ Ai) =
n∑
i=1

P(Ai)P(B|Ai).

Example 0.5 (Bernoulli Trials). Let n be a positive integer. Let Ω = {H,T}n. Then Ω is
a sample space representing n separate coin flips (H stands for heads, and T stands for tails).
Let 0 < p < 1. Let P be the probability law such that each coin toss occurs independently,
and such that each coin has probability p of heads (H), and probability 1 − p of tails (T).
That is, we are independently flipping n biased coins.

Let 1 ≤ k ≤ n. Suppose the first k coins have landed as heads, and the rest of the
coins are tails. By the definition of P, this event occurs with probability pk(1 − p)n−k. We
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now ask: What is the probability that k of the coins are heads, and the remaining n − k
coins are tails? In order to answer this question, we need to compute Cn,k, the number of
unordered lists of k copies of H, and n − k copies of T. Equivalently, Cn,k is the number of
ways to place n coins on a table all showing tails, and then turn over k distinct coins to
reveal exactly k heads. To compute the latter number, note that we can first turn over one
of the n coins, and then we can turn over any of the remaining n − 1 coins showing tails,
and then we can turn over any of the remaining n − 2 coins showing tails, and so on. So,
there are n(n − 1)(n − 2) · · · (n − k + 1) sequences of coin turns which can be made (while
keeping track of their ordering). To make the same count of coin flips without keeping track
of the ordering, we just divide by the number of orderings of the k heads coins, which is
k(k − 1) · · · (2)(1). In conclusion,

Cn,k =

(
n

k

)
=
n(n− 1)(n− 2) · · · (n− k + 1)

k(k − 1)(k − 2) · · · (2)(1)
=

n!

(n− k)!k!
.

Back to our original question, the probability that we have k heads and n− k tails among
n coin flips is

Cn,k · pk(1− p)n−k =

(
n

k

)
pk(1− p)n−k =

n!

(n− k)!k!
pk(1− p)n−k.

Theorem 0.6 (Binomial Theorem). Let 0 < p < 1. Then

n∑
k=0

(
n

k

)
pk(1− p)n−k = 1n = 1.

More generally, for any real numbers x, y, we have
n∑
k=0

(
n

k

)
xkyn−k = (x+ y)n

Proof. We use the notation of Example 0.5. Let 0 < p < 1. For any 0 ≤ k ≤ n, let
Ak be the event that there are exactly k heads that resulted from flipping n coins. Then
Ai ∩ Aj = ∅ for all i 6= j where i, j ∈ {0, . . . , n}. Also, ∪nk=0Ak = Ω. From Example 0.5,
P(Ak) =

(
n
k

)
pk(1− p)k. So, using Remark 0.3,

1 = P(Ω) = P(∪nk=0Ak) =
n∑
k=0

P(Ak) =
n∑
k=0

(
n

k

)
pk(1− p)n−k. (∗)

Now, the right side is a polynomial in p, which is equal to 1 for all 0 < p < 1. Therefore, the
equality (∗) holds for all real p. (A polynomial which is equal to 1 on [0, 1] is also equal to
1 on the whole real line.) Assume temporarily that x + y 6= 0. Define p = x/(x + y). Then
x = p(x+ y), y = (1− p)(x+ y) and 1− p = y/(x+ y). Using (∗), we have

1 =
n∑
k=0

(
n

k

)(
x

x+ y

)k (
y

x+ y

)n−k
= (x+ y)−n

n∑
k=0

(
n

k

)
xkyn−k.

That is, our desired equality holds whenever x + y 6= 0. Finally, the case x + y = 0 follows
by letting t > 0 be a real parameter, using

∑n
k=0

(
n
k

)
xk(y + t)n−k = (x+ y + t)n, and letting

t→ 0, noting that both sides of the equality are continuous in t. �
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1. Discrete Random Variables

So far we have discussed random events. Often it is also natural to describe random num-
bers. For example, the sum of two six-sided die is a random number. Or your score obtained
by throwing a single dart at a standard dartboard is a random number. In probability, we
call random numbers random variables.

Definition 1.1 (Random Variable). Let Ω be a sample space. Let P be a probability law
on Ω. A random variable X is a function X : Ω→ R. A discrete random variable is a
random variable whose range is either finite or countably infinite.

Proposition 1.2 (Properties of Random Variables).

• If X and Y are random variables, then X + Y is a random variable.
• If X is a random variable and if f : R → R is a function, then f(X) = f ◦ X is a

random variable.

A random variable is “just” a function. So, in some sense, from your preparation in calcu-
lus, you are already quite familiar with random variables. However, the new terminology of
“random variable” carries a new perspective on functions as well. For example, in probabil-
ity theory, we concern ourselves with the probability that the random variable takes various
values.

Example 1.3. Let Ω = {1, 2, 3, 4, 5, 6}2. Let P denote the uniform probability law on Ω.
As usual, Ω and P denote the rolling of two distinct fair six-sided dice. We define random
variables X, Y as follows. For any (i, j) ∈ Ω, define X(i, j) = i, and define Y (i, j) = j. Then
X and Y are random variables. Moreover, X is the roll of the first die, and Y is the roll of
the second die. So, X+Y is the sum of the rolls of the dice, and X+Y is a random variable.

Example 1.4. Consider the following simplified version of a dartboard. Let Ω = R2. For
any set A ⊆ Ω, define

P(A) =
1

2π

∫∫
A

e−(x2+y2)/2dxdy.

Let (x, y) ∈ Ω. Define a random variable X : Ω→ R so that

X(x, y) =

{
1 , if x2 + y2 ≤ 1

0 , if x2 + y2 > 1
.

That is, if you hit the dartboard {(x, y) ∈ Ω: x2 + y2 ≤ 1}, then X = 1. Otherwise,
X = 0. So, X is a random variable which represents your score after throwing a random
dart according to the probability law P.

Example 1.5. Consider the following model of a more complicated dartboard. Let Ω =
(0, 1)2 ⊆ R2. For any set A ⊆ Ω, let P(A) denote the area of A. Let (x, y) ∈ Ω. Define
a random variable X : Ω → R so that X(x, y) is the smallest integer j such that x > 2−j

and y > 2−j. For example, if (x, y) = (1/3, 1/3), then 2−1 > x > 2−2 and 2−1 > y > 2−2,
so X(x, y) = 2. Or if (x, y) = (1/5, 1/3), then 2−2 > x > 2−3 and 2−1 > y > 2−2 > 2−3,
so X(x, y) = 3. In this example, X is a random variable which represents your score after
throwing a random dart according to the probability law P. By the definition of X, if we
would like to get a large score, we see that it is more beneficial to aim for the bottom left
corner of the square, i.e. we want to get close to (0, 0).
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If we have a random variable X, one of the first tasks in probability is to compute various
quantities for X to better understand X. For example, we could ask, “What value does X
typically take?” (What is the mean value or average value of X?) “Typically, how far is X
from its mean value?” (What is the variance of X?) We will start to answer these questions
in Section 2. For now, we need to get through some preliminary concepts.

1.1. Probability Mass Function (PMF).

Definition 1.6 (Probability Mass Function). Let X be a random variable on a sample
space Ω, so that X : Ω → R. Let P be a probability law on Ω. Let x ∈ R. Consider the
event {ω ∈ Ω: X(ω) = x}. This event is often denoted as {X = x}. The probability mass
function of X, denote pX : R→ [0, 1] is defined by

pX(x) = P(X = x) = P({X = x}) = P({ω ∈ Ω: X(ω) = x}), x ∈ R.
Let A ⊆ R. We denote {ω ∈ Ω: X(ω) ∈ A} = {X ∈ A}.

Example 1.7. Let Ω = {H,T}2 and let P be the uniform probability measure on Ω. Then
Ω and P represent the outcome of flipping two distinct fair coins. Let X be the number of
heads that are rolled. That is, X(T, T ) = 0, X(H,T ) = 1, X(T,H) = 1 and X(H,H) = 2.
Therefore,

pX(x) =


1/4 , if x = 0

1/2 , if x = 1

1/4 , if x = 2

0 , otherwise.

Note that P(X > 0) = 1/2 + 1/4 = 3/4. That is, with probability 3/4, at least one head is
rolled.

Proposition 1.8. Let X be a discrete random variable on a sample space Ω. Then∑
x∈R

pX(x) = 1.

Proof. For each x ∈ R, let Bx be the event that X = x. If x 6= y, then Bx ∩ By = ∅. Also,
∪x∈RBx = Ω. So, using Axiom (ii) for probability laws in Definition 0.2,

1 = P(Ω) = P(∪x∈RBx) =
∑
x∈R

P(Bx) =
∑
x∈R

pX(x).

�

We now give descriptions of some commonly encountered random variables.

Definition 1.9 (Bernoulli Random Variable). Let 0 < p < 1. A random variable X is
called a Bernoulli random variable with parameter p if X = 1 with probability p, and
X = 0 with probability 1 − p. Put another way, X = 1 when a single flipped biased coin
lands heads, and X = 0 when the coin lands tails. The PMF is given by

pX(x) =


p , if x = 1

1− p , if x = 0

0 , otherwise.
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Remark 1.10. Note that we defined the random variable X without specifying any sample
space Ω. This de-emphasis on the domain is one aspect of probability that we mentioned
above. For example, we could choose Ω = {0, 1} and define P on Ω such that P(0) = 1− p
and P(1) = p. Then define X : Ω → R so that X(ω) = ω for all ω ∈ Ω. Then X is a
Bernoulli random variable.

Alternatively, we could choose Ω = [0, 5], and define P on Ω such that P[a, b] = 1
5
(b− a)

whenever 0 ≤ a < b ≤ 5. Then, we could define Y : Ω→ R by

Y (ω) =

{
1 , if ω < 5p

0 , if ω ≥ 5p.

Then Y is also a Bernoulli random variable. As we can see, the sample spaces of X and Y
are very different.

Definition 1.11 (Binomial Random Variable). Let 0 < p < 1 and let n be a positive
integer. A random variable X is called a binomial random variable with parameters
n and p if X has the following PMF. If k is an integer with 0 ≤ k ≤ n, then

pX(k) = P(X = k) =

(
n

k

)
pk(1− p)n−k.

For any other x, we have pX(x) = 0. In Example 0.5, we showed that this probability
distribution arises from flipping n biased coins. In particular, X is the number of heads that
arise when flipping n biased coins. In Theorem 0.6, we verified that

n∑
k=0

pX(k) =
n∑
k=0

(
n

k

)
pk(1− p)n−k = 1.

Definition 1.12 (Geometric Random Variable). Let 0 < p < 1. A random variable X
is called a geometric random variable with parameter p if X has the following PMF.
If k is a positive integer, then

pX(k) = P(X = k) = (1− p)k−1p.

For any other x, we have pX(x) = 0. Note that X is the number of times that are needed
to flip a biased coin in order to get a heads (if the coin has probability p of landing heads).
Also, using the summation of geometric series, we verify

∞∑
k=1

pX(k) =
∞∑
k=1

(1− p)k−1p = p
∞∑
k=1

(1− p)k−1 = p lim
n→∞

n∑
k=1

(1− p)k−1

= p lim
n→∞

1− (1− p)n+1

1− (1− p)
=
p

p
= 1.

Definition 1.13 (Poisson Random Variable). Let λ > 0. A random variable X is called
a Poisson random variable with parameter λ if X has the following PMF. If k is a
nonnegative integer, then

pX(k) = P(X = k) = e−λ
λk

k!
.
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For any other x, we have pX(x) = 0. Using the Taylor expansion for the exponential function,
we verify

∞∑
k=0

pX(k) = e−λ
∑
k=0

λk

k!
= e−λeλ = 1.

The Poisson random variable provides a nice approximation to the binomial distribution,
as we now demonstrate.

Proposition 1.14 (Poisson Approximation to the Binomial). Let λ > 0. For each
positive integer n, let 0 < pn < 1, and let Xn be a binomial distributed random variable with
parameters n and pn. Assume that limn→∞ pn = 0 and limn→∞ npn = λ. Then, for any
nonnegative integer k, we have

lim
n→∞

P(Xn = k) = e−λ
λk

k!
.

Lemma 1.15. Let λ > 0. For each positive integer n, let λn > 0. Assume that limn→∞ λn =
λ. Then

lim
n→∞

(
1− λn

n

)n
= e−λ

Proof. Let log denote the natural logarithm. For any x < 1, define f(x) = log(1− x). From
L’Hôpital’s Rule,

lim
x→0

f(x)

x
= lim

x→0
f ′(x) = lim

x→0

−1

1− x
= −1. (∗)

So, using limn→∞ λn/n = 0 we can apply (∗) and then limn→∞ λn = λ, so

lim
n→∞

(
1− λn

n

)n
= lim

n→∞
exp

(
log

(
1− λn

n

)n)
= exp

(
lim
n→∞

log
(
1− λn

n

)
λn/n

λn

)
= exp((−1)(λ)) = e−λ.

�

Proof of Proposition 1.14. For any positive integer n, let λn = npn. Then limn→∞ λn = λ
and limn→∞ λn/n = 0. And if k is a nonnegative integer,

P(Xn = k) =

(
n

k

)(
λn
n

)k (
1− λn

n

)n−k
=

(
k∏
i=1

n− i+ 1

n

)
λkn
k!

(
1− λn

n

)n(
1− λn

n

)−k

So, using Lemma 1.15, limn→∞P(Xn = k) = 1 · λk
k!
e−λ · 1. �

Remark 1.16. A Poisson random variable is often used as an approximation for counting
the number of some random occurrences. For example, the Poisson distribution can model
the number of typos per page in a book, the number of magnetic defects in a hard drive, the
number of traffic accidents in a day, etc.
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Exercise 1.17. The Wheel of Fortune involves the repeated spinning of a wheel with 72
possible stopping points. We assume that each time the wheel is spun, any stopping point is
equally likely. Exactly one stopping point on the wheel rewards a contestant with $1, 000, 000.
Suppose the wheel is spun 24 times. Let X be the number of times that someone wins
$1, 000, 000. Using the Poisson Approximation the Binomial, estimate the following proba-
bilities: P(X = 0), P(X = 1), P(X = 2). (Hint: consider the binomial distribution with
p = 1/72.)

Remark 1.18. The Bernoulli, binomial, geometric and Poisson random variables are all
examples of the following general construction of a random variable. Let a0, a1, a2, . . . ≥ 0
such that

∑∞
i=0 ai = 1. Then define a random variable X such that P(X = i) = ai for all

nonnegative integers i.
There are many other random variables we will encounter in this class as well, but these

will be enough for now.

1.2. Functions of Random Variables.

Proposition 1.19. Let Ω be a sample space, let P be a probability law on Ω. Let X be a
discrete random variable on Ω, and let f : R→ R. Then f(X) has PMF

pf(X)(y) =
∑

x∈R : f(x)=y

pX(x), ∀ y ∈ R.

Proof. Let x, y, z ∈ R. Let Ax be the event that X = x. If z 6= x, then Ax ∩ Az = ∅. Also,
∪x∈RAx = Ω. So, using Axiom (ii) of Definition 0.2,

pf(X)(y) = P(f(X) = y) = P(∪x∈R{f(X) = y} ∩ Ax) =
∑
x∈R

P({f(X) = y} ∩ Ax)

=
∑

x∈R : f(x)=y

P(X = x) =
∑

x∈R : f(x)=y

pX(x).

�

Exercise 1.20. Let Ω = {−3,−2,−1, 0, 1, 2, 3}. Suppose X(ω) = ω for all ω ∈ Ω. Let
f : R→ R so that f(x) = x2 for any x ∈ R. Compute the PMF of f(X).

2. Expectation

Now that we understand random variables a bit more, we can finally start to answer some
of the fundamental questions of probability, such as:

What is the average value of a random variable?
Put another way, what is the mean value of a random variable? Or, what value should we

expect a particular random variable to have? Answering this question is of interest in many
applications of probability. For example, if I can figure out a way to gain $1 from a stock
transaction with probability .51, while losing $1 from a stock transaction with probability
.49, and if I keep performing this transaction many times, I should probably expect to gain
money over time.
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2.1. Expectation, Variance.

Definition 2.1 (Expected Value). Let Ω be a sample space, let P be a probability law
on Ω. Let X be a discrete random variable on Ω. Assume that X : Ω → [0,∞). We define
the expected value of X, denoted E(X), by

E(X) =
∑
x∈R

xpX(x).

For a discrete random variable with X : Ω → R, if E |X| < ∞, we then define E(X) =∑
x∈R xpX(x) as above. The expected value of X is also referred to as the mean of X, or the

first moment of X. More generally, if n is a positive integer, we define the nth moment
of X to be E(Xn).

Example 2.2. If X takes the values {1, 2, 3, 4, 5, 6} each with probability 1/6, then we have

E(X) =
1

6
(1) +

1

6
(2) +

1

6
(3) +

1

6
(4) +

1

6
(5) +

1

6
(6) =

21

6
=

7

2
.

That is, on average, the result of the roll of one fair six-sided die will be around 7/2. We
can also compute

E(X2) =
1

6
(12) +

1

6
(22) +

1

6
(32) +

1

6
(42) +

1

6
(52) +

1

6
(62) =

91

6
.

Remark 2.3. Suppose X takes the value (−2)k with probability 2−k for every positive
integer k. Then |X| takes the value 2k with probability 2−k for every positive integer k. So,
E |X| =

∑
k≥1 1 =∞. So, E(X) is undefined.

Example 2.4. In a recent Powerball lottery, one ticket costs $2, and the jackpot was around
$(1/2)109 (after deducting taxes). The number of people winning the jackpot shares the
jackpot. Let X be your profit from buying one lottery ticket. Consider the following sim-
plified version of the lottery. Suppose you either are the only winner of the jackpot, or
you lose. There were around (1/3)109 tickets sold, and around (1/3)109 distinct possi-
ble ticket numbers. Assume that every ticket is chosen uniformly at random among all
possible ticket numbers, and whether or not someone wins or loses is independent of every-
one else. Let p = 3 · 10−9. Then the probability that you win and everyone else loses is
p(1 − p)1/p ≈ p/e ≈ p/3. That is, P(X = −2) ≈ 1 − p/3 and P(X = (1/2)109 − 2) ≈ p/3.
So,

EX = −2(1− p) + (1/2)109p ≈ −2 + 3/2 = −.5.
Since the expected value is negative, it was not sensible to buy a lottery ticket. Also, let N
be the number of people who get the winning number. Using the Poisson Approximation
to the Binomial with λ = 1, we have P(N = k) ≈ 1

ek!
for any positive integer k. So,

P(N = 0) ≈ 1/e, P(N = 1) ≈ 1/e, P(N = 2) ≈ 1/(2e) ≈ 1/6, P(N = 3) ≈ 1/(6e) ≈ 1/18,
and so on. So, having two or three winners is not so unexpected.

Proposition 2.5 (Expected Value Rule). Let Ω be a sample space, let P be a probability
law on Ω. Let X be a discrete random variable on Ω. Let f : R→ R be a function. Then

E(f(X)) =
∑
x∈R

f(x)pX(x).

9



In particular, if n is a positive integer, we can choose f(x) = xn to get

E(Xn) =
∑
x∈R

xnpX(x).

Also, if a, b are constants, we can choose f(x) = ax+ b to get

E(aX + b) = aE(X) + b

Proof. From Proposition 1.19, pf(X)(y) =
∑

x∈R : f(x)=y pX(x). So,

E(f(X)) =
∑
y∈R

ypf(X)(y) =
∑
y∈R

∑
x∈R : f(x)=y

ypX(x)

=
∑
y∈R

∑
x∈R : f(x)=y

f(x)pX(x) =
∑
x∈R

f(x)pX(x).

In the last equality, we used Exercise 0.1.
Now, let a, b be constants. Using Proposition 2.5 and then Proposition 1.8,

E(aX + b) =
∑
x∈R

(ax+ b)pX(x) = a
∑
x∈R

xpX(x) + b
∑
x∈R

pX(x) = aE(X) + b.

�

Definition 2.6 (Variance). Let Ω be a sample space, let P be a probability law on Ω. Let
X be a discrete random variable on Ω. We define the variance of X, denoted var(X), by

var(X) = E(X − E(X))2.

We define the standard deviation of X, denoted σX , by

σX =
√

var(X).

The notation E(X − E(X))2 is a shorthand for E[(X − E(X))2].

Proposition 2.7 (Properties of Variance). Let Ω be a sample space, let P be a probability
law on Ω. Let X be a discrete random variable on Ω. Let a, b be constants. Then

var(X) = E(X2)− (E(X))2.

Moreover,
var(aX + b) = a2var(X).

Proof. Using Proposition 2.5 and then Propositions 2.5 and 1.8,

var(X) = E(X − (E(X))2) =
∑
x∈R

(x− E(X))2pX(x)

=
∑
x∈R

x2pX(x)− 2E(X)
∑
x∈R

xpX(x) + (E(X))2
∑
x∈R

pX(x)

= E(X2)− 2E(X)E(X) + (E(X))2 = E(X2)− (E(X))2.

From Proposition 2.5, E(aX + b) = aE(X) + b. So, using Proposition 2.5,

var(aX + b) = E(aX + b− (aE(X) + b))2 = E(aX − aE(X))2 = E(a2(X − E(X))2)

= a2E(X − E(X))2 = a2var(X).

�
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Exercise 2.8. Let a, b ∈ R and let X : Ω→ [−∞,∞] be a random variable with EX2 <∞.
Show that

var(aX + b) = a2var(X).

Then, let X be a standard Gaussian. Show that EX = 0 and var(X) = 1.
Finally, show that the quantity E(X − t)2 is minimized for t ∈ R uniquely when t = EX.

Example 2.9. Returning again to Example 2.2, suppose X takes the values {1, 2, 3, 4, 5, 6}
each with probability 1/6. We computed E(X) = 7/2, so

var(X) = E(X − E(X))2

=
1

6
(1− 7

2
)2 +

1

6
(2− 7

2
)2 +

1

6
(3− 7

2
)2 +

1

6
(4− 7

2
)2 +

1

6
(5− 7

2
)2 +

1

6
(6− 7

2
)2 =

35

12
.

Alternatively, we computed in Example 2.2 that E(X2) = 91/6. So, by Proposition 2.7,
var(X) = 91/6− (7/2)2 = 182/12− 147/12 = 35/12. Lastly, the standard deviation of X is

σX =
√

35/12 ≈ 1.7078. So, the value of X is typically in the interval (E(X)− σX ,E(X) +
σX) = (3.5− 1.7078, 3.5 + 1.7078).

Example 2.10. Let X be a Poisson random variable with parameter λ > 0. Then pX(k) =
e−λλk/k! when k is a nonnegative integer. We then compute

E(X) =
∞∑
k=0

kpX(k) =
∞∑
k=0

ke−λ
λk

k!
=
∞∑
k=1

ke−λ
λk

k!

= λ
∞∑
k=1

e−λ
λk−1

(k − 1)!
= λe−λ

∞∑
n=0

λn

n!
= λe−λeλ = λ.

Exercise 2.11. Let X be a discrete random variable taking a finite number of values. Let
t ∈ R. Consider the function f : R→ R defined by f(t) = E(X−t)2. Show that the function
f takes its minimum value when t = EX. Moreover, if X takes at least two different values,
each with some positive probability, then f is uniquely minimized when t = EX.

Exercise 2.12. Let 0 < p < 1 and let n be a positive integer. Compute the mean of a
binomial random variable with parameter p. Then, compute the mean of a Poisson random
variable with parameter λ > 0.

Exercise 2.13. Let X be a nonnegative random variable on a sample space Ω. Assume that
X only takes integer values. Prove that

E(X) =
∞∑
n=1

P(X ≥ n).

Exercise 2.14. As we will see later in the course, the expectation is very closely related
to integrals. This exercise gives a hint toward this relation. Let Ω = [0, 1]. Let P be the

probability law on Ω such that P([a, b]) =
∫ b
a
dt = b− a whenever 0 ≤ a < b ≤ 1. Let n be

a positive integer. Let X : Ω → R be such that X is constant on any interval of the form
[i/n, (i+ 1)/n), whenever 0 ≤ i ≤ n− 1. Show that

E(X) =

∫ 1

0

X(t)dt

11



Now, consider a different probability law, where P([a, b]) =
∫ b
a

1
2
√
t
dt whenever 0 ≤ a < b ≤ 1.

Show that

E(X) =

∫ 1

0

X(t)
1

2
√
t
dt.

Exercise 2.15. Let a1, . . . , an be distinct numbers, representing the quality of n people.
Suppose n people arrive to interview for a job, one at a time, in a random order. That is,
every possible arrival order of these people is equally likely. For each i ∈ {1, . . . , n}, upon
interviewing the ith person, if ai > aj for all 1 ≤ j < i, then the ith person is hired. That is,
if the person currently being interviewed is better than the previous candidates, she will be
hired. What is the expected number of hirings that will be made? (Hint: let Xi = 1 if the
ith person to arrive is hired, and let Xi = 0 otherwise. Consider

∑n
i=1 Xi.)

2.2. Joint Mass Function, Covariance.

Definition 2.16 (Joint PMF). Let X, Y be two discrete random variables on a sample
space Ω. Let P be a probability law on Ω. Let x, y ∈ R. Define the joint probability
mass function of X and Y by

pX,Y (x, y) = P({X = x} ∩ {Y = y}) = P(X = x and Y = y) = P(X = x, Y = y).

Let A be a subset of R2. We define

P((X, Y ) ∈ A) =
∑

(x,y)∈A

pX,Y (x, y).

Proposition 2.17. Let X, Y be two discrete random variables on a sample space Ω. Let P
be a probability law on Ω. Then for any x, y ∈ R,

pX(x) =
∑
t∈R

pX,Y (x, t), pY (y) =
∑
t∈R

pX,Y (t, y).

Proof. We prove the first equality, since the second one is proven similarly. For any t ∈ R,
let At be the event that Y = t. If t1 6= t2, then At1 ∩ At2 = ∅. And ∪t∈RAt = Ω. So, from
Axiom (ii) in Definition 0.2,

pX(x) = P(X = x) = P(∪t∈R{X = x} ∩ {Y = t}) =
∑
t∈R

P(X = x, Y = t) =
∑
t∈R

pX,Y (x, t).

�

Remark 2.18. We refer to pX as the marginal PMF of X, and we refer to pY as the
marginal PMF of Y , to distinguish these PMFs from the joint PMF pX,Y .

Proposition 2.19. Let Ω be a sample space, let P be a probability law on Ω. Let X and Y
be discrete random variables on Ω taking a finite number of values. Let c be a constant. Let
f : R2 → R. Then

Ef(X, Y ) =
∑

(x,y)∈R2

f(x, y)pX,Y (x, y).

Consequently, choosing f(x, y) = x+ y, or f(x, y) = cx where c is a constant,

E(X + Y ) = E(X) + E(Y ), E(cX) = cE(X).

So, in linear algebraic terms, E is a linear transformation.

12



Proof. Let z ∈ R. Then pf(X,Y )(z) = P(f(X, Y ) = z). Let x, y ∈ R. Let Ax,y be the event
{X = x} ∩ {Y = Y }. If (x1, y1) 6= (x2, y2), then Ax1,y1 ∩ Ax2,y2 = ∅. And ∪(x,y)∈R2Ax,y = Ω.
So, from Axiom (ii) of Definition 0.2,

P(f(X, Y ) = z) = P(∪(x,y)∈R2{f(X, Y ) = z} ∩ Ax,y)

=
∑

(x,y)∈R2

P({f(X, Y ) = z} ∩ {X = x} ∩ {Y = y}) =
∑

(x,y)∈R2 : f(x,y)=z

P(X = x, Y = y).

Note that R2 = ∪z∈R{(x, y) ∈ R2 : f(x, y) = z}, where the union is disjoint. So,

E(f(X, Y )) =
∑
z∈R

zpf(X,Y )(z) =
∑
z∈R

z
∑

(x,y)∈R2 : f(x,y)=z

P(X = x, Y = y)

=
∑

(x,y)∈R2

f(x, y)P(X = x, Y = y)

The first equality is proven. We now consider f(x, y) = x+ y. We have

E(X + Y ) =
∑
x∈R

x
∑
y∈R

P(X = x, Y = y) +
∑
y∈R

y
∑
x∈R

P(X = x, Y = y)

=
∑
x∈R

xP(X = x) +
∑
y∈R

yP(Y = y) = E(X) + E(Y ).

In the last line, we used Proposition 2.17 to get
∑

y∈R P({X = x} ∩ {Y = y}) = P(X = x),

and
∑

x∈R P({X = x} ∩ {Y = y}) = P(Y = y). Finally, the equality E(cX) = cE(X) was
proven in Proposition 2.5. �

Exercise 2.20. Suppose there are ten separate bins. You first randomly place a sphere
randomly in one of the bins, where each bin has an equal probability of getting the sphere.
Once again, you randomly place another sphere uniformly at random in one of the bins.
This process occurs twenty times, so that twenty spheres have been placed in bins. What is
the expected number of empty bins at the end?

Exercise 2.21. You want to complete a set of 100 baseball cards. Cards are sold in packs
of ten. Assume that each card is equally likely to be contained in any pack of cards. How
many packs of cards should you buy in order to get a complete set of cards?

Exercise 2.22. Suppose we are drawing cards out of a standard 52 card deck without
replacing them. How many cards should we expect to draw out of the deck before we find
(a) a King? (b) a Heart?

Exercise 2.23. Let f : R → R be twice differentiable function. Assume that f is convex.
That is, f ′′(x) ≥ 0, or equivalently, the graph of f lies above any of its tangent lines. That
is, for any x, y ∈ R,

f(x) ≥ f(y) + f ′(y)(x− y).

(In Calculus class, you may have referred to these functions as “concave up.”) Let X be a
discrete random variable. By setting y = E(X), prove Jensen’s inequality:

Ef(X) ≥ f(E(X)).

In particular, choosing f(x) = x2, we have E(X2) ≥ (E(X))2.

13



Definition 2.24 (Covariance). Let Ω be a sample space, let P be a probability law on Ω.
Let X and Y be discrete random variables on Ω taking a finite number of values. We define
the covariance of X and Y , denoted cov(X, Y ), by

cov(X, Y ) = E((X − E(X))(Y − E(Y ))).

Remark 2.25.

cov(X,X) = E(X − E(X))2 = var(X).

Remark 2.26. By the Cauchy-Schwarz inequality (see Theorem 2.27), we have

|cov(X, Y )| ≤ (E(X − EX)2)1/2(E(Y − EY )2)1/2.

So, the covariance is well defined if X, Y both have finite variance. Note that

cov(X,X) = E(X − E(X))2 = var(X).

Theorem 2.27 (Cauchy-Schwarz Inequality). Let X, Y : Ω → R be random variables.
Then

E |XY | ≤ (EX2)1/2(EY 2)1/2.

Proof. By scaling, we may assume EX2 = EY 2 = 1 (zeros and infinities being trivial). From
concavity of the log function, we have the pointwise inequality

|X(ω)Y (ω)| = (|X(ω)|2)1/2(|Y (ω)|2)1/2 ≤ 1

2
|X(ω)|2 +

1

2
|Y (ω)|2 , ∀ω ∈ Ω

which upon integration gives the result. �

The covariance of X and Y is meant to measure whether or not X and Y are related
somehow. We will discuss the meaning of covariance a bit more further below. For now, we
make the following observation.

Lemma 2.28. Let Ω be a sample space, let P be a probability law on Ω. Let X1, . . . , Xn be
discrete random variables on Ω taking a finite number of values. Then

var(
n∑
i=1

Xi) =
n∑
i=1

var(Xi) + 2
∑

1≤i<j≤n

cov(Xi, Xj).

Proof. From Proposition 2.19, E(
∑n

i=1Xi) =
∑n

i=1 E(Xi). So,

var(
n∑
i=1

Xi) = E(
n∑
i=1

Xi − E(
n∑
i=1

Xi))
2 = E(

n∑
i=1

(Xi − E(Xi)))
2

= E

(
n∑
i=1

(Xi − E(Xi))
2

)
+ 2E

( ∑
1≤i<j≤n

(Xi − E(Xi))(Xj − E(Xj))

)

=
n∑
i=1

var(Xi) + 2
∑

1≤i<j≤n

cov(Xi, Xj).

�
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Exercise 2.29. Let n be a positive integer, and let 0 < p < 1. Let Ω = {0, 1}n. Any ω ∈ Ω
can then be written as ω = (ω1, . . . , ωn) with ωi ∈ {0, 1} for each i ∈ {1, . . . , n}. Let P be
the probability law described in Example 0.5. That is, for any ω ∈ Ω, we have

P(ω) =
n∏
i=1

pωi(1− p)1−ωi = p
∑n
i=1 ωi(1− p)n−

∑n
i=1 ωi .

For each i ∈ {1, . . . , n}, define Xi : Ω→ R so that Xi(ω) = ωi for any ω ∈ Ω. That is, if Ω
and P model the flipping of n distinct biased coins, then Xi = 1 when the ith coin is heads,
and Xi = 0 when the ith coin is tails.

First, show that P(Ω) = 1. Then, compute the expected value ofXi for each i ∈ {1, . . . , n}.
Next, compute the expected value of Y =

∑n
i=1Xi. Finally, prove that Y is a binomial

random variable with parameters n and p.

Exercise 2.30 (Inclusion-Exclusion Formula). This Exercise gives an alternate proof of
the following identity, which is known as the Inclusion-Exclusion Formula: Let A1, . . . , An ⊆
Ω. Then:

P(∪ni=1Ai) =
n∑
i=1

P(Ai)−
∑

1≤i<j≤n

P(Ai ∩ Aj) +
∑

1≤i<j<k≤n

P(Ai ∩ Aj ∩ Ak)

· · ·+ (−1)n+1P(A1 ∩ · · · ∩ An).

Let Y be a random variable such that Y = 1 on ∪ni=1Ai, and such that Y = 0 otherwise.

• Show that Y = 1−
∏n

i=1(1−Xi).
• Expand out the product in the previous item, and take the expected value of both

sides of the result. Deduce the Inclusion-Exclusion formula.

2.2.1. More than Two Random Variables. Our results on the joint PMF can be easily ex-
tended to any number of random variables. For example, if X1, . . . , Xn are discrete random
variables, and if x1, . . . , xn ∈ R, the joint PMF of X1, . . . , Xn is defined as

pX1,...,Xn(x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn).

Then

pX1(x1) =
∑

x2,...,xn∈R

pX1,...,Xn(x1, . . . , xn),

pX1,X2(x1, x2) =
∑

x3,...,xn∈R

pX1,...,Xn(x1, . . . , xn), etc.

Also, if f : Rn → R is a function, we have

Ef(X1, . . . , Xn) =
∑

x1,...,xn∈R

f(x1, . . . , xn)pX1,...,Xn(x1, . . . , xn).

2.3. Independence of Random Variables. Recall that sets A,B are independent when
P(A ∩B) = P(A)P(B). The independence of random variables is a bit more involved than
the independence of sets, since we will require many equalities to hold.
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Definition 2.31 (Independence of a Random Variable and a Set). Let X be a discrete
random variable on a sample space Ω, and let P be a probability law on Ω. Let A ⊆ Ω. We
say that X is independent of A if

P({X = x} ∩ A) = P(X = x)P(A), ∀x ∈ R.
That is, {X = x} is independent of A, for all x ∈ R. That is, knowing that A has occurred
does not changed our knowledge of any value of X.

Example 2.32. Let Ω = {0, 1}2 and let P be the uniform probability measure on Ω. Then P
models the toss of two distinct fair coins. For any ω = (ω1, ω2) ∈ {0, 1}2, define X(ω) = ω1.
That is, X = 1 when the first coin toss is heads (1), and X = 0 when the first coin toss is
tails (0). Let A be the event that the second coin toss is heads. That is, A = {(0, 1), (1, 1)}.
We will show that X and A are independent.

P({X = 1} ∩ A) = P({(1, 0), (1, 1)} ∩ A) = P(1, 1) = 1/4 = (1/2)(1/2) = P(X = 1)P(A).

P({X = 0} ∩ A) = P({(0, 0), (0, 1)} ∩ A) = P(0, 1) = 1/4 = (1/2)(1/2) = P(X = 0)P(A).

Therefore, X and A are independent.

Definition 2.33 (Independence of a Random Variable from another). Let X and Y
be discrete random variables on a sample space Ω, and let P be a probability law on Ω. We
say that X is independent of Y if

P(X = x, Y = y) = P(X = x)P(Y = y), ∀x, y ∈ R.
That is, {X = x} is independent of {Y = y}, for all x, y ∈ R. That is, knowing the values
of Y does not changed our knowledge of any value of X. Written another way,

pX,Y (x, y) = pX(x)pY (y), ∀x, y ∈ R.

When two random variables are independent, they satisfy many nice properties. For
example,

Theorem 2.34. Let X and Y be discrete random variables on a sample space Ω, and let P
be a probability law on Ω. Assume that X and Y are independent. Assume that X and Y
take a finite number of values. Then

E(XY ) = E(X)E(Y )

Proof. Using Proposition 2.19 and the equality pX,Y (x, y) = pX(x)pY (y) for all x, y ∈ R,

E(XY ) =
∑
x,y∈R

xypX,Y (x, y) =
∑
x∈R

xpX(x)
∑
y∈R

ypY (y) = E(X)E(Y ).

�

Corollary 2.35. Let X1, . . . , Xn be discrete random variables on a sample space Ω, and let
P be a probability law on Ω. Assume that X1, . . . , Xn are pairwise independent. That is, Xi

and Xj are independent whenever i, j ∈ {1, . . . , n} with i 6= j. Assume that X1, . . . , Xn take
a finite number of values. Then

var(
n∑
i=1

Xi) =
n∑
i=1

var(Xi).
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Proof. Let i, j ∈ {1, . . . , n} with i 6= j. Then by Theorem 2.34,

cov(Xi, Xj) = E((Xi−E(Xi))(Xj−E(Xj))) = E(XiXj)−2E(Xi)E(Xj)+E(Xi)E(Xj) = 0.

So, Lemma 2.28 concludes the proof. �

Exercise 2.36. Let X, Y, Z be discrete random variables. Let f(y) = E(X|Y = y) for
any y ∈ R. Then f : R → R is a function. In more advanced probability classes, we
consider the random variable f(Y ), which is denoted by E(X|Y ). Show that E(X +Z|Y ) =
E(X|Y ) + E(Z|Y ). Then, show that E[E(X|Y )] = E(X). That is, understanding E(X|Y )
can help us to compute E(X).

Exercise 2.37. Give an example of two random variables X, Y that are independent. Prove
that these random variables are independent.

Give an example of two random variables X, Y that are not independent. Prove that these
random variables are not independent.

Finally, find two random variables X, Y such that E(XY ) 6= E(X)E(Y ).

Exercise 2.38. Is it possible to have a random variable X such that X is independent of X?
Either find such a random variable X, or prove that it is impossible to find such a random
variable X.

Exercise 2.39. Let 0 < p < 1. Let n be a positive integer. Let X1, . . . , Xn be pairwise
independent Bernoulli random variables. Compute the expected value of

Sn =
X1 + · · ·+Xn

n
.

Then, compute the variance of Sn−E(Sn). Describe in words what this variance computation
tells you as n → ∞. Particularly, what does Sn “look like” as n → ∞? (Consider the
following statistical interpretation. Suppose each Xi is the result of some poll of person i,
where i ∈ {1, . . . , n}. Suppose that each person’s response is a Bernoulli random variable
with parameter p, and each person’s response is independent of each other person’s response.
Then Sn is the average of the results of the poll. If Sn −E(Sn) has small variance, then our
poll is very accurate. So, how accurate is the poll as n→∞? Note that the accuracy of the
poll does not depend on the size of the population you are sampling from!)

Exercise 2.40. Let X and Y be discrete random variables on a sample space Ω, and let P
be a probability law on Ω. Assume that X and Y are independent. Assume that X and Y
take a finite number of values. Let f, g : R→ R be functions. Then

E(f(X)g(Y )) = E(f(X))E(g(Y )).

2.3.1. Independence of Multiple Random Variables.

Definition 2.41 (Independence of Random Variables). Let X1, . . . , Xn be discrete
random variables on a sample space Ω, and let P be a probability law on Ω. We say that
X1, . . . , Xn are independent if

P(X1 = x1, . . . , Xn = xn) =
n∏
i=1

P(Xi = xi), ∀x1, . . . , xn ∈ R.
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Remark 2.42. Suppose X1, . . . , Xn are discrete, independent random variables taking a
finite number of values. Let f1, . . . , fn be functions from R to R. Similar to Exercise 2.40
we have

E(
n∏
i=1

fi(Xi)) =
n∏
i=1

E(fi(Xi)).

In particular,

E(
n∏
i=1

Xi) =
n∏
i=1

E(Xi).

Proposition 2.43. Let X1, . . . , Xn be discrete random variables on a sample space Ω. Let
P be a probability law on Ω. Assume that X1, . . . , Xn are independent. Then, for any subset
S of {1, . . . , n}, the random variables {Xi}i∈S are independent. In particular, X1, . . . , Xn

are pairwise independent.

Proof. By reordering indices and iterating, it suffices to show that X1, . . . , Xn−1 are inde-
pendent. That is, it suffices to show that

P(X1 = x1, . . . , Xn−1 = xn−1) =
n−1∏
i=1

P(Xi = xi), ∀x1, . . . , xn−1 ∈ R.

For any xn ∈ R, let Bxn = {Xn = xn}. Then Bxn ∩ Byn = ∅ if xn 6= yn, xn, yn ∈ R, and
∪xn∈RBxn = Ω. So, using Axiom (ii) for probability laws in Definition 0.2,

P(X1 = x1, . . . , Xn−1 = xn−1) = P({X1 = x1} ∩ · · · ∩ {Xn−1 = xn−1} ∩ (∪xn∈RBxn))

=
∑
xn∈R

P(X1 = x1, . . . , Xn = xn). (∗)

Similarly,
n−1∏
i=1

P(Xi = xi) = P(∪xn∈RBx)
n−1∏
i=1

P(Xi = xi)

=
∑
xn∈R

P(Xn = xn)
n−1∏
i=1

P(Xi = xi) =
∑
xn∈R

n∏
i=1

P(Xi = xi). (∗∗)

So, the quantities (∗) and (∗∗) are equal, by assumption. �

Exercise 2.44. Find three random variables X1, X2, X3 such that: X1 and X2 are indepen-
dent; X1 and X3 are independent; X2 and X3 are independent; but such that X1, X2, X3 are
not independent.

Exercise 2.45. Let 0 < p < 1. Let X1, . . . , Xn be independent Bernoulli random variables
with parameter p. Let Sn =

∑n
i=1Xi. A moment generating function can help use to

compute moments in various ways. Let t ∈ R and compute the moment generating function
of Xi for each i ∈ {1, . . . , n}. That is, show that

EetXi = (1− p) + pet.

Then, using the product formula for independent random variables, show that

EetSn = [(1− p) + pet]n.
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By differentiating the last equality at t = 0, and using the power series expansion of the
exponential function, compute ESn and ES2

n.

Exercise 2.46. X1, . . . , Xn be independent discrete random variables. Show that

P(X1 ≤ x1, . . . , Xn ≤ xn) =
n∏
i=1

P(Xi ≤ xi), ∀x1, . . . , xn ∈ R.

3. Continuous Random Variables

Up until this point, we have mostly focused on discrete random variables. These random
variables take either a finite or countable number of values. However, we are often confronted
with a continuous range of possible values. For example, if I throw a dart at a board, then
there is a continuous range of places that the dart could land. Or, the price of a stock is (for
many purposes) any possible positive real number. We now develop the theory of random
variables which take a continuous range of values.

3.1. Continuous Random Variables.

Definition 3.1 (Probability Density Function, PDF). A probability density func-
tion or PDF, is a function f : R→ [0,∞) such that

∫∞
−∞ f(x)dx = 1, and such that, for any

−∞ ≤ a ≤ b ≤ ∞, the integral
∫ b
a
f(x)dx exists.

Definition 3.2 (Continuous Random Variable). A random variable X on a sample
space Ω is called continuous if there exists a probability density function fX such that, for
any −∞ ≤ a ≤ b ≤ ∞, we have

P(a ≤ X ≤ b) =

∫ b

a

fX(x)dx.

We call fX the probability density function of X.

Remark 3.3. Let X be a continuous random variable with density function fX . Then for
any a ∈ R, P(X = a) =

∫ a
a
fX(x)dx = 0. Consequently, for any −∞ < a ≤ b <∞, we have

P(a ≤ X ≤ b) = P(a ≤ X < b) = P(a < X ≤ b) = P(a < X < b).

Remark 3.4. Let I1, I2, . . . be disjoint intervals in the real line R. Let B = ∪∞i=1Ii. Then
from Axiom (ii) of Definition 0.2,

P(X ∈ B) = P(X ∈ ∪∞i=1Ii) =
∞∑
i=1

P(X ∈ Ii) =
∞∑
i=1

∫
Ii

fX(x)dx =

∫
B

fX(x)dx.

The following Theorem is typically proven in advanced analysis classes.

Theorem 3.5 (Fundamental Theorem of Calculus). Let fX be a probability density

function. Then the function g(t) =
∫ t
−∞ fX(x)dx is continuous at any t ∈ R. Also, if fX is

continuous at a point x, then g is differentiable at t = x, and g′(x) = fX(x).
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Example 3.6. Let Ω = [0, 1], and define fX : R→ R so that fX(x) = 1 when x ∈ [0, 1], and

fX(x) = 0 otherwise. Then
∫∞
−∞ fX(x)dx =

∫ 1

0
dx = 1, and fX(x) ≥ 0 for all x ∈ R, so fX is

a probability density function. So, if fX is the density function of X, and if a ≤ b, we have

P(a ≤ X ≤ b) =

∫ max(0,min(b,1))

max(0,min(a,1))

dx = max(0,min(b, 1))−max(0,min(a, 1)).

In particular, if 0 ≤ a < b ≤ 1, we have P(a ≤ X ≤ b) = b − a. When X has this density
function fX , we say X is uniformly distributed in [0, 1].

Note that fX is not a continuous function, but we still say that X is continuous since the
function g(t) =

∫ t
−∞ fX(x)dx is continuous, by the Fundamental Theorem of Calculus. Also,

note that fX only takes two values, but X can take any value in [0, 1]. Finally, note that g
is not differentiable when t = 0 or t = 1, but g is differentiable for any other t ∈ R.

Example 3.7. Let Ω = [c, d], with −∞ < c < d < ∞ and define fX : R → R so that

fX(x) = 1
d−c when x ∈ [c, d], and fX(x) = 0 otherwise. Then

∫∞
−∞ fX(x)dx =

∫ d
c

1
d−cdx = 1,

and fX(x) ≥ 0 for all x ∈ R, so fX is a probability density function. So, if fX is the density
function of X, and if −∞ < a ≤ b <∞, we have

P(a ≤ X ≤ b) =
1

d− c

∫ max(c,min(b,d))

max(c,min(a,d))

dx =
1

d− c
(max(c,min(b, d))−max(c,min(a, d))) .

In particular, if c ≤ a < b ≤ d, we have P(a ≤ X ≤ b) = b−a
d−c . When X has the density

function fX , we say that X is uniformly distributed in [c, d].

Example 3.8. Let Ω = R, and define fX : R→ R so that fX(x) = 1√
2π
e−x

2/2 for all x ∈ R.

Then
∫∞
−∞ fX(x)dx = 1 by Exercise 3.10 below and fX(x) ≥ 0 for all x ∈ R, so fX is a

probability density function. So, if fX is the density function of X, and if −∞ ≤ a ≤ b ≤ ∞,

P(a ≤ X ≤ b) =

∫ b

a

1√
2π
e−x

2/2dx.

We call X the standard Gaussian random variable or the standard normal random
variable. The distribution fX resembles a “bell curve.”

The Gaussian comes up in many applications, and it has a certain “universality” property
which is studied in more advanced probability classes. For example, if we make a histogram
of test scores for a class with a large number of people, then the scores will look something like
the distribution fX(x) = 1√

2π
e−x

2/2. And we can replace “test scores” with many other things,

and the histogram will remain essentially the same. This is what is meant by “universality.”

In general, we can intuitively think of a distribution function fX as a histogram for the
(random) values that X takes.

Example 3.9. Let λ > 0. Define fX(x) = λe−λx for x ≥ 0, and fX(x) = 0 otherwise. Let’s
check that fX satisfies Definition 3.1.∫ ∞

−∞
fX(x)dx = λ

∫ ∞
0

e−λxdx = λ lim
N→∞

[−λ−1(e−λN − 1)] = 1.

A random variable X with this density fX is called an exponential random variable with
parameter λ. Exponential random variables can be used to model the expiration time of
lightbulbs, or other electronic equipment.
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Exercise 3.10. Verify that
∫∞
−∞

1√
2π
e−x

2/2dx = 1.

3.1.1. Expected Value. How should we define the expected value of a continuous random
variable? Let’s return to Example 3.6. Let Ω = [0, 1], and define fX : R → R so that
fX(x) = 1 when x ∈ [0, 1], and fX(x) = 0 otherwise. Then X is uniformly distributed in
[0, 1]. Let n be a positive integer. We will try to approximate the expected value of X.
Consider the intervals [0, 1/n), [1/n, 2/n), . . ., [(n− 1)/n, 1). Then, for each i ∈ {1, . . . , n},

P(X ∈ [(i− 1)/n, i/n)) =

∫ i/n

(i−1)/n

dx = 1/n.

So, to estimate the expected value of X, let’s just make the approximation that X takes the
value i/n with probability 1/n, for each i ∈ {1, . . . , n}. This is not quite true, but it is also
not so far from the truth. Then we estimate the expected value of X by summing up the
(approximate) values of X, multiplied by their probabilities of occurring:

n∑
i=1

i

n
·P(X ∈ [(i− 1)/n, i/n)) =

n∑
i=1

i

n

1

n
.

We could compute this sum exactly, but it is perhaps better to see that this sum is a Riemann
sum for the function g(x) = x on the interval [0, 1]. That is,

lim
n→∞

n∑
i=1

i

n
·P(X ∈ [(i− 1)/n, i/n)) =

∫ 1

0

xdx =

∫ ∞
−∞

xfX(x)dx.

The last expression is exactly our definition of expected value for continuous random
variables.

Definition 3.11 (Expected Value). Let X be a continuous random variable with density
function fX . Assume that

∫∞
−∞ |x| fX(x)dx < ∞. We then define the expected value of

X, denoted E(X), by

E(X) =

∫ ∞
−∞

xfX(x)dx.

Let g : R→ R be a function. We define

E(g(X)) =

∫ ∞
−∞

g(x)fX(x)dx.

In particular, if n is a positive integer, we have

E(Xn) =

∫ ∞
−∞

xnfX(x)dx.

Comparing Definition 2.1 to Definition 3.11, we see that we have essentially replaced the
sums with integrals. Also, we can use the same definition of variance as before.

Definition 3.12 (Variance). Let X be a continuous random variable with density function
fX . We define the variance of X, denoted var(X), by

var(X) = E(X − E(X))2.

Many facts for discrete random variables also apply to continuous random variables. For
example, the following restatements of Propositions 2.5 and 2.7 hold, with the same proof
as before, where we replace the sums by integrals.
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Proposition 3.13 (Properties of Expected Value). Let X be a continuous random
variable. Let a, b be constants. Then

E(aX + b) = aE(X) + b.

Proof. Using Definition 3.11 and Definition 3.1

E(aX + b) =

∫ ∞
−∞

(ax+ b)fX(x)dx = a

∫ ∞
−∞

xfX(x) + b

∫ ∞
−∞

fX(x)dx = aE(X) + b · 1.

�

Proposition 3.14 (Properties of Variance). Let X be a continuous random variable. Let
a, b be constants. Then

var(X) = E(X2)− (E(X))2.

Moreover,
var(aX + b) = a2var(X).

Proof. Using Definition 3.11 and Definition 3.1,

var(X) = E(X − E(X))2 =

∫ ∞
−∞

(x− E(X))2fX(x)dx

=

∫ ∞
−∞

x2fX(x)dx− 2E(X)

∫ ∞
−∞

xfX(x)dx+ (E(X))2

∫ ∞
−∞

fX(x)dx

= E(X2)− 2E(X)E(X) + (E(X))2 = E(X2)− (E(X))2.

From Proposition 3.13, E(aX + b) = aE(X) + b. So, using Definition 3.11,

var(aX + b) = E(aX + b− (aE(X) + b))2 = E(aX − aE(X))2 = E(a2(X − E(X))2)

= a2E(X − E(X))2 = a2var(X).

�

Example 3.15. We revisit Example 3.6. Let Ω = [0, 1], and define fX : R → R so that
fX(x) = 1 when x ∈ [0, 1], and fX(x) = 0 otherwise. Then X is uniformly distributed in
[0, 1]. We compute

E(X) =

∫ 1

0

xdx =
1

2
, E(X2) =

∫ 1

0

x2dx =
1

3
.

var(X) = E(X2)− (E(X))2 =
1

3
− 1

4
=

1

12
.

In particular, if X is uniformly distributed in [0, 1], then the average value of X is 1/2.

Example 3.16. We revisit Example 3.8. Let Ω = R, and define fX : R → R so that
fX(x) = 1√

2π
e−x

2/2 for all x ∈ R. Then X is a standard Gaussian random variable. We
compute

E(X) =

∫ ∞
−∞

xe−x
2/2 dx√

2π
=

∫ ∞
0

xe−x
2/2 dx√

2π
−
∫ ∞

0

xe−x
2/2 dx√

2π
= 0.

Exercise 3.17. Let X be a continuous random variable with distribution function fX(x) =
1√
2π
e−x

2/2, ∀ x ∈ R. Show that var(X) = 1.

22



Example 3.18. We reconsider Example 3.9. Let λ > 0. Define fX(x) = λe−λx for x ≥ 0,
and fX(x) = 0 otherwise. Then X is an exponential random variable with parameter
λ. Using integration by parts, we compute

E(X) = λ

∫ ∞
0

xe−λxdx = −
∫ ∞

0

x
d

dx
e−λxdx =

∫ ∞
0

e−λxdx =
1

λ
.

E(X2) = λ

∫ ∞
0

x2e−λxdx = −
∫ ∞

0

x2 d

dx
e−λxdx =

∫ ∞
0

2x
d

dx
e−λxdx =

2

λ
E(X) =

2

λ2
.

var(X) = E(X2)− (E(X))2 =
2

λ2
− 1

λ2
=

1

λ2
.

Exercise 3.19. Let X be a random variable such that fX(x) = x when 0 ≤ x ≤
√

2 and
fX(x) = 0 otherwise. Compute EX2 and EX3.

3.2. Cumulative Distribution Function (CDF). Our treatments of discrete and con-
tinuous random variables have been similar but different. We had to repeat ourselves several
times, and some concepts seem similar but not identical. Thankfully, a unified treatment of
both discrete and continuous random variables can be done. This unified treatment comes
from examining the probability that a random variable X satisfies P(X ≤ x), for any x ∈ R.

Definition 3.20 (Cumulative Distribution Function). Let X be a random variable.
The cumulative distribution function of X, denoted FX , is a function FX : R → [0, 1]
defined by

FX(x) = P(X ≤ x), ∀x ∈ R.
Remark 3.21. If X is a discrete random variable, then

FX(x) = P(X ≤ x) =
∑

y∈R : y≤x

pX(y).

If X is a continuous random variable with density function fX , then

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(t)dt.

Proposition 3.22 (Properties of the Distribution Function). Let X be a random
variable. The cumulative distribution function FX satisfies the following properties:

• If x ≤ y, then FX(x) ≤ FX(y).
• limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.
• If X is discrete, then FX is piecewise constant.
• If X is continuous, then FX is continuous.

Remark 3.23. If X is a continuous random variable with probability density function fX ,
and if fX is continuous at a point x ∈ R, then Theorem 3.5 implies that d

dx
FX(x) = fX(x).

Example 3.24. Let X be a uniformly distributed random variable in [0, 1]. In Example 3.6,
we showed that X has the distribution function fX where fX(x) = 1 when x ∈ [0, 1], and
fX(x) = 0 otherwise. So,

FX(x) =

∫ x

−∞
fX(t)dt =

∫ max(0,min(x,1))

0

dt =


x, x ∈ [0, 1]

0, x < 0

1, x > 1.
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Note also that

d

dx
FX(x) =


1, x ∈ (0, 1)

0, x < 0 or x > 1

undefined, x = 0 or x = 1

So, the derivative of FX may not exist at some points, but d
dx
FX(x) = fX(x) for any x ∈

(−∞, 0) ∪ (0, 1) ∪ (1,∞).

Example 3.25 (Maximum of Independent Variables). Let X1, X2 be two independent
discrete random variable with identical CDFs. That is, P(X1 ≤ x) = P(X2 ≤ x) for all
x ∈ R. Define the random variable Y by

Y = max(X1, X2).

Using Exercise 2.46, for any x ∈ R, we have

P(Y ≤ x) = P(X1 ≤ x,X2 ≤ x) = P(X1 ≤ x)P(X2 ≤ x) = [P(X1 ≤ x)]2.

That is, the CDF of Y is the square of the CDF of X1.
More generally, if X1, X2, . . . , Xn are independent, discrete random variable with identical

CDFs, and if

Y = max(X1, . . . , Xn),

then for any x ∈ R,

P(Y ≤ x) = [P(X1 ≤ x)]n.

We can think of Y as the maximum score on a test with n test takers, or the longest throw
of a shot put, etc.

Example 3.26. Let X1, . . . , Xn be independent Bernoulli random variables with parameter
p = 1/2, so that P(Xi = 0) = P(Xi = 1) = 1/2 for all 1 ≤ i ≤ n. Also,

P(X1 ≤ x) =


0 , if x < 0

1/2 , if 0 ≤ x < 1

1 , if x ≥ 1

.

Let Y = max(X1, . . . , Xn). Then

P(Y ≤ x) = [P(X1 ≤ x)]n =


0 , if x < 0

(1/2)n , if 0 ≤ x < 1

1 , if x ≥ 1

.

That is, pY (0) = (1/2)n and pY (1) = 1− (1/2)n. That is, Y is a Bernoulli random variable
with parameter 1− (1/2)n.

Exercise 3.27. Let X be a random variable such that X = 1 with probability 1. Show that
X is not a continuous random variable. That is, there does not exist a probability density
function f such that P(X ≤ a) =

∫ a
−∞ f(x)dx for all x ∈ R. (Hint: if X were continuous,

then the function g(t) =
∫ a
−∞ f(x)dx would be continuous, by the Fundamental Theorem of

Calculus.)
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3.3. Normal Random Variables.

Definition 3.28 (Normal Random Variable). Let µ ∈ R, σ > 0. A continuous random
variable X is said to be normal or Gaussian with mean µ and variance σ2 if X has the
following PDF:

fX(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , ∀x ∈ R.

In particular, a standard normal or standard Gaussian random variable is defined to
be a normal with µ = 0 and σ = 1.

Exercise 3.29. Verify that a Gaussian random variable X with mean µ and variance σ2

actually has mean µ and variance σ2.
Let a, b ∈ R with a 6= 0. Show that aX + b is a normal random variable with mean aµ+ b

and variance a2σ2.
In particular, conclude that (X − µ)/σ is a standard normal.

The Gaussian is probably one of the single most useful random variables within math-
ematics, and within applications of mathematics. Here is a sample result that shows the
usefulness of the Gaussian.

Theorem 3.30 (De Moivre-Laplace Theorem). Let X1, . . . , Xn be independent Bernoulli
random variables with parameter 1/2. Recall that X1 has mean 1/2 and variance 1/4. Let
a ∈ R. Then

lim
n→∞

P

(
X1 + · · ·+Xn − (1/2)n

√
n
√

1/4
≤ a

)
=

∫ a

−∞
e−t

2/2 dt√
2π
.

That is, when n is large, the CDF of X1+···+Xn−(1/2)n
√
n
√

1/4
is roughly the same as that of a

standard normal. In particular, if you flip n fair coins, then the number of heads you get
should typically be in the interval (n/2−

√
n/2, n/2 +

√
n/2), when n is large.

Remark 3.31. The random variable X1+···+Xn−(1/2)n
√
n
√

1/4
has mean zero and variance 1, just like

the standard Gaussian. So, the normalizations of X1 + · · ·+Xn we have chosen are sensible.
Also, to explain the interval (n/2−

√
n/2, n/2 +

√
n/2), note that

lim
n→∞

P

(
n

2
−
√
n

2
≤ X1 + · · ·+Xn ≤

n

2
+

√
n

2

)
= lim

n→∞
P

(
−
√
n

2
≤ X1 + · · ·+Xn −

n

2
≤
√
n

2

)
= lim

n→∞
P

(
−1 ≤

X1 + · · ·+Xn − n
2√

n/2
≤ 1

)
=

∫ 1

−1

e−t
2/2 dt√

2π
≈ .6827.

In fact, there is nothing special about the parameter 1/2 in the above theorem.

Theorem 3.32 (De Moivre-Laplace Theorem, Second Version). Let X1, . . . , Xn be
independent Bernoulli random variables with parameter p. Recall that X1 has mean p and
variance p(1− p). Let a ∈ R. Then

lim
n→∞

P

(
X1 + · · ·+Xn − pn√

n
√
p(1− p)

≤ a

)
=

∫ a

−∞
e−t

2/2 dt√
2π
.
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In fact, there is nothing special about Bernoulli random variables in the above theorem.
(See the Central Limit Theorem in Theorem 5.20 below.)

Exercise 3.33. Using the De Moivre-Laplace Theorem, estimate the probability that 106

coin flips of fair coins will result in more than 501, 000 heads. (Some of the following integrals

may be relevant:
∫ 0

−∞ e
−t2/2dt/

√
2π = 1/2,

∫ 1

−∞ e
−t2/2dt/

√
2π ≈ .8413,

∫ 2

−∞ e
−t2/2dt/

√
2π ≈

.9772,
∫ 3

−∞ e
−t2/2dt/

√
2π ≈ .9987.)

Casinos do these kinds of calculations to make sure they make money and that they do
not go bankrupt. Financial institutions and insurance companies do similar calculations for
similar reasons.

3.4. Joint PDFs.

Definition 3.34 (Joint Probability Density Function, Two Variables). A joint
probability density function (PDF) for two random variables is a function f : R2 →
[0,∞) such that

∫∫
R2 f(x, y)dxdy = 1, and such that, for any −∞ ≤ a < b ≤ ∞ and

−∞ ≤ c < d ≤ ∞, the integral
∫ y=d

y=c

∫ x=b

x=a
fX,Y (x, y)dxdy exists.

Definition 3.35. Let X, Y be two continuous random variables on a sample space Ω. We
say that X and Y are jointly continuous with joint PDF fX,Y : R2 → [0,∞) if, for any
subset A ⊆ R2, we have

P((X, Y ) ∈ A) =

∫∫
A

fX,Y (x, y)dxdy.

In particular, choosing A = [a, b]× [c, d] with −∞ ≤ a < b ≤ ∞ and −∞ ≤ c < d ≤ ∞, we
have

P(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ y=d

y=c

∫ x=b

x=a

fX,Y (x, y)dxdy.

We define the marginal PDF fX of X by

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy, ∀x ∈ R.

We define the marginal PDF fY of Y by

fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx, ∀ y ∈ R.

Note that

P(c ≤ Y ≤ d) = P(−∞ ≤ X ≤ ∞, c ≤ Y ≤ d) =

∫ y=d

y=c

∫ x=∞

x=−∞
fX,Y (x, y)dxdy.

Comparing this formula with Definition 3.2, we see that the marginal PDF of Y is exactly
the PDF of Y . Similarly, the marginal PDF of X is the PDF of X.

Example 3.36. In this example, we take it as given that

1

2π

∫∫
R2

e−(x2+y2)/2dxdy = 1.
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Suppose X and Y have a joint PDF so that

P((X, Y ) ∈ A) =
1

2π

∫∫
A

e−(x2+y2)/2dxdy.

That is, we can think of X as the x-coordinate of a randomly thrown dart, and we can think
of Y as the y-coordinate of a randomly thrown dart on the infinite dartboard R2.

In this case, the marginals are both standard Gaussians:

fX(x) =
1√
2π
e−x

2/2

∫ ∞
−∞

e−y
2/2 dy√

2π
=

1√
2π
e−x

2/2, ∀x ∈ R.

fY (y) =
1√
2π
e−y

2/2

∫ ∞
−∞

e−x
2/2 dx√

2π
=

1√
2π
e−y

2/2, ∀y ∈ R.

That is, if we only keep track of the x-coordinate of the random dart, then this x-coordinate
is a standard Gaussian itself. And if we only keep track of the y-coordinate of the random
dart, then this y-coordinate is also a standard Gaussian.

Example 3.37 (Buffon’s Needle). Suppose a needle of length ` > 0 is kept parallel to
the ground. The needle is dropped onto the ground with a random position and orientation.
The ground has a grid of equally spaced horizontal lines, where the distance between two
adjacent lines is d > 0. Suppose ` < d. What is the probability that the needle touches one
of the lines? (Since ` < d, the needle can touch at most one line.)

Let x be the distance of the midpoint of the needle from the closest line. Let θ be the acute
angle formed by the needle and any horizontal line. The tip of the needle exactly touches
the line when sin θ = x/(`/2) = 2x/`. So, any part of the needle touches some line if and
only if x ≤ (`/2) sin θ. Since the needle has a uniformly random position and orientation,
we model X,Θ as random variables with joint distribution uniform on [0, d/2]× [0, π/2]. So,

fX,Θ(x, θ) =

{
4
πd
, x ∈ [0, d/2] and θ ∈ [0, π/2]

0, otherwise.

(Note that
∫∫

R2 fX,Θ(x, θ)dxdθ = 1.) And the probability that the needle touches one of the
lines is ∫∫

0≤x≤(`/2) sin θ

fX,Θ(x, θ)dxdθ =

∫ θ=π/2

θ=0

∫ x=(`/2) sin θ

x=0

4

πd
dxdθ

=
2`

πd

∫ θ=π/2

θ=0

sin θdθ =
2`

πd
[− cos θ]

θ=π/2
θ=0 =

2`

πd
.

Note that x ≤ `/2 < d/2 always, so the set 0 ≤ x ≤ (`/2) sin θ is still contained in the set
x ∈ [0, d/2].

In particular, when ` = d, the probability is 2/π.

Definition 3.38. Let X, Y be random variables with joint PDF fX,Y . Let g : R2 → R. Then

Eg(X, Y ) =

∫∫
R2

g(x, y)fX,Y (x, y)dxdy.

In particular,

E(XY ) =

∫∫
R2

xyfX,Y (x, y)dxdy.
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Exercise 3.39. Let X, Y be random variables with joint PDF fX,Y . Let a, b ∈ R. Using
Definition 3.38, show that E(aX + bY ) = aEX + bEY .

Theorem 3.40 (Fubini Theorem). Let h : R2 → R be a continuous function such that∫∫
R2 |h(x, y)| dxdy <∞. Then∫∫

R2

h(x, y)dxdy =

∫
R

(∫
R
h(x, y)dx

)
dy =

∫
R

(∫
R
h(x, y)dy

)
dx.

Exercise 3.41. Let X, Y be random variables. For any y ∈ R, assume that E(X|Y = y) =
e−|y|. Also, assume that Y has an exponential distribution with parameter λ = 2. Compute
EX.

3.5. Independence.

Definition 3.42. Let X, Y be random variables with joint PDF fX,Y . We say that X and
Y are independent if

fX,Y (x, y) = fX(x)fY (y), ∀x, y ∈ R.
More generally, random variables X1, . . . , Xn with joint PDF fX1,...,Xn are independent if

fX1,...,Xn(x1, . . . , xn) =
n∏
i=1

fXi(xi), ∀x1, . . . , xn ∈ R.

Example 3.43. We continue Example 3.36. We suppose X and Y have a joint PDF so that

P((X, Y ) ∈ A) =
1

2π

∫∫
A

e−(x2+y2)/2dxdy, ∀A ⊆ R2.

We showed in Example 3.36 that X and Y are both standard normals. We verified in
Example 3.36 that fX,Y (x, y) = fX(x)fY (y) forall x, y ∈ R. So, X and Y are independent.

Proposition 3.44. Let X, Y be two independent random variables with joint PDF fX,Y . Let
A,B ⊆ R. Then the events {X ∈ A} and {Y ∈ B} are independent.

Proof. Using Definition 3.42 and Theorem 3.40,

P(X ∈ A, Y ∈ B) =

∫
A

∫
B

fX,Y (x, y)dydx =

∫
A

∫
B

fY (y)dyfX(x)dx

= (

∫
A

fX(x)dx)(

∫
B

fY (y)dy) = P(X ∈ A)P(Y ∈ B).

�

Theorem 3.45. Let X, Y be two independent random variables with joint PDF fX,Y . Then

E(XY ) = (EX)(EY ).

More generally, if g, h : R→ R, then

E(g(X)h(Y )) = (Eg(X))(Eh(Y )).

More generally, if X1, . . . , Xn are independent random variables with joint PDF fX1,...,Xn,
and if g1, . . . , gn : R→ R, then

E(
n∏
i=1

gi(Xi)) =
n∏
i=1

E(gi(Xi)).
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Proof. We prove the second statement since it implies the first. Using Definitions 3.38 and
3.42, and Theorem 3.40

E(g(X)h(Y )) =

∫∫
R2

g(x)h(y)fX,Y (x, y)dxdy =

∫∫
R2

g(x)h(y)fX(x)fY (y)dxdy

= (

∫
R
g(x)fX(x)dx)(

∫
R
h(y)fY (y)dy) = (Eg(X))(Eh(Y )).

�

Exercise 3.46. Let X, Y be independent random variables with joint PDF fX,Y . Show that

var(X + Y ) = var(X) + var(Y ).

Exercise 3.47. Let X and Y be uniformly distributed random variables on [0, 1]. Assume
that X and Y are independent. Compute the following probabilities:

• P(X > 3/4)
• P(Y < X)
• P(X + Y < 1/2)
• P(max(X, Y ) > 1/2)
• P(XY < 1/3).

Exercise 3.48. Let X1, Y1 be random variables with joint PDF fX1,Y1 . Let X2, Y2 be random
variables with joint PDF fX2,Y2 . Let T : R2 → R2 and let S : R2 → R2 so that ST (x, y) =
(x, y) and TS(x, y) = (x, y) for every (x, y) ∈ R2. Let J(x, y) denote the determinant of the
Jacobian of S at (x, y). Using the change of variables formula from multivariable calculus,
show that

fX2,Y2(x, y) = fX1,Y1(S(x, y)) |J(x, y)| .

Exercise 3.49 (Numerical Integration). In computer graphics in video games, etc., var-
ious integrations are performed in order to simulate lighting effects. Here is a way to use
random sampling to integrate a function in order to quickly and accurately render lighting
effects. Let Ω = [0, 1], and let P be the uniform probably law on Ω, so that if 0 ≤ a < b ≤ 1,
we have P([a, b]) = b − a. Let X1, . . . , Xn be independent random variables such that
P(Xi ∈ [a, b]) = b − a for all 0 ≤ a < b ≤ 1, for all i ∈ {1, . . . , n}. Let f : [0, 1] → R be a
continuous function we would like to integrate. Instead of integrating f directly, we instead
compute the quantity

1

n

n∑
i=1

f(Xi).

Show that

lim
n→∞

E

(
1

n

n∑
i=1

f(Xi)

)
=

∫ 1

0

f(t)dt.

lim
n→∞

var

(
1

n

n∑
i=1

f(Xi)

)
= 0.

That is, as n becomes large, 1
n

∑n
i=1 f(Xi) is a good estimate for

∫ 1

0
f(t)dt.
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3.6. Joint CDF.

Definition 3.50 (Joint CDF). Let X, Y be random variables. We define the joint CDF
of X, Y to be the function

FX,Y (x, y) = P(X ≤ x, Y ≤ y), ∀x, y ∈ R.
More generally, if X1, . . . , Xn are random variables, we define the joint CDF of X1, . . . , Xn

to be the function

FX1,...,Xn(x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn), ∀x1, . . . , xn ∈ R.

Remark 3.51. If X, Y are independent random variables with joint PDF fX,Y , then Propo-
sition 3.44 says that

FX,Y (x, y) = P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y) = FX(x)FY (y).

More generally, if X1, . . . , Xn are independent random variables with joint PDF fX1,...,Xn ,
then

FX1,...,Xn(x1, . . . , xn) =
n∏
i=1

FXi(xi), ∀x1, . . . , xn ∈ R.

Remark 3.52. In fact, we can use the last equality as a definition in order to define in-
dependence of general random variables. That is, we say random variables X1, . . . , Xn are
independent if

FX1,...,Xn(x1, . . . , xn) =
n∏
i=1

FXi(xi), ∀x1, . . . , xn ∈ R.

4. Limit Theorem Preliminaries: Covariance, Transforms

4.1. Introduction to Limit Theorems. Suppose I flip a fair coin 109 times. Then I
should expect to get roughly 1

2
109 heads and 1

2
109 tails. This is formalized in the Law of

Large Numbers. Or, suppose I have a casino game where the casino wins 51% of the time.
Then over a long period of time, the casino will make money; the Law of Large Numbers
guarantees that! However, if I do flip 109 fair coins, it is unlikely that I will get exactly 1

2
109

heads. (What is the exact probability?) There will typically be some small fluctuations
around 1

2
109. But about how close to 1

2
109 will the number of heads be? This question is

answered precisely by the Central Limit Theorem. In your previous probability class, you
may have mentioned the Central Limit Theorem applied to coin flips, which is known as the
De Moivre-Laplace Theorem:

Theorem 4.1 (De Moivre-Laplace Theorem). Let X1, . . . , Xn be independent Bernoulli
random variables with parameter 1/2, so that P(X1 = 1) = P(X1 = 0) = 1/2. Recall that
X1 has mean 1/2 and variance 1/4. Let a ∈ R. Then

lim
n→∞

P

(
X1 + · · ·+Xn − (1/2)n

√
n
√

1/4
≤ a

)
=

∫ a

−∞
e−t

2/2 dt√
2π
.

That is, when n is large, the CDF of X1+···+Xn−(1/2)n
√
n
√

1/4
is roughly the same as that of a

standard normal. In particular, if you flip n fair coins, then the number of heads you get
should typically be in the interval (n/2−

√
n/2, n/2 +

√
n/2), when n is large.
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Remark 4.2. The random variable X1+···+Xn−(1/2)n
√
n
√

1/4
has mean zero and variance 1, just like

the standard Gaussian. So, the normalizations of X1 + · · ·+Xn we have chosen are sensible.
Also, to explain the interval (n/2−

√
n/2, n/2 +

√
n/2), note that

lim
n→∞

P

(
n

2
−
√
n

2
≤ X1 + · · ·+Xn ≤

n

2
+

√
n

2

)
= lim

n→∞
P

(
−
√
n

2
≤ X1 + · · ·+Xn −

n

2
≤
√
n

2

)
= lim

n→∞
P

(
−1 ≤

X1 + · · ·+Xn − n
2√

n/2
≤ 1

)
=

∫ 1

−1

e−t
2/2 dt√

2π
≈ .6827.

Exercise 4.3. Let X and Y be nonnegative random variables. Recall that we can define

EX :=

∫ ∞
0

P(X > t)dt.

Assume that X ≤ Y . Conclude that EX ≤ EY .
More generally, if X satisfies E |X| <∞, we define EX := E max(X, 0)− E max(−X, 0).

If X, Y are any random variables with X ≤ Y , E |X| < ∞ and E |Y | < ∞, show that
EX ≤ EY .

4.2. Covariance. Recall that the covariance of two random variables X and Y , denoted
cov(X, Y ), is

cov(X, Y ) = E((X − E(X))(Y − E(Y ))).

In particular, cov(X,X) = E(X − E(X))2 = var(X).

Definition 4.4. Let X, Y be random variables. We say that X, Y are uncorrelated if
cov(X, Y ) = 0.

Exercise 4.5. Let X, Y be random variables with EX2 < ∞ and EY 2 < ∞. Prove the
Cauchy-Schwarz inequality:

E(XY ) ≤ (EX2)1/2(EY 2)1/2.

Then, deduce the following when X, Y both have finite variance:

|cov(X, Y )| ≤ (var(X))1/2(var(Y ))1/2.

(Hint: in the case that EY 2 > 0, expand out the product E(X − YE(XY )/EY 2)2.)

Recall in Lemma 2.28, we proved the following for discrete random variables, though the
proof applies for any random variables.

Lemma 4.6. Let X1, . . . , Xn be random variables with var(Xi) <∞ for all 1 ≤ i ≤ n. Then

var(
n∑
i=1

Xi) =
n∑
i=1

var(Xi) + 2
∑

1≤i<j≤n

cov(Xi, Xj).
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Proof.

var(
n∑
i=1

Xi) = E(
n∑
i=1

Xi − E(
n∑
i=1

Xi))
2 = E(

n∑
i=1

(Xi − E(Xi)))
2

= E

(
n∑
i=1

(Xi − E(Xi))
2

)
+ 2E

( ∑
1≤i<j≤n

(Xi − E(Xi))(Xj − E(Xj))

)

=
n∑
i=1

var(Xi) + 2
∑

1≤i<j≤n

cov(Xi, Xj).

The assumption var(Xi) <∞ for all 1 ≤ i ≤ n and Exercise 4.5 ensure that all of the above
quantities are finite. �

As in Corollary 2.35, Lemma 4.6 immediately implies:

Corollary 4.7. Let X1, . . . , Xn be random variables that are pairwise uncorrelated. That is,
cov(Xi, Xj) = 0 for any i, j ∈ {1, . . . , n} with i 6= j. Then

var(
n∑
i=1

Xi) =
n∑
i=1

var(Xi).

Corollary 4.8. Let X1, . . . , Xn be independent random variables. Then

var(
n∑
i=1

Xi) =
n∑
i=1

var(Xi).

Proof. Let i, j ∈ {1, . . . , n} with i 6= j. Then, using independence,

cov(Xi, Xj) = E((Xi−E(Xi))(Xj−E(Xj))) = E(XiXj)−2E(Xi)E(Xj)+E(Xi)E(Xj) = 0.

So, Corollary 4.7 concludes the proof. �

Exercise 4.9. Let X be a binomial random variable with parameters n = 2 and p = 1/2.
So, P(X = 0) = 1/4, P(X = 1) = 1/2 and P(X = 2) = 1/4. And X satisfies EX = 1 and
EX2 = 3/2.

Let Y be a geometric random variable with parameter 1/2. So, for any positive integer k,
P(Y = k) = 2−k. And Y satisfies EY = 2 and EY 2 = 6.

Let Z be a Poisson random variable with parameter 1. So, for any nonnegative integer k,
P(Z = k) = 1

e
1
k!

. And Z satisfies EZ = 1 and EZ2 = 2.
Let W be a discrete random variable such that P(W = 0) = 1/2 and P(W = 4) = 1/2,

so that EW = 2 and EW 2 = 8.
Assume that X, Y, Z and W are all independent. Compute

var(X + Y + Z +W ).

Exercise 4.10. Let X1, . . . , Xn be random variables with finite variance. Define an n × n
matrix A such that Aij = cov(Xi, Xj) for any 1 ≤ i, j ≤ n. Show that the matrix A is
positive semidefinite. That is, show that for any y = (y1, . . . , yn) ∈ Rn, we have

yTAy =
n∑

i,j=1

yiyjAij ≥ 0.
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4.3. Transforms. Generally speaking, a transform is a way of creating one function from
another function. For example, the moment generating function associates a real-valued
function to a random variable. And the characteristic function (or Fourier transform) asso-
ciates a complex-valued function to a random variable.

Definition 4.11 (Moment Generating Function). Let X be a random variable. The
moment generating function of X is a function MX : R→ R defined by

MX(t) := E(etX), ∀ t ∈ R.

Remark 4.12. For certain random variables X, the moment generating function may not
exist. For example, if X is a continuous random variable with density function fX(x) = x−2

for any x > 1, and fX(x) = 0 otherwise. Then MX(t) =
∫∞

1
etxfX(x)dx does not exist when

t > 0.

Assume that MX(t) exists for all t ∈ R, and assume we can differentiate under the expected
value. Then

d

dt
|t=0MX(t) = E

(
d

dt t=0
etX
)

= E(X).

That is, the first derivative of the moment generating function at t = 0 is equal to the first
moment of X. More generally, the nth derivative of the moment generating function at t = 0
is equal to the nth moment of X:

Exercise 4.13. Let X be a random variable. Assume that MX(t) exists for all t ∈ R, and
assume we can differentiate under the expected value any number of times. For any positive
integer n, show that

dn

dtn
|t=0MX(t) = E(Xn).

So, in principle, all moments of X can be computed just by taking derivatives of the moment
generating function.

Example 4.14. Let X be an exponential random variable with parameter λ > 0. That is,
fX(x) = λe−λx for any x ≥ 0, and fX(x) = 0 otherwise. Then for any t < λ,

MX(t) = λ

∫ ∞
0

etxe−λxdx = λ

∫ ∞
0

e(t−λ)xdx

= λ lim
N→∞

1

t− λ
[e(t−λ)x]x=N

x=0 =
λ

λ− t
.

From Exercise 4.13, EX = d
dt
|t=0MX(t) = λ

λ2
= λ−1. More generally, it follows by induction

that for any integer n > 0,

EXn =
dn

dtn
|t=0MX(t) = n!λ−n.

Instead of proving this equality by induction, we use power series. Let t ∈ R with |t| < 1.
From the summation formula for geometric series,

1

1− t
=
∞∑
k=0

tn.
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That is, for any t ∈ R with |t| < λ,

MX(t) =
λ

λ− t
=

1

1− (t/λ)
=
∞∑
k=0

(t/λ)k.

So, from Exercise 4.13, if n is a positive integer, then

EXn =
dn

dtn
|t=0MX(t) =

∞∑
k=0

dn

dtn
|t=0(t/λ)k =

dn

dtn
|t=0(t/λ)n = n!λ−n.

The Gaussian density has a fairly simple moment generating function.

Proposition 4.15. Let X be a standard Gaussian random variable. Then

MX(t) = et
2/2, ∀ t ∈ R.

Proof.

MX(t) = EetX =
1√
2π

∫ ∞
−∞

etxe−x
2/2dx =

1√
2π

∫ ∞
−∞

e−(x−t)2/2et
2/2dx

= et
2/2 1√

2π

∫ ∞
−∞

e−(x−t)2/2dx = et
2/2 1√

2π

∫ ∞
−∞

e−x
2/2dx = et

2/2.

�

Exercise 4.16. Using the explicit formula for the moment generating function, compute an
explicit formula for all moments of the Gaussian random variable. (The 2nth moment of X
should be something resembling a factorial.)

Proposition 4.17. Let X1, . . . , Xn be independent random variables. Then

MX1+···+Xn(t) =
n∏
j=1

MXj(t), ∀ t ∈ R.

Proof. Since X1, . . . , Xn are independent, etX1 , . . . , etXn are independent, for any t ∈ R. So,

MX1+···+Xn(t) = Eet(X1+···+Xn) = E
n∏
j=1

etXj =
n∏
j=1

EetXj =
n∏
j=1

MXj(t)

�

Example 4.18. Let X be a binomial distributed random variable with parameters n and
0 < p < 1. That is, X can be written as the sum of n independent Bernoulli random
variables X1, . . . , Xn with parameter p. Then by Proposition 4.17, for any t ∈ R,

MX(t) =
n∏
j=1

MXj(t) = (MX1(t))
n = ((1− p)e0·t + pet)n = (1− p+ pet)n.

In some cases, the moment generating function uniquely determines the random variable.

Theorem 4.19 (Lévy Continuity Theorem, Weak Form). Let X, Y be random vari-
ables. Assume that MX(t),MY (t) exist for all t ∈ R, and that MX(t) = MY (t) for all t ∈ R.
Then X and Y have the same CDF.
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Exercise 4.20. Construct two random variables X, Y : Ω → R such that X 6= Y but
MX(t),MY (t) exist for all t ∈ R, and such that MX(t) = MY (t) for all t ∈ R.

Exercise 4.21. Unfortunately, there exist random variables X, Y such that EXn = EY n

for all n = 1, 2, 3, . . ., but such that X, Y do not have the same CDF. First, explain why this
does not contradict the Lévy Continuity Theorem, Weak Form. Now, let −1 < a < 1, and
define a density

fa(x) :=

{
1

x
√

2π
e−

(log x)2

2 (1 + a sin(2π log x)) , if x > 0

0 , otherwise.

Suppose Xa has density fa. If −1 < a, b < 1, show that EXn
a = EXn

b for all n = 1, 2, 3, . . ..
(Hint: write out the integrals, and make a change of variables s = log(x)− n.)

From Exercise 4.13, the moment generating function of a random variable X contains all
information about the moments of X. However, as mentioned in Remark 4.12, MX(t) may
not exist for many values of t. So, studying the moment generating function may not be so
helpful for certain random variables. Fortunately, the closely related characteristic function
will always exist, and it also contains all information about the moments of X

5. Limit Theorems

We now start to build up the machinery that is used to prove the two “big theorems” of
probability: the Law of Large Numbers, and the Central Limit Theorem. We begin with
some useful inequalities.

5.1. Markov and Chebyshev Inequalities. Markov’s inequality says that a random vari-
able with finite expected value cannot be too large very often.

Proposition 5.1 (The Markov Inequality). Let X be a nonnegative random variable.
Then

P(X ≥ t) ≤ EX

t
, ∀ t > 0.

Proof. Let t > 0. Let Y be a random variable such that

Y =

{
t , if X ≥ t

0 , if X < t.

By definition of Y , we have Y ≤ X. Therefore, EY ≤ EX by Exercise 4.3. By the definition
of Y , EY = tP(X ≥ t). That is,

tP(X ≥ t) ≤ E(X).

�

Remark 5.2. A nearly identical proof shows that P(X > t) ≤ EX
t

, for all t > 0.

Markov’s inequality is commonly applied in the following ways.

Corollary 5.3. Let X be a random variable. Then

P(|X| ≥ t) ≤ E |X|
t

, ∀ t > 0.
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More generally, if n is a positive integer, then

P(|X| ≥ t) ≤ E |X|n

tn
, ∀ t > 0.

Proof. The first assertion follows immediately by applying Proposition 5.1 to |X|. For the
second assertion, we use the first assertion to get

P(|X| ≥ t) = P(|X|n ≥ tn) ≤ E |X|n

tn
, ∀ t > 0.

�

The second inequality of Corollary 5.3 is fairly useful, since if many moments of |X| are
bounded, then P(|X| ≥ t) decays very rapidly.

Replacing X by X − µ and taking n = 2 in Corollary 5.3 gives:

Corollary 5.4 (Chebyshev Inequality). Let X be a random variable with mean µ. Then

P(|X − µ| ≥ t) ≤ var(X)

t2
, ∀ t > 0.

Or, replacing t by t
√

var(X),

P(|X − µ| ≥ t
√

var(X)) ≤ 1

t2
, ∀ t > 0.

Exercise 5.5. Let X be a standard Gaussian random variable. Let t > 0 and let n be a
positive even integer. Show that

P(X > t) ≤ (n− 1)(n− 3) · · · (3)(1)

tn
.

That is, the function t 7→ P(X > t) decays faster than any monomial.

Exercise 5.6. Let X be a random variable. Let t > 0. Show that

P(|X| > t) ≤ EX4

t4
.

Proposition 5.7 (Borel-Cantelli Lemma). Let A1, A2, . . . be events with
∑∞

n=1 P(An) <
∞. Let B := {

∑∞
n=1 1An = ∞}, so that B is the event that infinitely many of the events

A1, A2, . . . occur. Then P(B) = 0.

5.2. Weak Law of Large Numbers.

Definition 5.8. LetX1, X2, . . . be random variables. We say thatX1, X2, . . . are identically
distributed if X1, X2, . . . all have the same CDF. That is, P(Xi ≤ t) = P(Xj ≤ t) for all
t ∈ R and for all positive integers i, j.

Remark 5.9. If X1, X2, . . . are identically distributed random variables, then EXi = EXj

for all positive integers i, j.

We know intuitively that, if the results of independent experiments are averaged, then the
average will become close to the expected value of a single experiment. Indeed, one way to
intuitively think about expected value is as the average of many repeated experiments. The
Law of Large Numbers makes the previous statement rigorous. For now, we only prove a
weak version of this statement, though a stronger version will be proven later.
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Theorem 5.10 (Weak Law of Large Numbers). Let X1, X2, . . . be independent iden-
tically distributed random variables. Assume that µ ∈ R and EX1 = µ. Then, for any
ε > 0,

lim
n→∞

P

( ∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ ε

)
= 0.

Proof. We make the additional assumption that var(X1) < ∞. Removing this assumption
relies on things outside of this class. From Corollary 4.7,

var

(
X1 + · · ·+Xn

n

)
=

1

n2

n∑
i=1

var(Xi) =
1

n
var(X1).

So, Chebyshev’s inequality implies that

P

( ∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ ε

)
≤ 1

n
ε−2var(X1).

Letting n→∞ concludes the proof. �

Example 5.11. Let X1, X2, . . . be independent Bernoulli random variables with parameter
1/2. Let n := 104, ε := 10−2. Then

P

(∣∣∣∣X1 + · · ·+Xn

n
− 1

2

∣∣∣∣ ≥ 1

100

)
≤ 10−4104(1/4) =

1

4
.

5.3. Convergence in Probability.

Definition 5.12. We say that a sequence of random variables Y1, Y2, . . . converges in
probability to a random variable Y if: for all ε > 0

lim
n→∞

P(|Yn − Y | > ε) = 0.

More formally, if Ω is the sample space, then ∀ ε > 0, limn→∞P(ω ∈ Ω: |Yn(ω)− Y (ω)| >
ε) = 0.

Remark 5.13. So, the Weak Law of Large numbers says: if X1, X2 are independent identi-
cally distributed random variables with µ := EX1 ∈ R, then the random variables X1+···+Xn

n
converge in probability to the constant µ.

Example 5.14. For any n ≥ 1, let Yn be a random variable such that P(Yn = n2) = 1/n,
and P(Yn = 0) = 1− 1/n. Then Y1, Y2, . . . converges in probability to 0. For any ε > 0,

P(|Yn − 0| > ε) = P(|Yn| > ε) = P(Yn = n2) = 1/n.

Therefore, limn→∞P(|Yn − 0| > ε) = 0.
However, note that convergence in probability does not imply convergence in expected

value, since limn→∞EYn = limn→∞ n =∞, whereas the expected value of 0 is just 0.

Proposition 5.15 (Uniqueness of the Limit). Suppose Y1, Y2, . . . converges in probability
to Y . Also, suppose Y1, Y2, . . . converges in probability to Z. Then P(Z 6= Y ) = 0.

Proof. From the triangle inequality, for any n ≥ 1,

|Z − Y | = |Z − Yn + Yn − Y | ≤ |Z − Yn|+ |Y − Yn| .
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So, for any ε > 0, if |Z − Y | ≥ ε, then either |Z − Yn| ≥ ε/2 or |Y − Yn| ≥ ε/2. That is, for
any ε > 0 and for any n ≥ 1,

{ω ∈ Ω: |Z(ω)− Y (ω)| ≥ ε}
⊆ {ω ∈ Ω: |Z(ω)− Yn(ω)| ≥ ε/2} ∪ {ω ∈ Ω: |Y (ω)− Yn(ω)| ≥ ε/2}.

Therefore, for any ε > 0 and for any n ≥ 1,

P(|Z − Y | ≥ ε) ≤ P(|Z − Yn| ≥ ε/2) + P(|Y − Yn| ≥ ε/2).

The left side does not depend on n. So, letting n→∞, we get P(|Z − Y | ≥ ε) = 0, for all
ε > 0. Now,

{Z 6= Y } ⊆ ∪∞t=1{|Z − Y | ≥ 1/t}.
Therefore, P(Z 6= Y ) ≤

∑∞
t=1 P(|Z − Y | ≥ 1/t) = 0. So, P(Z 6= Y ) = 0. �

Exercise 5.16. Let X1, X2, . . . be independent random variables, each with exponential
distribution with parameter λ = 1. For any n ≥ 1, let Yn := max(X1, . . . , Xn). Let
0 < a < 1 < b. Show that P(Yn ≤ a log n) → 0 as n → ∞, and P(Yn ≤ b log n) → 1 as
n→∞. Conclude that Yn/ log n converges to 1 in probability as n→∞.

Exercise 5.17. We say that random variables X1, X2, . . . converge to a random variable X
in L2 if

lim
n→∞

E |Xn −X|2 = 0.

Show that, if X1, X2, . . . converge to X in L2, then X1, X2, . . . converges to X in probability.
Is the converse true? Prove your assertion.

Exercise 5.18. Let X1, X2, . . . be independent, identically distributed random variables
such that E |X1| <∞ and var(X1) <∞. For any n ≥ 1, define

Yn :=
1

n

n∑
i=1

X2
i .

Show that Y1, Y2, . . . converges in probability. Express the limit in terms of EX1 and var(X1).

5.4. Central Limit Theorem. The following is a stronger version of Theorem 4.19.

Theorem 5.19 (Lévy Continuity Theorem). Let X1, X2, . . . be random variables and let
X be a random variable. For any fixed t ∈ R, assume that limn→∞MXn(t) = MX(t). Then
for any fixed t ∈ R such that P(X ≤ t) is continuous, we have limn→∞P(Xn ≤ t) = P(X ≤
t).

In particular, if X, Y are random variables with MX(t) = MY (t) for all t ∈ R, then X, Y
are identically distributed.

We are finally able to prove the generalization of the De Moivre Laplace Theorem, Theorem
4.1, to arbitrary random variables.

Theorem 5.20 (Central Limit Theorem). Let X1, X2, . . . be independent, identically
distributed random variables. Let Z be a standard Gaussian random variable. Let µ, σ ∈ R
with σ > 0. Assume that EX1 = µ and var(X1) = σ2. Then for any t ∈ R,

lim
n→∞

P

(
X1 + · · ·+Xn − nµ

σ
√
n

≤ t

)
=

∫ t

−∞
e−x

2/2 dx√
2π

= P(Z ≤ t).
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Remark 5.21. The random variable X1+···+Xn−µn
σ
√
n

has mean zero and variance 1, just like

the standard Gaussian Z.

Proof. We make the additional assumption that all moment generating functions of the
random variables exist for all t ∈ R, and they are differentiable

For any j ≥ 1, let Yj := (Xj − µ)/σ. Then Y1, Y2, . . . are independent and identically
distributed, EYj = 0 and EY 2

j = 1, ∀ j ≥ 1. We will show that limn→∞P(Y1+···+Yn√
n
≤ t) =

P(Z ≤ t), ∀ t ∈ R. From Theorem 5.19 and Proposition 4.15, it suffices to show:

lim
n→∞

Ee
t
Y1+···+Yn√

n = EetZ = et
2/2, ∀ t ∈ R.

From Proposition 4.17,

Ee
t
Y1+···+Yn√

n =
n∏
j=1

EetYj/
√
n = (EetY1/

√
n)n.

So, it suffices to show:

lim
n→∞

log Ee
t
Y1+···+Yn√

n = t2/2, ∀ t ∈ R.

Denote c(t) := log EetY1 = logMY1(t) for all t ∈ R. Recall that MY1(0) = 1, M ′
Y1

(0) = EY1 =
0, and M ′′

Y1
(0) = EY 2

1 = 1. Therefore, c(0) = 1,

c′(0) =
M ′

Y1
(0)

MY1(0)
= 0,

c′′(0) =
M ′′

Y1
(0)MY1(0)− [M ′

Y1
(0)]2

[MY1(0)]2
= 1.

So, using LHôpital’s rule, twice,

lim
n→∞

log Ee
t
Y1+···+Yn√

n = lim
n→∞

log(EetY1/
√
n)n = lim

n→∞
n log EetY1/

√
n = lim

n→∞

log EetY1/
√
n

1/n

= lim
s→0

log EetY1s

s2
= lim

s→0

c(ts)

s2
= lim

s→0

tc′(ts)

2s
= lim

s→0

t2c′′(ts)

2
=
t2

2
.

�

Definition 5.22 (Convergence in Distribution). Let X,X1, X2, . . . be random variables.
We say that X1, X2, . . . converge in distribution to X if, for any t ∈ R such that the CDF
of X is continuous at t,

lim
n→∞

P(Xn ≤ t) = P(X ≤ t).

So, the Central Limit Theorem, Theorem 5.20, says: if X1, X2, . . . are independent, iden-
tically distributed random variables with µ := EX1 and σ2 := Var(X1) with σ > 0, then
the random variables X1+···+Xn−nµ

σ
√
n

converge in distribution to the standard Gaussian random

variable. This fact is rather remarkable, since it holds no matter what distribution X1 has!
In this sense, the Gaussian random variable is “universal.”
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Exercise 5.23. This exercise demonstrates that geometry in high dimensions is different
than geometry in low dimensions.

Let x = (x1, . . . , xn) ∈ Rn. Let ‖x‖ :=
√
x2

1 + · · ·+ x2
n. Let ε > 0. Show that for all

sufficiently large n, “most” of the cube [−1, 1]n is contained in the annulus

A := {x ∈ Rn : (1− ε)
√
n/3 ≤ ‖x‖ ≤ (1 + ε)

√
n/3}.

That is, if X1, . . . , Xn are each independent and identically distributed in [−1, 1], then for n
sufficiently large

P((X1, . . . , Xn) ∈ A) ≥ 1− ε.
(Hint: apply the weak law of large numbers to X2

1 , . . . , X
2
n.)

Exercise 5.24 (Confidence Intervals). Among 625 members of a bank chosen uniformly
at random among all bank members, it was found that 25 had a savings account. Give
an interval of the form [a, b] where 0 ≤ a, b ≤ 625 are integers, such that with about 95%
certainty, if we sample 625 bank members independently and uniformly at random (from a
very large bank membership), then the number of these people with savings accounts lies in
the interval [a, b]. (Hint: if Y is a standard Gaussian random variable, then P(−2 ≤ Y ≤
2) ≈ .95.)

Exercise 5.25 (Hypothesis Testing). Suppose we run a casino, and we want to test
whether or not a particular roulette wheel is biased. Let p be the probability that red results
from one spin of the roulette wheel. Using statistical terminology, “p = 18/38” is the null
hypothesis, and “p 6= 18/38” is the alternative hypothesis. (On a standard roulette wheel,
18 of the 38 spaces are red.) For any i ≥ 1, let Xi = 1 if the ith spin is red, and let Xi = 0
otherwise.

Let µ := EX1 and let σ :=
√

var(X1). If the null hypothesis is true, and if Y is a standard
Gaussian random variable

lim
n→∞

P

( ∣∣∣∣X1 + · · ·+Xn − nµ
σ
√
n

∣∣∣∣ ≥ 2

)
= P(|Y | ≥ 2) ≈ .05.

To test the null hypothesis, we spin the wheel n times. In our test, we reject the null
hypothesis if |X1 + · · ·+Xn − nµ| > 2σ

√
n. Rejecting the null hypothesis when it is true is

called a type I error. In this test, we set the type I error percentage to be 5%. (The type I
error percentage is closely related to the p-value.)

Suppose we spin the wheel n = 3800 times and we get red 1868 times. Is the wheel biased?
That is, can we reject the null hypothesis with around 95% certainty?

Theorem 5.26 (Strong Law of Large Numbers). Let X1, X2, . . . be a sequence of in-
dependent identically distributed random variables. Let µ ∈ R. Assume that µ = EX1.
Then

P

(
lim
n→∞

X1 + · · ·+Xn

n
= µ

)
= 1.

Proof. We prove the Theorem under the stronger assumption that EX4
1 <∞. For any j ≥ 1,

let Yj := Xj−µ. We are required to show P
(
limn→∞

Y1+···+Yn
n

= 0
)

= 1. Note that Y1, Y2, . . .
are independent identically distributed random variables with EY1 = 0 and EY 4

1 < ∞. We
compute

E(Y1 + · · ·+ Yn)4 =
∑

1≤i,j,k,`≤n

EYiYjYkY`.
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By independence, terms with i 6= j = k = ` vanish, since they become EYiYjYkY` =
EYiEY

3
j = 0. Terms with i, j, k, ` distinct also vanish, since EYiYjYkY` = EYiEYjEYkEY` =

0. The remaining nonvanishing terms are i = j = k = ` and the six permutations of
i = j 6= k = `. That is,

E(Y1 + · · ·+ Yn)4 = nEY 4
1 + 6[n(n− 1)/2](EY 2

1 )2.

By Jensen’s Inequality, Exercise 2.23,

E(Y1 + · · ·+ Yn)4 ≤ nEY 4
1 + 3n(n− 1)EY 4

1 ≤ 4n2EY 4
1 . (∗)

By Markov’s Inequality, Proposition 5.1, for any t > 0,

P
(∣∣∣Y1 + · · ·+ Yn

n

∣∣∣ > t
)
≤ E(Y1 + · · ·+ Yn)4

t4n4

(∗)
≤ 4EY 4

1

t4n2
.

So
∑∞

n=1 P(
∣∣Y1+···+Yn

n

∣∣ > t) <∞ and by Borel-Cantelli, Proposition 5.7, ∀ t > 0,

P
(∣∣∣Y1 + · · ·+ Yn

n

∣∣∣ > t for infinitely manyn ≥ 1
)

= 0.

Since this holds for any t > 0, we conclude that Y1+···+Yn
n

converges almost surely to 0. �

6. Estimation of Parameters

Exercise 6.1. Suppose I tell you that the following list of 20 numbers is a random sample
from a Gaussian random variable, but I don’t tell the mean or standard deviation.

5.1715, 3.2925, 5.2172, 6.1302, 4.9889, 5.5347, 5.2269, 4.1966, 4.7939, 3.7127

5.3884, 3.3529, 3.4311, 3.6905, 1.5557, 5.9384, 4.8252, 3.7451, 5.8703, 2.7885

To the best of your ability, determine what the mean and standard deviation are of this
random variable. (This question is a bit open-ended, so there could be more than one correct
way of justifying your answer.)

A basic problem in statistics is to fit data to an unknown probability distribution. As
in Exercise 6.1, we might have a list of numbers, and we known these numbers follow some
Gaussian distribution, but we might not know the mean and variance of this Gaussian.
We then want to infer the mean and variance from the data. In this example, there are
two unknown parameters. In general, we might want to estimate any number of unknown
parameters.

Let X1, . . . , Xn be a random sample of size n from a family of distributions {fθ : θ ∈ Θ}.
We can regard {fθ : θ ∈ Θ} as either a family of probability density functions, or a family of
probability mass functions. If Y is a statistic that is used to estimate the parameter θ that
fits the data at hand, we then refer to Y as a point estimator or estimator.

Example 6.2. In Exercise 6.1 we have a random sample X1, . . . , X20 from a Gaussian
distribution with unknown mean and variance. We denote the unknown Gaussians as

{fθ : θ ∈ Θ} = {fµ,σ(x) : (µ, σ) ∈ R2, µ ∈ R, σ > 0} =
{ 1√

2πσ
e−

(x−µ)2

2σ2 : µ ∈ R, σ > 0
}
.
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One estimator for the unknown mean µ is the sample mean

X1 + · · ·+X20

20
.

A “less good” estimator for the unknown mean µ could be X1 +X2 or (X1 +X3)/2.
As previously discussed, an estimator for the unknown variance σ2

1

19

20∑
i=1

(Xi −X)2.

And an estimator for the unknown parameter σ itself is

S :=

√√√√ 1

19

20∑
i=1

(Xi −X)2.

As we see from this example, there are many ways of defining estimators for various
unknown parameters. One focus of this course will be criteria for determining if an estimator
is “good” or not.

There are many different ways to create estimators. A priori, it might not be clear which
estimator is the best. One desirable property of an estimator is that it is unbiased.

Definition 6.3. Let X1, . . . , Xn be a random sample of size n from a family of distributions
{fθ : θ ∈ Θ}. Let t : Rn → Rk and let Y := t(X1, . . . , Xn) be an estimator for g(θ). Let
g : Θ→ Rk. We say that Y is unbiased for g(θ) if

EθY = g(θ), ∀ θ ∈ Θ.

For example, we saw in Exercise 6.4 that the sample mean and sample variance are unbi-
ased estimates of the mean and variance, respectively.

Exercise 6.4. Let n ≥ 2 be an integer. Let X1, . . . , Xn be a random sample of size n.
Assume that µ := EX1 ∈ R and σ :=

√
var(X1) < ∞. Let X be the sample mean and let

S be the sample standard deviation of the random sample. Show the following

• Var(X) = σ2/n.
• ES2 = σ2.

6.1. Method of Moments.

Definition 6.5 (Consistency). Let {fθ : θ ∈ Θ} be a family of distributions. Let Y1, Y2, . . .
be a sequence of estimators of g(θ) where g : Θ→ Rk. We say that Y1, Y2, . . . is consistent
for g(θ) if, for any θ ∈ Θ, Y1, Y2, . . . converges in probability to the constant value g(θ), with
respect to the probability distribution fθ.

Typically, we will take Yn to be a function of a random sample of size n, for all n ≥ 1.

Example 6.6. Let X1, . . . , Xn be a random sample of size n with distribution fθ. The
Weak Law of Large Numbers, Theorem 5.10, says that the sample mean is consistent when
Eθ |X1| <∞ for all θ ∈ Θ. More generally, if j ≥ 1 is a positive integer such that Eθ |X1|j <
∞ for all θ ∈ Θ, then the jth sample moment

Mj = Mj(θ) :=
1

n

n∑
i=1

Xk
i
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is also consistent (as n→∞), i.e. as n→∞, Mj converges in probability to the jth moment

µj(θ) := EXj
1 .

Note also that if h : Rk → Rk is continuous, and if Y1, Y2, . . . is consistent for g(θ), then
h(Y1), h(Y2), . . . is consistent for h(g(θ)) by Exercise 6.7.

Exercise 6.7. Let X1, X2, . . . : Ω→ R be random variables that converge in probability to
X : Ω → R. Let f : R → R be continuous. Then f(X1), f(X2), . . . converges in probability
to f(X).

Definition 6.8 (Method of Moments). Let g : Θ → Rk. Suppose we want to estimate
g(θ) for any θ ∈ Θ. Suppose there exists h : Rj → Rk such that

g(θ) = h(µ1, . . . , µj).

Then the estimator

h(M1, . . . ,Mj)

is a method of moments estimator for g(θ).

Example 6.9. To estimate the mean µ, we can use Θ = R = {µ1 ∈ R}, j = 1 and
h(µ1) = µ1, so that a method of moments estimator of µ1 is the sample mean M1.

To estimate the standard deviation, we can use Θ = R× (0,∞) = {(µ1, µ2) : µ1 ∈ R, µ2 >

0}, j = 2 and h(µ1, µ2) =
√
µ2 − µ2

1, so that a method of moments estimator of the standard

deviation is
√
M2 −M2

1 .

This estimation approach is good in that it uses essentially no assumptions about model
parameters. Perhaps for this reason, the method of moments is one of the oldest methods
of point estimation, originating in the late 1800s. However, when information about model
parameters is available, often the method of moments does not work well (despite being
consistent). In the following example, we demonstrate an estimator with much smaller
variance than the method of moments estimator.

Example 6.10. Suppose X1, . . . , Xn is a random sample of size n from the uniform distri-
bution on the interval [0, θ] and θ > 0 is unknown. Since EθX1 = θ/2, a method of moment
estimator for θ is 2M1 = 2

n

∑n
i=1Xi. This estimator is unbiased and consistent (by Exam-

ple 6.6), but its variance is 1
3n
θ2. It turns out the estimator (1 + 1/n)X(n) is unbiased and

consistent for θ with a smaller variance. From Definition 6.11 we have

E(1 + 1/n)X(n) = (1 + 1/n)

∫ θ

0

P(X(n) > t)dt = (1 + 1/n)

∫ θ

0

[1−P(X(n) < t)]dt

= (1 + 1/n)

∫ θ

0

[1−P(X(n) < t)]dt = (1 + 1/n)(θ −
∫ θ

0

P(X1 < t)ndt)

= (1 + 1/n)(θ −
∫ θ

0

(t/θ)ndt) = (1 + 1/n)(θ − θ−nθn+1/(n+ 1))

= (1 + 1/n)(θ − θ/(n+ 1)) = θ
n+ 1

n

n

n+ 1
= θ.
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From Definition 6.11, var((1 + 1/n)X(n)) is equal to

(n+ 1)2

n2
EX2

(n) − θ2 =
(n+ 1)2

n2

∫ θ

0

2tP(X(n) > t)dt− θ2

= θ2
((n+ 1)2

n2
− 1
)
− (n+ 1)2

n2

∫ θ

0

2tP(X(n) < t)dt

= θ2
((n+ 1)2

n2
− 1
)
− (n+ 1)2

n2
θ−n

∫ θ

0

2ttndt = θ2
((n+ 1)2

n2
− 1
)
− (n+ 1)2

n2
θ2 2

n+ 2

=
θ2

n2(n+ 2)

(
(n+ 1)2(n+ 2)− n2(n+ 2)− 2(n+ 1)2

)
=

θ2

n2(n+ 2)

(
[(n+ 1)2 − n2](n+ 2)− 2(n+ 1)2

)
=

θ2

n2(n+ 2)

(
[2n+ 1](n+ 2)− 2(n+ 1)2

)
=

θ2

n2(n+ 2)
(5n− 4n+ 2− 2) =

θ2

n(n+ 2)
.

In fact, (1 + 1/n)X(n) is the uniform minimum variance unbiased estimator for θ (and we
call this estimator UMVU), though we will not prove it.

Definition 6.11 (Expected Value). Let Ω be a sample space, let P be a probability law
on Ω. Let X be a random variable on Ω. Assume that X : Ω → [0,∞). We define the
expected value of X, denoted E(X), by

E(X) =

∫ ∞
0

P(X > t)dt.

More generally, if g : [0,∞) → [0,∞) is a differentiable function such that g′ is continuous
and g(0) = 0, we define

Eg(X) =

∫ ∞
0

g′(t)P(X > t)dt.

In particular, taking g(t) = tn for any positive integer n, for any t ≥ 0, we have

EXn =

∫ ∞
0

ntn−1P(X > t)dt.

For a general random variable X, if E max(X, 0) < ∞ and if E max(−X, 0) < ∞, we then
define E(X) = E max(X, 0)− E max(−X, 0). Otherwise, we say that E(X) is undefined.

Example 6.12. Suppose we have a binomial random variable with unknown parameters
n, p. We want to find method of moments estimators for n and for p. It is known that
EX1 = np and EX2

1 = np(1− p) + n2p2. So, we solve for n, p in the system of equations

µ1 = np, µ2 = np(1− p) + n2p2,

to get an estimator for n:

N :=
M2

1

M1 − (M2 −M2
1 )
, since n =

µ2
1

µ1 − (µ2 − µ2
1)
,

and an estimator for p:

P :=
M1

N
, since p =

µ1

n
.
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(To solve the system, note that the second equation says µ2 = (1−p)µ1+µ2
1 = (1−µ1/n)µ1+

µ2
1, and then solve for n.)

The Central Limit Theorem implies that the combination of a large number of independent
identically distributed random actions results in a Gaussian distribution. For this reason, one
can often (but not always) assume that sampling from a large population is sampling from
the normal distribution with unknown mean and variance. Since this Gaussian assumption
is so common, we discuss properties of sampling from the normal in this section.

Proposition 6.13. Let n ≥ 2 be an integer. Let X1, . . . , Xn be a random sample from the
Gaussian distribution with mean µ ∈ R and variance σ2 > 0. Let X be the sample mean and
let S be the sample standard deviation.

• X and S are independent random variables.
• X is a Gaussian random variable with mean µ and variance σ2/n.
• (n−1)S2/σ2 is a chi-squared distributed random variable with n−1 degrees of freedom.

6.2. Evaluating Estimators. Even if an estimator is unbiased, its distribution of values
might be quite far from g(θ). Recall that we made a similar observation that the Law of Large
Numbers does not give any information about the Central Limit Theorem. It is desirable
to examine the distribution of values of the estimator. The most common way to check the
quality of an estimator in this sense is to examine the mean-squared error, or squared L2

norm, of the estimator minus g(θ):

Eθ(Y − g(θ))2.

If the estimator is unbiased, this quantity is equal to the variance of Y .

Definition 6.14 (UMVU). Let X1, . . . , Xn be a random sample of size n from a family of
distributions {fθ : θ ∈ Θ}. Let g : Θ→ R. Let t : Rn → R and let Y := t(X1, . . . , Xn) be an
unbiased estimator for g(θ). We say that Y is uniformly minimum variance unbiased
(UMVU) if, for any other unbiased estimator Z for g(θ), we have

Varθ(Y ) ≤ Varθ(Z), ∀ θ ∈ Θ.

Remark 6.15. Unfortunately the UMVU might not exist. Suppose we want a UMVU for
a binomial random variable X with known parameter n and unknown parameter 0 < θ < 1,
and we want an estimator for θ/(1−θ). In fact, no unbiased estimate exists for this function,
since Eθt(X) =

∑n
j=0

(
n
j

)
t(j)θj(1− θ)n−j and this is a polynomial in θ, i.e. only polynomials

in θ of degree at most n can possible have unbiased estimates. And θ/(1 − θ) is not a
polynomial in θ.

6.3. Efficiency of an Estimator. Another desirable property of an estimator is high effi-
ciency. That is, the estimator is good with a small number of samples. One way to quantify
“good” in the previous sentence is to define a notion of information and to try to maximize
the information content of the estimator.

Definition 6.16 (Fisher Information). Let {fθ : θ ∈ Θ} be a family of multivariable
probability densities or probability mass functions. Assume Θ ⊆ R. Let X be a random
vector with distribution fθ. Define the Fisher information of the family to be

I(θ) = IX(θ) := Eθ(
d

dθ
log fθ(X))2, ∀ θ ∈ Θ,
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if this quantity exists and is finite.

In order for the Fisher information to be well defined, the set {x ∈ Rn : fθ(x) > 0} should
not depend on θ, otherwise the derivative d

dθ
log fθ(X) might not be well-defined.

If {fθ : θ ∈ Θ} are n-dimensional probability densities, note that

Eθ
d

dθ
log fθ(X) =

∫
Rn

d
dθ
fθ(x)

fθ(x)
fθ(x)dx =

∫
Rn

d

dθ
fθ(x)dx =

d

dθ

∫
Rn
fθ(x)dx =

d

dθ
(1) = 0.

Similarly, if {fθ : θ ∈ Θ} are multivariable probability mass functions, Eθ
d
dθ

log fθ(X) = 0.
So, we could equivalently define

I(θ) = Varθ

( d
dθ

log fθ(X)
)
, ∀ θ ∈ Θ.

(Here we assume we can differentiate under the integral sign.) We also have another equiv-
alent definition:

Eθ
d2

dθ2
log fθ(X) =

∫
Rn

d

dθ

d
dθ
fθ(x)

fθ(x)
fθ(x)dx =

∫
Rn

fθ(x) d2

dθ2
fθ(x)−

(
d
dθ
fθ(x)

)2

[fθ(x)]2
fθ(x)dx

=

∫
Rn

d2

dθ2
fθ(x)−

( d
dθ

log fθ(x)
)2

fθ(x)dx = 0− IX(θ) = −IX(θ).

The Fisher information expresses the amount of “information” a random variable has.

Example 6.17. Let σ > 0 and let fθ(x) := 1
σ
√

2π
e−(x−θ)2/[2σ2] for all θ ∈ Θ, x ∈ R. We have

I(θ) = Varθ

( d
dθ

−(X − θ)2

2σ2

)
=

1

σ4
Varθ(X − θ) =

1

σ2
.

For the Gaussian case, we interpret “more information” as σ small, since then the variance
is small, so more “information” is conveyed by a single sample than when σ is large. The
Fisher information also agrees with our intuitive notion of information since the information
of a joint distribution of independent random variables is equal to the sum of the separate
informations.

Proposition 6.18. Let X be a random variable with distribution from {fθ : θ ∈ Θ} (densities
or mass functions). Let Y be a random variable with distribution from {gθ : θ ∈ Θ} (densities
or mass functions). Assume that X and Y are independent. Then

I(X,Y )(θ) = IX(θ) + IY (θ), ∀ θ ∈ Θ.

Proof. Since X and Y are independent, (X, Y ) has distribution from the multivariate density
fθ(X)gθ(Y ). Also, d

dθ
log fθ(X) and d

dθ
log gθ(Y ) are independent for any θ ∈ Θ, so

I(X,Y )(θ) = Varθ

( d
dθ

log[fθ(X)gθ(Y )]
)

= Varθ

( d
dθ

[log fθ(X) + log gθ(Y )]
)

= Varθ

( d
dθ

log fθ(X)
)

+ Varθ

( d
dθ

log gθ(X)
)

= IX(θ) + IY (θ).

�
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Exercise 6.19. Let X be a random variable with distribution from {fθ : θ ∈ Θ} (densities or
mass functions). Let Y be a random variable with distribution from {gθ : θ ∈ Θ} (densities
or mass functions). Show that

I(X,Y )(θ) = IX(θ) + IY |X=x(θ), ∀ θ ∈ Θ, x ∈ R.

(If X, Y are continuous random variables, recall that Y |X has density fX,Y (x, y)/fX(x) for
any fixed x. And if X, Y are discrete random variables, recall that Y |X has mass function
P(X = x, Y = y)/P(Y = y).)

Our primary interest in information is the following inequality. Theorem 6.20 gives a lower
bound on the variance of unbiased estimators of θ.

Theorem 6.20 (Cramér-Rao/ Information Inequality). Let X : Ω→ Rn be a random
variable with distribution from a family of multivariable probability densities or probability
mass functions {fθ : θ ∈ Θ} with Θ ⊆ R. Let t : Rn → R and let Y := t(X) be statistic. For
any θ ∈ Θ let g(θ) := EθY . Then

Varθ(Y ) ≥ |g
′(θ)|2

IX(θ)
, ∀ θ ∈ Θ.

In particular, if Y is unbiased for θ,

Varθ(Y ) ≥ 1

IX(θ)
, ∀ θ ∈ Θ.

Equality occurs for some θ ∈ Θ only when d
dθ

log fθ(X) and Y − EθY are multiples of each
other.

(Here we assume we can differentiate under the integral sign. Also, we assume that
{x ∈ Rn : fθ(x) > 0} does not depend on θ, and for a.e. x ∈ Rn, (d/dθ)fθ(x)) exists and is
finite.)

Remark 6.21. In the case that X1, . . . , Xn are i.i.d. real-valued random variables and
X = (X1, . . . , Xn), Proposition 6.18 says that IX(θ) =

∑n
i=1 IXi(θ) = nIX1(θ). And if Y is

unbiased for θ, Theorem 6.20 says

Varθ(Y ) ≥ 1

nIX1(θ)
, ∀ θ ∈ Θ.

Proof. For any θ ∈ Θ let g(θ) := EθY . We assume that X is continuous, the discrete case
being similar. Using Eθ

d
dθ

log fθ(X) = 0 and Remark 2.26,

|g′(θ)| =
∣∣∣∣ ddθ

∫
Rn
fθ(x)t(x)dx

∣∣∣∣ =

∣∣∣∣∫
Rn

d

dθ
log fθ(x)t(x)fθ(x)dx

∣∣∣∣ =

∣∣∣∣Eθ
d

dθ
log fθ(X)t(X)

∣∣∣∣
=

∣∣∣∣Covθ(
d

dθ
log fθ(X), t(X))

∣∣∣∣ ≤
√

Varθ(
d

dθ
log fθ(X))Varθ(t(X)) =

√
IX(θ)Varθ(t(X)).

The equality case follows from Remark 2.26 and the known equality case of the Cauchy-
Schwarz Inequality (see Theorem 2.27). �

For a one-parameter family of distributions, the equality case of Theorem 6.20 allows us
to find a UMVU for θ. To find such an estimator, we look for affine functions of d

dθ
log fθ(X).
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Example 6.22. Suppose fθ(x) := θxθ−110<x<1 for all x ∈ R, θ > 0. (This is a beta distri-
bution with β = 1.) We have

d

dθ
log fθ(x) =

1

θ
+ log x, ∀ 0 < x < 1.

A vector X = (X1, . . . , Xn) of n independent samples from fθ is distributed according to the
product

∏n
i=1 fθ(xi), so that

d

dθ
log

n∏
i=1

fθ(xi) =
n∑
i=1

(1

θ
+ log xi

)
= n

(1

θ
+

1

n
log

n∏
i=1

xi

)
, ∀ 0 < xi < 1, 1 ≤ i ≤ n.

By Theorem 6.20, any function of d
dθ

log
∏n

i=1 fθ(Xi) (plus a constant) is UMVU for its
expectation. So, for example,

Y := − 1

n
log

n∏
i=1

Xi

is UMVU of its expectation, which is 1
θ

since Eθ
d
dθ

log
∏n

i=1 fθ(Xi) = 0.

Theorem 6.20 suggests the following quantity represents the efficiency of an estimator.

Definition 6.23 (Efficiency). Let X : Ω→ Rn be a random variable with distribution from
a family of multivariable probability densities or probability mass functions {fθ : θ ∈ Θ} with
Θ ⊆ R. Let t : Rn → R and let Y := t(X) be statistic. Define the efficiency of Y to be

1

IX(θ)Varθ(Y )
, ∀ θ ∈ Θ,

if this quantity exists and is finite. If Z is another statistic, we define the relative efficiency
of Y to Z to be

IX(θ)Varθ(Z)

IX(θ)Varθ(Y )
=

Varθ(Z)

Varθ(Y )
, ∀ θ ∈ Θ.

6.4. Maximum Likelihood Estimator. Let X1, . . . , Xn be a random sample of size n from
a family of distributions {fθ : θ ∈ Θ}. So, we denote the joint distribution of X1, . . . , Xn as

n∏
i=1

fθ(xi), ∀ 1 ≤ i ≤ n.

If we have data x ∈ Rn, recall that we defined the function ` : Θ→ [0,∞)

`(θ) :=
n∏
i=1

fθ(xi)

and called it the likelihood function.

Definition 6.24 (Maximum Likelihood Estimator). The maximum likelihood esti-
mator (MLE) Y is the estimator maximizing the likelihood function. That is, Y := t(X),
t : Rn → Θ and t(x1, . . . , xn) is defined to be any value of θ ∈ Θ that maximizes the function

n∏
i=1

fθ(xi),

if this value of θ exists. A priori, the θ maximizing `(θ) might not exist, and it might not be
unique
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Remark 6.25. Maximizing the likelihood `(θ) is equivalent to maximizing log `(θ), since
log is monotone increasing.

It is relatively easy to construct examples where the MLE is not unique.

Example 6.26. Let fθ(x1) := 1[θ,θ+1](x1) for all x1, θ ∈ R. Then, for all x1, . . . , xn, θ ∈ R,
we have

n∏
i=1

fθ(xi) =
n∏
i=1

1[θ,θ+1](xi) =
n∏
i=1

1xi∈[θ,θ+1].

So, if x1 = · · · = xn = 0, we have
n∏
i=1

fθ(xi) = 10∈[θ,θ+1] = 1θ∈[−1,0].

That is, any value of θ ∈ [−1, 0] is a maximum of the likelihood function, i.e. there are
infinitely many maxima of the likelihood function. This is certainly not desirable.

If the likelihood function is continuous and Θ is compact, then at least one maximum of
the likelihood function must exist.

A common assumption of a probability density function is that it is logarithmically con-
cave. We will describe how this condition guarantees the uniqueness of the MLE. For a proof
of consistency of the MLE under certain assumptions, see the Keener book, Theorem 9.11.

Recall that φ : Rn → R is convex if for any x, y ∈ Rn with x 6= y and for any t ∈ (0, 1),

φ(tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y).

And φ : Rn → R is strictly convex if this inequality is always a strict inequality. We also say
φ is concave if − log φ is convex, and φ is strictly concave if − log φ is strictly convex.

Definition 6.27 (Log-Concave). We say that φ : Rn → [0,∞) is logarithmically con-
cave or log concave if log φ is concave, i.e. − log φ is convex.

For example, the function φ(x) = e−x
2
, x ∈ R, is log concave, since log φ is concave. If

we allow φ to take infinite values, then 1[−1,0] is log-concave, so Example 6.26 shows that
log-concavity still does not guarantee uniqueness of the maximum of the likelihood function.
However, strict log-concavity does guarantee uniqueness.

Proposition 6.28. Let fθ : R → [0,∞) be a family of probability density functions, where
θ ∈ Θ ⊆ Rk. Fix x1, . . . , xn ∈ R. Assume that the function

θ 7→ fθ(xi)

is strictly log-concave, for every 1 ≤ i ≤ n. Fix x1, . . . , xn ∈ R. Then the likelihood function

θ 7→
n∏
i=1

fθ(xi)

has at most one maximum value.

Proof. The function θ 7→ log fθ(xi) is strictly concave for all 1 ≤ i ≤ n, so the function

θ 7→
n∑
i=1

log fθ(xi) = log
n∏
i=1

fθ(xi)
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is strictly concave by Exercise 6.31. From Exercise 6.29, this function has at most one global
maximum. �

Exercise 6.29. Let f : Rn → R be a convex function. Let x ∈ Rn be a local minimum of f .
Show that x is in fact a global minimum of f .

Show also that if f is strictly convex, then there is at most one global minimum of f .
Now suppose additionally that f is a C1 function (all derivatives of f exist and are con-

tinuous), and x ∈ Rn satisfies ∇f(x) = 0. Show that x is a global minimum of f .

Exercise 6.30. Let A be a real m× n matrix. Let x ∈ Rn and let b ∈ Rm. Show that the
function f : Rn → R defined by f(x) = 1

2
‖Ax− b‖2 is convex. Moreover, show that

∇f(x) = AT (Ax− b), D2f(x) = ATA.

(Here D2f denotes the matrix of second derivatives of f .)
So, if ∇f(x) = 0, i.e. if ATAx = AT b, then x is the global minimum of f . And if A has

full rank, then ATA is invertible, so that x = (ATA)−1AT b is the global minimum of f .

Exercise 6.31. Let f1, . . . , fn : R→ R be n strictly convex functions on R. Define g : Rn →
R by

g(x1, . . . , xn) :=
n∑
i=1

f(xi), ∀ (x1, . . . , xn) ∈ Rn.

Show that g : Rn → R is strictly convex.

Exercise 6.32. Let f : R2 → R be a C1 function (all derivatives of f exist and are continu-
ous). Suppose there exists z ∈ R such that, for any x1 ∈ R, we have

f(x1, z) < f(x1, x2), ∀x2 6= z.

Assume also that the function

x1 7→ f(x1, z)

is strictly convex. Show that f has at most one global minimum.

Example 6.33. Consider a random sample from a Gaussian distribution with unknown
mean µ ∈ R and unknown variance σ2 > 0, so that θ = (µ, σ). The value of θ maximizing

log
n∏
i=1

1

σ
√

2π
exp(−(xi − µ)2/[2σ2]) =

n∑
i=1

− log σ − 1

2
log(2π)− (xi − µ)2

2σ2

can be found by differentiating in the two parameters. We have

∂

∂µ
log `(θ) =

n∑
i=1

xi − µ
σ2

,
∂

∂σ
log `(θ) =

n∑
i=1

−σ−1 + σ−3(xi − µ)2,

Setting both terms equal to zero, we get

µ =
1

n

n∑
i=1

xi, σ2 =
1

n

n∑
i=1

(xi − µ)2.
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This is the unique critical point of the function `(θ). It remains to show that this critical
point is the global maximum of `(θ). It follows from Exercise 2.8 that, if z 6= 1

n

∑n
i=1 xi, then

n∑
i=1

(
xi −

1

n

n∑
i=1

xi

)2

<
1

n

n∑
i=1

(xi − z)2.

Therefore, for any such z ∈ R

log `(
1

n

n∑
i=1

xi, σ) > log `(z, σ).

So, we need only show that log `( 1
n

∑n
i=1 xi, σ) is maximized when σ =

√
1
n

∑n
i=1(xi − µ)2.

Since
∂

∂σ
log `(θ) = σ−3

n∑
i=1

−σ2 + (xi − µ)2,

the function σ 7→ log `(µ, σ) is increasing, and then decreasing, so that the global maximum
occurs at the unique critical point.

It is known that the sample mean M1 is UMVU for the mean. Let

Y = Yn = Yn(X1, . . . , Xn) :=
1

n

n∑
j=1

(
Xj −

1

n

n∑
i=1

Xi

)2

.

We also know from Proposition 6.13 that Y is asymptotically unbiased for σ2, i.e.

lim
n→∞

EY

σ2
= lim

n→∞

n− 1

n
= 1.

We will show that Y has asymptotically optimal variance. If we fix µ ∈ R and look at the
information of the n-dimensional Gaussian X, we get by modifying Example 6.17 and using
Proposition 6.18

IX(σ) = nIX1(σ) = nVarσ

( d
dσ

−(X1 − µ)2

2σ2

)
= nσ−6Varσ[(X1 − µ)2]

= nσ−6Eσ((X1 − µ)4 − σ4) = 2nσ−2.

By the Cramér-Rao Inequality, Theorem 6.20, with g(σ) = Eσ(Y ) = σ2(n − 1)/n (using
Proposition 6.13), the variance of any unbiased estimator Z of σ2(n− 1)/n satisfies

Varσ(Z) ≥ |g
′(σ)|2

IX(σ)
=

4σ2(n− 1)2

n22nσ−2
=

2σ4(n− 1)2

n3
.

And by Proposition 6.13,

Varσ(Y ) = Varσ

[σ2

n

1

σ2

n∑
j=1

(
Xj −

1

n

n∑
i=1

Xi

)2]
=
σ4

n2
2(n− 1) =

2σ4(n− 1)

n2
.

In summary,

lim
n→∞

EY

σ2
= 1, lim

n→∞

Varσ(Y )

|g′(σ)|2 /IX(σ)
= 1.

That is, the estimator Y is asymptotically unbiased (as n → ∞) and it asymptotically
achieves the optimal variance bound in the Cramér-Rao Inequality.
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Example 6.34. Consider a random sample that is uniform on [0, θ] with θ > 0 unknown.
The value of θ maximizing

n∏
i=1

1

θ
1[0,θ](xi) = θ−n1x1,...,xn∈[0,θ] = θ−n1x(1),x(n)∈[0,θ]

occurs when θ is as small as possible such that the likelihood is nonzero, since θ−n is a
decreasing function in θ. Once θ < x(n), this expression is zero, so the smallest value of θ
giving a nonzero likelihood is θ = x(n). So, the unique global maximum occurs at θ = x(n),
so that X(n) is the MLE for θ. In contrast, recall that the UMVU for θ is (1 + 1/n)X(n), so
both are asymptotically equivalent, though the MLE is biased.

Example 6.35. Consider a random sample from the exponential density 1x>0θe
−θx with

θ > 0 unknown. Then

log
n∏
i=1

1xi>0θe
−θxi = 1x1,...,xn>0 log θ − θ

n∑
i=1

xi.

So,

d

dθ
log

n∏
i=1

1xi>0θe
−θxi = 1x1,...,xn>0

n

θ
−

n∑
i=1

xi.

As a function of θ, the likelihood is increasing for small θ and decreasing for large θ, so there
is a unique maximum of

Y :=
1

1
n

∑n
i=1Xi

,

which is the MLE for θ. It turns out that

Var(Y ) = Var
[
n−1/2

√
n
( 1

Xn

− θ
)]

=
1

n
θ2(1 + o(1)).

On the other hand, the information inequality, Theorem 6.20, says the smallest possible
variance of an unbiased estimator of θ is

1/Var
(n
θ
−

n∑
i=1

Xi

)
= 1/(nθ−2) = θ2/n.

So, the MLE asymptotically achieves the optimal variance for an estimator of θ.

Example 6.36. Consider a random sample from the exponential density 1x>0θe
−θx with

θ > 0 unknown. That is, we continue the previous example. Instead of finding an MLE
for θ, suppose we want an MLE for e−θ. From the previous example, we can immediately
conclude that

ψ = e−1/
∑n
i=1 xi .

by with g(θ) := e−θ. Proposition 6.37.

Proposition 6.37 (Functional Equivariance of MLE). Let g : Θ → Θ′ be a bijection.
Suppose Y is the MLE of θ. Then g(Y ) is the MLE of g(θ).

Proof. By definition of the MLE Y , Y (X1, . . . , Xn) achieves the maximum value of θ 7→ `(θ).
Writing `(θ) = `(g−1g(θ)), we have the equivalent statement: g(Y )(X1, . . . , Xn) achieves the
maximum value of θ′ 7→ `(g−1(θ′)). �
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So, unlike the UMVU, once we know the MLE for θ, we can easily get the MLE for
invertible functions of θ.

Lemma 6.38 (Likelihood Inequality). Let X : Ω→ Rn be a random variable with proba-
bility density fθ : Rn → [0,∞). Let fω : Rn → [0,∞) be another probability density. Assume
that the probability laws Pθ and Pω corresponding to fθ and fω are not equal. Then the
Kullback-Leibler information

I(θ, ω) := Eθ log
fθ(X)

fω(X)

satisfies I(θ, ω) > 0.

Remark 6.39. If Pθ(fω(X) = 0 and fθ(X) > 0) > 0, then define I(θ, ω) := ∞, so there
is nothing to prove. Also, in the definition of I(θ, ω), if both densities take value zero, we
define the ratio of zero over zero to be 1.

Proof. We may assume that Pθ(fω(X) = 0 and fθ(X) > 0) = 0. Note that fθ(X) > 0 with
probability one with respect to Pθ. By Jensen’s Inequality, Exercise 2.23,

−I(θ, ω) = Eθ log
fω(X)

fθ(X)
≤ log Eθ

fω(X)

fθ(X)
= log

∫
x∈Rn : fθ(x)>0

fω(x)

fθ(x)
fθ(x)dx ≤ log(1) = 0.

If I(θ, ω) = 0, then both of the inequalities above are equalities. The last inequality being
an equality implies that {x ∈ Rn : fθ(x) > 0} and {x ∈ R : fω(x) > 0} are equal almost
everywhere. Since log is strictly concave, equality in the application of Jensen’s Inequality

implies that fω(X)
fθ(X)

is constant almost surely (with respect to the probability law Pθ), therefore

the densities fω and fθ must be proportional, hence equal almost surely with respect to Pθ,
so their corresponding probability laws are equal. �

Theorem 6.40 (Consistency of MLE). Let X1, X2, . . . : Ω → Rn be i.i.d. random vari-
ables with common probability density fθ : Rn → [0,∞). Fix θ ∈ Θ ⊆ Rm. Suppose Θ
is compact and fθ(x1) is a continuous function of θ for a.e. x1 ∈ R. (Then the max-
imum of `(θ) exists, since it is a continuous function on a compact set.) Assume that
Eθ supθ′∈Θ |log fθ′(X1)| < ∞, and Pθ 6= Pθ′, for all θ′ 6= θ. Then, as n → ∞, the MLE Yn
of θ converges in probability to the constant function θ, with respect to Pθ.

Proof. For simplicity we assume that Θ is finite. For a full proof, see the Keener book,
Theorem 9.11. Fix θ ∈ Θ.

For any θ′ ∈ Θ and n ≥ 1, let `n(θ′) := 1
n

∑n
i=1 log fθ′(Xi). Denote Θ = {θ, θ1, . . . , θk}.

By the Weak Law of Large Numbers, Theorem 5.10, for any θ′ ∈ Θ, `n(θ′) converges in
probability with respect to Pθ to the constant µ(θ′) := Eθ log fθ′(X1) as n → ∞. Since
Pθ 6= Pθ′ , for all θ′ 6= θ, we have µ(θ) > µ(θ′) for all θ′ ∈ Θ with θ′ 6= θ, by Lemma 6.38
(since I(θ, θ′) = µ(θ)− µ(θ′) > 0). For any n ≥ 1, let

An := {`n(θ) > `n(θj), ∀ 1 ≤ j ≤ k}.
Then limn→∞Pθ(An) = 1, and on the set An, the MLE Yn is well-defined and unique with
Yn = θ, so {Yn = θ}c ⊆ Acn, and for any ε > 0

lim
n→∞

Pθ(|Yn − θ| > ε) ≤ lim
n→∞

Pθ(A
c
n) = 0.

�
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If g : Θ→ Θ′ is a bijection, it follows from Proposition 6.37 that the MLE for g(θ) is also
consistent.

The above Theorem is analogous to a weak law of large numbers, since it gives convergence
in probability of the MLE. Continuing this analogy, the following Theorem is analogous to
the Central Limit Theorem, since it gives the limiting distribution of the MLE.

Theorem 6.41 (Limiting Distribution of MLE). Let {fθ : θ ∈ Θ} be a family of proba-
bility density functions, so that fθ : Rn → [0,∞) ∀ θ ∈ Θ. Let X1, X2, . . . be i.i.d. such that
X1 has density fθ. Let Θ ⊆ R. Assume the following

(i) The set A := {x ∈ R : fθ(x) > 0} does not depend on θ.
(ii) For every x ∈ A, ∂2fθ(x)/∂θ2 exists and is continuous in θ.

(iii) The Fisher Information IX1(θ) exists and is finite, with Eθ
d
dθ

log fθ(X1) = 0 and

IX1(θ) = Eθ(
d

dθ
log fθ(X1))2 = −Eθ

d2

dθ2
log fθ(X1) > 0.

(iv) For every θ in the interior of Θ, ∃ ε > 0 such that

Eθ sup
θ′∈Θ

∣∣∣∣1θ′∈[θ−ε,θ+ε]
d2

d[θ′]2
log fθ′(X1)

∣∣∣∣ <∞.
(v) The MLE Yn of θ is consistent.

Then, for any θ in the interior of Θ, as n→∞,
√
n(Yn − θ)

converges in distribution to a mean zero Gaussian with variance 1
IX1

(θ)
, with respect to Pθ.

Remark 6.42. Combining this Theorem with Proposition 6.37, under the above assump-
tions (and also if the variance of the MLE converges), the MLE for θ achieves the asymp-
totically optimal variance in the Cramér-Rao Inequality, Theorem 6.20. The same holds for
an invertible function of θ.

Proof. For simplicity we assume that Θ is finite. For a full proof, see the Keener book,
Theorem 9.14. Fix θ ∈ Θ. (When Θ is finite, it has no interior, so the theorem is vacuous
in this case, but the proof below is meant to illustrate the general case while avoiding a few
technicalities.)

For any θ′ ∈ Θ and n ≥ 1, let `n(θ′) := 1
n

∑n
i=1 log fθ′(Xi).

Choose ε > 0 sufficiently small such that [θ− ε, θ+ ε]∩Θ = {θ}. For any n ≥ 1, let An be
the event that Yn = θ. Since Y1, Y2, . . . is consistent by Assumption (v), limn→∞Pθ(An) = 1.
Since Yn maximizes `n, we have `′n(Yn) = 0 on An. (Since Θ is finite, this is not true, so take
it as an additional assumption.) Taylor expanding `′n then gives

0 = `′n(Yn) = `′n(θ) + `′′n(Zn)(Yn − θ), if An occurs,

where Zn lies between θ and Yn. Rewriting this equation gives

√
n(Yn − θ) =

√
n`′n(θ)

−`′′n(Zn)
, if An occurs. (∗)

By Assumption (iii), the summed terms in `′n(θ) i.i.d. random variables with mean zero
and variance IX1(θ). So, the Central Limit Theorem 5.20 says that

√
n`′n(θ) converges in

distribution to a mean zero Gaussian with variance IX1(θ).
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We now examine the denominator of (∗). By Assumption (iv) and the Weak Law of Large
Numbers, `′′n(θ′) converges in probability to Eθ`

′′
n(θ′). Since |Zn − θ| ≤ |Yn − θ| when An

occurs, we conclude that Zn also converges in probability to θ as n → ∞. Since Zn only

takes finitely many values, `′′n(Zn) converges in probability to Eθ`
′′
n(θ)

(iii)
= −IX1(θ). So, (∗)

implies that
√
n(Yn − θ) converges in distribution as n→∞ to a mean zero Gaussian with

variance
IX1(θ)

[IX1(θ)]
2

=
1

IX1(θ)
.

So, we are done by Exercise 6.43. �

Exercise 6.43. Suppose W1,W2, . . . are random variables that converge in distribution to a
random variable W , and U1, U2, . . . is any sequence of random variables. Let A1, A2, . . . ⊆ Ω
satisfy limn→∞P(An) = 1. Then, as n→∞

Wn1An + Un1Acn

converges in distribution to W .

6.5. Additional Comments. The Cramér-Rao and Limiting Distribution for the MLE
have analogous statements when Θ is a vector space.

Theorem 6.44 (Multiparameter Cramér-Rao/ Information Inequality). Suppose
X : Ω→ Rn is a random variable with distribution from a family of multivariable probability
densities or probability mass functions {fθ : θ ∈ Θ}. Assume that Θ ⊆ Rm is an open set.
We assume that {x ∈ Rn : fθ(x) > 0} does not depend on θ, and for a.e. x ∈ Rn, and for all
1 ≤ i ≤ m, (∂/∂θi)fθ(x) exists and is finite. Define the Fisher information of the family
to be the m×m matrix I(θ) = IX(θ), so that if 1 ≤ i, j ≤ m, the (i, j) entry of I(θ) is

Covθ

( ∂

∂θi
log fθ(X),

∂

∂θj
log fθ(X)

)
= Eθ

( ∂

∂θi
log fθ(X) · ∂

∂θj
log fθ(X)

)
, ∀ θ ∈ Θ,

and assume this quantity exists and is finite. Moreover, assume that I(θ) is an invertible
matrix. (It is symmetric positive semidefinite by e.g. Exercise 6.45, but it might have a zero
eigenvalue, a priori.)

Let t : Rn → Rm and let Y := t(X) be statistic. For any θ ∈ Θ, let g(θ) := EθY so that
g : Θ → Θ. Assume that all first order partial derivatives of g exist and are continuous.
We assume we can differentiate under the integral sign. Let Dg(θ) denote the matrix of
first order partial derivatives of g, and let Varθ(Y ) denote the vector of variances of the
components of Y . Then

Varθ(Y ) ≥ (Dg(θ))T [IX(θ)]−1Dg(θ), ∀ θ ∈ Θ.

In particular, if Y is unbiased for θ,

Varθ(Y ) ≥ [IX(θ)]−1, ∀ θ ∈ Θ.

Equality occurs for some θ ∈ Θ only when d
dθ

log fθ(X) and Y − EθY are multiples of each
other.

Exercise 6.45. Let Z = (Z1, . . . , Zd) ∈ Rd be a Gaussian random vector.
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• Show that the covariance matrix (aij)1≤i,j≤d of Z is symmetric, positive semidefinite.
That is, for any v ∈ Rd, we have

vTav =
d∑

i,j=1

vivjaij ≥ 0.

• Given any symmetric positive semidefinite matrix (bij)1≤i,j≤d, show that there exists a
Gaussian random vector Z such that the covariance matrix of Z is (bij)1≤i,j≤d. (Hint:
write the matrix b in its Cholesky decomposition b = rr∗, where r is a d × d real
matrix. Let e(1), . . . , e(d) be the rows of r. Let X1, . . . , Xd be independent standard
Gaussian random variables. Let X := (X1, . . . , Xd). Define Zi := 〈X, e(i)〉 for any
1 ≤ i ≤ d.)

Theorem 6.46 (Limiting Distribution of MLE). Let {fθ : θ ∈ Θ} be a family of proba-
bility density functions, so that fθ : Rn → [0,∞) ∀ θ ∈ Θ. Let X1, X2, . . . be i.i.d. such that
X1 has density fθ. Let Θ ⊆ Rm. Assume the following

(i) The set A := {x ∈ Rn : fθ(x) > 0} does not depend on θ.

(ii) For every x ∈ A, ∀ 1 ≤ i, j ≤ m, ∂2fθ(x)
∂θi∂θj

exists and is continuous in θ.

(iii) The Fisher Information IX1(θ) exists and is finite, with Eθ∇θ log fθ(X1) = 0 and

IX1(θ) = Eθ

( ∂

∂θi
log fθ(X) · ∂

∂θj
log fθ(X)

)
= −EθD

2
θ log fθ(X1).

(D2
θ denotes the matrix of iterated second order derivatives in θ.) Moreover, assume

that IX1(θ) is an invertible matrix.
(iv) For every θ in the interior of Θ, ∀ 1 ≤ i, j ≤ m, ∃ ε > 0 such that

Eθ sup
θ′∈Θ

∣∣∣∣1θ′∈[θ−ε,θ+ε]
∂2

∂θ′i∂θ
′
j

log fθ′(X1)

∣∣∣∣ <∞.
(v) The MLE Yn of θ is consistent.

Then, for any θ in the interior of Θ, as n→∞,

√
n(Yn − θ)

converges in distribution to a mean zero Gaussian random vector with covariance matrix
[IX1(θ)]

−1, with respect to Pθ.
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7. Appendix: Notation

Let n,m be a positive integers. Let A,B be sets contained in a universal set Ω.

R denotes the set of real numbers

∈ means “is an element of.” For example, 2 ∈ R is read as “2 is an element of R.”

∀ means “for all”

∃ means “there exists”

Rn = {(x1, x2, . . . , xn) : xi ∈ R ∀ 1 ≤ i ≤ n}
f : A→ B means f is a function with domain A and range B. For example,

f : R2 → R means that f is a function with domain R2 and range R
∅ denotes the empty set

A ⊆ B means ∀ a ∈ A, we have a ∈ B, so A is contained in B

ArB := {a ∈ A : a /∈ B}
Ac := Ω r A, the complement of A in Ω

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B

P denotes a probability law on Ω

P(A|B) denotes the conditional probability of A, given B.

Let a1, . . . , an be real numbers. Let n be a positive integer.
n∑
i=1

ai = a1 + a2 + · · ·+ an−1 + an.

n∏
i=1

ai = a1 · a2 · · · an−1 · an.

min(a1, a2) denotes the minimum of a1 and a2.

max(a1, a2) denotes the maximum of a1 and a2.

Let X be a discrete random variable on a sample space Ω, so that X : Ω → R. Let P be
a probability law on Ω. Let x ∈ R. Let A ⊆ Ω. Let Y be another discrete random variable

pX(x) = P(X = x) = P({ω ∈ Ω: X(ω) = x}), ∀x ∈ R
the Probability Mass Function (PMF) of X

E(X) denotes the expected value of X

var(X) = E(X − E(X))2, the variance of X

σX =
√

var(X), the standard deviation of X

X|A denotes the random variable X conditioned on the event A.

E(X|A) denotes the expected value of X conditioned on the event A.
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1A : Ω→ {0, 1}, denotes the indicator function of A, so that

1A(ω) =

{
1 , if ω ∈ A
0 , otherwise.

Let X, Y be a continuous random variables on a sample space Ω, so that X, Y : Ω → R.
Let −∞ ≤ a ≤ b ≤ ∞, −∞ ≤ c ≤ d ≤ ∞. Let P be a probability law on Ω. Let A ⊆ Ω.

fX : R→ [0,∞) denotes the Probability Density Function (PDF) of X, so

P(a ≤ X ≤ b) =

∫ b

a

fX(x)dx

fX,Y : R→ [0,∞) denotes the joint PDF of X and Y , so

P(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ d

c

∫ b

a

fX,Y (x, y)dxdy

fX|A denotes the Conditional PDF of X given A

E(X|A) denotes the expected value of X conditioned on the event A.

Let X be a random variable on a sample space Ω, so that X : Ω → R. Let P be a
probability law on Ω. Let x, t ∈ R. Let i :=

√
−1.

FX(x) = P(X ≤ x) = P({ω ∈ Ω: X(ω) ≤ x})
the Cumulative Distibution Function (CDF) of X.

MX(t) = EetX denotes the Moment Generating Function of X at t ∈ R
φX(t) = EeitX denotes the Characteristic Function (or Fourier Transform) of X at t ∈ R

Let g, h : Z→ R. Let t ∈ Z.

(g ∗ h)(t) =
∑
j∈Z

g(j)h(t− j) denotes the convolution of g and h at t ∈ Z

Let g, h : R→ R. Let t ∈ R.

(g ∗ h)(t) =

∫ ∞
−∞

g(x)h(t− x)dx denotes the convolution of g and h at t ∈ R

Let f, g : R→ R. We use the notation f(t) = o(g(t)), ∀ t ∈ R to denote limt→0

∣∣f(t)
g(t)

∣∣ = 0.
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