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1. Introduction

Probability generally asks, “How likely is something going to happen?” In your previous
experiences with probability, you most likely dealt with dice rolls or decks of cards. For
example, you could ask, “If I roll two fair dice, what is the chance their sum 6?” or “If I
roll three fair dice, with what probability will their sum be less than 5?” However, modern
probability also concerns events that occur on a continuum. Using an example borrowed
from Professor David Aldous, consider a dart that is thrown at a dartboard. Theoretically,
there are an infinite number of places on the board that the dart could hit. And we can still
ask probabilistic questions such as:

• “With what probability will I be able to hit the bullseye?”
• “With what probability will I miss the board entirely?”
• “Given that I hit the board, with what probability will I hit the bullseye?”
• “What score can I expect to get after five dart throws?” (What is the expected value

of the score?)
• “How close will I generally be from my expected score?” (What is the variance of

the score?)

Our presentation of the elements of probability theory will allow us to consider both
discrete objects (as in dice games or card games) and continuous objects (as in darts thrown
at a dartboard). We will begin by giving a precise mathematical definition of a probability
in Section 2. We will then discuss the analysis of random numbers, otherwise known as
random variables, in Section 3. Since discrete random variables are easier to understand, we
will begin with them. The expected value and variance in Section 4 are the most fundamental
quantities to compute for random variables. For example, if students in this class take a test
and their test scores resemble a “bell curve” or Gaussian, then the expected value, or mean,
would be the “center” of the bell curve, and the variance would measure how “wide” the
bell curve is. (The standard deviation is the square root of the variance.) We will conclude
the course with a detailed discussion of continuous random variables in Section 5.

2. Sets and Probabilities

2.1. Sets. In probability theory, a set represents some possible outcomes of some random
process. For example, the set {1, 2, 3, 4, 5, 6} has six elements which represent all possible
rolls for a six-sided die. The set {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6} has 6 · 6 = 36 elements,
representing all possible ordered dice rolls for two six-sided dice. For example, the ordered
pair (2, 3) represents a roll of 2 on the first die, and a 3 on the second die. The set [0, 1]×[0, 1]
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in the plane R2 could represent the set of all possible locations of a dart thrown at a square
dartboard.

Eventually, we will assign probabilities to all elements of the set, but for now we will just
focus on the sets themselves.

Definition 2.1 (Set, Element). A set is a collection of objects. Each such object in the
set is called an element of the set. If A is a set and x is an element of the set A, we write
x ∈ A. If x is not an element of A, we write x /∈ A. The set consisting of no elements is
called the emptyset, and this set is denoted by ∅.

Definition 2.2 (Finite, Countably Infinite). Let A be a set. We say that the set A
is finite if there exists a nonnegative integer n such that A can be enumerated as a set
of n elements. That is, we can write A = {x1, x2, . . . , xn}. We say that the set A is
countably infinite if A can be enumerated by the positive integers. That is, we can write
A = {x1, x2, x3, . . .}. We say that the set A is uncountable if: A is not finite, and A is not
countably infinite.

Example 2.3. The set {1, 2, 3, 4, 5, 6} is finite. The set {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6} is
finite. The set of positive integers {1, 2, 3, 4, . . .} is countably infinite. The set of even positive
integers {2, 4, 6, 8, . . .} is countably infinite. We could write the positive even integers in the
following way.

{2, 4, 6, 8, . . .} = {k ∈ R : k/2 is a positive integer}.
The last expression is read as “The set of all k in the set of real numbers such that k/2 is a
positive integer.”

The closed interval [0, 1] = {x ∈ R : 0 ≤ x ≤ 1} is uncountable; this (perhaps counterin-
tuitive) fact is sometimes proven in Real Analysis, Math 131A. That is, there is no way to
write [0, 1] as a list {x1, x2, x3, . . .} where xi ∈ [0, 1] for every positive integer i.

Definition 2.4 (Subset). Let A and B be sets. If every element of A is also an element of
B, we say that A is a subset of B, and we write A ⊆ B, or B ⊇ A. If B ⊆ A and A ⊆ B,
we say that A and B are equal and we write A = B.

Definition 2.5 (Universal Set). In a specific problem, we assume the existence of a sample
space, or universal set Ω which contains all other sets. The universal set represents all pos-
sible outcomes of some random process. We sometimes call the universal set the universe.
The universe is always assumed to be nonempty.

Example 2.6. We represent the roll of a single six-sided die by the universal set Ω =
{1, 2, 3, 4, 5, 6}. The set A = {1, 2, 3} satisfies A ⊆ Ω.

We can think of throwing darts at a flat, infinite board, so that the universal set is
Ω = R2 = R × R = {(x, y) : x ∈ R and y ∈ R}. We could imagine the dartboard itself as
a square subset [0, 1] × [0, 1] ⊆ Ω. Or, perhaps we could imagine a circular dartboard as a
subset {(x, y) ∈ R2 : x2 + y2 ≤ 1} ⊆ Ω.

Definition 2.7 (Complement). Suppose A is a subset of some universal set Ω. The
complement of A in Ω, denoted by Ac, is the set {x ∈ Ω: x /∈ A}.

Example 2.8. If Ω = {1, 2, 3, 4, 5, 6} and if A = {1, 2, 3}, then Ac = {4, 5, 6}.
Note that we always have ∅c = Ω and Ωc = ∅.
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Definition 2.9 (Union, Intersection). Let A,B be sets in some universe Ω. The union
of A and B, denoted A ∪B, is the set of elements that are in either A or B. That is,

A ∪B = {x ∈ Ω: x ∈ A or x ∈ B}.
The intersection of A and B, denoted A∩B, is the set of elements that are in both A and
B. That is,

A ∩B = {x ∈ Ω: x ∈ A and x ∈ B}.
The set difference of A and B, denoted ArB, is the set of elements that are in A but not
in B. So,

ArB = {x ∈ A : x /∈ B}.
Let n be a positive integer. Let A1, A2, . . . , An be sets in Ω. We denote

n⋃
i=1

Ai = A1 ∪ A2 ∪ · · · ∪ An.

n⋂
i=1

Ai = A1 ∩ A2 ∩ · · · ∩ An.

Example 2.10. If Ω = {1, 2, 3, 4, 5, 6}, if A = {1, 2, 3}, and if B = {3, 4}, then A ∪ B =
{1, 2, 3, 4} and A ∩B = {3}.
Definition 2.11 (Countable Union, Countable Intersection). Let A1, A2, . . . be sets in
some universe Ω. The countable union of A1, A2, . . ., denoted ∪∞i=1Ai is defined as follows.

∞⋃
i=1

Ai = {x ∈ Ω: ∃ a positive integer j such that x ∈ Aj}.

The countable intersection of A1, A2, . . ., denoted ∩∞i=1Ai is defined as follows.
∞⋂
i=1

Ai = {x ∈ Ω: x ∈ Aj, ∀ positive integers j}.

Exercise 2.12. Prove that the set of real numbers R can be written as the countable union

R =
∞⋃
j=1

[−j, j].

(Hint: you should show that the left side contains the right side, and also show that the
right side contains the left side.)

Prove that the singleton set {0} can be written as

{0} =
∞⋂
j=1

[−1/j, 1/j].

Definition 2.13 (Disjointness). Let n be a positive integer. Let A,B be sets in some
universe Ω. We say that A and B are disjoint if A∩B = ∅. A collection of sets A1, A2, . . . , An
in Ω is said to be a partition of Ω if ∪ni=1Ai = Ω, and if, for all i, j ∈ {1, . . . , n} with i 6= j,
we have Ai ∩ Aj = ∅.
Remark 2.14. Two or three sets can be visualized with a Venn diagram, though the Venn
diagram is no longer very helpful when considering more than three sets.
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Exercise 2.15. Let Ω = {1, 2, 3, . . . , 10}. Find sets A1, A2, A3 ⊆ Ω such that: A1 ∩ A2 =
{2, 3}, A1∩A3 = {3, 4}, A2∩A3 = {3, 5}, A1∩A2∩A3 = {3}, and such that A1∪A2∪A3 =
{2, 3, 4, 5}.

The following properties follow from the above definitions.

Proposition 2.16. Let A,B,C be sets in a universe Ω.

(i) A ∪B = B ∪ A.
(ii) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

(iii) (Ac)c = A.
(iv) A ∪ Ω = Ω.
(v) A ∪ (B ∪ C) = (A ∪B) ∪ C.

(vi) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
(vii) A ∩ Ac = ∅.
(viii) A ∩ Ω = A.

Exercise 2.17. Using the definitions of intersection, union and complement, prove properties
(ii) and (iii). (Hint: to prove property (ii), it may be helpful to first draw a Venn diagram
of A,B,C. Now, let x ∈ Ω. Consider where x could possibly be with respect to A,B,C.
For example, we could have x ∈ A, x /∈ B, x ∈ C. We could also have x ∈ A, x ∈ B, x /∈ C.
And so on. In total, there should be 23 = 8 possibilities for the location of x, with respect
to A,B,C. Construct a truth table which considers all eight such possibilities for each side
of the purported equality A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).)

Proposition 2.18 (De Morgan’s Laws). Let A1, A2, . . . be sets in some universe Ω. Then(
∞⋃
i=1

Ai

)c

=
∞⋂
i=1

Aci ,

(
∞⋂
i=1

Ai

)c

=
∞⋃
i=1

Aci .

Proof. We prove the first equality, since the second follows similarly. Suppose x ∈ (∪∞i=1Ai)
c.

That is, x /∈ ∪∞i=1Ai. Recall that ∪∞i=1Ai = {x ∈ Ω: ∃ a positive integer j such thatx ∈ Aj}.
Since x is not in the set ∪∞i=1Ai, the negation of the definition of ∪∞i=1Ai applies to x. That
is, x satisfies the negation of the statement: “∃ a positive integer j such that x ∈ Aj”. The
negation of this statement is: “∀ positive integers j, we have x /∈ Aj.” That is, ∀ positive
integers j, we have x ∈ Acj. By the definition of countable intersection, we conclude that
x ∈ ∩∞i=1A

c
i .

So, we showed that (∪∞i=1Ai)
c ⊆ ∩∞i=1A

c
i . To conclude, we must show that (∪∞i=1Ai)

c ⊇
∩∞i=1A

c
i . So, let x ∈ ∩∞i=1A

c
i . By reversing the above implications, we conclude that x ∈

(∪∞i=1Ai)
c. That is, (∪∞i=1Ai)

c ⊇ ∩∞i=1A
c
i , and the proof is complete. �

Exercise 2.19. Prove that (
⋂∞
i=1Ai)

c
=
⋃∞
i=1A

c
i .

Exercise 2.20. Let A1, A2, . . . be sets in some universe Ω. Let B ⊆ Ω. Show the following
generalization of Proposition 2.16(ii).

B ∩

(
∞⋃
k=1

Ak

)
=
∞⋃
k=1

(Ak ∩B).

Exercise 2.21. Let f : R→ R be a function. Show that

∪y∈R{x ∈ R : f(x) = y} = R.
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Also, show that the union on the left is disjoint. That is, if y1 6= y2 and y1, y2 ∈ R, then
{x ∈ R : f(x) = y1} ∩ {x ∈ R : f(x) = y2} = ∅.

2.2. Probabilistic Models.

Definition 2.22. A probabilistic model consists of

• A universal set Ω, which represents all possible outcomes of some random process.
• A probability law P. Given a set A ⊆ Ω, the probability law assigns a number

P(A) to the set A. A set A ⊆ Ω is also called an event. The number P(A) denotes
the probability that the event A will occur. The probability law satisfies the axioms
below.

Axioms for a Probability Law:

(i) For any A ⊆ Ω, we have P(A) ≥ 0. (Nonnegativity)
(ii) For any A,B ⊆ Ω such that A ∩B = ∅, we have

P(A ∪B) = P(A) + P(B).

If A1, A2, . . . ⊆ Ω and Ai∩Aj = ∅ whenever i, j are positive integers with i 6= j, then

P

(
∞⋃
k=1

Ak

)
=
∞∑
k=1

P(Ak). (Additivity)

(iii) We have P(Ω) = 1. (Normalization)

Proposition 2.23. Let P be a probability law on a universe Ω. Let A ⊆ Ω. Then P(A) +
P(Ac) = 1, and P(A) ∈ [0, 1].

Proof. Let A ⊆ Ω. Then Ω = A∪ (Ac), and A∩ (Ac) = ∅ by Proposition 2.16(vii). So, using
Axiom (iii) and then Axiom (ii), we have

1 = P(Ω) = P(A ∪ (Ac)) = P(A) + P(Ac).

That is, P(A) = 1 − P(Ac). Since P(Ac) ≥ 0 by Axiom (i), we conclude that P(A) ≤ 1.
Using Axiom (i) again, we have P(A) ≥ 0. In conclusion, P(A) ∈ [0, 1]. �

Remark 2.24. Since P(A) + P(Ac) = 1, choosing A = ∅ shows that P(∅) + P(Ω) = 1,
so that P(∅) = 0 by Axiom (iii). Consequently, suppose n is a positive integer, and let
A1, . . . , An ⊆ Ω with Ai ∩ Aj = ∅ whenever i, j ∈ {1, . . . , n} and i 6= j. For any i > n, let
Ai = ∅. Then Axiom (ii) implies that

P

(
n⋃
k=1

Ak

)
= P

(
∞⋃
k=1

Ak

)
=
∞∑
k=1

P(Ak) =
n∑
k=1

P(Ak).

This identity also follows from the first part of Axiom (ii) and by induction on n.

Remark 2.25. If A,B ⊆ Ω are not disjoint, i.e. if A ∩ B 6= ∅, then it is possible that
P(A ∪B) 6= P(A) + P(B).

Example 2.26. Let’s return to the example of rolling a single six-sided die. Recall that we
used Ω = {1, 2, 3, 4, 5, 6}. For a fair die, we define P so that, for any event A ⊆ Ω, P(A) is
the number of elements of A divided by 6. In particular, P({i}) = 1/6 for each i ∈ Ω. That
is, the probability of rolling any number is 1/6. Then P satisfies all axioms of a probability
law. (Verify this as an exercise.)
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If we think of the axioms as intuitive statements about probabilities, these statements
seem to be sensible. Axiom (iii) says that all results together have probability 1. As we have
shown in Proposition 2.23, all three axioms show that the probability of any event is some
number in the closed interval [0, 1]. Axiom (ii) says that if two events have nothing to do
with each other, then their probabilities add. For example, the probability of rolling 2 or 3
is equal to the probability of rolling a 2, plus the probability of rolling a 3. Or, written more
concisely, P({2, 3}) = P({2}) + P({3}).

Note that we can verify Remark 2.25, since

P({1, 2} ∪ {2, 3}) = P({1, 2, 3}) = 1/2 6= 2/3 = P({1, 2}) + P({2, 3}).

There are many different probability laws P that could be assigned to the universe Ω =
{1, 2, 3, 4, 5, 6}. For example, consider an unfair die defined so that, for any A ⊆ Ω, we have

P(A) =

{
1, if 6 ∈ A
0, otherwise.

Then P satisfies all axioms of a probability law. (Verify this as an exercise.) Our interpre-
tation of this probability law P is that the die will always roll a 6, since P({6}) = 1.

We can generalize the first part of Example 2.26 as follows.

Exercise 2.27 (Discrete Uniform Probability Law). Let n be a positive integer. Sup-
pose we are given a finite universe Ω with exactly n elements. Let A ⊆ Ω. Define P(A) such
that P(A) is the number of elements of A, divided by n. Verify that P is a probability law.
This probability law is referred to as the uniform probability law on Ω, since each element
of Ω has the same probability.

More generally, we can compute probabilities for any probability law in any finite universe
in the following way.

Example 2.28 (Discrete Probability Law). Suppose we are given a finite universe Ω
and a probability law P. That is, we are given a discrete probability law. Then for any
event A ⊆ Ω, there exists a nonnegative integer n and there exist distinct a1, . . . , an ∈ Ω
such that A = {a1, . . . , an}. Writing A = ∪nk=1{ai} and applying Remark 2.24, we conclude
that

P(A) = P({a1, . . . , an}) =
n∑
k=1

P({ak}).

Example 2.29. Let’s return to our example of rolling two fair six-sided dice. Recall that
we use Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6} as our sample space. Then, given any A ⊆ Ω,
we let P be the uniform probability law on Ω. It follows from Exercise 2.27 that P is a
probability law on Ω.

Let’s compute a few probabilities. Recall that Ω has 6·6 = 36 elements. By the definition of
P, we have P(1, 1) = 1/36. In fact, by the definition of P, for any fixed i, j ∈ {1, 2, 3, 4, 5, 6},
we have P(i, j) = 1/36.

Let A be the event that both dice rolls are equal. What is P(A)? There are only six dice
rolls where both dice are equal. They are: (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6). So, by the
definition of P, we have P(A) = 6/36 = 1/6.
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From Axiom (ii), P((1, 2) ∪ (2, 1)) = 2/36. That is, the probability that the sum of the
dice is 3 is 2/36. More generally, let s ∈ {2, 3, 4, . . . , 12}. What is the probability that
the sum of the dice is s? To answer this question, let’s count the number of ordered pairs
(i, j) ∈ Ω such that i + j = s. If s ≤ 7, these ordered pairs are (1, s − 1), (2, s − 2), . . .,
(s− 1, 1). So, there are s− 1 such ordered pairs. If s > 7, these ordered pairs are (6, s− 6),
(5, s− 5), . . ., (s− 6, 6). So, there are 6− (s− 6) + 1 = 13− s such ordered pairs. Writing
min(s− 1, 13− s) for the minimum of the numbers s− 1 and 13− s, we conclude there are
min(s− 1, 13− s) ordered pairs (i, j) ∈ Ω with i + j = s. So, the probability that the sum
of the dice is s is (1/36) min(s− 1, 13− s) when 2 ≤ s ≤ 12.

2.2.1. Continuous Models. As we discussed in the Introduction, many interesting probability
space are not discrete. Here are some examples of continuous, i.e. non-discrete, probability
laws.

Example 2.30. Let Ω = [0, 1]. For any interval of the form [a, b] with 0 ≤ a < b ≤ 1,
define P([a, b]) = b− a. Then P defines a probability law on Ω. (Note that there are many
more subsets A of Ω for which we would need to define P(A), but doing so is a complicated
endeavor which is outside the scope of this course. This topic, known as measure theory, is
covered graduate real analysis and probability classes.)

We can think of P as a uniform probability law on Ω, since any interval has a probability
which is equal to its length. That is, the probability of any interval does not depend on its
position. We can perhaps think of P as giving the height of a random plant, or the length
of a random river. However, there is an important difference between the present example
and the discrete uniform probability law. In the present case, the probability of any element
of Ω is 0. For example, P({0.37}) = 0.

Exercise 2.31. Let Ω = R2. Let A ⊆ Ω. Define a probability law P on Ω so that

P(A) =
1

2π

∫∫
A

e−(x2+y2)/2dxdy.

We can think of P as defining the (random) position of a dart, thrown at an infinite dart
board. That is, if A ⊆ Ω, then P(A) is the probability that the dart will land in the set A.

Very that Axiom (iii) holds for P. That is, verify that P(Ω) = 1. Then, compute the
probability that a dart hits a circular board A, where A = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.

Exercise 2.32. Let A,B be subsets of a sample space Ω. Show the following things:

• A = (ArB) ∪ (A ∩B), and (ArB) ∩ (A ∩B) = ∅.
• A∪B = (ArB)∪ (B rA)∪ (A∩B), and the three sets (ArB), (B rA), (A∩B)

are all disjoint. That is, any two of these sets are disjoint.

Proposition 2.33 (Properties of Probability Laws). Let Ω be a sample space and let
P be a probability law on Ω. Let A,B,C ⊆ Ω.

• If A ⊆ B, then P(A) ≤ P(B).
• P(A ∪B) = P(A) + P(B)−P(A ∩B).
• P(A ∪B) ≤ P(A) + P(B).
• P(A ∪B ∪ C) = P(A) + P(Ac ∩B) + P(Ac ∩Bc ∩ C).
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Let n be a positive integer. Let A1, . . . , An ⊆ Ω. Then

P

(
n⋃
k=1

Ak

)
≤

n∑
k=1

P(Ak).

Proof. Let A ⊆ B. Then B = (B ∩ A) ∪ (B ∩ Ac), and (B ∩ A) ∩ (B ∩ Ac) = ∅. So, using
Axiom (ii) for probability laws, B ∩ A = A, and using Axiom (i) for probability laws,

P(B) = P(B ∩ A) + P(B ∩ Ac) = P(A) + P(B ∩ Ac) ≥ P(A).

So, the first item is proven. We now prove the second item. Write A = (ArB)∪(A∩B) and
note that ArB and A∩B are disjoint by Exercise 2.32. Similarly, write B = (BrA)∪(B∩A)
and note that (B r A) and (B ∩ A) are disjoint. Finally, by Exercise 2.32, we can write
A ∪B as the union of three disjoint sets: A ∪B = (ArB) ∪ (A ∩B) ∪ (B r A).

So, using Axiom (ii) for probability laws twice,

P(A) + P(B) = P(ArB) + P(A ∩B) + P(B r A) + P(A ∩B) = P(A ∪B) + P(A ∩B).

So, the second item is proven. The third and fourth items are left to the exercises. The final
inequality follows from the third item and induction on n. �

Exercise 2.34. Let Ω be a sample space and let P be a probability law on Ω. Let A,B,C ⊆
Ω. Show the following things:

• P(A ∪B) ≤ P(A) + P(B).
• P(A ∪B ∪ C) = P(A) + P(Ac ∩B) + P(Ac ∩Bc ∩ C).

(Although the book suggest otherwise, a Venn diagram alone is not a rigorous
proof. As in Exercise 2.17, a truth table allows us to rigorously reason about the information
contained in a Venn diagram. Though, there are ways to do the problem while not directly
using a truth table.)

2.3. Conditional Probability. Let’s recall once again rolling a six-sided fair die. We
can model this scenario with the sample space Ω = {1, 2, 3, 4, 5, 6} and with the uniform
probability law P defined in Example 2.27. In particular, P(i) = 1/6 for each i ∈ Ω. That
is, each of the six sides of the die has a 1/6 chance of being rolled. However, suppose I
roll the die out of your sight, and I just let you know that the die roll is even. Now, what
is the probability of each roll? It is given that the die roll is even, so the probability that
an odd number was rolled is 0. Since each even number was equally likely to be rolled,
intuition suggests that each of the numbers 2, 4, 6 has a probability of 1/3 of being rolled.
That is, the additional information that the roll was even has changed the probability of the
events. Conditional probability allows us to compute the probabilities of events, given some
previously unknown information.

Definition 2.35 (Conditional Probability). Let A,B be subsets of some sample space
Ω. Let P be a probability law on Ω. Assume that P(B) > 0. We define the conditional
probability of A given B, denoted by P(A|B), as

P(A|B) =
P(A ∩B)

P(B)
.
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Example 2.36. Let Ω = {1, 2, 3, 4, 5, 6} and let P be the uniform probability law on Ω.
Let B = {2, 4, 6}. That is, B is the event that the die roll is even. If i ∈ Ω is odd, then
{i} ∩B = ∅. So,

P({i}|B) =
P({i} ∩B)

P(B)
=

P(∅)
1/2

= 0.

If i ∈ Ω is even, then {i} ∩B = {i}. So,

P({i}|B) =
P({i} ∩B)

P(B)
=

P({i})
1/2

=
1/6

1/2
=

1

3
.

Example 2.37. In Exercise 2.31, we considered Ω = R2, and we defined the probability law

P(A) =
1

2π

∫∫
A

e−(x2+y2)/2dxdy, A ⊆ Ω.

Let B = {(x, y) ∈ R2 : x2 + y2 ≤ 1}. Then B represents the circular dart board. So, if
A ⊆ Ω, then P (A|B) is the probability that the dart lands in A, given than the dart has hit
the dartboard. Using the definition of P, we have

P(A|B) =

∫∫
A∩B e

−(x2+y2)/2dxdy∫∫
B
e−(x2+y2)/2dxdy

.

In particular, P (B|B) = 1.

Proposition 2.38. Let B be a fixed subset of some sample space Ω. Let P be a probability law
on Ω. Assume that P(B) > 0. Given any subset A in Ω, define P(A|B) = P(A ∩B)/P(B)
as above. Then P(A|B) is itself a probability law on Ω.

Proof. We first verify Axiom (i). Let A ⊆ Ω. Since Axiom (i) holds for P by assumption,
we have P(A ∩B) ≥ 0. Therefore, P(A|B) = P(A ∩B)/P(B) ≥ 0.

We now verify Axiom (iii). Note that P(Ω|B) = P(Ω ∩ B)/P(B) = P(B ∩ B)/P(B) =
P(B)/P(B) = 1.

We now verify Axiom (ii). Let A,C ⊆ Ω with A ∩ C = ∅. Since A and C are disjoint,
we know that A ∩ B and C ∩ B are disjoint. So, we can apply Axiom (ii) for P to the sets
A ∩B and C ∩B. So,

P(A ∪ C|B)P(B) = P((A ∪ C) ∩B) = P((A ∩B) ∪ (C ∩B)), by Proposition 2.16(ii)

= P(A ∩B) + P(C ∩B) = P(A|B)P(B) + P(C|B)P(B).

Dividing both sides by P(B) implies that Axiom (ii) holds for two sets. To verify that
additivity holds for a countable number of sets, let A1, A2, . . . be subsets of Ω such that
Ai∩Aj = ∅ whenever i, j are positive integers with i 6= j. Since Ai∩Aj = ∅ whenever i 6= j,
we have (Ai ∩B) ∩ (Aj ∩B) = ∅. So, using Exercise 2.20, and Axiom (ii) for P,

P(B)P

(
∞⋃
k=1

Ak

∣∣∣∣∣B
)

= P

((
∞⋃
k=1

Ak

)
∩B

)
= P

(
∞⋃
k=1

(Ak ∩B)

)
, by Exercise 2.20

=
∞∑
k=1

P(Ak ∩B) = P(B)
∞∑
k=1

P(Ak|B)

So, Axiom (ii) holds. In conclusion, P(A|B) is a probability law on Ω. �
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Remark 2.39. Proposition 2.38 implies that facts from Proposition 2.33 apply also to
conditional probabilities. For example, using the notation of Proposition 2.38, we have
P(A ∪ C|B) ≤ P(A|B) + P(C|B).

Example 2.40 (Medical Testing). Suppose a test for a disease is 99% accurate. That is,
if you have the disease, the test will be positive with 99% probability. And if you do not
have the disease, the test will be negative with 99% probability. Suppose also the disease is
fairly rare, so that roughly 1 in 10, 000 people have the disease. If you test positive for the
disease, with what probability do you actually have the disease?

The answer is unfortunately around 1/100. To see this, let’s consider the probabilities.
Let B be the event that you test positive for the disease. Let A be the event that you
actually have the disease. We want to compute P(A|B). We have

P(A|B) = P(A ∩B)/P(B) = (P(A)/P(B))P(A ∩B)/P(A) = (P(A)/P(B))P(B|A).

We are given that P(A) = 10−4, P (B|A) = .99 and P(B|Ac) = .01. To compute P(B), we
write B = (B ∩ A) ∪ (B ∩ Ac), so that

P(B) = P(B ∩ A) + P(B ∩ Ac) = P(B|A)P(A) + P(B|Ac)P(Ac)

= .99(10−4) + .01(1−P(A)) = .99(10−4) + .01(1− 10−4) ≈ 10−2.

In conclusion,

P(A|B) =
10−4

P(B)
(.99) ≈ 10−4102 = 10−2.

So, even though the test is fairly accurate from a certain perspective, a positive test result
does not say very much.

Many people find this result counterintuitive, though the following reasoning can help to
explain the result. Suppose we have a population of 10, 000 people. Then roughly 1 person
in the population has the disease. Suppose everyone is given the test. Since 9, 999 people
are healthy and the test is 99% accurate, around 100 healthy people will test positive for the
disease. Meanwhile, the 1 sick person will most likely test positive for the disease. So, out of
around 101 people testing positive for the disease, only 1 of them actually has the disease.
So, P(A|B) is roughly 1/101 ≈ 10−2.

Some of the calculations from the previous problem will be formalized further below.

Example 2.41. Sometimes, conditioning on an event does not change the probability of an
event. Let Ω = {0, 1} × {0, 1}, and let P be the uniform discrete probability law on Ω. We
can think of P as modelling the flipping of two distinct fair coins, so that 0 denotes tails,
and 1 denotes heads. Let A = {(0, 1), (1, 1)}, and let B = {(1, 0), (1, 1)}. Then B is the
event that the first coin lands heads, and A is the event that the second coin lands heads.
Note that P(A) = P(B) = 1/2. We compute P(A|B) as follows.

P(A|B) =
P(A ∩B)

P(B)
=

P(1, 1)

P(B)
=

1/4

1/2
=

1

2
.

That is, P(A|B) = P(A). That is, given that the first coin lands heads, this does not affect
the probability of the second coin landing heads. It is a common misconception (especially
among gamblers) that, if a fair coin is flipped resulting in a tails, then a head “should”
consequently occur on the next coin flip. However, this intuition is incorrect. We will return
to examples of repeated experiments in our discussion of independence.
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Proposition 2.42 (Multiplication Rule). Let n be a positive integer. Let A1, . . . , An be
sets in some sample space Ω, and let P be a probability law on Ω. Assume that P(Ai) > 0
for all i ∈ {1, . . . , n}. Then

P

(
n⋂
i=1

Ai

)
= P(A1)P(A2|A1)P(A3|A2 ∩ A1) · · ·P(An| ∩n−1

i=1 Ai).

Proof. Using the definition of conditional probability,

P(A1)P(A2|A1)P(A3|A2 ∩ A1) · · ·P(An| ∩n−1
i=1 Ai)

= P(A1)
P(A1 ∩ A2)

P(A1)

P(A1 ∩ A2 ∩ A3)

P(A1 ∩ A2)
· · · P(∩ni=1Ai)

P(∩n−1
i=1 Ai)

= P

(
n⋂
i=1

Ai

)
.

�

Exercise 2.43. Two fair coins are flipped. It is given that at least one of the coins is heads.
What is the probability that the first coin is heads? (A flipped fair coin has either heads
with probability 1/2, or tails with probability 1/2. In the real world, a coin has a small
probability of landing on its side, but we are ignoring this possibility!)

Exercise 2.44 (The Monty Hall Problem). This Exercise demonstrates the sometimes
counterintuitive nature of conditional probabilities.

You are a contestant on a game show. There are three doors labelled 1, 2 and 3. You and
the host are aware that one door contains a prize, and the two other doors have no prize.
The host knows where the prize is, but you do not. Each door is equally likely to contain a
prize, i.e. each door has a 1/3 chance of containing the prize. In the first step of the game,
you can select one of the three doors. Suppose the selected door is i ∈ {1, 2, 3}. Given your
selection, the host now reveals one of the two remaining doors, demonstrating that this door
contains no prize. The game now concludes with a choice. You can either keep your current
door i, or you can switch to the other unopened door. You receive whatever is behind your
selected door. The question is: should you switch or not?

If you do not switch your door choice, show that your probability of getting the prize at
the end of the game is 1/3. If you do switch your door choice, show that your probability of
getting the prize is 2/3. In conclusion, in this game, you should always switch your choice
of doors.

2.4. Total Probability Theorem. In Example 2.40, we used the identity

P(B) = P(B ∩ A) + P(B ∩ Ac) = P(B|A)P(A) + P(B|Ac)P(Ac).

This identity helped us to compute the probability of the event B. The Total Probability
Theorem is a generalization of this fact.

Theorem 2.45 (Total Probability Theorem). Let A1, . . . , An be disjoint events in a
sample space Ω. That is, Ai ∩ Aj = ∅ whenever i, j ∈ {1, . . . , n} satisfy i 6= j. Assume also
that ∪ni=1Ai = Ω. Let P be a probability law on Ω. Then, for any event B ⊆ Ω, we have

P(B) =
n∑
i=1

P(B ∩ Ai) =
n∑
i=1

P(Ai)P(B|Ai).
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Proof. We claim that B = ∪ni=1(B ∩Ai), and the sets B ∩A1, . . . , B ∩An are disjoint. Given
this Claim, the result then follows from Remark 2.24. So, let’s prove the claim.

We first show B ⊆ ∪ni=1(B ∩Ai). Let x ∈ B. Then x ∈ Ω since B ⊆ Ω. Since ∪ni=1Ai = Ω,
there exists k ∈ {1, . . . , n} such that x ∈ Ak. Since x ∈ B as well, we conclude that
x ∈ B ∩ Ak. Therefore, x ∈ ∪ni=1(B ∩ Ai). We conclude that B ⊆ ∪ni=1(B ∩ Ai). We
now show that B ⊇ ∪ni=1(B ∩ Ai). Since B ∩ Ai ⊆ B for all i ∈ {1, . . . , n}, we have
∪ni=1(B ∩ Ai) ⊆ B, as desired. In conclusion, B = ∪ni=1(B ∩ Ai).

It remains to show that the sets B ∩ A1, . . . , B ∩ An are disjoint. Let i, j ∈ {1, . . . , n}
with i 6= j. We need to show that (B ∩ Ai) ∩ (B ∩ Aj) = ∅. By assumption, Ai ∩ Aj = ∅.
Therefore, (B ∩ Ai) ∩ (B ∩ Aj) = (Ai ∩ Aj) ∩B = ∅, as desired. �

Theorem 2.45 allows us to compute a potentially complicated probability by breaking it
up into smaller sub-quantities. That is, Theorem 2.45 is most useful when P(B) is difficult
to compute directly, and when we can find disjoint sets A1, . . . , An with ∪ni=1Ai = Ω such
that P(Ai ∩B) is easier to compute, for each i ∈ {1, . . . , n}.
Example 2.46. Let’s return to our example of rolling fair six-sided dice in Example 2.29,
since we have already implicitly used Theorem 2.45 in our calculation there. Let Ω =
{1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}. Let P be the uniform probability law on Ω. Then P
models the roll of two distinct, fair six-sided dice. Let B be the event that the sum of
the dice is 5. We compute P(B) by conditioning on the identity of the first roll. For each
i ∈ {1, 2, 3, 4, 5, 6}, let Ai be the event that the first roll is i. Then ∪6

i=1Ai = Ω, since if
(j, k) ∈ Ω, then (j, k) ∈ Aj, so that Ω ⊆ ∪6

i=1Ai, and also Ω ⊆ ∪6
i=1Ai. Also, Ai ∩Aj = ∅ for

all i, j ∈ {1, 2, 3, 4, 5, 6} with i 6= j, since the events Ai and Aj exclude each other.
If i < 5, then B ∩ Ai = (i, 5− i). (The first die is i and the sum of the dice is 5, so there

is only one roll that the second die could have, namely 5− i). If i > 5, then B ∩Ai = ∅. So,
using Theorem 2.45 and the definition of P,

P(B) =
6∑
i=1

P(B ∩ Ai) =
4∑
i=1

P(B ∩ Ai) = 4/36 = (1/36) min(5− 1, 13− 5) = 1/9.

Exercise 2.47. Suppose you roll three distinct fair, four-sided dice. What is the probability
that the sum of the dice is 7?

Exercise 2.48. Two people take turns throwing darts at a board. Person A goes first, and
each of her throws has a probability of 1/4 of hitting the bullseye. Person B goes next, and
each of her throws has a probability of 1/3 of hitting the bullseye. Then person A goes, and
so on. With what probability will Person A hit the bullseye before Person B does?

Exercise 2.49. Suppose you roll two distinct fair six-sided dice. Suppose you roll these two
dice again. What is the probability that both rolls have the same sum?

2.5. Bayes’ Rule. In Example 2.40, we used the identity

P(A|B) =
P(A)

P(B)
P(B|A) =

P(A)P(B|A)

P(B|A)P(A) + P(B|Ac)P(Ac)
.

This identity helped us to compute P(A|B), since we were then able to compute the right
side of the equality. Bayes’ rule is a generalization of this fact. Bayes’ rule allows us to
reverse the order of the conditioning. That is, we want to compute a probability conditioned
on B, but we instead compute probabilities conditioned on other events.
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Theorem 2.50 (Bayes’ Rule). Let A1, . . . , An be disjoint events in a sample space Ω. That
is, Ai ∩ Aj = ∅ whenever i, j ∈ {1, . . . , n} satisfy i 6= j. Assume also that ∪ni=1Ai = Ω. Let
P be a probability law on Ω. Then, for any event B ⊆ Ω with P(B) > 0, and for any
j ∈ {1, . . . , n}, we have

P(Aj|B) =
P(Aj)P(B|Aj)

P(B)
=

P(Aj)P(B|Aj)∑n
i=1 P(Ai)P(B|Ai)

.

Proof. If P(Aj) = 0, then both sides are zero. So, we may assume that P(Aj) > 0. As in
Example 2.40, we use Definition 2.35 to compute

P(Aj|B) =
P(Aj ∩B)

P(B)
=

P(Aj)

P(Aj)

P(Aj ∩B)

P(B)
=

P(Aj)

P(B)
P(B|Aj).

That is, we proved the first equality. For the second equality, we apply Theorem 2.45 to the
denominator term P(B). �

Exercise 2.51. Around 5% of men are colorblind, and around .25% of women are colorblind.
Given that someone is colorblind, what is the probability that they are a man?

Exercise 2.52. Two people are flipping fair coins. Let n be a positive integer. Person I
flips n+ 1 coins. Person II flips n coins. Show that the following event has probability 1/2:
Person I has more heads than Person II.

2.6. Recursions. Some probabilities can be computed using self-referential, or recursive,
equalities.

Example 2.53 (Gambler’s Ruin). Let 0 < p < 1. Suppose you are playing a game of
chance. For each round of the game, with probability p you win $1 and with probability
1−p you lose $1. Suppose you start with $50 and you decide to quit playing when you reach
either $0 or $100. With what probability will you end up with $100?

It is helpful to solve a more general problem, where 50 is replaced by any integer between
0 and 100. For each i ∈ {0, 1, 2, . . . , 100}, let Bi denote the event that you end up with $100
if you started with $i, and let pi = P(Bi). So, we can at least determine that p0 = 0 and
p100 = 1. By conditioning on the result of the first round of the game, we can find a relation
between the different pi values.

Let A1 be the event that the you win $1 in the first round of the game, and let A2 be the
event that you lose $1 in the first round of the game. Then A1 ∩ A2 = ∅, and A1 ∪ A2 = Ω.
Given that A1 occurs, the probability of ending up with $100 is the same as starting round
one with one extra dollar. That is, P(Bi|A1) = P(Bi+1). Similarly, P(Bi|A2) = P(Bi−1).
So, using Theorem 2.45,

pi = P(Bi) = P(A1)P(Bi|A1) + P(A2)P(Bi|A2)

= pP(Bi+1) + (1− p)P(Bi−1) = p · pi+1 + (1− p)pi−1.

That is,
pi = p · pi+1 + (1− p) · pi−1, ∀ i ∈ {1, 2, . . . , 99}.

That is, pi−1 = (1− p)−1(pi − p · pi+1). Or, written in matrix form(
pi
pi−1

)
=

(
0 1

−p(1− p)−1 (1− p)−1

)(
pi+1

pi

)
.
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Iteratively applying this equation for any positive integer k, we have(
pi
pi−1

)
=

(
0 1

−p(1− p)−1 (1− p)−1

)k (
pi+k
pi+k−1

)
.

Note that the eigenvalues λ of the matrix

(
0 1

−p(1− p)−1 (1− p)−1

)
satisfy (−λ)((1−p)−1−

λ) + p(1− p)−1 = 0, so that λ2 − (1− p)−1λ+ p(1− p)−1 = 0, so λ2(1− p)− λ+ p = 0, so

λ =
1±

√
1− 4p(1− p)
2(1− p)

=
1±

√
(2p− 1)2

2(1− p)
=

1± |2p− 1|
2(1− p)

.

That is, λ = 1 or λ = p(1− p)−1. So, we see that the eigenvectors of the matrix are

v1 =

(
1
1

)
, v2 =

(
1

p(1− p)−1

)
.

These vectors form a basis of R2 as long as p 6= 1/2. So, if p 6= 1/2, any column vector
x ∈ R2 can be written as a linear combination of the form x = αv1 + βv2. In particular, if

x =

(
p100

p99

)
, and if x = αv1 + βv2, with α, β ∈ R, then(

pi
pi−1

)
=

(
0 1

−p(1− p)−1 (1− p)−1

)100−i(
pi+(100−i)
pi+(100−i−1)

)
=

(
0 1

−p(1− p)−1 (1− p)−1

)100−i(
p100

p99

)
= αv1 + β(p(1− p)−1)100−iv2.

Since p0 = 0, we have (using i = 1 above)(
p1

0

)
= αv1 + β(p(1− p)−1)99v2.

So, α + β(p(1 − p)−1)100 = 0. Also, since p100 = 1 and x = αv1 + βv2, we have 1 = α + β.
Solving for α, β, we get

β

(
p

1− p

)100

− β = −1.

That is, β = 1/(1− (p(1− p)−1)100). And α = 1− β. In conclusion, if p 6= 1/2,

pi = α + β(p(1− p)−1)100−i = 1 + [1/(1− (p(1− p)−1)100)][−1 + (p(1− p)−1)100−i]

= 1 +

(
1−p
p

)100

(
1−p
p

)100

− 1
[−1 + (p(1− p)−1)100−i] = 1 +

−
(

1−p
p

)100

+
(

1−p
p

)i
(

1−p
p

)100

− 1
=

(
1−p
p

)i
− 1(

1−p
p

)100

− 1
.

To extend this equality to p = 1/2, we set a = (1− p)/p, let j be a positive integer, and use
the identity aj − 1 = (a− 1)(aj−1 + aj−2 + · · ·+ a+ 1) to get

pi =

(
1−p
p

)i
− 1(

1−p
p

)100

− 1
=

∑i−1
k=0

(
1−p
p

)k
∑99

k=0

(
1−p
p

)k .
Letting p→ 1/2 shows that when p = 1/2, we get pi = i/100.
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2.7. Independence of Sets. Up until now, much of the material we have discussed could
equally well have been understood through basic calculus or combinatorics. However, the
first new concept that is specific to probability theory itself is the notion of independence.
If I roll two fair dice, then the outcome of the first die roll does not depend at all on the
outcome of the second die roll. That is, the die rolls are independent of each other. We
formalize this notion in the following definition.

Definition 2.54 (Independent Sets). Let A,B be subsets of a sample space Ω, and let
P be a probability law on Ω. We say that A and B are independent if

P(A ∩B) = P(A)P(B).

Remark 2.55. If P(B) > 0, and if A,B are independent, then P(A|B) = P(A). That is,
knowing the event B does not affect the probability of A occurring.

Example 2.56. Let’s return once again to our example of rolling two fair dice. Let Ω =
{1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}, and let P be the uniform probability law on Ω. Let i, j ∈
{1, 2, 3, 4, 5, 6}. Let Ai be the event that the first die roll is i, and let Bj be the event that
the second die roll is j. Then, for every i, j ∈ {1, 2, 3, 4, 5, 6}, the events Ai and Bj are
independent. That is, the one die roll does not affect the other die roll at all. To see this,
note that P(Ai) = P(Bj) = 1/6, while Ai ∩ Bj is the single element (i, j) ∈ Ω. That is,
P(Ai ∩Bj) = 1/36. Therefore,

P(Ai ∩Bj) = 1/36 = (1/6)2 = P(Ai)P(Bj).

Remark 2.57. In a probabilistic model, when two actions do not really affect each other
(such as rolling two fair die), then we can anticipate independence in the model. However,
there are many times when independence is not a valid assumption, and it is important to
note when this is true. For example, suppose we let A be the event that one voter votes
for candidate Alice, and let A′ be the event that another voter votes for candidate Alice. If
two voters are friends, or they watch the same news media, etc., then the events A,A′ will
probably not be independent. For other examples, consider the recession in the stock market
in August of 2008. Many people believe that the following scenario caused the crash: several
financial models all assumed that each financial entity was acting independently. However, in
reality, many financial entities were using similar or identical models to decide which stocks
to buy and sell. So, the entities were not acting independently at all! Since the models were
wrong, they automatically made bad decisions, causing money to evaporate very quickly.

Definition 2.58 (Independent Sets). Let n be a positive integer. Let A1, . . . , An be
subsets of a sample space Ω, and let P be a probability law on Ω. We say that A1, . . . , An
are independent if, for any subset S of {1, . . . , n}, we have

P (∩i∈SAi) =
∏
i∈S

P(Ai).

Remark 2.59. Note that the above definition is much stronger than simply requiring that
P(Ai ∩ Aj) = P(Ai)P(Aj) for all i, j ∈ {1, . . . , n} with i 6= j, since the latter condition
corresponds only to subsets S of {1, . . . , n} of size at most 2. In fact, the condition P(Ai ∩
Aj) = P(Ai)P(Aj) for all i 6= j does not imply that all of the sets are independent, as we
now show by counterexample.
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Example 2.60. Let Ω = {H,T} × {H,T}. Then Ω is a sample space representing two
separate coin flips (H stands for heads, and T stands for tails). Let P denote the uniform
probability law on Ω. Let A1 be the event that the first coin toss is H (heads). Let A2 be
the event that the second coin toss is H (heads). Let A3 be the event that both coin tosses
are different. We will show that the events A1, A2, A3 are pairwise independent, but they
are not independent. That is, P(Ai ∩ Aj) = P(Ai)P(Aj) for all i, j ∈ {1, . . . , n} with i 6= j,
but these three sets are not independent.

Note that P(A1) = P(A2) = 1/2 and A1 ∩ A2 = (H,T ), so

P(A1 ∩ A2) = 1/4 = (1/2)2 = P(A1)P(A2).

Also, P(A3) = 1/2, A1 ∩ A3 = (H,T ) and A2 ∩ A3 = (T,H), so

P(A1 ∩A3) = 1/4 = (1/2)2 = P(A1)P(A3), P(A2 ∩A3) = 1/4 = (1/2)2 = P(A2)P(A3).

In conclusion, each pair of the events A1, A2, A3 are independent. That is, the definition
of independence holds for any subset S ⊆ {1, 2, 3} of size two. However, the definition of
independence fails when S = {1, 2, 3}. Indeed, A1 ∩ A2 ∩ A3 = ∅, so that

P(A1 ∩ A2 ∩ A3) = P(∅) = 0 6= 1/8 = P(A1)P(A2)P(A3).

So, the events A1, A2, A3 are not independent.

Proposition 2.61. Let A,B be subsets of a sample space Ω, and let P be a probability law
on Ω. Assume that A and B are independent. Then A and Bc are independent.

Proof. Writing A = (A ∩B) ∪ (A ∩Bc) where the union is disjoint, we have

P(A ∩Bc) = P(A)−P(A ∩B) = P(A)−P(A)P(B) = P(A)(1−P(B)) = P(A)P(Bc).

�

The following two Exercises show that independence of sets can sometimes have a geo-
metric interpretation.

Exercise 2.62. Let Ω = [0, 1] × [0, 1] so that Ω ⊆ R2. Define a probability law P so
that, for any set A ⊆ Ω, P(A) is defined to be the area of A. Let 0 ≤ a1 ≤ a2 ≤ 1
and let 0 ≤ b1 ≤ b2 ≤ 1. Consider the rectangles A = {(x, y) ∈ Ω: a1 ≤ x ≤ a2},
B = {(x, y) ∈ Ω: b1 ≤ y ≤ b2}. Show that the rectangles A,B are independent.

Exercise 2.63. Let Ω = R2 so that Ω ⊆ R2. Define a probability law P so that, for any set
A ⊆ Ω,

P(A) =
1

2π

∫∫
A

e−(x2+y2)/2dxdy.

In Exercise 2.31, we verified that P(Ω) = 1. Let 0 ≤ a1 ≤ a2 ≤ 1 and let 0 ≤ b1 ≤ b2 ≤ 1.
Consider the infinite rectangles A = {(x, y) ∈ Ω: a1 ≤ x ≤ a2}, B = {(x, y) ∈ Ω: b1 ≤ y ≤
b2}. Show that the rectangles A,B are independent.

Example 2.64 (Bernoulli Trials). Let n be a positive integer. Let Ω = {H,T}n. Then
Ω is a sample space representing n separate coin flips (H stands for heads, and T stands
for tails). Let 0 < p < 1. Let P be the probability law such that each coin toss occurs
independently, and such that each coin has probability p of heads (H), and probability 1− p
of tails (T). That is, we are independently flipping n biased coins.
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Let 1 ≤ k ≤ n. Suppose the first k coins have landed as heads, and the rest of the
coins are tails. By the definition of P, this event occurs with probability pk(1 − p)n−k. We
now ask: What is the probability that k of the coins are heads, and the remaining n − k
coins are tails? In order to answer this question, we need to compute Cn,k, the number of
ordered lists of k copies of H, and n − k copies of T. Equivalently, Cn,k is the number of
ways to place n coins on a table all showing tails, and then turn over k distinct coins to
reveal exactly k heads. To compute the latter number, note that we can first turn over one
of the n coins, and then we can turn over any of the remaining n − 1 coins showing tails,
and then we can turn over any of the remaining n − 2 coins showing tails, and so on. So,
there are n(n − 1)(n − 2) · · · (n − k + 1) sequences of coin turns which can be made (while
keeping track of their ordering). To make the same count of coin flips without keeping track
of the ordering, we just divide by the number of orderings of the k heads coins, which is
k(k − 1) · · · (2)(1). In conclusion,

Cn,k =

(
n

k

)
=
n(n− 1)(n− 2) · · · (n− k + 1)

k(k − 1)(k − 2) · · · (2)(1)
=

n!

(n− k)!k!
.

Back to our original question, the probability that we have k heads and n− k tails among
n coin flips is

Cn,k · pk(1− p)n−k =

(
n

k

)
pk(1− p)n−k =

n!

(n− k)!k!
pk(1− p)n−k.

Theorem 2.65 (Binomial Theorem). Let 0 < p < 1. Then

n∑
k=0

(
n

k

)
pk(1− p)n−k = 1n = 1.

More generally, for any real numbers x, y, we have

n∑
k=0

(
n

k

)
xkyn−k = (x+ y)n

Proof. We use the notation of Example 2.64. Let 0 < p < 1. For any 0 ≤ k ≤ n, let
Ak be the event that there are exactly k heads that resulted from flipping n coins. Then
Ai ∩ Aj = ∅ for all i 6= j where i, j ∈ {0, . . . , n}. Also, ∪nk=0Ak = Ω. From Example 2.64,
P(Ak) =

(
n
k

)
pk(1− p)k. So, using Remark 2.24,

1 = P(Ω) = P(∪nk=0Ak) =
n∑
k=0

P(Ak) =
n∑
k=0

(
n

k

)
pk(1− p)n−k. (∗)

Now, the right side is a polynomial in p, which is equal to 1 for all 0 < p < 1. Therefore, the
equality (∗) holds for all real p. (A polynomial which is equal to 1 on [0, 1] is also equal to
1 on the whole real line.) Assume temporarily that x + y 6= 0. Define p = x/(x + y). Then
x = p(x+ y), y = (1− p)(x+ y) and 1− p = y/(x+ y). Using (∗), we have

1 =
n∑
k=0

(
n

k

)(
x

x+ y

)k (
y

x+ y

)n−k
= (x+ y)−n

n∑
k=0

(
n

k

)
xkyn−k.
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That is, our desired equality holds whenever x + y 6= 0. Finally, the case x + y = 0 follows
by letting t > 0 be a real parameter, using

∑n
k=0

(
n
k

)
xk(y + t)n−k = (x+ y + t)n, and letting

t→ 0, noting that both sides of the equality are continuous in t. �

Exercise 2.66. Let Ω be a sample space and let P be a probability law on Ω. Let A,B ⊆ Ω.
Assume that A ⊆ B. Is it possible that A is independent of B? Justify your answer.

2.8. Counting Problems. The following facts from counting are discussed in more detail
in the Combinatorics class, Math 61.

Proposition 2.67 (Counting Principles). Let n be a positive integer, and let k be an
integer with 0 ≤ k ≤ n. We define n! = n · (n− 1) · (n− 2) · · · (2) · 1.

• The number of permutations of the set {1, 2, . . . , n} is n!. That is, there are n! ways
to make an ordered list of the numbers {1, 2, . . . , n}.
• The number of ways to make an ordered list of k elements of the set {1, 2, . . . , n} is
n!/(n− k)! = n(n− 1) · · · (n− k + 1).
• The number of ways to make an unordered list of k elements of the set {1, 2, . . . , n}

is
(
n
k

)
= n!

k!(n−k)!
. Equivalently, there are

(
n
k

)
ways to partition the set {1, 2, . . . , n}

into two parts such that one part contains exactly k elements.
• Let n1, . . . , ni be positive integers such that n1 + · · · + ni = n. Then the number of

ways to partition the set {1, . . . , n} into i sets, where the jth group has nj elements,
for each 1 ≤ j ≤ i, is (

n

n1, n2, . . . , ni

)
=

n!

n1!n2! · · ·ni!
.

Proof. We have essentially proven the first three facts in Example 2.64 �

Exercise 2.68 (Inclusion-Exclusion Formula). In the Properties for Probability laws, we
showed that P(A∪B) = P(A)+P(B)−P(A∩B). The following equality is a generalization
of this fact. Let Ω be a discrete sample space, and let P be a probability law on Ω. Prove
the following. Let A1, . . . , An ⊆ Ω. Then:

P(∪ni=1Ai) =
n∑
i=1

P(Ai)−
∑

1≤i<j≤n

P(Ai ∩ Aj) +
∑

1≤i<j<k≤n

P(Ai ∩ Aj ∩ Ak)

· · ·+ (−1)n+1P(A1 ∩ · · · ∩ An).

(Hint: begin with the identity 0 = (1 − 1)m =
∑m

k=0(−1)kCm,k, which follows from the
Binomial Theorem. That is, 1 =

∑m
k=1(−1)k+1Cm,k. Now, let x ∈ Ω such that x is in exactly

m of the sets A1, . . . , An. Compute the “number of times” that the element x ∈ Ω is counted
for both sides of the Inclusion-Exclusion Formula.)

Exercise 2.69 (Derangements).

• Suppose you have a car with four tires, and the car mechanic removes all four tires.
Suppose the mechanic now puts the tires back on randomly, so that all arrangements
of the tires are equally likely. With what probability will no tire end up in its original
position? (Hint: let Ai be the event that the ith tire is in the correct position, where
i = 1, 2, 3, 4. Then, use the Inclusion-Exclusion formula.)
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• Let n be a positive integer. Suppose your car has n tires that are removed. Suppose
the mechanic now puts the tires back on randomly, so that all arrangements of the
tires are equally likely. With what probability will no tire end up in its original
position?
• Compute the latter probability as n→∞.

3. Discrete Random Variables

So far we have discussed random events. Often it is also natural to describe random num-
bers. For example, the sum of two six-sided die is a random number. Or your score obtained
by throwing a single dart at a standard dartboard is a random number. In probability, we
call random numbers random variables.

Definition 3.1 (Random Variable). Let Ω be a sample space. Let P be a probability law
on Ω. A random variable X is a function X : Ω→ R. A discrete random variable is a
random variable whose range is either finite or countably infinite.

Proposition 3.2 (Properties of Random Variables).

• If X and Y are random variables, then X + Y is a random variable.
• If X is a random variable and if f : R → R is a function, then f(X) = f ◦ X is a

random variable.

A random variable is “just” a function. So, in some sense, from your preparation in calcu-
lus, you are already quite familiar with random variables. However, the new terminology of
“random variable” carries a new perspective on functions as well. For example, in probabil-
ity theory, we concern ourselves with the probability that the random variable takes various
values.

Example 3.3. Let Ω = {1, 2, 3, 4, 5, 6}2. Let P denote the uniform probability law on Ω.
As usual, Ω and P denote the rolling of two distinct fair six-sided dice. We define random
variables X, Y as follows. For any (i, j) ∈ Ω, define X(i, j) = i, and define Y (i, j) = j. Then
X and Y are random variables. Moreover, X is the roll of the first die, and Y is the roll of
the second die. So, X+Y is the sum of the rolls of the dice, and X+Y is a random variable.

Example 3.4. Consider the following simplified version of a dartboard. Let Ω = R2. For
any set A ⊆ Ω, define

P(A) =
1

2π

∫∫
A

e−(x2+y2)/2dxdy.

Let (x, y) ∈ Ω. Define a random variable X : Ω→ R so that

X(x, y) =

{
1 , if x2 + y2 ≤ 1

0 , if x2 + y2 > 1
.

That is, if you hit the dartboard {(x, y) ∈ Ω: x2 + y2 ≤ 1}, then X = 1. Otherwise,
X = 0. So, X is a random variable which represents your score after throwing a random
dart according to the probability law P.

Example 3.5. Consider the following model of a more complicated dartboard. Let Ω =
(0, 1)2 ⊆ R2. For any set A ⊆ Ω, let P(A) denote the area of A. Let (x, y) ∈ Ω. Define
a random variable X : Ω → R so that X(x, y) is the smallest integer j such that x > 2−j
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and y > 2−j. For example, if (x, y) = (1/3, 1/3), then 2−1 > x > 2−2 and 2−1 > y > 2−2,
so X(x, y) = 2. Or if (x, y) = (1/5, 1/3), then 2−2 > x > 2−3 and 2−1 > y > 2−2 > 2−3,
so X(x, y) = 3. In this example, X is a random variable which represents your score after
throwing a random dart according to the probability law P. By the definition of X, if we
would like to get a large score, we see that it is more beneficial to aim for the bottom left
corner of the square, i.e. we want to get close to (0, 0).

If we have a random variable X, one of the first tasks in probability is to compute various
quantities for X to better understand X. For example, we could ask, “What value does X
typically take?” (What is the mean value or average value of X?) “Typically, how far is X
from its mean value?” (What is the variance of X?) We will start to answer these questions
in Section 4. For now, we need to get through some preliminary concepts.

3.1. Probability Mass Function (PMF).

Definition 3.6 (Probability Mass Function). Let X be a random variable on a sample
space Ω, so that X : Ω → R. Let P be a probability law on Ω. Let x ∈ R. Consider the
event {ω ∈ Ω: X(ω) = x}. This event is often denoted as {X = x}. The probability mass
function of X, denote pX : R→ [0, 1] is defined by

pX(x) = P(X = x) = P({X = x}) = P({ω ∈ Ω: X(ω) = x}), x ∈ R.

Let A ⊆ R. We denote {ω ∈ Ω: X(ω) ∈ A} = {X ∈ A}.

Example 3.7. Let Ω = {H,T}2 and let P be the uniform probability measure on Ω. Then
Ω and P represent the outcome of flipping two distinct fair coins. Let X be the number of
heads that are rolled. That is, X(T, T ) = 0, X(H,T ) = 1, X(T,H) = 1 and X(H,H) = 2.
Therefore,

pX(x) =


1/4 , if x = 0

1/2 , if x = 1

1/4 , if x = 2

0 , otherwise.

Note that P(X > 0) = 1/2 + 1/4 = 3/4. That is, with probability 3/4, at least one head is
rolled.

Proposition 3.8. Let X be a discrete random variable on a sample space Ω. Then∑
x∈R

pX(x) = 1.

Proof. For each x ∈ R, let Bx be the event that X = x. If x 6= y, then Bx ∩ By = ∅. Also,
∪x∈RBx = Ω. So, using Axiom (ii) for probability laws in Definition 2.22,

1 = P(Ω) = P(∪x∈RBx) =
∑
x∈R

P(Bx) =
∑
x∈R

pX(x).

�

We now give descriptions of some commonly encountered random variables.
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Definition 3.9 (Bernoulli Random Variable). Let 0 < p < 1. A random variable X is
called a Bernoulli random variable with parameter p if X = 1 with probability p, and
X = 0 with probability 1 − p. Put another way, X = 1 when a single flipped biased coin
lands heads, and X = 0 when the coin lands tails. The PMF is given by

pX(x) =


p , if x = 1

1− p , if x = 0

0 , otherwise.

Remark 3.10. Note that we defined the random variable X without specifying any sample
space Ω. This de-emphasis on the domain is one aspect of probability that we mentioned
above. For example, we could choose Ω = {0, 1} and define P on Ω such that P(0) = 1− p
and P(1) = p. Then define X : Ω → R so that X(ω) = ω for all ω ∈ Ω. Then X is a
Bernoulli random variable.

Alternatively, we could choose Ω = [0, 5], and define P on Ω such that P[a, b] = 1
5
(b− a)

whenever 0 ≤ a < b ≤ 5. Then, we could define Y : Ω→ R by

Y (ω) =

{
1 , if ω < 5p

0 , if ω ≥ 5p.

Then Y is also a Bernoulli random variable. As we can see, the sample spaces of X and Y
are very different.

Definition 3.11 (Binomial Random Variable). Let 0 < p < 1 and let n be a positive
integer. A random variable X is called a binomial random variable with parameters
n and p if X has the following PMF. If k is an integer with 0 ≤ k ≤ n, then

pX(k) = P(X = k) =

(
n

k

)
pk(1− p)n−k.

For any other x, we have pX(x) = 0. In Example 2.64, we showed that this probability
distribution arises from flipping n biased coins. In particular, X is the number of heads that
arise when flipping n biased coins. In Theorem 2.65, we verified that

n∑
k=0

pX(k) =
n∑
k=0

(
n

k

)
pk(1− p)n−k = 1.

Definition 3.12 (Geometric Random Variable). Let 0 < p < 1. A random variable X
is called a geometric random variable with parameter p if X has the following PMF.
If k is a positive integer, then

pX(k) = P(X = k) = (1− p)k−1p.

For any other x, we have pX(x) = 0. Note that X is the number of times that are needed
to flip a biased coin in order to get a heads (if the coin has probability p of landing heads).
Also, using the summation of geometric series, we verify

∞∑
k=1

pX(k) =
∞∑
k=1

(1− p)k−1p = p
∞∑
k=1

(1− p)k−1 = p lim
n→∞

n∑
k=1

(1− p)k−1

= p lim
n→∞

1− (1− p)n+1

1− (1− p)
=
p

p
= 1.
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Definition 3.13 (Poisson Random Variable). Let λ > 0. A random variable X is called
a Poisson random variable with parameter λ if X has the following PMF. If k is a
nonnegative integer, then

pX(k) = P(X = k) = e−λ
λk

k!
.

For any other x, we have pX(x) = 0. Using the Taylor expansion for the exponential function,
we verify

∞∑
k=0

pX(k) = e−λ
∑
k=0

λk

k!
= e−λeλ = 1.

The Poisson random variable provides a nice approximation to the binomial distribution,
as we now demonstrate.

Proposition 3.14 (Poisson Approximation to the Binomial). Let λ > 0. For each
positive integer n, let 0 < pn < 1, and let Xn be a binomial distributed random variable with
parameters n and pn. Assume that limn→∞ pn = 0 and limn→∞ npn = λ. Then, for any
nonnegative integer k, we have

lim
n→∞

P(Xn = k) = e−λ
λk

k!
.

Lemma 3.15. Let λ > 0. For each positive integer n, let λn > 0. Assume that limn→∞ λn =
λ. Then

lim
n→∞

(
1− λn

n

)n
= e−λ

Proof. Let log denote the natural logarithm. For any x < 1, define f(x) = log(1− x). From
L’Hôpital’s Rule,

lim
x→0

f(x)

x
= lim

x→0
f ′(x) = lim

x→0

−1

1− x
= −1. (∗)

So, using limn→∞ λn/n = 0 we can apply (∗) and then limn→∞ λn = λ, so

lim
n→∞

(
1− λn

n

)n
= lim

n→∞
exp

(
log

(
1− λn

n

)n)
= exp

(
lim
n→∞

log
(
1− λn

n

)
λn/n

λn

)
= exp((−1)(λ)) = e−λ.

�

Proof of Proposition 3.14. For any positive integer n, let λn = npn. Then limn→∞ λn = λ
and limn→∞ λn/n = 0. And if k is a nonnegative integer,

P(Xn = k) =

(
n

k

)(
λn
n

)k (
1− λn

n

)n−k
=

(
k∏
i=1

n− i+ 1

n

)
λkn
k!

(
1− λn

n

)n(
1− λn

n

)−k

So, using Lemma 3.15, limn→∞P(Xn = k) = 1 · λk
k!
e−λ · 1. �
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Remark 3.16. A Poisson random variable is often used as an approximation for counting
the number of some random occurrences. For example, the Poisson distribution can model
the number of typos per page in a book, the number of magnetic defects in a hard drive, the
number of traffic accidents in a day, etc.

Exercise 3.17. The Wheel of Fortune involves the repeated spinning of a wheel with 72
possible stopping points. We assume that each time the wheel is spun, any stopping point is
equally likely. Exactly one stopping point on the wheel rewards a contestant with $1, 000, 000.
Suppose the wheel is spun 24 times. Let X be the number of times that someone wins
$1, 000, 000. Using the Poisson Approximation the Binomial, estimate the following proba-
bilities: P(X = 0), P(X = 1), P(X = 2). (Hint: consider the binomial distribution with
p = 1/72.)

Remark 3.18. The Bernoulli, binomial, geometric and Poisson random variables are all
examples of the following general construction of a random variable. Let a0, a1, a2, . . . ≥ 0
such that

∑∞
i=0 ai = 1. Then define a random variable X such that P(X = i) = ai for all

nonnegative integers i.
There are many other random variables we will encounter in this class as well, but these

will be enough for now.

3.2. Functions of Random Variables.

Proposition 3.19. Let Ω be a sample space, let P be a probability law on Ω. Let X be a
discrete random variable on Ω, and let f : R→ R. Then f(X) has PMF

pf(X)(y) =
∑

x∈R : f(x)=y

pX(x), ∀ y ∈ R.

Proof. Let x, y, z ∈ R. Let Ax be the event that X = x. If z 6= x, then Ax ∩ Az = ∅. Also,
∪x∈RAx = Ω. So, using Axiom (ii) of Definition 2.22,

pf(X)(y) = P(f(X) = y) = P(∪x∈R{f(X) = y} ∩ Ax) =
∑
x∈R

P({f(X) = y} ∩ Ax)

=
∑

x∈R : f(x)=y

P(X = x) =
∑

x∈R : f(x)=y

pX(x).

�

Exercise 3.20. Let Ω = {−3,−2,−1, 0, 1, 2, 3}. Suppose X(ω) = ω for all ω ∈ Ω. Let
f : R→ R so that f(x) = x2 for any x ∈ R. Compute the PMF of f(X).

4. Expectation, Conditioning

Now that we understand random variables a bit more, we can finally start to answer some
of the fundamental questions of probability, such as:

What is the average value of a random variable?
Put another way, what is the mean value of a random variable? Or, what value should we

expect a particular random variable to have? Answering this question is of interest in many
applications of probability. For example, if I can figure out a way to gain $1 from a stock
transaction with probability .51, while losing $1 from a stock transaction with probability
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.49, and if I keep performing this transaction many times, I should probably expect to gain
money over time.

Example 4.1 (Playing Monopoly Forever). Suppose you are moving a game piece on
a large monopoly board. At each turn, you roll a fair six-sided die, and you move the piece
the number of spaces that is rolled. With what probability will you land on the space that
is 40 spaces away from the starting point?

Let i be a positive integer. Let Ai be the event that you land on the location that is
i spaces away from the starting location, after any number of rolls. Let pi = P(Ai). By
conditioning on the first roll, we can find a recurrence relation for the pi. Let Bj be the event
that the first die roll is j, where j ∈ {1, 2, 3, 4, 5, 6}. If i > 6, then P(Ai|Bj) = P(Ai−j).
Then by Theorem 2.45,

pi = P(Ai∩Ω) = P(Ai∩(∪6
j=1Bj)) =

6∑
j=1

P(Bj)P(Ai|Bj) =
1

6

6∑
j=1

P(Ai−j) =
1

6

6∑
j=1

pi−j. (∗)

We could theoretically solve this recursion as in Example 2.53, but for simplicity, we will
instead just compute p1, . . . , p6 directly, and then compute pi for i > 6 using the recursion
(∗).

The only way to land on the first space is to roll a 1 on the first roll, so p1 = 1/6. We can
land on the second space by rolling a two on the first roll, or by rolling two consecutive 1’s.
So, p2 = 1/6 + (1/6)2. We can land on the third space by rolling: a 3; three 1’s; or one 2 and
one 1. So, p3 = 1/6+(1/6)3+2(1/6)2. Similarly, p4 = 1/6+(1/6)4+3(1/6)3+2(1/6)2+(1/6)2,
and so on. Here is a table showing the values of p1, p2, . . . , p40, where the first eight values
descend in the first column, then the nest eight values descend in the second column, etc.

0.166666666667 0.280368945441 0.286701924733 0.285599870541 0.285721682947
0.194444444444 0.289288461040 0.285586725149 0.285747713887 0.285713826853
0.226851851852 0.293393122242 0.284712810463 0.285768819510 0.285710193751
0.264660493827 0.290830213260 0.285621080152 0.285735625468 0.285711733841
0.308770576132 0.279263192334 0.285967983759 0.285700953208 0.285715051280
0.360232338820 0.283539658507 0.285943659029 0.285691829207 0.285716315054
0.253604395290 0.286113932137 0.285755697214 0.285707468637 0.285714800621
0.268094016728 0.287071429920 0.285597992628 0.285725401653 0.285713653567

It looks like the sequences of numbers p1, p2, . . . is converging to something. If we continue
this computation we get p100 = 0.285714285714. That is, p100 ≈ 2/7. Why is this so?

For each i ≥ 1, let Xi denote the result of the ith die roll. Then X1 +· · ·+Xn is the number
of spaces that is moved after n rolls of the dice. How many spaces can we expect to move
after a single die roll? If i ≥ 1, then Xi can be any of the numbers {1, 2, 3, 4, 5, 6} with equal
probability. If n is very large, and if we interpret probabilities as frequencies, then around
1/6 of the indices i ∈ {1, . . . , n} satisfy Xi = 1, around 1/6 of the indices i ∈ {1, . . . , n}
satisfy Xi = 2, and so on. That is, when n is large,

X1+· · ·+Xn ≈
n

6
(1)+

n

6
(2)+

n

6
(3)+

n

6
(4)+

n

6
(5)+

n

6
(6) =

n

6
(1+2+3+4+5+6) = n

21

6
= n

7

2
.

Written another way,

X1 + · · ·+Xn

n
≈ 1

6
(1) +

1

6
(2) +

1

6
(3) +

1

6
(4) +

1

6
(5) +

1

6
(6) =

7

2
.
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That is, on average, each die roll will move forward around 7/2 spaces. Put another way,
after two rolls, we will have visited two spaces while moving forward around seven spaces.
That is, we will have visited two spaces and skipped five in between. So, the probability of
landing on any particular space is 2/7 = 1/(7/2).

In the above example, we reasoned that, on average, we can expect the roll of a single fair
die to be around 7/2. This fact is formalized by defining the expected value of a random
variable.

4.1. Expectation, Variance.

Definition 4.2 (Expected Value). Let Ω be a sample space, let P be a probability law
on Ω. Let X be a discrete random variable on Ω. Assume that X : Ω → [0,∞). We define
the expected value of X, denoted E(X), by

E(X) =
∑
x∈R

xpX(x).

For a discrete random variable with X : Ω → R, if E |X| < ∞, we then define E(X) =∑
x∈R xpX(x) as above. The expected value of X is also referred to as the mean of X, or the

first moment of X. More generally, if n is a positive integer, we define the nth moment
of X to be E(Xn).

Example 4.3. If X takes the values {1, 2, 3, 4, 5, 6} each with probability 1/6, then we have
already verified in Example 4.1 that

E(X) =
1

6
(1) +

1

6
(2) +

1

6
(3) +

1

6
(4) +

1

6
(5) +

1

6
(6) =

21

6
=

7

2
.

That is, on average, the result of the roll of one fair six-sided die will be around 7/2. We
can also compute

E(X2) =
1

6
(12) +

1

6
(22) +

1

6
(32) +

1

6
(42) +

1

6
(52) +

1

6
(62) =

91

6
.

Remark 4.4. Suppose X takes the value (−2)k with probability 2−k for every positive
integer k. Then |X| takes the value 2k with probability 2−k for every positive integer k. So,
E |X| =

∑
k≥1 1 =∞. So, E(X) is undefined.

Example 4.5. In a recent Powerball lottery, one ticket costs $2, and the jackpot was around
$(1/2)109 (after deducting taxes). The number of people winning the jackpot shares the
jackpot. Let X be your profit from buying one lottery ticket. Consider the following sim-
plified version of the lottery. Suppose you either are the only winner of the jackpot, or
you lose. There were around (1/3)109 tickets sold, and around (1/3)109 distinct possi-
ble ticket numbers. Assume that every ticket is chosen uniformly at random among all
possible ticket numbers, and whether or not someone wins or loses is independent of every-
one else. Let p = 3 · 10−9. Then the probability that you win and everyone else loses is
p(1 − p)1/p ≈ p/e ≈ p/3. That is, P(X = −2) ≈ 1 − p/3 and P(X = (1/2)109 − 2) ≈ p/3.
So,

EX = −2(1− p) + (1/2)109p ≈ −2 + 3/2 = −.5.
Since the expected value is negative, it was not sensible to buy a lottery ticket. Also, let N
be the number of people who get the winning number. Using the Poisson Approximation
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to the Binomial with λ = 1, we have P(N = k) ≈ 1
ek!

for any positive integer k. So,
P(N = 0) ≈ 1/e, P(N = 1) ≈ 1/e, P(N = 2) ≈ 1/(2e) ≈ 1/6, P(N = 3) ≈ 1/(6e) ≈ 1/18,
and so on. So, having two or three winners is not so unexpected.

Proposition 4.6 (Expected Value Rule). Let Ω be a sample space, let P be a probability
law on Ω. Let X be a discrete random variable on Ω. Let f : R→ R be a function. Then

E(f(X)) =
∑
x∈R

f(x)pX(x).

In particular, if n is a positive integer, we can choose f(x) = xn to get

E(Xn) =
∑
x∈R

xnpX(x).

Also, if a, b are constants, we can choose f(x) = ax+ b to get

E(aX + b) = aE(X) + b

Proof. From Proposition 3.19, pf(X)(y) =
∑

x∈R : f(x)=y pX(x). So,

E(f(X)) =
∑
y∈R

ypf(X)(y) =
∑
y∈R

∑
x∈R : f(x)=y

ypX(x)

=
∑
y∈R

∑
x∈R : f(x)=y

f(x)pX(x) =
∑
x∈R

f(x)pX(x).

In the last equality, we used Exercise 2.21.
Now, let a, b be constants. Using Proposition 4.6 and then Proposition 3.8,

E(aX + b) =
∑
x∈R

(ax+ b)pX(x) = a
∑
x∈R

xpX(x) + b
∑
x∈R

pX(x) = aE(X) + b.

�

Definition 4.7 (Variance). Let Ω be a sample space, let P be a probability law on Ω. Let
X be a discrete random variable on Ω. We define the variance of X, denoted var(X), by

var(X) = E(X − E(X))2.

We define the standard deviation of X, denoted σX , by

σX =
√

var(X).

The notation E(X − E(X))2 is a shorthand for E[(X − E(X))2].

Proposition 4.8 (Properties of Variance). Let Ω be a sample space, let P be a probability
law on Ω. Let X be a discrete random variable on Ω. Let a, b be constants. Then

var(X) = E(X2)− (E(X))2.

Moreover,

var(aX + b) = a2var(X).
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Proof. Using Proposition 4.6 and then Propositions 4.6 and 3.8,

var(X) = E(X − (E(X))2) =
∑
x∈R

(x− E(X))2pX(x)

=
∑
x∈R

x2pX(x)− 2E(X)
∑
x∈R

xpX(x) + (E(X))2
∑
x∈R

pX(x)

= E(X2)− 2E(X)E(X) + (E(X))2 = E(X2)− (E(X))2.

From Proposition 4.6, E(aX + b) = aE(X) + b. So, using Proposition 4.6,

var(aX + b) = E(aX + b− (aE(X) + b))2 = E(aX − aE(X))2 = E(a2(X − E(X))2)

= a2E(X − E(X))2 = a2var(X).

�

Example 4.9. Returning again to Example 4.3, suppose X takes the values {1, 2, 3, 4, 5, 6}
each with probability 1/6. We computed E(X) = 7/2, so

var(X) = E(X − E(X))2

=
1

6
(1− 7

2
)2 +

1

6
(2− 7

2
)2 +

1

6
(3− 7

2
)2 +

1

6
(4− 7

2
)2 +

1

6
(5− 7

2
)2 +

1

6
(6− 7

2
)2 =

35

12
.

Alternatively, we computed in Example 4.3 that E(X2) = 91/6. So, by Proposition 4.8,
var(X) = 91/6− (7/2)2 = 182/12− 147/12 = 35/12. Lastly, the standard deviation of X is

σX =
√

35/12 ≈ 1.7078. So, the value of X is typically in the interval (E(X)− σX ,E(X) +
σX) = (3.5− 1.7078, 3.5 + 1.7078).

Example 4.10. Let X be a Poisson random variable with parameter λ > 0. Then pX(k) =
e−λλk/k! when k is a nonnegative integer. We then compute

E(X) =
∞∑
k=0

kpX(k) =
∞∑
k=0

ke−λ
λk

k!
=
∞∑
k=1

ke−λ
λk

k!

= λ
∞∑
k=1

e−λ
λk−1

(k − 1)!
= λe−λ

∞∑
n=0

λn

n!
= λe−λeλ = λ.

Exercise 4.11. Let X be a discrete random variable taking a finite number of values. Let
t ∈ R. Consider the function f : R→ R defined by f(t) = E(X−t)2. Show that the function
f takes its minimum value when t = EX. Moreover, if X takes at least two different values,
each with some positive probability, then f is uniquely minimized when t = EX.

Exercise 4.12. Let 0 < p < 1 and let n be a positive integer. Compute the mean of a
binomial random variable with parameter p. Then, compute the mean of a Poisson random
variable with parameter λ > 0.

Exercise 4.13. Let X be a nonnegative random variable on a sample space Ω. Assume that
X only takes integer values. Prove that

E(X) =
∞∑
n=1

P(X ≥ n).
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Exercise 4.14. As we will see later in the course, the expectation is very closely related
to integrals. This exercise gives a hint toward this relation. Let Ω = [0, 1]. Let P be the

probability law on Ω such that P([a, b]) =
∫ b
a
dt = b− a whenever 0 ≤ a < b ≤ 1. Let n be

a positive integer. Let X : Ω → R be such that X is constant on any interval of the form
[i/n, (i+ 1)/n), whenever 0 ≤ i ≤ n− 1. Show that

E(X) =

∫ 1

0

X(t)dt

Now, consider a different probability law, where P([a, b]) =
∫ b
a

1
2
√
t
dt whenever 0 ≤ a < b ≤ 1.

Show that

E(X) =

∫ 1

0

X(t)
1

2
√
t
dt.

Exercise 4.15. Let a1, . . . , an be distinct numbers, representing the quality of n people.
Suppose n people arrive to interview for a job, one at a time, in a random order. That is,
every possible arrival order of these people is equally likely. For each i ∈ {1, . . . , n}, upon
interviewing the ith person, if ai > aj for all 1 ≤ j < i, then the ith person is hired. That is,
if the person currently being interviewed is better than the previous candidates, she will be
hired. What is the expected number of hirings that will be made? (Hint: let Xi = 1 if the
ith person to arrive is hired, and let Xi = 0 otherwise. Consider

∑n
i=1 Xi.)

4.2. Joint Mass Function, Covariance.

Definition 4.16 (Joint PMF). Let X, Y be two discrete random variables on a sample
space Ω. Let P be a probability law on Ω. Let x, y ∈ R. Define the joint probability
mass function of X and Y by

pX,Y (x, y) = P({X = x} ∩ {Y = y}) = P(X = x and Y = y) = P(X = x, Y = y).

Let A be a subset of R2. We define

P((X, Y ) ∈ A) =
∑

(x,y)∈A

pX,Y (x, y).

Proposition 4.17. Let X, Y be two discrete random variables on a sample space Ω. Let P
be a probability law on Ω. Then for any x, y ∈ R,

pX(x) =
∑
t∈R

pX,Y (x, t), pY (y) =
∑
t∈R

pX,Y (t, y).

Proof. We prove the first equality, since the second one is proven similarly. For any t ∈ R,
let At be the event that Y = t. If t1 6= t2, then At1 ∩ At2 = ∅. And ∪t∈RAt = Ω. So, from
Axiom (ii) in Definition 2.22,

pX(x) = P(X = x) = P(∪t∈R{X = x} ∩ {Y = t}) =
∑
t∈R

P(X = x, Y = t) =
∑
t∈R

pX,Y (x, t).

�

Remark 4.18. We refer to pX as the marginal PMF of X, and we refer to pY as the
marginal PMF of Y , to distinguish these PMFs from the joint PMF pX,Y .
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Proposition 4.19. Let Ω be a sample space, let P be a probability law on Ω. Let X and Y
be discrete random variables on Ω taking a finite number of values. Let c be a constant. Let
f : R2 → R. Then

Ef(X, Y ) =
∑

(x,y)∈R2

f(x, y)pX,Y (x, y).

Consequently, choosing f(x, y) = x+ y, or f(x, y) = cx where c is a constant,

E(X + Y ) = E(X) + E(Y ), E(cX) = cE(X).

So, in linear algebraic terms, E is a linear transformation.

Proof. Let z ∈ R. Then pf(X,Y )(z) = P(f(X, Y ) = z). Let x, y ∈ R. Let Ax,y be the event
{X = x} ∩ {Y = Y }. If (x1, y1) 6= (x2, y2), then Ax1,y1 ∩ Ax2,y2 = ∅. And ∪(x,y)∈R2Ax,y = Ω.
So, from Axiom (ii) of Definition 2.22,

P(f(X, Y ) = z) = P(∪(x,y)∈R2{f(X, Y ) = z} ∩ Ax,y)

=
∑

(x,y)∈R2

P({f(X, Y ) = z} ∩ {X = x} ∩ {Y = y}) =
∑

(x,y)∈R2 : f(x,y)=z

P(X = x, Y = y).

Note that R2 = ∪z∈R{(x, y) ∈ R2 : f(x, y) = z}, where the union is disjoint. So,

E(f(X, Y )) =
∑
z∈R

zpf(X,Y )(z) =
∑
z∈R

z
∑

(x,y)∈R2 : f(x,y)=z

P(X = x, Y = y)

=
∑

(x,y)∈R2

f(x, y)P(X = x, Y = y)

The first equality is proven. We now consider f(x, y) = x+ y. We have

E(X + Y ) =
∑
x∈R

x
∑
y∈R

P(X = x, Y = y) +
∑
y∈R

y
∑
x∈R

P(X = x, Y = y)

=
∑
x∈R

xP(X = x) +
∑
y∈R

yP(Y = y) = E(X) + E(Y ).

In the last line, we used Proposition 4.17 to get
∑

y∈R P({X = x} ∩ {Y = y}) = P(X = x),

and
∑

x∈R P({X = x} ∩ {Y = y}) = P(Y = y). Finally, the equality E(cX) = cE(X) was
proven in Proposition 4.6. �

Exercise 4.20. Suppose there are ten separate bins. You first randomly place a sphere
randomly in one of the bins, where each bin has an equal probability of getting the sphere.
Once again, you randomly place another sphere uniformly at random in one of the bins.
This process occurs twenty times, so that twenty spheres have been placed in bins. What is
the expected number of empty bins at the end?

Exercise 4.21. You want to complete a set of 100 baseball cards. Cards are sold in packs
of ten. Assume that each card is equally likely to be contained in any pack of cards. How
many packs of cards should you buy in order to get a complete set of cards?

Exercise 4.22. Suppose we are drawing cards out of a standard 52 card deck without
replacing them. How many cards should we expect to draw out of the deck before we find
(a) a King? (b) a Heart?
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Exercise 4.23. Let f : R → R be twice differentiable function. Assume that f is convex.
That is, f ′′(x) ≥ 0, or equivalently, the graph of f lies above any of its tangent lines. That
is, for any x, y ∈ R,

f(x) ≥ f(y) + f ′(y)(x− y).

(In Calculus class, you may have referred to these functions as “concave up.”) Let X be a
discrete random variable. By setting y = E(X), prove Jensen’s inequality:

Ef(X) ≥ f(E(X)).

In particular, choosing f(x) = x2, we have E(X2) ≥ (E(X))2.

Definition 4.24 (Covariance). Let Ω be a sample space, let P be a probability law on Ω.
Let X and Y be discrete random variables on Ω taking a finite number of values. We define
the covariance of X and Y , denoted cov(X, Y ), by

cov(X, Y ) = E((X − E(X))(Y − E(Y ))).

Remark 4.25.
cov(X,X) = E(X − E(X))2 = var(X).

The covariance of X and Y is meant to measure whether or not X and Y are related
somehow. We will discuss the meaning of covariance a bit more further below. For now, we
make the following observation.

Lemma 4.26. Let Ω be a sample space, let P be a probability law on Ω. Let X1, . . . , Xn be
discrete random variables on Ω taking a finite number of values. Then

var(
n∑
i=1

Xi) =
n∑
i=1

var(Xi) + 2
∑

1≤i<j≤n

cov(Xi, Xj).

Proof. From Proposition 4.19, E(
∑n

i=1Xi) =
∑n

i=1 E(Xi). So,

var(
n∑
i=1

Xi) = E(
n∑
i=1

Xi − E(
n∑
i=1

Xi))
2 = E(

n∑
i=1

(Xi − E(Xi)))
2

= E

(
n∑
i=1

(Xi − E(Xi))
2

)
+ 2E

( ∑
1≤i<j≤n

(Xi − E(Xi))(Xj − E(Xj))

)

=
n∑
i=1

var(Xi) + 2
∑

1≤i<j≤n

cov(Xi, Xj).

�

Exercise 4.27. Let n be a positive integer, and let 0 < p < 1. Let Ω = {0, 1}n. Any ω ∈ Ω
can then be written as ω = (ω1, . . . , ωn) with ωi ∈ {0, 1} for each i ∈ {1, . . . , n}. Let P be
the probability law described in Example 2.64. That is, for any ω ∈ Ω, we have

P(ω) =
n∏
i=1

pωi(1− p)1−ωi = p
∑n
i=1 ωi(1− p)n−

∑n
i=1 ωi .

For each i ∈ {1, . . . , n}, define Xi : Ω→ R so that Xi(ω) = ωi for any ω ∈ Ω. That is, if Ω
and P model the flipping of n distinct biased coins, then Xi = 1 when the ith coin is heads,
and Xi = 0 when the ith coin is tails.
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First, show that P(Ω) = 1. Then, compute the expected value ofXi for each i ∈ {1, . . . , n}.
Next, compute the expected value of Y =

∑n
i=1Xi. Finally, prove that Y is a binomial

random variable with parameters n and p.

Exercise 4.28 (Inclusion-Exclusion Formula). This Exercise gives an alternate proof of
the following identity, which is known as the Inclusion-Exclusion Formula: Let A1, . . . , An ⊆
Ω. Then:

P(∪ni=1Ai) =
n∑
i=1

P(Ai)−
∑

1≤i<j≤n

P(Ai ∩ Aj) +
∑

1≤i<j<k≤n

P(Ai ∩ Aj ∩ Ak)

· · ·+ (−1)n+1P(A1 ∩ · · · ∩ An).

Let Y be a random variable such that Y = 1 on ∪ni=1Ai, and such that Y = 0 otherwise.

• Show that Y = 1−
∏n

i=1(1−Xi).
• Expand out the product in the previous item, and take the expected value of both

sides of the result. Deduce the Inclusion-Exclusion formula.

4.2.1. More than Two Random Variables. Our results on the joint PMF can be easily ex-
tended to any number of random variables. For example, if X1, . . . , Xn are discrete random
variables, and if x1, . . . , xn ∈ R, the joint PMF of X1, . . . , Xn is defined as

pX1,...,Xn(x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn).

Then

pX1(x1) =
∑

x2,...,xn∈R

pX1,...,Xn(x1, . . . , xn),

pX1,X2(x1, x2) =
∑

x3,...,xn∈R

pX1,...,Xn(x1, . . . , xn), etc.

Also, if f : Rn → R is a function, we have

Ef(X1, . . . , Xn) =
∑

x1,...,xn∈R

f(x1, . . . , xn)pX1,...,Xn(x1, . . . , xn).

4.3. Conditioning. When dealing with events A,B, we consider the conditional probability
P(A|B) of A given B. We now also discuss conditioning for random variables. Given a
random variable X, we can condition X on a set A, and we can also condition X on another
random variable Y .

Definition 4.29 (Conditioning a Random Variable on a Set). Let X be a discrete
random variable on a sample space Ω, and let P be a probability law on Ω. Let A ⊆ Ω with
P(A) > 0. Then the random variable X conditioned on A, denoted X|A, is a random
variable with the following PMF:

pX|A(x) =
P({X = x} ∩ A)

P(A)
, ∀x ∈ R.

It follows from Proposition 2.38 that
∑

x∈R pX|A(x) = 1.
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Example 4.30. This Example follows Example 2.36. Let Ω = {1, 2, 3, 4, 5, 6} and let P be
the uniform probability law on Ω. Let A = {2, 4, 6}. That is, A is the event that the die roll
is even. Let X(x) = x for all x ∈ Ω. Then X is the roll of the fair six-sided die. If x ∈ A,
then P({X = x} ∩ A) = P(X = x), and if x /∈ A, then P({X = x} ∩ A) = 0. So,

pX|A(x) =

{
1/6
1/2

= 1
3

, if x ∈ {2, 4, 6}
0 , otherwise.

.

So, if we know that the die roll is even, that is, if we know that A occurs, then X|A takes
the values {2, 4, 6} each with probability 1/3. Moreover, X|A does not take any odd values,
even though X did.

Definition 4.31 (Conditioning one Random Variable on another). Let X and Y be
discrete random variables on a sample space Ω, and let P be a probability law on Ω. Let
y ∈ R with pY (y) > 0. Then the random variable X conditioned on Y = y, is a random
variable with the following PMF:

pX|Y (x|y) =
P(X = x, Y = y)

P(Y = y)
, ∀x ∈ R.

It follows from Proposition 2.38 that
∑

x∈R pX|Y (x|y) = 1.

Remark 4.32. By the definition of pX|Y , we have:

pX,Y (x, y) = pY (y)pX|Y (x|y), ∀x, y ∈ R such that pY (y) > 0.

pX,Y (x, y) = pX(x)pY |X(y|x), ∀x, y ∈ R such that pX(x) > 0.

So, using Proposition 4.17: for any x ∈ R,

pX(x) =
∑
y∈R

pX,Y (x, y) =
∑

y∈R : pY (y)>0

pX,Y (x, y) =
∑

y∈R : pY (y)>0

pY (y)pX|Y (x|y).

That is, if we average over all possibilities of y for X|Y , then we just recover X.

4.3.1. Conditional Expectation.

Definition 4.33 (Conditional Expectation). Let X and Y be discrete random variables
on a sample space Ω, and let P be a probability law on Ω. Let A ⊆ Ω with P(A) > 0. Then
the conditional expectation of X given A, denoted E(X|A) is

E(X|A) =
∑
x∈R

xpX|A(x).

If g : R→ R, we define

E(g(X)|A) =
∑
x∈R

g(x)pX|A(x).

Let y ∈ R with P(Y = y) > 0. Then the conditional expectation of X given Y = y,
denoted E(X|Y = y) is

E(X|Y = y) =
∑
x∈R

xpX|Y (x|y).
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The quantity E(X) can be computed by conditioning on another random variable Y . This
procedure is analogous to integrating a two-variable function f(x, y) first in the x variable,
and then in the y variable. This two-step integration was very useful to use in calculus, and
similarly Theorem 4.34 below is very useful for computing expectations.

Theorem 4.34 (Total Expectation Theorem). Let X and Y be discrete random variables
on a sample space Ω, and let P be a probability law on Ω. Assume X and Y only take a
finite number of values. Then

E(X) =
∑

y∈R : pY (y)>0

pY (y)E(X|Y = y).

Let A1, . . . , An be disjoint events in Ω such that ∪ni=1Ai = Ω. Assume P(Ai) > 0 for all
i ∈ {1, . . . , n}. Then

E(X) =
n∑
i=1

P(Ai)E(X|Ai).

Proof. Starting with Definition 4.2, then using Remark 4.32,

E(X) =
∑
x∈R

xpX(x) =
∑
x∈R

x
∑

y∈R : pY (y)>0

pY (y)pX|Y (x|y)

=
∑

y∈R : pY (y)>0

pY (y)
∑
x∈R

xpX|Y (x|y) =
∑

y∈R : pY (y)>0

pY (y)E(X|Y = y).

In the last line, we used Definition 4.33. To deduce the last part of the Theorem, we let Y
be a random variable such that, for every i ∈ {1, . . . , n}, we have Y = i with probability
P(Ai). That is, pY (i) = P(Ai). Then

E(X) =
∑

y∈R : pY (y)>0

pY (y)E(X|Y = y) =
n∑
i=1

pY (i)E(X|Y = i) =
n∑
i=1

P(Ai)E(X|Ai).

In the last equality, we used pX|Y (x|i) = pX|Ai(x) for all x ∈ R and for all i ∈ {1, . . . , n}, so
E(X|Y = i) = E(X|Ai) by Definition 4.33. �

Example 4.35. Let’s compute the mean and variance of a geometric random variable X.
Recall that we have 0 < p < 1, and for any positive integer k,

pX(k) = (1− p)k−1p.

Let A be the event {X = 1} and let B be the event {X > 1}. Then from Definition 4.29,
pX|A(x) = 1 when x = 1 and pX|A(x) = 0 otherwise. So,

E(X|A) = E(X|X = 1) =
∑
x∈R

xpX|A(x) = 1 · 1 = 1.
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Note that P(B) = P(Ac) = 1 − P(A) = 1 − p. Using Definition 4.29 again, pX|B(k) =
P({X = k} ∩ {X > 1})/P(B) = P(X = k)/P(B) if k > 1 is an integer. So,

E(X|B) =
∑
x∈R

xpX|B(x) =
∞∑
k=2

k(1− p)k−1p/P(B) =
∞∑
k=2

k(1− p)k−2p

=
∞∑
k=2

(k − 1 + 1)(1− p)k−2p =
∞∑
k=1

k(1− p)k−1p+
∞∑
k=2

(1− p)k−2p = E(X) + 1.

So, using Theorem 4.34,

E(X) = P(A)E(X|A) + P(B)E(X|B) = p+ (1− p)(E(X) + 1).

Solving for E(X), we get E(X)(1− (1− p)) = p+ (1− p). So,

E(X) =
1

p
.

We could have also computed E(X|B) in the following way. Recall that X is the number
of times that are needed to flip a biased coin in order to get a heads. The condition X > 1
means exactly that the first flip was tails. So, after the first flip, the expected number of
remaining flips is E(X), so the total expected number of flips given B is 1 + E(X).

Using similar reasoning, we get

E(X2|X = 1) = 1, E(X2|X > 1) = E((1 +X)2) = 1 + 2E(X) + E(X2).

So, using Theorem 4.34,

E(X2) = p+ (1− p)(1 + 2E(X) + E(X2)).

Solving for E(X2), we get E(X2)(1− (1− p)) = p+ (1− p)(1 + 2/p), so that

E(X2) =
1 + 2/p− 2

p
=

2

p2
− 1

p
.

Therefore, by Proposition 4.8,

var(X) = E(X2)− (E(X))2 =
2

p2
− 1

p
− 1

p2
=

1− p
p2

.

4.4. Independence of Random Variables. Recall that sets A,B are independent when
P(A ∩B) = P(A)P(B). The independence of random variables is a bit more involved than
the independence of sets, since we will require many equalities to hold.

Definition 4.36 (Independence of a Random Variable and a Set). Let X be a discrete
random variable on a sample space Ω, and let P be a probability law on Ω. Let A ⊆ Ω. We
say that X is independent of A if

P({X = x} ∩ A) = P(X = x)P(A), ∀x ∈ R.

That is, {X = x} is independent of A, for all x ∈ R. That is, knowing that A has occurred
does not changed our knowledge of any value of X.

If P(A) > 0, then X is independent of A when

pX|A(x) = pX(x), ∀x ∈ R.
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Example 4.37. Let Ω = {0, 1}2 and let P be the uniform probability measure on Ω. Then P
models the toss of two distinct fair coins. For any ω = (ω1, ω2) ∈ {0, 1}2, define X(ω) = ω1.
That is, X = 1 when the first coin toss is heads (1), and X = 0 when the first coin toss is
tails (0). Let A be the event that the second coin toss is heads. That is, A = {(0, 1), (1, 1)}.
We will show that X and A are independent.

P({X = 1} ∩ A) = P({(1, 0), (1, 1)} ∩ A) = P(1, 1) = 1/4 = (1/2)(1/2) = P(X = 1)P(A).

P({X = 0} ∩ A) = P({(0, 0), (0, 1)} ∩ A) = P(0, 1) = 1/4 = (1/2)(1/2) = P(X = 0)P(A).

Therefore, X and A are independent.

Definition 4.38 (Independence of a Random Variable from another). Let X and Y
be discrete random variables on a sample space Ω, and let P be a probability law on Ω. We
say that X is independent of Y if

P(X = x, Y = y) = P(X = x)P(Y = y), ∀x, y ∈ R.
That is, {X = x} is independent of {Y = y}, for all x, y ∈ R. That is, knowing the values
of Y does not changed our knowledge of any value of X. Written another way,

pX,Y (x, y) = pX(x)pY (y), ∀x, y ∈ R.
Equivalently, X and Y are independent if and only if

pX|Y (x|y) = pX(x), ∀x, y ∈ R with pY (y) > 0.

When two random variables are independent, they satisfy many nice properties. For
example,

Theorem 4.39. Let X and Y be discrete random variables on a sample space Ω, and let P
be a probability law on Ω. Assume that X and Y are independent. Assume that X and Y
take a finite number of values. Then

E(XY ) = E(X)E(Y )

Proof. Using Proposition 4.19 and the equality pX,Y (x, y) = pX(x)pY (y) for all x, y ∈ R,

E(XY ) =
∑
x,y∈R

xypX,Y (x, y) =
∑
x∈R

xpX(x)
∑
y∈R

ypY (y) = E(X)E(Y ).

�

Corollary 4.40. Let X1, . . . , Xn be discrete random variables on a sample space Ω, and let
P be a probability law on Ω. Assume that X1, . . . , Xn are pairwise independent. That is, Xi

and Xj are independent whenever i, j ∈ {1, . . . , n} with i 6= j. Assume that X1, . . . , Xn take
a finite number of values. Then

var(
n∑
i=1

Xi) =
n∑
i=1

var(Xi).

Proof. Let i, j ∈ {1, . . . , n} with i 6= j. Then by Theorem 4.39,

cov(Xi, Xj) = E((Xi−E(Xi))(Xj−E(Xj))) = E(XiXj)−2E(Xi)E(Xj)+E(Xi)E(Xj) = 0.

So, Lemma 4.26 concludes the proof. �
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Exercise 4.41. Let X, Y, Z be discrete random variables. Let f(y) = E(X|Y = y) for
any y ∈ R. Then f : R → R is a function. In more advanced probability classes, we
consider the random variable f(Y ), which is denoted by E(X|Y ). Show that E(X +Z|Y ) =
E(X|Y ) + E(Z|Y ). Then, show that E[E(X|Y )] = E(X). That is, understanding E(X|Y )
can help us to compute E(X).

Exercise 4.42. Give an example of two random variables X, Y that are independent. Prove
that these random variables are independent.

Give an example of two random variables X, Y that are not independent. Prove that these
random variables are not independent.

Finally, find two random variables X, Y such that E(XY ) 6= E(X)E(Y ).

Exercise 4.43. Is it possible to have a random variable X such that X is independent of X?
Either find such a random variable X, or prove that it is impossible to find such a random
variable X.

Exercise 4.44. Let 0 < p < 1. Let n be a positive integer. Let X1, . . . , Xn be pairwise
independent Bernoulli random variables. Compute the expected value of

Sn =
X1 + · · ·+Xn

n
.

Then, compute the variance of Sn−E(Sn). Describe in words what this variance computation
tells you as n→∞. Particularly, what does Sn “look like” as n→∞? (Think about what we
found in Example 4.1. Also, consider the following statistical interpretation. Suppose each
Xi is the result of some poll of person i, where i ∈ {1, . . . , n}. Suppose that each person’s
response is a Bernoulli random variable with parameter p, and each person’s response is
independent of each other person’s response. Then Sn is the average of the results of the
poll. If Sn − E(Sn) has small variance, then our poll is very accurate. So, how accurate is
the poll as n → ∞? Note that the accuracy of the poll does not depend on the size of the
population you are sampling from!)

Exercise 4.45. Let X and Y be discrete random variables on a sample space Ω, and let P
be a probability law on Ω. Assume that X and Y are independent. Assume that X and Y
take a finite number of values. Let f, g : R→ R be functions. Then

E(f(X)g(Y )) = E(f(X))E(g(Y )).

4.4.1. Independence of Multiple Random Variables.

Definition 4.46 (Independence of Random Variables). Let X1, . . . , Xn be discrete
random variables on a sample space Ω, and let P be a probability law on Ω. We say that
X1, . . . , Xn are independent if

P(X1 = x1, . . . , Xn = xn) =
n∏
i=1

P(Xi = xi), ∀x1, . . . , xn ∈ R.

Remark 4.47. Suppose X1, . . . , Xn are discrete, independent random variables taking a
finite number of values. Let f1, . . . , fn be functions from R to R. Similar to Exercise 4.45
we have

E(
n∏
i=1

fi(Xi)) =
n∏
i=1

E(fi(Xi)).
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In particular,

E(
n∏
i=1

Xi) =
n∏
i=1

E(Xi).

Proposition 4.48. Let X1, . . . , Xn be discrete random variables on a sample space Ω. Let
P be a probability law on Ω. Assume that X1, . . . , Xn are independent. Then, for any subset
S of {1, . . . , n}, the random variables {Xi}i∈S are independent. In particular, X1, . . . , Xn

are pairwise independent.

Proof. By reordering indices and iterating, it suffices to show that X1, . . . , Xn−1 are inde-
pendent. That is, it suffices to show that

P(X1 = x1, . . . , Xn−1 = xn−1) =
n−1∏
i=1

P(Xi = xi), ∀x1, . . . , xn−1 ∈ R.

For any xn ∈ R, let Bxn = {Xn = xn}. Then Bxn ∩ Byn = ∅ if xn 6= yn, xn, yn ∈ R, and
∪xn∈RBxn = Ω. So, using Axiom (ii) for probability laws in Definition 2.22,

P(X1 = x1, . . . , Xn−1 = xn−1) = P({X1 = x1} ∩ · · · ∩ {Xn−1 = xn−1} ∩ (∪xn∈RBxn))

=
∑
xn∈R

P(X1 = x1, . . . , Xn = xn). (∗)

Similarly,
n−1∏
i=1

P(Xi = xi) = P(∪xn∈RBx)
n−1∏
i=1

P(Xi = xi)

=
∑
xn∈R

P(Xn = xn)
n−1∏
i=1

P(Xi = xi) =
∑
xn∈R

n∏
i=1

P(Xi = xi). (∗∗)

So, the quantities (∗) and (∗∗) are equal, by assumption. �

Exercise 4.49. Find three random variables X1, X2, X3 such that: X1 and X2 are indepen-
dent; X1 and X3 are independent; X2 and X3 are independent; but such that X1, X2, X3 are
not independent.

Exercise 4.50. Let 0 < p < 1. Let X1, . . . , Xn be independent Bernoulli random variables
with parameter p. Let Sn =

∑n
i=1Xi. A moment generating function can help use to

compute moments in various ways. Let t ∈ R and compute the moment generating function
of Xi for each i ∈ {1, . . . , n}. That is, show that

EetXi = (1− p) + pet.

Then, using the product formula for independent random variables, show that

EetSn = [(1− p) + pet]n.

By differentiating the last equality at t = 0, and using the power series expansion of the
exponential function, compute ESn and ES2

n.

Exercise 4.51. X1, . . . , Xn be independent discrete random variables. Show that

P(X1 ≤ x1, . . . , Xn ≤ xn) =
n∏
i=1

P(Xi ≤ xi), ∀x1, . . . , xn ∈ R.
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5. Continuous Random Variables

Up until this point, we have mostly focused on discrete random variables. These random
variables take either a finite or countable number of values. However, we are often confronted
with a continuous range of possible values. For example, if I throw a dart at a board, then
there is a continuous range of places that the dart could land. Or, the price of a stock is (for
many purposes) any possible positive real number. We now develop the theory of random
variables which take a continuous range of values.

5.1. Continuous Random Variables.

Definition 5.1 (Probability Density Function, PDF). A probability density func-
tion or PDF, is a function f : R→ [0,∞) such that

∫∞
−∞ f(x)dx = 1, and such that, for any

−∞ ≤ a ≤ b ≤ ∞, the integral
∫ b
a
f(x)dx exists.

Definition 5.2 (Continuous Random Variable). A random variable X on a sample
space Ω is called continuous if there exists a probability density function fX such that, for
any −∞ ≤ a ≤ b ≤ ∞, we have

P(a ≤ X ≤ b) =

∫ b

a

fX(x)dx.

We call fX the probability density function of X.

Remark 5.3. Let X be a continuous random variable with density function fX . Then for
any a ∈ R, P(X = a) =

∫ a
a
fX(x)dx = 0. Consequently, for any −∞ < a ≤ b <∞, we have

P(a ≤ X ≤ b) = P(a ≤ X < b) = P(a < X ≤ b) = P(a < X < b).

Remark 5.4. Let I1, I2, . . . be disjoint intervals in the real line R. Let B = ∪∞i=1Ii. Then
from Axiom (ii) of Definition 2.22,

P(X ∈ B) = P(X ∈ ∪∞i=1Ii) =
∞∑
i=1

P(X ∈ Ii) =
∞∑
i=1

∫
Ii

fX(x)dx =

∫
B

fX(x)dx.

The following Theorem is typically proven in advanced analysis classes.

Theorem 5.5 (Fundamental Theorem of Calculus). Let fX be a probability density

function. Then the function g(t) =
∫ t
−∞ fX(x)dx is continuous at any t ∈ R. Also, if fX is

continuous at a point x, then g is differentiable at t = x, and g′(x) = fX(x).

Example 5.6. Let Ω = [0, 1], and define fX : R→ R so that fX(x) = 1 when x ∈ [0, 1], and

fX(x) = 0 otherwise. Then
∫∞
−∞ fX(x)dx =

∫ 1

0
dx = 1, and fX(x) ≥ 0 for all x ∈ R, so fX is

a probability density function. So, if fX is the density function of X, and if a ≤ b, we have

P(a ≤ X ≤ b) =

∫ max(0,min(b,1))

max(0,min(a,1))

dx = max(0,min(b, 1))−max(0,min(a, 1)).

In particular, if 0 ≤ a < b ≤ 1, we have P(a ≤ X ≤ b) = b − a. When X has this density
function fX , we say X is uniformly distributed in [0, 1].

Note that fX is not a continuous function, but we still say that X is continuous since the
function g(t) =

∫ t
−∞ fX(x)dx is continuous, by the Fundamental Theorem of Calculus. Also,

39



note that fX only takes two values, but X can take any value in [0, 1]. Finally, note that g
is not differentiable when t = 0 or t = 1, but g is differentiable for any other t ∈ R.

Example 5.7. Let Ω = [c, d], with −∞ < c < d < ∞ and define fX : R → R so that

fX(x) = 1
d−c when x ∈ [c, d], and fX(x) = 0 otherwise. Then

∫∞
−∞ fX(x)dx =

∫ d
c

1
d−cdx = 1,

and fX(x) ≥ 0 for all x ∈ R, so fX is a probability density function. So, if fX is the density
function of X, and if −∞ < a ≤ b <∞, we have

P(a ≤ X ≤ b) =
1

d− c

∫ max(c,min(b,d))

max(c,min(a,d))

dx =
1

d− c
(max(c,min(b, d))−max(c,min(a, d))) .

In particular, if c ≤ a < b ≤ d, we have P(a ≤ X ≤ b) = b−a
d−c . When X has the density

function fX , we say that X is uniformly distributed in [c, d].

Example 5.8. Let Ω = R, and define fX : R→ R so that fX(x) = 1√
2π
e−x

2/2 for all x ∈ R.

Then
∫∞
−∞ fX(x)dx = 1 by Exercise 5.10 below and fX(x) ≥ 0 for all x ∈ R, so fX is a

probability density function. So, if fX is the density function of X, and if −∞ ≤ a ≤ b ≤ ∞,

P(a ≤ X ≤ b) =

∫ b

a

1√
2π
e−x

2/2dx.

We call X the standard Gaussian random variable or the standard normal random
variable. The distribution fX resembles a “bell curve.”

The Gaussian comes up in many applications, and it has a certain “universality” property
which is studied in more advanced probability classes. For example, if we make a histogram
of test scores for a class with a large number of people, then the scores will look something like
the distribution fX(x) = 1√

2π
e−x

2/2. And we can replace “test scores” with many other things,

and the histogram will remain essentially the same. This is what is meant by “universality.”

In general, we can intuitively think of a distribution function fX as a histogram for the
(random) values that X takes.

Example 5.9. Let λ > 0. Define fX(x) = λe−λx for x ≥ 0, and fX(x) = 0 otherwise. Let’s
check that fX satisfies Definition 5.1.∫ ∞

−∞
fX(x)dx = λ

∫ ∞
0

e−λxdx = λ lim
N→∞

[−λ−1(e−λN − 1)] = 1.

A random variable X with this density fX is called an exponential random variable with
parameter λ. Exponential random variables can be used to model the expiration time of
lightbulbs, or other electronic equipment.

Exercise 5.10. Verify that
∫∞
−∞

1√
2π
e−x

2/2dx = 1. (Hint: let T =
∫∞
−∞

1√
2π
e−x

2/2dx. It

suffices to show that T 2 = 1, since T > 0. But T 2 = 1 follows from Exercise 2.31, after
appropriate manipulation.)

5.1.1. Expected Value. How should we define the expected value of a continuous random
variable? Let’s return to Example 5.6. Let Ω = [0, 1], and define fX : R → R so that
fX(x) = 1 when x ∈ [0, 1], and fX(x) = 0 otherwise. Then X is uniformly distributed in
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[0, 1]. Let n be a positive integer. We will try to approximate the expected value of X.
Consider the intervals [0, 1/n), [1/n, 2/n), . . ., [(n− 1)/n, 1). Then, for each i ∈ {1, . . . , n},

P(X ∈ [(i− 1)/n, i/n)) =

∫ i/n

(i−1)/n

dx = 1/n.

So, to estimate the expected value of X, let’s just make the approximation that X takes the
value i/n with probability 1/n, for each i ∈ {1, . . . , n}. This is not quite true, but it is also
not so far from the truth. Then we estimate the expected value of X by summing up the
(approximate) values of X, multiplied by their probabilities of occurring:

n∑
i=1

i

n
·P(X ∈ [(i− 1)/n, i/n)) =

n∑
i=1

i

n

1

n
.

We could compute this sum exactly, but it is perhaps better to see that this sum is a Riemann
sum for the function g(x) = x on the interval [0, 1]. That is,

lim
n→∞

n∑
i=1

i

n
·P(X ∈ [(i− 1)/n, i/n)) =

∫ 1

0

xdx =

∫ ∞
−∞

xfX(x)dx.

The last expression is exactly our definition of expected value for continuous random
variables.

Definition 5.11 (Expected Value). Let X be a continuous random variable with density
function fX . Assume that

∫∞
−∞ |x| fX(x)dx < ∞. We then define the expected value of

X, denoted E(X), by

E(X) =

∫ ∞
−∞

xfX(x)dx.

Let g : R→ R be a function. We define

E(g(X)) =

∫ ∞
−∞

g(x)fX(x)dx.

In particular, if n is a positive integer, we have

E(Xn) =

∫ ∞
−∞

xnfX(x)dx.

Comparing Definition 4.2 to Definition 5.11, we see that we have essentially replaced the
sums with integrals. Also, we can use the same definition of variance as before.

Definition 5.12 (Variance). Let X be a continuous random variable with density function
fX . We define the variance of X, denoted var(X), by

var(X) = E(X − E(X))2.

Many facts for discrete random variables also apply to continuous random variables. For
example, the following restatements of Propositions 4.6 and 4.8 hold, with the same proof
as before, where we replace the sums by integrals.

Proposition 5.13 (Properties of Expected Value). Let X be a continuous random
variable. Let a, b be constants. Then

E(aX + b) = aE(X) + b.
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Proof. Using Definition 5.11 and Definition 5.1

E(aX + b) =

∫ ∞
−∞

(ax+ b)fX(x)dx = a

∫ ∞
−∞

xfX(x) + b

∫ ∞
−∞

fX(x)dx = aE(X) + b · 1.

�

Proposition 5.14 (Properties of Variance). Let X be a continuous random variable. Let
a, b be constants. Then

var(X) = E(X2)− (E(X))2.

Moreover,

var(aX + b) = a2var(X).

Proof. Using Definition 5.11 and Definition 5.1,

var(X) = E(X − E(X))2 =

∫ ∞
−∞

(x− E(X))2fX(x)dx

=

∫ ∞
−∞

x2fX(x)dx− 2E(X)

∫ ∞
−∞

xfX(x)dx+ (E(X))2

∫ ∞
−∞

fX(x)dx

= E(X2)− 2E(X)E(X) + (E(X))2 = E(X2)− (E(X))2.

From Proposition 5.13, E(aX + b) = aE(X) + b. So, using Definition 5.11,

var(aX + b) = E(aX + b− (aE(X) + b))2 = E(aX − aE(X))2 = E(a2(X − E(X))2)

= a2E(X − E(X))2 = a2var(X).

�

Example 5.15. We revisit Example 5.6. Let Ω = [0, 1], and define fX : R → R so that
fX(x) = 1 when x ∈ [0, 1], and fX(x) = 0 otherwise. Then X is uniformly distributed in
[0, 1]. We compute

E(X) =

∫ 1

0

xdx =
1

2
, E(X2) =

∫ 1

0

x2dx =
1

3
.

var(X) = E(X2)− (E(X))2 =
1

3
− 1

4
=

1

12
.

In particular, if X is uniformly distributed in [0, 1], then the average value of X is 1/2.

Example 5.16. We revisit Example 5.8. Let Ω = R, and define fX : R → R so that
fX(x) = 1√

2π
e−x

2/2 for all x ∈ R. Then X is a standard Gaussian random variable. We
compute

E(X) =

∫ ∞
−∞

xe−x
2/2 dx√

2π
=

∫ ∞
0

xe−x
2/2 dx√

2π
−
∫ ∞

0

xe−x
2/2 dx√

2π
= 0.

Exercise 5.17. Let X be a continuous random variable with distribution function fX(x) =
1√
2π
e−x

2/2, ∀ x ∈ R. Show that var(X) = 1.
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Example 5.18. We reconsider Example 5.9. Let λ > 0. Define fX(x) = λe−λx for x ≥ 0,
and fX(x) = 0 otherwise. Then X is an exponential random variable with parameter
λ. Using integration by parts, we compute

E(X) = λ

∫ ∞
0

xe−λxdx = −
∫ ∞

0

x
d

dx
e−λxdx =

∫ ∞
0

e−λxdx =
1

λ
.

E(X2) = λ

∫ ∞
0

x2e−λxdx = −
∫ ∞

0

x2 d

dx
e−λxdx =

∫ ∞
0

2x
d

dx
e−λxdx =

2

λ
E(X) =

2

λ2
.

var(X) = E(X2)− (E(X))2 =
2

λ2
− 1

λ2
=

1

λ2
.

Exercise 5.19. Let X be a random variable such that fX(x) = x when 0 ≤ x ≤
√

2 and
fX(x) = 0 otherwise. Compute EX2 and EX3.

5.2. Cumulative Distribution Function (CDF). Our treatments of discrete and con-
tinuous random variables have been similar but different. We had to repeat ourselves several
times, and some concepts seem similar but not identical. Thankfully, a unified treatment of
both discrete and continuous random variables can be done. This unified treatment comes
from examining the probability that a random variable X satisfies P(X ≤ x), for any x ∈ R.

Definition 5.20 (Cumulative Distribution Function). Let X be a random variable.
The cumulative distribution function of X, denoted FX , is a function FX : R → [0, 1]
defined by

FX(x) = P(X ≤ x), ∀x ∈ R.
Remark 5.21. If X is a discrete random variable, then

FX(x) = P(X ≤ x) =
∑

y∈R : y≤x

pX(y).

If X is a continuous random variable with density function fX , then

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(t)dt.

Proposition 5.22 (Properties of the Distribution Function). Let X be a random
variable. The cumulative distribution function FX satisfies the following properties:

• If x ≤ y, then FX(x) ≤ FX(y).
• limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.
• If X is discrete, then FX is piecewise constant.
• If X is continuous, then FX is continuous.

Remark 5.23. If X is a continuous random variable with probability density function fX ,
and if fX is continuous at a point x ∈ R, then Theorem 5.5 implies that d

dx
FX(x) = fX(x).

Example 5.24. Let X be a uniformly distributed random variable in [0, 1]. In Example 5.6,
we showed that X has the distribution function fX where fX(x) = 1 when x ∈ [0, 1], and
fX(x) = 0 otherwise. So,

FX(x) =

∫ x

−∞
fX(t)dt =

∫ max(0,min(x,1))

0

dt =


x, x ∈ [0, 1]

0, x < 0

1, x > 1.
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Note also that

d

dx
FX(x) =


1, x ∈ (0, 1)

0, x < 0 or x > 1

undefined, x = 0 or x = 1

So, the derivative of FX may not exist at some points, but d
dx
FX(x) = fX(x) for any x ∈

(−∞, 0) ∪ (0, 1) ∪ (1,∞).

Example 5.25 (Maximum of Independent Variables). Let X1, X2 be two independent
discrete random variable with identical CDFs. That is, P(X1 ≤ x) = P(X2 ≤ x) for all
x ∈ R. Define the random variable Y by

Y = max(X1, X2).

Using Exercise 4.51, for any x ∈ R, we have

P(Y ≤ x) = P(X1 ≤ x,X2 ≤ x) = P(X1 ≤ x)P(X2 ≤ x) = [P(X1 ≤ x)]2.

That is, the CDF of Y is the square of the CDF of X1.
More generally, if X1, X2, . . . , Xn are independent, discrete random variable with identical

CDFs, and if

Y = max(X1, . . . , Xn),

then for any x ∈ R,

P(Y ≤ x) = [P(X1 ≤ x)]n.

We can think of Y as the maximum score on a test with n test takers, or the longest throw
of a shot put, etc.

Example 5.26. Let X1, . . . , Xn be independent Bernoulli random variables with parameter
p = 1/2, so that P(Xi = 0) = P(Xi = 1) = 1/2 for all 1 ≤ i ≤ n. Also,

P(X1 ≤ x) =


0 , if x < 0

1/2 , if 0 ≤ x < 1

1 , if x ≥ 1

.

Let Y = max(X1, . . . , Xn). Then

P(Y ≤ x) = [P(X1 ≤ x)]n =


0 , if x < 0

(1/2)n , if 0 ≤ x < 1

1 , if x ≥ 1

.

That is, pY (0) = (1/2)n and pY (1) = 1− (1/2)n. That is, Y is a Bernoulli random variable
with parameter 1− (1/2)n.

Exercise 5.27. Let X be a random variable such that X = 1 with probability 1. Show that
X is not a continuous random variable. That is, there does not exist a probability density
function f such that P(X ≤ a) =

∫ a
−∞ f(x)dx for all x ∈ R. (Hint: if X were continuous,

then the function g(t) =
∫ a
−∞ f(x)dx would be continuous, by the Fundamental Theorem of

Calculus.)
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5.3. Normal Random Variables.

Definition 5.28 (Normal Random Variable). Let µ ∈ R, σ > 0. A continuous random
variable X is said to be normal or Gaussian with mean µ and variance σ2 if X has the
following PDF:

fX(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , ∀x ∈ R.

In particular, a standard normal or standard Gaussian random variable is defined to
be a normal with µ = 0 and σ = 1.

Exercise 5.29. Verify that a Gaussian random variable X with mean µ and variance σ2

actually has mean µ and variance σ2.
Let a, b ∈ R with a 6= 0. Show that aX + b is a normal random variable with mean aµ+ b

and variance a2σ2.
In particular, conclude that (X − µ)/σ is a standard normal.

The Gaussian is probably one of the single most useful random variables within math-
ematics, and within applications of mathematics. Here is a sample result that shows the
usefulness of the Gaussian.

Theorem 5.30 (De Moivre-Laplace Theorem). Let X1, . . . , Xn be independent Bernoulli
random variables with parameter 1/2. Recall that X1 has mean 1/2 and variance 1/4. Let
a ∈ R. Then

lim
n→∞

P

(
X1 + · · ·+Xn − (1/2)n

√
n
√

1/4
≤ a

)
=

∫ a

−∞
e−t

2/2 dt√
2π
.

That is, when n is large, the CDF of X1+···+Xn−(1/2)n
√
n
√

1/4
is roughly the same as that of a

standard normal. In particular, if you flip n fair coins, then the number of heads you get
should typically be in the interval (n/2−

√
n/2, n/2 +

√
n/2), when n is large.

Remark 5.31. The random variable X1+···+Xn−(1/2)n
√
n
√

1/4
has mean zero and variance 1, just like

the standard Gaussian. So, the normalizations of X1 + · · ·+Xn we have chosen are sensible.
Also, to explain the interval (n/2−

√
n/2, n/2 +

√
n/2), note that

lim
n→∞

P

(
n

2
−
√
n

2
≤ X1 + · · ·+Xn ≤

n

2
+

√
n

2

)
= lim

n→∞
P

(
−
√
n

2
≤ X1 + · · ·+Xn −

n

2
≤
√
n

2

)
= lim

n→∞
P

(
−1 ≤

X1 + · · ·+Xn − n
2√

n/2
≤ 1

)
=

∫ 1

−1

e−t
2/2 dt√

2π
≈ .6827.

In fact, there is nothing special about the parameter 1/2 in the above theorem.

Theorem 5.32 (De Moivre-Laplace Theorem, Second Version). Let X1, . . . , Xn be
independent Bernoulli random variables with parameter p. Recall that X1 has mean p and
variance p(1− p). Let a ∈ R. Then

lim
n→∞

P

(
X1 + · · ·+Xn − pn√

n
√
p(1− p)

≤ a

)
=

∫ a

−∞
e−t

2/2 dt√
2π
.
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In fact, there is nothing special about Bernoulli random variables in the above theorem.
(See the Central Limit Theorem in Theorem 7.22 below.)

Exercise 5.33. Using the De Moivre-Laplace Theorem, estimate the probability that 106

coin flips of fair coins will result in more than 501, 000 heads. (Some of the following integrals

may be relevant:
∫ 0

−∞ e
−t2/2dt/

√
2π = 1/2,

∫ 1

−∞ e
−t2/2dt/

√
2π ≈ .8413,

∫ 2

−∞ e
−t2/2dt/

√
2π ≈

.9772,
∫ 3

−∞ e
−t2/2dt/

√
2π ≈ .9987.)

Casinos do these kinds of calculations to make sure they make money and that they do
not go bankrupt. Financial institutions and insurance companies do similar calculations for
similar reasons.

5.4. Joint PDFs.

Definition 5.34 (Joint Probability Density Function, Two Variables). A joint
probability density function (PDF) for two random variables is a function f : R2 →
[0,∞) such that

∫∫
R2 f(x, y)dxdy = 1, and such that, for any −∞ ≤ a < b ≤ ∞ and

−∞ ≤ c < d ≤ ∞, the integral
∫ y=d

y=c

∫ x=b

x=a
fX,Y (x, y)dxdy exists.

Definition 5.35. Let X, Y be two continuous random variables on a sample space Ω. We
say that X and Y are jointly continuous with joint PDF fX,Y : R2 → [0,∞) if, for any
subset A ⊆ R2, we have

P((X, Y ) ∈ A) =

∫∫
A

fX,Y (x, y)dxdy.

In particular, choosing A = [a, b]× [c, d] with −∞ ≤ a < b ≤ ∞ and −∞ ≤ c < d ≤ ∞, we
have

P(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ y=d

y=c

∫ x=b

x=a

fX,Y (x, y)dxdy.

We define the marginal PDF fX of X by

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy, ∀x ∈ R.

We define the marginal PDF fY of Y by

fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx, ∀ y ∈ R.

Note that

P(c ≤ Y ≤ d) = P(−∞ ≤ X ≤ ∞, c ≤ Y ≤ d) =

∫ y=d

y=c

∫ x=∞

x=−∞
fX,Y (x, y)dxdy.

Comparing this formula with Definition 5.2, we see that the marginal PDF of Y is exactly
the PDF of Y . Similarly, the marginal PDF of X is the PDF of X.

Example 5.36. In Exercise 2.31, we considered Ω = R2, and we defined the probability law

P(A) =
1

2π

∫∫
A

e−(x2+y2)/2dxdy, ∀A ⊆ Ω.
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Suppose X and Y have a joint PDF so that

P((X, Y ) ∈ A) =
1

2π

∫∫
A

e−(x2+y2)/2dxdy.

That is, we can think of X as the x-coordinate of a randomly thrown dart, and we can think
of Y as the y-coordinate of a randomly thrown dart on the infinite dartboard R2.

In this case, the marginals are both standard Gaussians:

fX(x) =
1√
2π
e−x

2/2

∫ ∞
−∞

e−y
2/2 dy√

2π
=

1√
2π
e−x

2/2, ∀x ∈ R.

fY (y) =
1√
2π
e−y

2/2

∫ ∞
−∞

e−x
2/2 dx√

2π
=

1√
2π
e−y

2/2, ∀y ∈ R.

That is, if we only keep track of the x-coordinate of the random dart, then this x-coordinate
is a standard Gaussian itself. And if we only keep track of the y-coordinate of the random
dart, then this y-coordinate is also a standard Gaussian.

Example 5.37 (Buffon’s Needle). Suppose a needle of length ` > 0 is kept parallel to
the ground. The needle is dropped onto the ground with a random position and orientation.
The ground has a grid of equally spaced horizontal lines, where the distance between two
adjacent lines is d > 0. Suppose ` < d. What is the probability that the needle touches one
of the lines? (Since ` < d, the needle can touch at most one line.)

Let x be the distance of the midpoint of the needle from the closest line. Let θ be the acute
angle formed by the needle and any horizontal line. The tip of the needle exactly touches
the line when sin θ = x/(`/2) = 2x/`. So, any part of the needle touches some line if and
only if x ≤ (`/2) sin θ. Since the needle has a uniformly random position and orientation,
we model X,Θ as random variables with joint distribution uniform on [0, d/2]× [0, π/2]. So,

fX,Θ(x, θ) =

{
4
πd
, x ∈ [0, d/2] and θ ∈ [0, π/2]

0, otherwise.

(Note that
∫∫

R2 fX,Θ(x, θ)dxdθ = 1.) And the probability that the needle touches one of the
lines is ∫∫

0≤x≤(`/2) sin θ

fX,Θ(x, θ)dxdθ =

∫ θ=π/2

θ=0

∫ x=(`/2) sin θ

x=0

4

πd
dxdθ

=
2`

πd

∫ θ=π/2

θ=0

sin θdθ =
2`

πd
[− cos θ]

θ=π/2
θ=0 =

2`

πd
.

Note that x ≤ `/2 < d/2 always, so the set 0 ≤ x ≤ (`/2) sin θ is still contained in the set
x ∈ [0, d/2].

In particular, when ` = d, the probability is 2/π.

Definition 5.38. Let X, Y be random variables with joint PDF fX,Y . Let g : R2 → R. Then

Eg(X, Y ) =

∫∫
R2

g(x, y)fX,Y (x, y)dxdy.

In particular,

E(XY ) =

∫∫
R2

xyfX,Y (x, y)dxdy.
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Exercise 5.39. Let X, Y be random variables with joint PDF fX,Y . Let a, b ∈ R. Using
Definition 5.38, show that E(aX + bY ) = aEX + bEY .

5.5. Conditioning.

Definition 5.40 (Conditioning a Continuous Random Variable on a Set). Let X
be a continuous random variable on a sample space Ω. Let A ⊆ Ω with P(A) > 0. The
conditional PDF fX|A of X given A is defined to be the function fX|A satisfying

P(X ∈ B |A) =

∫
B

fX|A(x)dx, ∀B ⊆ R.

Example 5.41. Suppose A′ ⊆ R and we condition on X satisfying X ∈ A′. That is, A is
the event A = {X ∈ A′}. Then, using Definition 2.35,

P(X ∈ B |A) = P(X ∈ B |X ∈ A′) =
P(X ∈ B,X ∈ A′)

P(X ∈ A′)
=

∫
B∩A′ fX(x)dx

P(X ∈ A′)
.

So, using Definition 5.40, in this case we have

fX|A(x) =

{
fX(x)

P(X∈A′) , x ∈ A′

0, otherwise.

Example 5.42. Suppose you go to the bus stop, and the time T between successive arrivals
of the bus is an exponential random variable with parameter λ > 0. Let t > 0. Suppose you
go to the bus stop and someone says the last bus came t minutes ago. Let A be the event
that T > t. That is, we will take it as given that T > t, i.e. that up to time t, the bus has
not yet arrived. Let X be the time you need to wait until the next bus arrives. Let x > 0.
Using Definition 2.35 and Example 5.9,

P(X > x|A) = P(T > t+ x|T > t) =
P(T > t+ x, T > t)

P(T > t)
=

P(T > t+ x)

P(T > t)

=
λ
∫∞
t+x

e−λsds

λ
∫∞
t
e−λsds

=
e−λ(t+x)

e−λt
= e−λx = λ

∫ ∞
x

e−λsds.

From Definition 5.40, P(X > x|A) =
∫∞
x
fX|A(x)dx. That is, fX|A(x) = λe−λx. That is,

X|A is also an exponential random variable with parameter λ. That is, even though we
know the bus has not arrived for t minutes, this does not at all affect our prediction for the
arrival of the next bus.

This property is called the memoryless property of the exponential random variable.

Definition 5.43. Let X be a continuous random variable on a sample space Ω. Let A ⊆ Ω
with P(A) > 0. Let fX|A be the conditional PDF of X given A. We define the expectation
of X given A by

E(X|A) =

∫ ∞
−∞

xfX|A(x)dx.

Exercise 5.44. Suppose you go to the bus stop, and the time T between successive arrivals
of the bus is anything between 0 and 30 minutes, with all arrival times being equally likely.

Suppose you get to the bus stop, and the bus just leaves as you arrive. How long should
you expect to wait for the next bus? What is the probability that you will have to wait at
least 15 minutes for the next bus to arrive?
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On a different day, suppose you go to the bus stop and someone says the last bus came 10
minutes ago. How long should you expect to wait for the next bus? What is the probability
that you will have to wait at least 10 minutes for the next bus to arrive?

We will now investigate versions of the Total Expectation Theorem 4.34 for continuous
random variables.

Theorem 5.45. Let X be a continuous random variable on a sample space Ω. Let A1, . . . , An
be disjoint events in Ω with P(Ai) > 0 for each i ∈ {1, . . . , n} and ∪ni=1Ai = Ω. Assume that
fX , fX|A1 , . . . , fX|An are all continuous functions. Then

EX =
n∑
i=1

P(Ai)E(X|Ai).

Proof. Let x ∈ R. From Theorem 2.45,

P(X ≤ x) =
n∑
i=1

P(Ai)P(X ≤ x|Ai).

Written another way, ∫ x

−∞
fX(t)dt =

n∑
i=1

P(Ai)

∫ x

−∞
fX|Ai(t)dt.

Differentiating in x and applying Theorem 5.5,

fX(x) =
n∑
i=1

P(Ai)fX|Ai(x).

Multipling both sides by x and integrating from −∞ to ∞ then completes the proof. �

Exercise 5.46. Let A1, A2, . . . be disjoint events such that P(Ai) = 2−i for each i ≥ 1.
Assume ∪∞i=1Ai = Ω. Let X be a random variable such that E(X|Ai) = (−1)i+1 for each
i ≥ 1. Compute EX.

Definition 5.47 (Conditioning one Random Variable on Another). Let X and Y be
continuous random variables with joint PDF fX,Y . Fix some y ∈ R with fY (y) > 0. For any
x ∈ R, define the conditional PDF of X, given that Y = y by

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
, ∀x ∈ R.

We also define the conditional expectation of X given Y = y by

E(X|Y = y) =

∫ ∞
−∞

xfX|Y (x|y)dx.

From Definition 5.35, note that
∫∞
−∞ fX|Y (x|y)dx = 1. So, fX|Y (x|y) is a probability

distribution function.

Example 5.48. We continue the dart board example from Exercise 2.31. We suppose X
and Y have a joint PDF so that

P((X, Y ) ∈ A) =
1

2π

∫∫
A

e−(x2+y2)/2dxdy, ∀A ⊆ R2.
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We verified the marginals are both standard Gaussians:

fX(x) =
1√
2π
e−x

2/2, ∀x ∈ R, fY (y) =
1√
2π
e−y

2/2 ∀ y ∈ R.

So, in this particular example, we have

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

1
2π
e−(x2+y2)/2

1√
2π
e−y2/2

=
1√
2π
e−x

2/2.

That is, in this particular example, conditioning X on Y does not at all change X.

Example 5.49. Suppose X and Y have a joint PDF given by fX,Y (x, y) = 1
π

if x2 + y2 ≤ 1,
and fX,Y (x, y) = 0 otherwise. Let’s compute the marginals first, and then determine the
conditional PDFs. Let x, y ∈ R with x2 + y2 ≤ 1. Using Definition 5.35,

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy =

∫ y=
√

1−x2

y=−
√

1−x2

1

π
dy =

2
√

1− x2

π
.

fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx =

∫ x=
√

1−y2

x=−
√

1−y2

1

π
dx =

2
√

1− y2

π
.

So, if x2 + y2 ≤ 1, then

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

1/π

2
√

1− y2/π
=

1

2
√

1− y2
.

Similarly,

fY |X(y|x) =
1

2
√

1− x2
.

That is, in this particular example, conditioning X on Y can drastically change X. For
example, X conditioned on Y = 0, and X conditioned on Y = 1/2 have very different PDFs.

The following Theorem is a version of Theorem 4.34 for continuous random variables.

Theorem 5.50 (Total Expectation Theorem). Let X, Y be continuous random variables.
Assume that fX,Y : R2 → R is a continuous function. Then

E(X) =

∫ ∞
−∞

E(X|Y = y)fY (y)dy.

Proof. Using Definitions 5.43 and 5.47, and then Definition 5.35,∫ ∞
−∞

E(X|Y = y)fY (y)dy =

∫ ∞
−∞

(∫ ∞
−∞

xfX|Y (x|y)dx

)
fY (y)dy

=

∫ ∞
−∞

∫ ∞
−∞

xfX,Y (x, y)dydx =

∫ ∞
−∞

xfX(x)dx = EX.

�

In the above proof, we used the following Theorem from analysis.
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Theorem 5.51 (Fubini Theorem). Let h : R2 → R be a continuous function such that∫∫
R2 |h(x, y)| dxdy <∞. Then∫∫

R2

h(x, y)dxdy =

∫
R

(∫
R
h(x, y)dx

)
dy =

∫
R

(∫
R
h(x, y)dy

)
dx.

Exercise 5.52. Let X, Y be random variables. For any y ∈ R, assume that E(X|Y = y) =
e−|y|. Also, assume that Y has an exponential distribution with parameter λ = 2. Compute
EX.

5.6. Independence.

Definition 5.53. Let X, Y be random variables with joint PDF fX,Y . We say that X and
Y are independent if

fX,Y (x, y) = fX(x)fY (y), ∀x, y ∈ R.
Equivalently, using Definition 5.47, the random variables X and Y are independent if

fX|Y (x|y) = fX(x), ∀x ∈ R with fY (y) > 0.

More generally, random variables X1, . . . , Xn with joint PDF fX1,...,Xn are independent if

fX1,...,Xn(x1, . . . , xn) =
n∏
i=1

fXi(xi), ∀x1, . . . , xn ∈ R.

Example 5.54. We continue Example 5.48. We suppose X and Y have a joint PDF so that

P((X, Y ) ∈ A) =
1

2π

∫∫
A

e−(x2+y2)/2dxdy, ∀A ⊆ R2.

We showed in Example 5.36 that X and Y are both standard normals. We verified in
Example 5.48 that fX|Y (x|y) = fX(x) forall x, y ∈ R. So, X and Y are independent.

Proposition 5.55. Let X, Y be two independent random variables with joint PDF fX,Y . Let
A,B ⊆ R. Then the events {X ∈ A} and {Y ∈ B} are independent.

Proof. Using Definition 5.53 and Theorem 5.51,

P(X ∈ A, Y ∈ B) =

∫
A

∫
B

fX,Y (x, y)dydx =

∫
A

∫
B

fY (y)dyfX(x)dx

= (

∫
A

fX(x)dx)(

∫
B

fY (y)dy) = P(X ∈ A)P(Y ∈ B).

�

Theorem 5.56. Let X, Y be two independent random variables with joint PDF fX,Y . Then

E(XY ) = (EX)(EY ).

More generally, if g, h : R→ R, then

E(g(X)h(Y )) = (Eg(X))(Eh(Y )).

More generally, if X1, . . . , Xn are independent random variables with joint PDF fX1,...,Xn,
and if g1, . . . , gn : R→ R, then

E(
n∏
i=1

gi(Xi)) =
n∏
i=1

E(gi(Xi)).
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Proof. We prove the second statement since it implies the first. Using Definitions 5.38 and
5.53, and Theorem 5.51

E(g(X)h(Y )) =

∫∫
R2

g(x)h(y)fX,Y (x, y)dxdy =

∫∫
R2

g(x)h(y)fX(x)fY (y)dxdy

= (

∫
R
g(x)fX(x)dx)(

∫
R
h(y)fY (y)dy) = (Eg(X))(Eh(Y )).

�

Exercise 5.57. Let X, Y be independent random variables with joint PDF fX,Y . Show that

var(X + Y ) = var(X) + var(Y ).

Exercise 5.58. Let X and Y be uniformly distributed random variables on [0, 1]. Assume
that X and Y are independent. Compute the following probabilities:

• P(X > 3/4)
• P(Y < X)
• P(X + Y < 1/2)
• P(max(X, Y ) > 1/2)
• P(XY < 1/3).

Exercise 5.59. Let X1, Y1 be random variables with joint PDF fX1,Y1 . Let X2, Y2 be random
variables with joint PDF fX2,Y2 . Let T : R2 → R2 and let S : R2 → R2 so that ST (x, y) =
(x, y) and TS(x, y) = (x, y) for every (x, y) ∈ R2. Let J(x, y) denote the determinant of the
Jacobian of S at (x, y). Using the change of variables formula from multivariable calculus,
show that

fX2,Y2(x, y) = fX1,Y1(S(x, y)) |J(x, y)| .

Exercise 5.60 (Numerical Integration). In computer graphics in video games, etc., var-
ious integrations are performed in order to simulate lighting effects. Here is a way to use
random sampling to integrate a function in order to quickly and accurately render lighting
effects. Let Ω = [0, 1], and let P be the uniform probably law on Ω, so that if 0 ≤ a < b ≤ 1,
we have P([a, b]) = b − a. Let X1, . . . , Xn be independent random variables such that
P(Xi ∈ [a, b]) = b − a for all 0 ≤ a < b ≤ 1, for all i ∈ {1, . . . , n}. Let f : [0, 1] → R be a
continuous function we would like to integrate. Instead of integrating f directly, we instead
compute the quantity

1

n

n∑
i=1

f(Xi).

Show that

lim
n→∞

E

(
1

n

n∑
i=1

f(Xi)

)
=

∫ 1

0

f(t)dt.

lim
n→∞

var

(
1

n

n∑
i=1

f(Xi)

)
= 0.

That is, as n becomes large, 1
n

∑n
i=1 f(Xi) is a good estimate for

∫ 1

0
f(t)dt.
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5.7. Joint CDF.

Definition 5.61 (Joint CDF). Let X, Y be random variables. We define the joint CDF
of X, Y to be the function

FX,Y (x, y) = P(X ≤ x, Y ≤ y), ∀x, y ∈ R.
More generally, if X1, . . . , Xn are random variables, we define the joint CDF of X1, . . . , Xn

to be the function

FX1,...,Xn(x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn), ∀x1, . . . , xn ∈ R.

Remark 5.62. If X, Y are independent random variables with joint PDF fX,Y , then Propo-
sition 5.55 says that

FX,Y (x, y) = P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y) = FX(x)FY (y).

More generally, if X1, . . . , Xn are independent random variables with joint PDF fX1,...,Xn ,
then

FX1,...,Xn(x1, . . . , xn) =
n∏
i=1

FXi(xi), ∀x1, . . . , xn ∈ R.

Remark 5.63. In fact, we can use the last equality as a definition in order to define in-
dependence of general random variables. That is, we say random variables X1, . . . , Xn are
independent if

FX1,...,Xn(x1, . . . , xn) =
n∏
i=1

FXi(xi), ∀x1, . . . , xn ∈ R.

6. Limit Theorem Preliminaries: Covariance, Transforms, Convolution

6.1. Introduction to Limit Theorems. Suppose I flip a fair coin 109 times. Then I
should expect to get roughly 1

2
109 heads and 1

2
109 tails. This is formalized in the Law of

Large Numbers. Or, suppose I have a casino game where the casino wins 51% of the time.
Then over a long period of time, the casino will make money; the Law of Large Numbers
guarantees that! However, if I do flip 109 fair coins, it is unlikely that I will get exactly 1

2
109

heads. (What is the exact probability?) There will typically be some small fluctuations
around 1

2
109. But about how close to 1

2
109 will the number of heads be? This question is

answered precisely by the Central Limit Theorem. In your previous probability class, you
may have mentioned the Central Limit Theorem applied to coin flips, which is known as the
De Moivre-Laplace Theorem:

Theorem 6.1 (De Moivre-Laplace Theorem). Let X1, . . . , Xn be independent Bernoulli
random variables with parameter 1/2, so that P(X1 = 1) = P(X1 = 0) = 1/2. Recall that
X1 has mean 1/2 and variance 1/4. Let a ∈ R. Then

lim
n→∞

P

(
X1 + · · ·+Xn − (1/2)n

√
n
√

1/4
≤ a

)
=

∫ a

−∞
e−t

2/2 dt√
2π
.

That is, when n is large, the CDF of X1+···+Xn−(1/2)n
√
n
√

1/4
is roughly the same as that of a

standard normal. In particular, if you flip n fair coins, then the number of heads you get
should typically be in the interval (n/2−

√
n/2, n/2 +

√
n/2), when n is large.
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Remark 6.2. The random variable X1+···+Xn−(1/2)n
√
n
√

1/4
has mean zero and variance 1, just like

the standard Gaussian. So, the normalizations of X1 + · · ·+Xn we have chosen are sensible.
Also, to explain the interval (n/2−

√
n/2, n/2 +

√
n/2), note that

lim
n→∞

P

(
n

2
−
√
n

2
≤ X1 + · · ·+Xn ≤

n

2
+

√
n

2

)
= lim

n→∞
P

(
−
√
n

2
≤ X1 + · · ·+Xn −

n

2
≤
√
n

2

)
= lim

n→∞
P

(
−1 ≤

X1 + · · ·+Xn − n
2√

n/2
≤ 1

)
=

∫ 1

−1

e−t
2/2 dt√

2π
≈ .6827.

Exercise 6.3. Let X and Y be nonnegative random variables. Recall that we can define

EX :=

∫ ∞
0

P(X > t)dt.

Assume that X ≤ Y . Conclude that EX ≤ EY .
More generally, if X satisfies E |X| <∞, we define EX := E max(X, 0)− E max(−X, 0).

If X, Y are any random variables with X ≤ Y , E |X| < ∞ and E |Y | < ∞, show that
EX ≤ EY .

6.2. Continuity of Probability Laws. Recall that a probability law P on a sample space
Ω satisfies the following three axioms.

(i) For any A ⊆ Ω, we have P(A) ≥ 0. (Nonnegativity)
(ii) For any A,B ⊆ Ω such that A ∩B = ∅, we have

P(A ∪B) = P(A) + P(B).

If A1, A2, . . . ⊆ Ω and Ai∩Aj = ∅ whenever i, j are positive integers with i 6= j, then

P

(
∞⋃
k=1

Ak

)
=
∞∑
k=1

P(Ak). (Additivity)

(iii) We have P(Ω) = 1. (Normalization)

Recall that ∪∞k=1Ak = {x ∈ Ω: ∃ k ≥ 1, x ∈ Ak} and ∩∞k=1Ak = {x ∈ Ω: ∀ k ≥ 1, x ∈ Ak}.
Below, we will make several limiting statements about probabilities. For this reason, the

following property of probability laws will be quite useful.

Proposition 6.4 (Continuity of a Probability Law). Let P be a probability law on a
sample space Ω. Let A1, A2, . . . be sets in Ω which are increasing, so that A1 ⊆ A2 ⊆ · · · .
Then

lim
n→∞

P(An) = P(∪∞n=1An).

In particular, the limit on the left exists.

Proof. First, recall that A r B := A ∩ Bc where A,B ⊆ Ω. Now, let B1 := A1, let B2 :=
A2 r A1, and for any n ≥ 1, inductively define Bn := An r An−1. We claim that B1, B2, . . .
are disjoint, and ∪kn=1An = ∪kn=1Bn for any 1 ≤ k ≤ ∞.
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To see the first statement, let i, j ≥ 1 with i > j. Since i − 1 ≥ j, Aj ⊆ Ai−1, so
Aci−1 ∩ Aj = ∅. So

Bi ∩Bj = (Ai r Ai−1) ∩ (Aj r Aj−1) = Ai ∩ Aci−1 ∩ Aj ∩ Acj−1 = ∅.

To see the second statement, let x ∈ ∪kn=1An. Let m ≥ 1 such that m = min{1 ≤ n ≤ k : x ∈
An}. If m = 1, then x ∈ B1 = A1. If m > 1, then x /∈ Am−1 so x ∈ Bm = Am r Am−1. So,
in any case, x ∈ ∪kn=1Bn. For the reverse inclusion, let x ∈ ∪kn=1Bn. Then x ∈ Bn for some
1 ≤ n ≤ k. So x ∈ An since Bn ⊆ An. So, x ∈ ∪kn=1An. The claim is proven.

Now, using our claim, we have by the second axiom for probability laws,

P(∪∞n=1An) = P(∪∞n=1Bn) =
∞∑
n=1

P(Bn) = lim
k→∞

k∑
n=1

P(Bn)

= lim
k→∞

P(∪kn=1Bn) = lim
k→∞

P(∪kn=1An) = lim
k→∞

P(Ak).

The last line used Ak ⊇ Ak−1 ⊇ · · · ⊇ A1. �

A similar statement can be made for a decreasing sequence of sets.

Proposition 6.5 (Continuity of a Probability Law). Let P be a probability law on a
sample space Ω. Let A1, A2, . . . be sets in Ω which are decreasing, so that A1 ⊇ A2 ⊇ · · · .
Then

lim
n→∞

P(An) = P(∩∞n=1An).

Proof. Apply Proposition 6.4 to Acn for any n ≥ 1, and then apply De Morgan’s law:

lim
n→∞

P(An) = 1− lim
n→∞

P(Acn) = 1−P(∪∞n=1A
c
n) = 1−P((∩∞n=1An)c) = P(∩∞n=1An).

�

Recall that a random variable is a function X : Ω→ R.

Definition 6.6 (Convergence of Real Numbers). Let x1, x2, . . . be a sequence of real
numbers. Let x ∈ R. We say that x1, x2, . . . converges to x if: ∀ ε > 0, ∃ m = m(ε) such
that, for all n ≥ m, we have |xn − x| < ε. If x1, x2, . . . converges to x, we denote this by
writing

x = lim
n→∞

xn.

Exercise 6.7. Using the definition of convergence, show that the sequence of numbers
1, 1/2, 1/3, 1/4, . . . converges to 0.

Exercise 6.8 (Uniqueness of limits). Let x1, x2, . . . be a sequence of real numbers. Let
x, y ∈ R. Assume that x1, x2, . . . converges to x. Assume also that x1, x2, . . . converges to y.
Prove that x = y. That is, a sequence of real numbers cannot converge to two different real
numbers.
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6.3. Derived Distributions.

Proposition 6.9. Let X be a continuous random variable with density function fX : R →
[0,∞). Let g : R → R be continuous. Let Y := g(X). Assume that FY is differentiable,
where FY (y) = P(Y ≤ y) for all y ∈ R. Then for any y ∈ R,

fY (y) =
d

dy

∫
{x∈R : g(x)≤y}

fX(x)dx.

Proof. Let A ⊆ R. Recall that fX is defined so that

P(X ∈ A) =

∫
A

fX(x)dx.

So, if we let y ∈ R and if we define A := {x ∈ R : g(x) ≤ y}, we have

FY (y) = P(Y ≤ y) = P(g(X) ≤ y) = P(X ∈ A) =

∫
A

fX(x)dx =

∫
{x∈R : g(x)≤y}

fX(x)dx.

So, if FY is differentiable, d
dy
FY (y) = fY (y) for all y ∈ R, completing the proof. �

Example 6.10. Let X be a uniformly distributed random variable on [−1, 1], and let g : R→
R so that g(x) = x3 for any x ∈ R. Let Y := g(X). Then for any y ∈ R,

fY (y) =
d

dy

∫
{x∈R : g(x)≤y}

fX(x)dx =
d

dy

∫
{x∈[−1,1] : x3≤y}

1

2
dx.

If y < −1 the integral is zero. If y > 1, the integral is 1. And if y ∈ [−1, 1], we have

fY (y) =
d

dy

1

2

∫ x=y1/3

x=−1

dx =
1

2

d

dy
[y1/3 + 1] =

1

6
y−2/3.

And if y /∈ [−1, 1], we have fY (y) = 0.

Exercise 6.11. Let X be a uniformly distributed random variable on [−1, 1]. Let Y := X2.
Find fY .

Exercise 6.12. Let X be a uniformly distributed random variable on [0, 1]. Let Y :=
4X(1−X). Find fY .

Example 6.13. Let X be a continuous random variable such that FX is differentiable. Let
a, b ∈ R with a 6= 0. Let g(x) := ax + b for any x ∈ R, and let Y := g(X) = aX + b. Then
for any y ∈ R, we will show that

fY (y) =
1

|a|
fX

(
y − b
a

)
.

Suppose a > 0. Then the function P(Y ≤ y) = P(aX + b ≤ y) = P(X ≤ (y − b)/a) =
FX((y − b)/a) is differentiable with respect to y. So, for any y ∈ R, the Chain Rule implies

fY (y) =
d

dy

∫
{x∈R : g(x)≤y}

fX(x)dx =
d

dy
FX((y − b)/a) =

1

a
fX((y − b)/a).

The case a < 0 is demonstrated similarly.
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Example 6.14. Let X be a normal random variable with mean µ and variance σ2 > 0
where σ > 0. That is,

fX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , ∀x ∈ R.

Let a, b ∈ R with a > 0. Let Y := aX + b. Then Y is a Gaussian random variable with
variance a2σ2 and mean b+ aµ:

fY (y) =
1

aσ
√

2π
e−

(((y−b)/a)−µ)2

2a2σ2 =
1

aσ
√

2π
e−

(y−b−aµ)2

2a2σ2

Definition 6.15 (Monotonic Function). Let I, J ⊆ R be open intervals. Let g : I → J .
We say that g is strictly increasing if, for any x, y ∈ I with x > y, we have g(x) > g(y).
We say that g is strictly decreasing if, for any x, y ∈ I with x > y, we have g(x) < g(y).
We say that g is strictly monotonic if g is either strictly increasing or strictly decreasing.

Remark 6.16 (Strictly Monotonic Functions are Invertible). Let I, J ⊆ R be open
intervals. Let g : I → J be a strictly monotonic function with range J . As we recall from
calculus, g has an inverse. That is, there exists a strictly monotonic function h : J → I such
that g(h(x)) = x for every x ∈ J and h(g(x)) = x for every x ∈ I. Also, as we recall from
calculus, if g is differentiable with g′(x) 6= 0 for all x ∈ I, then h is differentiable, and by
differentiating the identity h(g(x)) = x and applying the chain rule, we get

d

dx
h(g(x)) =

1

g′(x)
, ∀x ∈ I.

Or, written another way (defining y := g(x), so that x = h(y)),

h′(y) =
1

g′(h(y))
, ∀ y ∈ J.

If we graph g and h, then h is obtained by reflecting g across the line {(x, y) ∈ R2 : x = y}.
Similarly, g is obtained by reflecting h across the line {(x, y) ∈ R2 : x = y}.

Proposition 6.17. Let X be a continuous random variable such that FX is differentiable.
Let I, J ⊆ R be open intervals. Let g : I → J be a strictly monotonic, differentiable function
with range J . Assume that g′(x) 6= 0 for every x ∈ I. Let Y := g(X). Let h : J → I be the
inverse of g. Then for any y ∈ J ,

fY (y) = fX(h(y)) ·
∣∣∣∣ ddyh(y)

∣∣∣∣ = fX(h(y)) · 1

|g′(h(y))|
.

Proof. Let y ∈ J . First, assume g is strictly increasing. Then

FY (y) = P(Y ≤ y) = P(g(X) ≤ y) = P(X ≤ h(y)) = FX(h(y)).

Since FX and h are differentiable, the Chain Rule then proves the first equality. The second
equality follows from Remark 6.16, where we noted that

d

dy
h(y) =

1

g′(h(y))
, ∀y ∈ J.

�

Exercise 6.18. Let X be a uniformly distributed random variable on [0, 1]. Find the PDF
of − log(X).
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Exercise 6.19. Let X be a standard normal random variable. Find the PDF of eX .

We can perform similar manipulations to find the joint PDF of functions of several random
variables.

Example 6.20. Let X, Y be independent exponential random variables with parameter
λ = 1. So, fX(x) = e−x for any x ≥ 0 and fX(x) = 0 otherwise. Let Z := max(X, Y ). Then
for any t ∈ R, {Z ≤ t} = {X ≤ t, Y ≤ t}. So, using independence of X, Y ,

P(Z ≤ t) = P(X ≤ t, Y ≤ t) = P(X ≤ t)P(Y ≤ t) = (1− e−t)2, ∀ t ≥ 0.

So, using the chain rule,

fZ(z) =
d

dz
P(Z ≤ z) =

{
2(1− e−z)e−z , if z ≥ 0

0 , otherwise.

Exercise 6.21. Let X, Y, Z be independent standard Gaussian random variables. Find the
PDF of max(X, Y, Z).

Example 6.22. Let X, Y be independent standard Gaussian random variables. Let Z :=
X/ |Y |. For any t ∈ R, let At := {(x, y) ∈ R2 : x ≤ t |y|}. Then, using polar coordinates, if
t ≥ 0 we have

P(Z ≤ t) = P(X ≤ t |Y |) = P((X, Y ) ∈ At) =
1

2π

∫
At

e−(x2+y2)/2dxdy

=

∫ y=∞

y=−∞

∫ x=t|y|

x=−∞
e−(x2+y2)/2dxdy

=
1

2π

∫ θ=2π−tan−1(1/t)

θ=tan−1(1/t)

∫ r=∞

r=0

re−r
2/2drdθ

=
1

2π

∫ θ=2π−tan−1(1/t)

θ=tan−1(1/t)

dθ = 1− 1

π
tan−1(1/t).

Similarly, if t < 0, then P(Z ≤ t) = 1
π

tan−1(1/ |t|). So, from the Chain rule,

fZ(z) =
1

π(z2 + 1)
, ∀ z ∈ R.

Exercise 6.23. Let X be a random variable uniformly distributed in [0, 1] and let Y be a
random variable uniformly distributed in [0, 2]. Suppose X and Y are independent. Find
the PDF of X/Y 2.

6.4. Covariance. Recall that the covariance of two random variables X and Y , denoted
cov(X, Y ), is

cov(X, Y ) = E((X − E(X))(Y − E(Y ))).

In particular, cov(X,X) = E(X − E(X))2 = var(X).

Definition 6.24. Let X, Y be random variables. We say that X, Y are uncorrelated if
cov(X, Y ) = 0.
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Exercise 6.25. Let X, Y be random variables with EX2 < ∞ and EY 2 < ∞. Prove the
Cauchy-Schwarz inequality:

E(XY ) ≤ (EX2)1/2(EY 2)1/2.

Then, deduce the following when X, Y both have finite variance:

|cov(X, Y )| ≤ (var(X))1/2(var(Y ))1/2.

(Hint: in the case that EY 2 > 0, expand out the product E(X − YE(XY )/EY 2)2.)

Recall in Lemma 4.26, we proved the following for discrete random variables, though the
proof applies for any random variables.

Lemma 6.26. Let X1, . . . , Xn be random variables with var(Xi) < ∞ for all 1 ≤ i ≤ n.
Then

var(
n∑
i=1

Xi) =
n∑
i=1

var(Xi) + 2
∑

1≤i<j≤n

cov(Xi, Xj).

Proof.

var(
n∑
i=1

Xi) = E(
n∑
i=1

Xi − E(
n∑
i=1

Xi))
2 = E(

n∑
i=1

(Xi − E(Xi)))
2

= E

(
n∑
i=1

(Xi − E(Xi))
2

)
+ 2E

( ∑
1≤i<j≤n

(Xi − E(Xi))(Xj − E(Xj))

)

=
n∑
i=1

var(Xi) + 2
∑

1≤i<j≤n

cov(Xi, Xj).

The assumption var(Xi) <∞ for all 1 ≤ i ≤ n and Exercise 6.25 ensure that all of the above
quantities are finite. �

As in Corollary 4.40, Lemma 6.26 immediately implies:

Corollary 6.27. Let X1, . . . , Xn be random variables that are pairwise uncorrelated. That
is, cov(Xi, Xj) = 0 for any i, j ∈ {1, . . . , n} with i 6= j. Then

var(
n∑
i=1

Xi) =
n∑
i=1

var(Xi).

Corollary 6.28. Let X1, . . . , Xn be independent random variables. Then

var(
n∑
i=1

Xi) =
n∑
i=1

var(Xi).

Proof. Let i, j ∈ {1, . . . , n} with i 6= j. Then, using independence,

cov(Xi, Xj) = E((Xi−E(Xi))(Xj−E(Xj))) = E(XiXj)−2E(Xi)E(Xj)+E(Xi)E(Xj) = 0.

So, Corollary 6.27 concludes the proof. �
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Exercise 6.29. Let X be a binomial random variable with parameters n = 2 and p = 1/2.
So, P(X = 0) = 1/4, P(X = 1) = 1/2 and P(X = 2) = 1/4. And X satisfies EX = 1 and
EX2 = 3/2.

Let Y be a geometric random variable with parameter 1/2. So, for any positive integer k,
P(Y = k) = 2−k. And Y satisfies EY = 2 and EY 2 = 6.

Let Z be a Poisson random variable with parameter 1. So, for any nonnegative integer k,
P(Z = k) = 1

e
1
k!

. And Z satisfies EZ = 1 and EZ2 = 2.
Let W be a discrete random variable such that P(W = 0) = 1/2 and P(W = 4) = 1/2,

so that EW = 2 and EW 2 = 8.
Assume that X, Y, Z and W are all independent. Compute

var(X + Y + Z +W ).

Exercise 6.30. Let X1, . . . , Xn be random variables with finite variance. Define an n × n
matrix A such that Aij = cov(Xi, Xj) for any 1 ≤ i, j ≤ n. Show that the matrix A is
positive semidefinite. That is, show that for any y = (y1, . . . , yn) ∈ Rn, we have

yTAy =
n∑

i,j=1

yiyjAij ≥ 0.

6.5. Transforms. Generally speaking, a transform is a way of creating one function from
another function. For example, the moment generating function associates a real-valued
function to a random variable. And the characteristic function (or Fourier transform) asso-
ciates a complex-valued function to a random variable.

Definition 6.31 (Moment Generating Function). Let X be a random variable. The
moment generating function of X is a function MX : R→ R defined by

MX(t) := E(etX), ∀ t ∈ R.

Remark 6.32. For certain random variables X, the moment generating function may not
exist. For example, if X is a continuous random variable with density function fX(x) = x−2

for any x > 1, and fX(x) = 0 otherwise. Then MX(t) =
∫∞

1
etxfX(x)dx does not exist when

t > 0.

Assume that MX(t) exists for all t ∈ R, and assume we can differentiate under the expected
value. Then

d

dt
|t=0MX(t) = E

(
d

dt t=0
etX
)

= E(X).

That is, the first derivative of the moment generating function at t = 0 is equal to the first
moment of X. More generally, the nth derivative of the moment generating function at t = 0
is equal to the nth moment of X:

Exercise 6.33. Let X be a random variable. Assume that MX(t) exists for all t ∈ R, and
assume we can differentiate under the expected value any number of times. For any positive
integer n, show that

dn

dtn
|t=0MX(t) = E(Xn).

So, in principle, all moments of X can be computed just by taking derivatives of the moment
generating function.

60



Example 6.34. Let X be an exponential random variable with parameter λ > 0. That is,
fX(x) = λe−λx for any x ≥ 0, and fX(x) = 0 otherwise. Then for any t < λ,

MX(t) = λ

∫ ∞
0

etxe−λxdx = λ

∫ ∞
0

e(t−λ)xdx

= λ lim
N→∞

1

t− λ
[e(t−λ)x]x=N

x=0 =
λ

λ− t
.

From Exercise 6.33, EX = d
dt
|t=0MX(t) = λ

λ2
= λ−1. More generally, it follows by induction

that for any integer n > 0,

EXn =
dn

dtn
|t=0MX(t) = n!λ−n.

Instead of proving this equality by induction, we use power series. Let t ∈ R with |t| < 1.
From the summation formula for geometric series,

1

1− t
=
∞∑
k=0

tn.

That is, for any t ∈ R with |t| < λ,

MX(t) =
λ

λ− t
=

1

1− (t/λ)
=
∞∑
k=0

(t/λ)k.

So, from Exercise 6.33, if n is a positive integer, then

EXn =
dn

dtn
|t=0MX(t) =

∞∑
k=0

dn

dtn
|t=0(t/λ)k =

dn

dtn
|t=0(t/λ)n = n!λ−n.

Exercise 6.35. Let X be a standard Gaussian random variable. Compute an explicit
formula for the moment generating function of X. (Hint: completing the square might
be helpful.) From this explicit formula, compute an explicit formula for all moments of
the Gaussian random variable. (The 2nth moment of X should be something resembling a
factorial.)

Proposition 6.36. Let X1, . . . , Xn be independent random variables. Then

MX1+···+Xn(t) =
n∏
j=1

MXj(t), ∀ t ∈ R.

Proof. Since X1, . . . , Xn are independent, etX1 , . . . , etXn are independent, for any t ∈ R. So,

MX1+···+Xn(t) = Eet(X1+···+Xn) = E
n∏
j=1

etXj =
n∏
j=1

EetXj =
n∏
j=1

MXj(t)

�

Example 6.37. Let X be a binomial distributed random variable with parameters n and
0 < p < 1. That is, X can be written as the sum of n independent Bernoulli random
variables X1, . . . , Xn with parameter p. Then by Proposition 6.36, for any t ∈ R,

MX(t) =
n∏
j=1

MXj(t) = (MX1(t))
n = ((1− p)e0·t + pet)n = (1− p+ pet)n.
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In some cases, the moment generating function uniquely determines the random variable.

Theorem 6.38 (Lévy Continuity Theorem, Weak Form). Let X, Y be random vari-
ables. Assume that MX(t),MY (t) exist for all t ∈ R, and that MX(t) = MY (t) for all t ∈ R.
Then X and Y have the same CDF.

Exercise 6.39. Construct two random variables X, Y : Ω → R such that X 6= Y but
MX(t),MY (t) exist for all t ∈ R, and such that MX(t) = MY (t) for all t ∈ R.

Exercise 6.40. Unfortunately, there exist random variables X, Y such that EXn = EY n

for all n = 1, 2, 3, . . ., but such that X, Y do not have the same CDF. First, explain why this
does not contradict the Lévy Continuity Theorem, Weak Form. Now, let −1 < a < 1, and
define a density

fa(x) :=

{
1

x
√

2π
e−

(log x)2

2 (1 + a sin(2π log x)) , if x > 0

0 , otherwise.

Suppose Xa has density fa. If −1 < a, b < 1, show that EXn
a = EXn

b for all n = 1, 2, 3, . . ..
(Hint: write out the integrals, and make a change of variables s = log(x)− n.)

From Exercise 6.33, the moment generating function of a random variable X contains all
information about the moments of X. However, as mentioned in Remark 6.32, MX(t) may
not exist for many values of t. So, studying the moment generating function may not be so
helpful for certain random variables. Fortunately, the closely related characteristic function
will always exist, and it also contains all information about the moments of X

Definition 6.41 (Characteristic Function/ Fourier Transform). Let i :=
√
−1. Let

X be a random variable. The characteristic function (or Fourier transform) of X is
the function φX : R→ C defined by

φX(t) := E(eitX), ∀ t ∈ R.

Or equivalently,

φX(t) = MX(it), ∀ t ∈ R.

Remark 6.42 (Expectation of Complex-Valued Random Variables). Any complex
number z ∈ C can be written as z = a + bi where a, b ∈ R. We also define |z| :=

√
a2 + b2.

We call a the real part of z, and we call b the imaginary part of z. Similarly, if Z is a
complex-valued random variable, we can write Z = X + iY where X, Y are real-valued
random variables. Then, we can define

EZ := EX + i(EY ).

That is, taking the expected value of a complex-valued random variable is barely different
from taking the expected value of a real-valued random variable.

Exercise 6.43. Compute the characteristic function of a uniformly distributed random
variable on [−1, 1]. (Some of the following formulas might help to simplify your answer:
eit = cos(t) + i sin(t), cos(t) = [eit + e−it]/2, sin(t) = [eit − e−it]/[2i], t ∈ R.)
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Remark 6.44. If t ∈ R, then |eit| = |cos(t) + i sin(t)| =
√

cos2(t) + sin2(t) = 1. The
characteristic function is often more appealing to work with than the moment generating
function, since the characteristic function always exists. For example, for any t ∈ R,

|φX(t)| =
∣∣EeitX∣∣ ≤ E

∣∣eitX∣∣ = 1.

However, as mentioned in Remark 6.32, MX(t) may or may not exist for some t ∈ R.

Exercise 6.45. LetX be a random variable. Assume we can differentiate under the expected
value of EeitX any number of times. For any positive integer n, show that

dn

dtn
|t=0φX(t) = inE(Xn).

So, in principle, all moments of X can be computed just by taking derivatives of the char-
acteristic function.

Exercise 6.46. Let X be a random variable such that E |X|3 < ∞. Prove that for any
t ∈ R,

EeitX = 1 + itEX − t2EX2/2 + o(t2).

That is,

lim
t→0

t−2
∣∣EeitX − [1 + itEX − t2EX2/2]

∣∣ = 0

(Hint: it may be helpful to use Jensen’s inequality, Exercise 4.23, to first justify that E |X| <
∞ and EX2 <∞. Then, use the Taylor expansion with error bound: eiy = 1 + iy − y2/2−
(i/2)

∫ y
0

(y − s)2eisds, which is valid for any y ∈ R.)
Actually, this same bound holds only assuming EX2 < ∞, but the proof of that bound

requires things we have not discussed.

Since φX(t) = MX(it), the proof of Proposition 6.36 immediately implies:

Proposition 6.47. Let X1, . . . , Xn be independent random variables. Then

φX1+···+Xn(t) =
n∏
j=1

φXj(t), ∀ t ∈ R.

The Gaussian density has the rather remarkable property that it is essentially its own
Fourier transform.

Proposition 6.48. Let X be a standard Gaussian random variable. Then

EeitX = e−t
2/2, ∀ t ∈ R.

Proof. Using eitx = cos(tx) + i sin(tx) for any t, x ∈ R,

φX(t) = EeitX =
1√
2π

∫ ∞
−∞

eitxe−x
2/2dx

=
1√
2π

∫ ∞
−∞

(cos(tx) + i sin(tx))e−x
2/2dx

=
1√
2π

∫ ∞
−∞

cos(tx)e−x
2/2dx, since e−x

2/2 sin(tx) is odd.
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Now, differentiating under the integral sign (which is valid, but we will not justify it), and
integrating by parts,

d

dt
φX(t) =

1√
2π

∫ ∞
−∞

(−x) sin(tx)e−x
2/2dx =

1√
2π

∫ ∞
−∞

sin(tx)
d

dx
e−x

2/2dx

=
1√
2π

∫ ∞
−∞

(−t) cos(tx)e−x
2/2dx = −tφX(t).

Therefore,
d

dt
[φX(t)et

2/2] = [tφX(t)− tφX(t)]et
2/2 = 0, ∀ t ∈ R.

That is, there exists a constant c ∈ R such that φX(t)et
2/2 = c, i.e. φX(t) = ce−t

2/2. Since
φX(0) = 1 = c, the proof is complete. �

6.6. Sums of Independent Random Variables and Convolution. Let X, Y be inde-
pendent random variables. From Proposition 6.36, the moment generating function of X+Y
can be easily expressed as MX+Y (t) = MX(t)MY (t), for any t such that both quantities on
the right exist. On the other hand, the CDF of X + Y has a more complicated dependence
on X and Y .

Example 6.49. Let X, Y be independent integer-valued random variables. Let t ∈ Z. Then,
repeatedly using properties of probability laws, and using that X, Y are independent,

P(X + Y = t) =
∑

j,k∈Z : j+k=t

P(X = j, Y = k) =
∑
j∈Z

P(X = j, Y = t− j)

=
∑
j∈Z

P(X = j)P(Y = t− j) =
∑
j∈Z

pX(j)pY (t− j).

Definition 6.50 (Convolution on the integers). Let g, h : Z → R be functions. The
convolution of g and h, denoted g ∗ h, is a function g ∗ h : Z→ R defined by

(g ∗ h)(t) :=
∑
j∈Z

g(j)h(t− j), ∀ t ∈ Z.

So, if X, Y are independent integer-valued random variables, pX+Y (t) = (pX ∗pY )(t) ∀ t ∈ Z.

Example 6.51. Let g(k) := e−k and let h(k) := e−k for any nonnegative integer k ≥ 0, and
let g(k) = h(k) = 0 for any other integer k < 0. Then if t ≥ 0 is an integer,

(g ∗ h)(t) =
∑
k∈Z

g(k)h(t− k) =
t∑

k=0

e−ke−(t−k) =
t∑

k=0

e−t = (t+ 1)e−t.

And (g ∗ h)(t) = 0 for any negative integer t.

A similar formula holds for continuous random variables. That is, if X, Y are two contin-
uous random variables, then the density of X + Y is the convolution of fX and fY .

Definition 6.52 (Convolution on the real line). Let g, h : R → R be functions. The
convolution of g and h, denoted g ∗ h, is a function g ∗ h : R→ R defined by

(g ∗ h)(t) :=

∫ ∞
−∞

g(x)h(t− x)dx, ∀ t ∈ R.
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Proposition 6.53. Let X, Y be two continuous independent random variables such that
P(X + Y ≤ t) is differentiable with respect to t ∈ R. Then

fX+Y (t) = (fX ∗ fY )(t), ∀ t ∈ R.

Proof. Let X, Y be independent continuous random variables. Then, changing variables,

P(X + Y ≤ t) =

∫
{(x,y)∈R2 : x+y≤t}

fX,Y (x, y)dxdy =

∫ x=∞

x=−∞

∫ y=t−x

y=−∞
fX(x)fY (y)dydx.

Then, since P(X + Y ≤ t) is differentiable with respect to t, we have by the Fundamental
Theorem of Calculus,

fX+Y (t) =
d

dt
P(X+Y ≤ t) =

∫ x=∞

x=−∞
fX(x)

d

dt

∫ y=t−x

y=−∞
fY (y)dydx =

∫ x=∞

x=−∞
fX(x)fY (t−x)dx.

�

Example 6.54. Let g(x) = h(x) := 1√
2π
e−x

2/2 for any x ∈ R. Then if t ∈ R, we complete

the square and change variables twice to get

(g ∗ h)(t) =
1

2π

∫ ∞
−∞

e−x
2/2e−(t−x)2/2dx =

1

2π

∫ ∞
−∞

e−x
2+xt−t2/2dx

=
1

2π

∫ ∞
−∞

e−(x−t/2)2+t2/4−t2/2dx = e−t
2/4 1

2π

∫ ∞
−∞

e−(x−t/2)2dx

= e−t
2/4 1

2π

∫ ∞
−∞

e−x
2

dx = e−t
2/4 1

2
√
π

1√
2π

∫ ∞
−∞

e−x
2/2dx = e−t

2/4 1

2
√
π
.

And (g ∗ h)(t) = e−t
2/4 1

2
√
π

for any t ∈ R.

Alternatively, we know that if X, Y are independent standard Gaussian random variables,
then X + Y is a Gaussian random variable with mean zero and variance σ2 = 2. That is,
X + Y has density e−t

2/4 1
2
√
π
, t ∈ R.

Exercise 6.55. Let X, Y, Z be independent and uniformly distributed on [0, 1]. Note that
fX is not a continuous function.

Using convolution, compute fX+Y . Draw fX+Y . Note that fX+Y is a continuous function,
but it is not differentiable at some points.

Using convolution, compute fX+Y+Z . Draw fX+Y+Z . Note that fX+Y+Z is a differentiable
function, but it does not have a second derivative at some points.

Make a conjecture about how many derivatives fX1+···+Xn has, where X1, . . . , Xn are in-
dependent and uniformly distributed on [0, 1]. You do not have to prove this conjecture.
The idea of this exercise is that convolution is a kind of average of functions. And the more
averaging you do, the more derivatives fX1+···+Xn has.

Exercise 6.56. Construct two random variables X, Y such that X and Y are each uniformly
distributed on [0, 1], and such that P(X + Y = 1) = 1.

Then construct two random variables W,Z such that W and Z are each uniformly dis-
tributed on [0, 1], and such that W + Z is uniformly distributed on [0, 2].

(Hint: there is a way to do each of the above problems with about one line of work. That
is, there is a way to solve each problem without working very hard.)
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7. Limit Theorems

We now start to build up the machinery that is used to prove the two “big theorems” of
probability: the Law of Large Numbers, and the Central Limit Theorem. We begin with
some useful inequalities.

7.1. Markov and Chebyshev Inequalities. Markov’s inequality says that a random vari-
able with finite expected value cannot be too large very often.

Proposition 7.1 (The Markov Inequality). Let X be a nonnegative random variable.
Then

P(X ≥ t) ≤ EX

t
, ∀ t > 0.

Proof. Let t > 0. Let Y be a random variable such that

Y =

{
t , if X ≥ t

0 , if X < t.

By definition of Y , we have Y ≤ X. Therefore, EY ≤ EX by Exercise 6.3. By the definition
of Y , EY = tP(X ≥ t). That is,

tP(X ≥ t) ≤ E(X).

�

Remark 7.2. A nearly identical proof shows that P(X > t) ≤ EX
t

, for all t > 0.

Markov’s inequality is commonly applied in the following ways.

Corollary 7.3. Let X be a random variable. Then

P(|X| ≥ t) ≤ E |X|
t

, ∀ t > 0.

More generally, if n is a positive integer, then

P(|X| ≥ t) ≤ E |X|n

tn
, ∀ t > 0.

Proof. The first assertion follows immediately by applying Proposition 7.1 to |X|. For the
second assertion, we use the first assertion to get

P(|X| ≥ t) = P(|X|n ≥ tn) ≤ E |X|n

tn
, ∀ t > 0.

�

The second inequality of Corollary 7.3 is fairly useful, since if many moments of |X| are
bounded, then P(|X| ≥ t) decays very rapidly.

Replacing X by X − µ and taking n = 2 in Corollary 7.3 gives:

Corollary 7.4 (Chebyshev Inequality). Let X be a random variable with mean µ. Then

P(|X − µ| ≥ t) ≤ var(X)

t2
, ∀ t > 0.

Or, replacing t by t
√

var(X),

P(|X − µ| ≥ t
√

var(X)) ≤ 1

t2
, ∀ t > 0.
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Exercise 7.5. Let X be a standard Gaussian random variable. Let t > 0 and let n be a
positive even integer. Show that

P(X > t) ≤ (n− 1)(n− 3) · · · (3)(1)

tn
.

That is, the function t 7→ P(X > t) decays faster than any monomial.

Exercise 7.6. Let X be a random variable. Let t > 0. Show that

P(|X| > t) ≤ EX4

t4
.

Exercise 7.7 (The Chernoff Bound). Let X be a random variable and let r > 0. Show
that, for any t > 0,

P(X > r) ≤ e−trMX(t).

Consequently, if X1, . . . , Xn are independent random variables with the same CDF, and if
r, t > 0,

P

(
1

n

n∑
i=1

Xi > r

)
≤ e−trn(MX1(t))

n.

For example, if X1, . . . , Xn are independent Bernoulli random variables with parameter 0 <
p < 1, and if r, t > 0,

P

(
X1 + · · ·+Xn

n
− p > r

)
≤ e−trn(e−tp[pet + (1− p)])n.

And if we choose t appropriately, then the quantity P
(

1
n
|
∑n

i=1(Xi − p)| > r
)

becomes ex-

ponentially small as either n or r become large. That is, 1
n

∑n
i=1Xi becomes very close to its

mean. Importantly, the Chernoff bound is much stronger than either Markov’s or Cheyshev’s
inequality, since they only respectively imply that

P

(∣∣∣∣X1 + · · ·+Xn

n
− p
∣∣∣∣ > r

)
≤ 2p(1− p)

r
, P

(∣∣∣∣X1 + · · ·+Xn

n
− p
∣∣∣∣ > r

)
≤ p(1− p)

nr2
.

Proposition 7.8 (Borel-Cantelli Lemma). Let A1, A2, . . . be events with
∑∞

n=1 P(An) <
∞. Let B := {

∑∞
n=1 1An = ∞}, so that B is the event that infinitely many of the events

A1, A2, . . . occur. Then P(B) = 0.

Proof. For any n ≥ 1, let 1An be a random variable which is 1 if An occurs, and 0 other-
wise. That is, 1An(ω) = 1 if ω ∈ An, and 1An(ω) = 0 if ω /∈ An. Then E(

∑∞
n=1 1An) =∑∞

n=1 P(An) <∞. So, by Markov’s inequality, Proposition 7.1,

P

(
∞∑
n=1

1An ≥ t

)
≤
∑∞

n=1 P(An)

t
, ∀ t > 0.

Letting t→∞ and using Continuity of the Probability Law, Proposition 6.5,

P(B) = P

(
∞∑
n=1

1An =∞

)
= lim

t→∞
P

(
∞∑
n=1

1An ≥ t

)
= 0.

�
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7.2. Weak Law of Large Numbers.

Definition 7.9. LetX1, X2, . . . be random variables. We say thatX1, X2, . . . are identically
distributed if X1, X2, . . . all have the same CDF. That is, P(Xi ≤ t) = P(Xj ≤ t) for all
t ∈ R and for all positive integers i, j.

Remark 7.10. If X1, X2, . . . are identically distributed random variables, then EXi = EXj

for all positive integers i, j.

We know intuitively that, if the results of independent experiments are averaged, then the
average will become close to the expected value of a single experiment. Indeed, one way to
intuitively think about expected value is as the average of many repeated experiments. The
Law of Large Numbers makes the previous statement rigorous. For now, we only prove a
weak version of this statement, though a stronger version will be proven later.

Theorem 7.11 (Weak Law of Large Numbers). Let X1, X2, . . . be independent iden-
tically distributed random variables. Assume that µ ∈ R and EX1 = µ. Then, for any
ε > 0,

lim
n→∞

P

( ∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ ε

)
= 0.

Proof. We make the additional assumption that var(X1) < ∞. Removing this assumption
relies on things outside of this class. From Corollary 6.27,

var

(
X1 + · · ·+Xn

n

)
=

1

n2

n∑
i=1

var(Xi) =
1

n
var(X1).

So, Chebyshev’s inequality implies that

P

( ∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ ε

)
≤ 1

n
ε−2var(X1).

Letting n→∞ concludes the proof. �

Remark 7.12. We saw in Exercise 7.7 that the Chernoff bound implies the Weak Law of
Large Numbers. However, the Chernoff bound requires the moment generating function to
exist and be close to 1 for small t > 0, which is a much stronger assumption than what we
assumed in Theorem 7.11.

Example 7.13. Let X1, X2, . . . be independent Bernoulli random variables with parameter
1/2. Let n := 104, ε := 10−2. Then

P

(∣∣∣∣X1 + · · ·+Xn

n
− 1

2

∣∣∣∣ ≥ 1

100

)
≤ 10−4104(1/4) =

1

4
.

7.3. Convergence in Probability.

Definition 7.14. We say that a sequence of random variables Y1, Y2, . . . converges in
probability to a random variable Y if: for all ε > 0

lim
n→∞

P(|Yn − Y | > ε) = 0.

More formally, if Ω is the sample space, then ∀ ε > 0, limn→∞P(ω ∈ Ω: |Yn(ω)− Y (ω)| >
ε) = 0.
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Remark 7.15. So, the Weak Law of Large numbers says: if X1, X2 are independent identi-
cally distributed random variables with µ := EX1 ∈ R, then the random variables X1+···+Xn

n
converge in probability to the constant µ.

Example 7.16. For any n ≥ 1, let Yn be a random variable such that P(Yn = n2) = 1/n,
and P(Yn = 0) = 1− 1/n. Then Y1, Y2, . . . converges in probability to 0. For any ε > 0,

P(|Yn − 0| > ε) = P(|Yn| > ε) = P(Yn = n2) = 1/n.

Therefore, limn→∞P(|Yn − 0| > ε) = 0.
However, note that convergence in probability does not imply convergence in expected

value, since limn→∞EYn = limn→∞ n =∞, whereas the expected value of 0 is just 0.

Proposition 7.17 (Uniqueness of the Limit). Suppose Y1, Y2, . . . converges in probability
to Y . Also, suppose Y1, Y2, . . . converges in probability to Z. Then P(Z 6= Y ) = 0.

Proof. From the triangle inequality, for any n ≥ 1,

|Z − Y | = |Z − Yn + Yn − Y | ≤ |Z − Yn|+ |Y − Yn| .
So, for any ε > 0, if |Z − Y | ≥ ε, then either |Z − Yn| ≥ ε/2 or |Y − Yn| ≥ ε/2. That is, for
any ε > 0 and for any n ≥ 1,

{ω ∈ Ω: |Z(ω)− Y (ω)| ≥ ε}
⊆ {ω ∈ Ω: |Z(ω)− Yn(ω)| ≥ ε/2} ∪ {ω ∈ Ω: |Y (ω)− Yn(ω)| ≥ ε/2}.

Therefore, for any ε > 0 and for any n ≥ 1,

P(|Z − Y | ≥ ε) ≤ P(|Z − Yn| ≥ ε/2) + P(|Y − Yn| ≥ ε/2).

The left side does not depend on n. So, letting n→∞, we get P(|Z − Y | ≥ ε) = 0, for all
ε > 0. Now,

{Z 6= Y } ⊆ ∪∞t=1{|Z − Y | ≥ 1/t}.
Therefore, P(Z 6= Y ) ≤

∑∞
t=1 P(|Z − Y | ≥ 1/t) = 0. So, P(Z 6= Y ) = 0. �

Exercise 7.18. Let X1, X2, . . . be independent random variables, each with exponential
distribution with parameter λ = 1. For any n ≥ 1, let Yn := max(X1, . . . , Xn). Let
0 < a < 1 < b. Show that P(Yn ≤ a log n) → 0 as n → ∞, and P(Yn ≤ b log n) → 1 as
n→∞. Conclude that Yn/ log n converges to 1 in probability as n→∞.

Exercise 7.19. We say that random variables X1, X2, . . . converge to a random variable X
in L2 if

lim
n→∞

E |Xn −X|2 = 0.

Show that, if X1, X2, . . . converge to X in L2, then X1, X2, . . . converges to X in probability.
Is the converse true? Prove your assertion.

Exercise 7.20. Let X1, X2, . . . be independent, identically distributed random variables
such that E |X1| <∞ and var(X1) <∞. For any n ≥ 1, define

Yn :=
1

n

n∑
i=1

X2
i .

Show that Y1, Y2, . . . converges in probability. Express the limit in terms of EX1 and var(X1).
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7.4. Central Limit Theorem. The following is a stronger version of Theorem 6.38.

Theorem 7.21 (Lévy Continuity Theorem). Let X1, X2, . . . be random variables and let
X be a random variable. For any fixed t ∈ R, assume that limn→∞ φXn(t) = φX(t). Assume
also that φX(t) is continuous at t = 0. Then for any fixed t ∈ R such that P(X ≤ t) is
continuous, we have limn→∞P(Xn ≤ t) = P(X ≤ t).

In particular, if X, Y are random variables with φX(t) = φY (t) for all t ∈ R, and if φX(t)
is continuous at t = 0, then X, Y are identically distributed.

We are finally able to prove the generalization of the De Moivre Laplace Theorem, Theorem
6.1, to arbitrary random variables.

Theorem 7.22 (Central Limit Theorem). Let X1, X2, . . . be independent, identically
distributed random variables. Let Z be a standard Gaussian random variable. Let µ, σ ∈ R
with σ > 0. Assume that EX1 = µ and var(X1) = σ2. Then for any t ∈ R,

lim
n→∞

P

(
X1 + · · ·+Xn − nµ

σ
√
n

≤ t

)
=

∫ t

−∞
e−x

2/2 dx√
2π

= P(Z ≤ t).

Remark 7.23. The random variable X1+···+Xn−µn
σ
√
n

has mean zero and variance 1, just like

the standard Gaussian Z.

Exercise 7.24. Let f, g, h : R → R. We use the notation f(t) = o(g(t)) ∀ t ∈ R to denote

limt→0

∣∣f(t)
g(t)

∣∣ = 0. For example, if f(t) = t3 ∀ t ∈ R, then f(t) = o(t2), since limt→0 |f(t)
t2
| =

limt→0 |t| = 0. Show: (i) if f(t) = o(g(t)) and if h(t) = o(g(t)), then (f + h)(t) = o(g(t)).
(ii) If c is any nonzero constant, then o(cg(t)) = o(g(t)). (iii) limt→0 g(t)o(1/g(t)) = 0. (iv)
limt→0 o(g(t))/g(t) = 0. (v) o(g(t) + o(g(t))) = o(g(t)).

Proof. For any j ≥ 1, let Yj := (Xj − µ)/σ. Then Y1, Y2, . . . are independent and identically
distributed, EYj = 0 and EY 2

j = 1, ∀ j ≥ 1. We will show that limn→∞P(Y1+···+Yn√
n
≤ t) =

P(Z ≤ t), ∀ t ∈ R. From Theorem 7.21 and Proposition 6.48, it suffices to show:

lim
n→∞

Ee
it
Y1+···+Yn√

n = EeitZ = e−t
2/2, ∀ t ∈ R.

From Proposition 6.47,

Ee
it
Y1+···+Yn√

n =
n∏
j=1

EeitYj/
√
n = (EeitY1/

√
n)n.

We make the additional assumption that E |X1|3 < ∞, so that E |Y1|3 < ∞ and we can
apply Exercise 6.46. (As remarked in Exercise 6.46, this assumption is not needed for the
conclusion of Exercise 6.46 to hold.) By Exercise 6.46, and using EY1 = 0 and EY 2

1 = 1,

EeitY1/
√
n = 1 +

it√
n

EY1 −
t2

2n
EY 2

1 + o(t2/n) = 1− t2

2n
+ o

(
t2

n

)
.

Therefore,

Ee
it
Y1+···+Yn√

n =

(
1− t2

2n
+ o

(
t2

n

))n
.
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Taking logarithms, using log(1 + x) = x+ o(x) for −1 < x < 1, and using Exercise 7.24,

log Ee
it
Y1+···+Yn√

n = n log

(
1− t2

2n
+ o

(
t2

n

))
= −t

2

2
+ n · o

(
t2

n

)
.

Letting n→∞ and using Exercise 7.24(iii) completes the proof. �

Definition 7.25 (Convergence in Distribution). Let X,X1, X2, . . . be random variables.
We say that X1, X2, . . . converge in distribution to X if, for any t ∈ R such that the CDF
of X is continuous at t,

lim
n→∞

P(Xn ≤ t) = P(X ≤ t).

So, the Central Limit Theorem, Theorem 7.22, says: if X1, X2, . . . are independent, iden-
tically distributed random variables with µ := EX1 and σ2 := Var(X1) with σ > 0, then
the random variables X1+···+Xn−nµ

σ
√
n

converge in distribution to the standard Gaussian random

variable. This fact is rather remarkable, since it holds no matter what distribution X1 has!
In this sense, the Gaussian random variable is “universal.”

Exercise 7.26. This exercise demonstrates that geometry in high dimensions is different
than geometry in low dimensions.

Let x = (x1, . . . , xn) ∈ Rn. Let ‖x‖ :=
√
x2

1 + · · ·+ x2
n. Let ε > 0. Show that for all

sufficiently large n, “most” of the cube [−1, 1]n is contained in the annulus

A := {x ∈ Rn : (1− ε)
√
n/3 ≤ ‖x‖ ≤ (1 + ε)

√
n/3}.

That is, if X1, . . . , Xn are each independent and identically distributed in [−1, 1], then for n
sufficiently large

P((X1, . . . , Xn) ∈ A) ≥ 1− ε.
(Hint: apply the weak law of large numbers to X2

1 , . . . , X
2
n.)

Exercise 7.27 (Confidence Intervals). Among 625 members of a bank chosen uniformly
at random among all bank members, it was found that 25 had a savings account. Give
an interval of the form [a, b] where 0 ≤ a, b ≤ 625 are integers, such that with about 95%
certainty, if we sample 625 bank members independently and uniformly at random (from a
very large bank membership), then the number of these people with savings accounts lies in
the interval [a, b]. (Hint: if Y is a standard Gaussian random variable, then P(−2 ≤ Y ≤
2) ≈ .95.)

Exercise 7.28 (Hypothesis Testing). Suppose we run a casino, and we want to test
whether or not a particular roulette wheel is biased. Let p be the probability that red results
from one spin of the roulette wheel. Using statistical terminology, “p = 18/38” is the null
hypothesis, and “p 6= 18/38” is the alternative hypothesis. (On a standard roulette wheel,
18 of the 38 spaces are red.) For any i ≥ 1, let Xi = 1 if the ith spin is red, and let Xi = 0
otherwise.

Let µ := EX1 and let σ :=
√

var(X1). If the null hypothesis is true, and if Y is a standard
Gaussian random variable

lim
n→∞

P

( ∣∣∣∣X1 + · · ·+Xn − nµ
σ
√
n

∣∣∣∣ ≥ 2

)
= P(|Y | ≥ 2) ≈ .05.

To test the null hypothesis, we spin the wheel n times. In our test, we reject the null
hypothesis if |X1 + · · ·+Xn − nµ| > 2σ

√
n. Rejecting the null hypothesis when it is true is
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called a type I error. In this test, we set the type I error percentage to be 5%. (The type I
error percentage is closely related to the p-value.)

Suppose we spin the wheel n = 3800 times and we get red 1868 times. Is the wheel biased?
That is, can we reject the null hypothesis with around 95% certainty?

7.5. Strong Law of Large Numbers. We recall Example 7.16. For any n ≥ 1, let Yn be
a random variable such that P(Yn = n2) = 1/n, and P(Yn = 0) = 1 − 1/n. In Example
7.16, we showed that Y1, Y2, . . . converges in probability to X := 0. In fact, these random
variables also converge in distribution to 0. Let t ∈ R. Then by the definition of Y1, Y2, . . .,

lim
n→∞

P(Xn ≤ t) =

{
limn→∞(1− 1/n) , if t ≥ 0

0 , if t < 0
=

{
1 , if t ≥ 0

0 , if t < 0
= P(X ≤ t).

In fact, convergence in probability always implies convergence in distribution, but the con-
verse is false.

Exercise 7.29. Suppose random variables X1, X2, . . . converge in probability to a random
variable X. Prove that X1, X2, . . . converge in distribution to X.

Then, show that the converse is false.

By Exercise 7.29, we see that the convergence guaranteed by the Central Limit Theorem
is weaker than convergence in probability. We might hope to upgrade the Central Limit
Theorem to get the stronger convergence in probability, but unfortunately this is impossible.

Exercise 7.30. Let X1, X2, . . . be independent identically distributed random variables with
P(X1 = 1) = P(X1 = −1) = 1/2. For any n ≥ 1, define

Sn :=
X1 + · · ·+Xn√

n
.

The Central Limit Theorem says that Sn converges in distribution to a standard Gaussian
random variable. We show that Sn does not converge in probability to any random variable.
The intuition here is that if Sn did converge in probability to a random variable Z, then

when n is large, Sn is close to Z, Yn :=
√

2S2n−Sn√
2−1

is close to Z, but Sn and Yn are independent.

And this cannot happen.
Proceed as follows. Assume that Sn converges in probability to Z.

• Let ε > 0. For n very large (depending on ε), we have P(|Sn − Z| > ε) < ε and
P(|Yn − Z| > ε) < ε.
• Show that P(Sn > 0, Yn > 0) is around 1/4, using independence and the Central

Limit Theorem.
• From the first item, show P(Sn > 0|Z > ε) > 1 − ε, P(Yn > 0|Z > ε) > 1 − ε, so

P(Sn > 0, Yn > 0|Z > ε) > 1− 2ε.
• Without loss of generality, for ε small, we have P(Z > ε) > 4/9.
• By conditioning on Z > ε, show that P(Sn > 0, Yn > 0) is at least 3/8, when n is

large.

The Weak Law of Large Numbers, Theorem 7.11, showed that the average X1+···+Xn
n

of
independent identically distributed random variables with finite mean converges to the mean
in probability. We can upgrade this convergence in probability to a stronger notion of
convergence, which we now define.
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Definition 7.31 (Almost Sure Convergence). We say that random variables X1, X2, . . .
converge almost surely (or with probability one) to a random variable X if

P( lim
n→∞

Xn = X) = 1.

More rigorously, if Ω is the sample space, then P({ω ∈ Ω: limn→∞Xn(ω) = X(ω)}) = 1

Exercise 7.32. Let X1, X2, . . . be random variables that converge almost surely to a random
variable X. That is,

P( lim
n→∞

Xn = X) = 1.

Show that X1, X2, . . . converges in probability to X in the following way.

• For any ε > 0 and for any positive integer n, let

An,ε :=
∞⋃
m=n

{ω ∈ Ω: |Xm(ω)−X(ω)| > ε}.

Show that An,ε ⊇ An+1,ε ⊇ An+2,ε ⊇ · · · .
• Show that P(∩∞n=1An,ε) = 0.
• Using Continuity of the Probability Law, deduce that limn→∞P(An,ε) = 0.

Now, show that the converse is false. That is, find random variables X1, X2, . . . that
converge in probability to X, but where X1, X2, . . . do not converge to X almost surely.

Remark 7.33. The following table summarizes our different notions of convergence of ran-
dom variables. That is, the following table summarizes the implications of Exercises 7.19,
7.29 and 7.32.

Almost sure
convergence

7.32

"*
Convergence
in probability

7.29 +3 Convergence
in distribution

Convergence
in L2

7.19

4<

Remark 7.34. Almost sure convergence does not imply convergence in L2, and convergence
in L2 does not imply almost sure convergence.

To see the first, assertion, recall the random variables Y1, Y2, . . . constructed in Example
7.16. Then Y1, Y2, . . . converges almost surely to 0, since limn→∞ Yn(t) = 0 for all t ∈ (0, 1],
so P(limn→∞ Yn = 0) = P((0, 1]) = 1. On the other hand, Y1, Y2, . . . does not converge in L2

to 0, since E |Yn − 0|2 = EY 2
n = n4/n = n3, so limn→∞E |Yn − 0|2 6= 0.

We now show that convergence in L2 does not imply almost sure convergence. Let P be
the uniform probability law on [1, 2]. For any positive integer n, define Xn : [1, 2] → R as
follows. Let j = j(n) be the nonnegative integer such that 2j ≤ n < 2j+1. Let Xn(t) := 1 if
t ∈ [n2−j, (n+ 1)2−j], and let Xn(t) := 0 otherwise. We claim that X1, X2, . . . converges to 0
in L2, but X1, X2, . . . does not converge almost surely to 0. Note that E |Xn − 0|2 = EX2

n =
2−j, and as n → ∞, j → ∞, so that limn→∞E |Xn − 0|2 = 0. However, for any t ∈ [0, 1],
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there exist infinitely many values of n such that Xn(t) = 1 and infinitely many values of n
such that Xn(t) = 0. Therefore, limn→∞Xn(t) does not exist, for every t ∈ [0, 1]. That is,
X1, X2, . . . does not converge almost surely to any random variable.

Exercise 7.35. Using the Central Limit Theorem, prove the Weak Law of Large Numbers.

Theorem 7.36 (Strong Law of Large Numbers). Let X1, X2, . . . be a sequence of in-
dependent identically distributed random variables. Let µ ∈ R. Assume that µ = EX1.
Then

P

(
lim
n→∞

X1 + · · ·+Xn

n
= µ

)
= 1.

Proof. We prove the Theorem under the stronger assumption that EX4
1 <∞. For any j ≥ 1,

let Yj := Xj−µ. We are required to show P
(
limn→∞

Y1+···+Yn
n

= 0
)

= 1. Note that Y1, Y2, . . .
are independent identically distributed random variables with EY1 = 0 and EY 4

1 < ∞. We
compute

E(Y1 + · · ·+ Yn)4 =
∑

1≤i,j,k,`≤n

EYiYjYkY`.

By independence, terms with i 6= j = k = ` vanish, since they become EYiYjYkY` =
EYiEY

3
j = 0. Terms with i, j, k, ` distinct also vanish, since EYiYjYkY` = EYiEYjEYkEY` =

0. The remaining nonvanishing terms are i = j = k = ` and the six permutations of
i = j 6= k = `. That is,

E(Y1 + · · ·+ Yn)4 = nEY 4
1 + 6[n(n− 1)/2](EY 2

1 )2.

By Jensen’s Inequality, Exercise 4.23,

E(Y1 + · · ·+ Yn)4 ≤ nEY 4
1 + 3n(n− 1)EY 4

1 ≤ 4n2EY 4
1 . (∗)

By Markov’s Inequality, Proposition 7.1, for any t > 0,

P
(∣∣∣Y1 + · · ·+ Yn

n

∣∣∣ > t
)
≤ E(Y1 + · · ·+ Yn)4

t4n4

(∗)
≤ 4EY 4

1

t4n2
.

So
∑∞

n=1 P(
∣∣Y1+···+Yn

n

∣∣ > t) <∞ and by Borel-Cantelli, Proposition 7.8, ∀ t > 0,

P
(∣∣∣Y1 + · · ·+ Yn

n

∣∣∣ > t for infinitely manyn ≥ 1
)

= 0.

Since this holds for any t > 0, we conclude that Y1+···+Yn
n

converges almost surely to 0. �

Remark 7.37. The Strong Law of Large Numbers implies the Weak Law of Large Numbers
by Exercise 7.32.

Exercise 7.38 (Renewal Theory). Let t1, t2, . . . be positive, independent identically dis-
tributed random variables. Let µ ∈ R. Assume Et1 = µ. For any positive integer j, we
interpret tj as the lifetime of the jth lightbulb (before burning out, at which point it is re-
placed by the (j + 1)st lightbulb). For any n ≥ 1, let Tn := t1 + · · ·+ tn be the total lifetime
of the first n lightbulbs. For any positive integer t, let Nt := min{n ≥ 1: Tn ≥ t} be the
number of lightbulbs that have been used up until time t. Show that Nt/t converges almost
surely to 1/µ as t → ∞. (Hint: if c, t are positive integers, then {Nt ≤ ct} = {Tct ≥ t}.
Apply the Strong Law to Tct.)
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Exercise 7.39 (Playing Monopoly Forever). Let t1, t2, . . . be independent random vari-
ables, all of which are uniform on {1, 2, 3, 4, 5, 6}. For any positive integer j, we think of tj
as the result of rolling a single fair six-sided die. For any n ≥ 1, let Tn = t1 + · · ·+ tn be the
total number of spaces that have been moved after the nth roll. (We think of each roll as
the amount of moves forward of a game piece on a very large Monopoly game board.) For
any positive integer t, let Nt := min{n ≥ 1: Tn ≥ t} be the number of rolls needed to get t
spaces away from the start. Using Exercise 7.38, show that Nt/t converges almost surely to
2/7 as t→∞.

Exercise 7.40 (Random Numbers are Normal). Let X be a uniformly distributed
random variable on (0, 1). Let X1 be the first digit in the decimal expansion of X. Let X2

be the second digit in the decimal expansion of X. And so on.

• Show that the random variables X1, X2, . . . are uniform on {0, 1, 2, . . . , 9} and inde-
pendent.
• Fix m ∈ {0, 1, 2, . . . , 9}. Using the Strong Law of Large Numbers, show that with

probability one, the fraction of appearances of the number m in the first n digits of
X converges to 1/10 as n→∞.

(Optional): Show that for any ordered finite set of digits of length k, the fraction of appear-
ances of this set of digits in the first n digits of X converges to 10−k as n→∞. (You already
proved the case k = 1 above.) That is, a randomly chosen number in (0, 1) is normal. On
the other hand, if we just pick some number such that

√
2 − 1, then it may not be easy to

say whether or not that number is normal.
(As an optional exercise, try to explicitly write down a normal number. This may not be

so easy to do, even though a random number in (0, 1) satisfies this property!)

Exercise 7.41. Let X1, X2, . . . be random variables with mean zero and variance one. The
Strong Law of Large Numbers says that 1

n
(X1 + · · · + Xn) converges almost surely to zero.

The Central Limit Theorem says that 1√
n
(X1 + · · · + Xn) converges in distribution to a

standard Gaussian random variable. But what happens if we divide by some other power of
n? This Exercise gives a partial answer to this question.

Let ε > 0. Show that
X1 + · · ·+Xn

n1/2(log n)(1/2)+ε

converges to zero almost surely as n → ∞. (Hint: Re-do the proof of the Strong Law of
Large Numbers, but divide by n1/2(log n)(1/2)+ε instead of n.)
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8. Appendix: Notation

Let n,m be a positive integers. Let A,B be sets contained in a universal set Ω.

R denotes the set of real numbers

∈ means “is an element of.” For example, 2 ∈ R is read as “2 is an element of R.”

∀ means “for all”

∃ means “there exists”

Rn = {(x1, x2, . . . , xn) : xi ∈ R ∀ 1 ≤ i ≤ n}
f : A→ B means f is a function with domain A and range B. For example,

f : R2 → R means that f is a function with domain R2 and range R
∅ denotes the empty set

A ⊆ B means ∀ a ∈ A, we have a ∈ B, so A is contained in B

ArB := {a ∈ A : a /∈ B}
Ac := Ω r A, the complement of A in Ω

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B

P denotes a probability law on Ω

P(A|B) denotes the conditional probability of A, given B.

Let a1, . . . , an be real numbers. Let n be a positive integer.
n∑
i=1

ai = a1 + a2 + · · ·+ an−1 + an.

n∏
i=1

ai = a1 · a2 · · · an−1 · an.

min(a1, a2) denotes the minimum of a1 and a2.

max(a1, a2) denotes the maximum of a1 and a2.

Let X be a discrete random variable on a sample space Ω, so that X : Ω → R. Let P be
a probability law on Ω. Let x ∈ R. Let A ⊆ Ω. Let Y be another discrete random variable

pX(x) = P(X = x) = P({ω ∈ Ω: X(ω) = x}), ∀x ∈ R
the Probability Mass Function (PMF) of X

E(X) denotes the expected value of X

var(X) = E(X − E(X))2, the variance of X

σX =
√

var(X), the standard deviation of X

X|A denotes the random variable X conditioned on the event A.

E(X|A) denotes the expected value of X conditioned on the event A.
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1A : Ω→ {0, 1}, denotes the indicator function of A, so that

1A(ω) =

{
1 , if ω ∈ A
0 , otherwise.

Let X, Y be a continuous random variables on a sample space Ω, so that X, Y : Ω → R.
Let −∞ ≤ a ≤ b ≤ ∞, −∞ ≤ c ≤ d ≤ ∞. Let P be a probability law on Ω. Let A ⊆ Ω.

fX : R→ [0,∞) denotes the Probability Density Function (PDF) of X, so

P(a ≤ X ≤ b) =

∫ b

a

fX(x)dx

fX,Y : R→ [0,∞) denotes the joint PDF of X and Y , so

P(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ d

c

∫ b

a

fX,Y (x, y)dxdy

fX|A denotes the Conditional PDF of X given A

E(X|A) denotes the expected value of X conditioned on the event A.

Let X be a random variable on a sample space Ω, so that X : Ω → R. Let P be a
probability law on Ω. Let x, t ∈ R. Let i :=

√
−1.

FX(x) = P(X ≤ x) = P({ω ∈ Ω: X(ω) ≤ x})
the Cumulative Distibution Function (CDF) of X.

MX(t) = EetX denotes the Moment Generating Function of X at t ∈ R
φX(t) = EeitX denotes the Characteristic Function (or Fourier Transform) of X at t ∈ R

Let g, h : Z→ R. Let t ∈ Z.

(g ∗ h)(t) =
∑
j∈Z

g(j)h(t− j) denotes the convolution of g and h at t ∈ Z

Let g, h : R→ R. Let t ∈ R.

(g ∗ h)(t) =

∫ ∞
−∞

g(x)h(t− x)dx denotes the convolution of g and h at t ∈ R

Let f, g : R→ R. We use the notation f(t) = o(g(t)), ∀ t ∈ R to denote limt→0

∣∣f(t)
g(t)

∣∣ = 0.
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