407 Midterm 2 Version 2 Solutions¹

1. Question 1

TRUE/FALSE

(a) Let X be a continuous random variable with probability density function f_X . Then $f_X(x) \leq 1$ for all $x \in \mathbf{R}$.

FALSE. A density function can have value larger than 1. For example, if $f_X(x) = 2$ for any $x \in [0, 1/2]$ and $f_X(x) = 0$ otherwise, then f_X is a PDF.

(b) When X is a continuous random variable, there is a continuous function $f_X \colon \mathbf{R} \to [0, \infty)$ such that, for any $-\infty \le a \le b \le \infty$,

$$\mathbf{P}(a \le X \le b) = \int_a^b f_X(x) dx$$

FALSE. f_X need not be continuous. When X is uniformly distributed in [0, 1], the density f_X is discontinuous at x = 0 and at x = 1.

(c) Let X be a continuous random variable with PDF $f_X : \mathbf{R} \to [0, \infty)$. Then, for any $t \in \mathbf{R}$,

$$\frac{d}{dt}\mathbf{P}(X \le t) = f_X(t).$$

FALSE. When X is uniformly distributed in [0, 1], the density f_X is discontinuous at x = 0 and at x = 1, and $\mathbf{P}(X \le t)$ is not differentiable at t = 0, so that $\frac{d}{dt}\mathbf{P}(X \le t)$ does not exist when t = 0.

(d) Let X and Y be discrete random variables. Then

$$\mathbf{E}(XY) = (\mathbf{E}X)(\mathbf{E}Y).$$

FALSE. Let X be a Bernoulli random variable with parameter 0 , and let <math>Y = X, then $\mathbf{E}XY = \mathbf{E}X^2 = \mathbf{E}X = p$ while $\mathbf{E}X\mathbf{E}Y = (\mathbf{E}X)^2 = p^2$ and $p \neq p^2$.

(e) Let A_1, \ldots, A_n be disjoint events in a sample space Ω . That is, $A_i \cap A_j = \emptyset$ whenever $i, j \in \{1, \ldots, n\}$ satisfy $i \neq j$. Let **P** be a probability law on Ω . Assume $\mathbf{P}(A_i) > 0$ for all $1 \leq i \leq n$. Let $X \colon \Omega \to \mathbf{R}$ be a discrete random variable. Then

$$\mathbf{E}X = \sum_{i=1}^{n} \mathbf{P}(A_i)\mathbf{E}(X|A_i).$$

FALSE. Let $\Omega = \{1, 2, 3\}$, let **P** be uniform on Ω , let $A_1 = \{1\}$ and let $A_2 = \{2\}$. Let X so that $X(\omega) = \omega$ for all $\omega \in \Omega$. Then $E(X|A_1) = 1$ and $\mathbf{E}(X|A_2) = 2$, whereas $\mathbf{E}X = (3+2+1)/3 = 2$, but

$$\sum_{i=1}^{n} \mathbf{P}(A_i) \mathbf{E}(X|A_i) = (1/3)(1+2) = 1 \neq 2 = \mathbf{E}X.$$

¹October 24, 2020, © 2020 Steven Heilman, All Rights Reserved.

2. Question 2

Let X be a discrete random variable such that

$$P(X = 1) = P(X = 2) = P(X = 3) = 1/6$$
, and $P(X = -1) = P(X = -2) = P(X = -3) = 1/6$.

Compute the following quantities: $\mathbf{E}X$, $\mathbf{E}(X^2)$, $\mathrm{var}(X)$.

Solution. By definition of X and $\mathbf{E}X$,

$$\mathbf{E}X = \sum_{x \in \mathbf{R}} x p_X(x) = (1/6)(3 + 2 + 1 - 1 - 2 - 3) = 0.$$

$$\mathbf{E}X^2 = \sum_{x \in \mathbf{R}} x^2 p_X(x) = (1/6)(3^2 + 2^2 + 1^2 + (-1)^2 + (-2)^2 + (-3)^2) = 28/6 = 14/3.$$

Lastly,

$$var(X) = \mathbf{E}X^2 - (\mathbf{E}X)^2 = 14/3 - 0 = 14/3.$$

3. Question 3

Let X be an exponential random variable with parameter $\lambda = 1$, so that X has PDF

$$f_X(x) = e^{-x}, \quad \forall x \ge 0,$$

and $f_X(x) = 0$ for all x < 0.

Compute the following quantities: $\mathbf{E}X$, $\mathbf{P}(X > 1)$.

Solution. By definition of $\mathbf{E}X$,

$$\mathbf{E}X = \int_{\mathbf{R}} x f_X(x) dx = \int_0^\infty x e^{-x} dx = \lim_{N \to \infty} \int_0^N x [-(d/dx)e^{-x}] dx$$
$$= \lim_{N \to \infty} [-xe^{-x}]_{x=0}^{x=N} + \int_0^N e^{-x} dx = \lim_{N \to \infty} (-Ne^{-N}) + [1 - e^{-N}] = 1.$$

$$\mathbf{P}(X > 1) = \int_{1}^{\infty} e^{-x} dx = \lim_{N \to \infty} \int_{1}^{N} e^{-x} dx = \lim_{N \to \infty} e^{-1} - e^{-N} = e^{-1}.$$

4. Question 4

Let X and Y be discrete random variables such that $|X| \leq 10$ and $|Y| \leq 10$. Recall that $cov(X,Y) = \mathbf{E}[(X - \mathbf{E}X)(Y - \mathbf{E}Y)]$.

Prove or disprove the statement below. (In the case that you disprove the statement, it suffices to find a counterexample and explain your reasoning.)

Statement: If cov(X, Y) = 0, then X and Y are independent.

Solution. This statement is false. Let X be uniformly distributed in $\{-1,0,1\}$ and let Y = |X|. Then $\mathbf{E}X = (1/3)(1+0+-1) = 0$, and

$$\mathbf{E}XY = \mathbf{E}X |X| = (1/3)(1 \cdot 1) + (1/3)(0) + (1/3)(-1 \cdot 1) = 0.$$

$$\mathbf{E}X\mathbf{E}Y = 0.$$

So, $cov(X, Y) = \mathbf{E}XY - \mathbf{E}X\mathbf{E}Y = 0$. However, X and Y are not independent, since

$$P(X = 1, Y = 1) = P(X = 1) = 1/3 \neq (1/3)(2/3) = P(X = 1)P(Y = 1).$$

5. Question 5

Let X be a standard Gaussian random variable, so that X has PDF

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, \quad \forall x \in \mathbf{R}.$$

Let Z be the random variable defined by

$$Z = X^4$$
.

What is the PDF of Z? (As usual, justify your answer.) Solution. Let t>0. Then

$$\mathbf{P}(Z \le t) = \mathbf{P}(X^4 \le t) = \mathbf{P}(X \le t^{1/4}) = \int_{-t^{1/4}}^{t^{1/4}} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = 2 \int_0^{t^{1/4}} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx.$$

So, by the Chain Rule and the Fundamental Theorem of Calculus,

$$f_Z(t) = \frac{d}{dt} \mathbf{P}(Z \le t) = 2(1/4)t^{-3/4} \frac{1}{\sqrt{2\pi}} e^{-(t^{1/4})^2/2} = (1/2)t^{-3/4} \frac{1}{\sqrt{2\pi}} e^{-t^{1/2}/2}.$$