
407 Final Solutions1

1. Question 1

Let X and Y be independent random variables.
Suppose X is uniformly distributed in the integers {1, 2, 3, . . . , 100}.
Suppose Y is uniformly distributed in the integers {−100,−99,−98, . . . ,−1}.
What is the PMF of X + Y ? Simplify your answer to the best of your ability.
Solution. We condition on the value of X. We have

P(X + Y = k) =
100∑
j=1

P(X + Y = k |X = j)P(X = j) =
1

100

100∑
j=1

P(Y = k − j |X = j)

=
1

100

100∑
j=1

P(Y = k − j)

The last equality used the independence of X and Y . So,

P(X+Y = k) =
1

100

k∑
j=1

P(Y = k−j) =
1

100

k∑
j=1

1

100
1−100≤k−j≤−1 =

1

10000

k∑
j=1

11+k≤j≤100+k. (∗)

When k is an integer with −99 ≤ k ≤ −1, we have

P(X + Y = k) =
1

10000

100+k∑
j=1

=
100 + k

10000
.

When k is an integer with 0 ≤ k ≤ 99, we have by (∗)

P(X + Y = k) =
1

10000

100∑
j=k+1

=
100− k
10000

.

In summary, for any −99 ≤ k ≤ 99, we have

P(X + Y = k) =
100− |k|

10000
,

and P(X + Y = k) = 0 for any other integer k.

2. Question 2

Give an example of the joint density of two continuous random variables X and Y such
that: X and Y are NOT independent.

Prove that the X and Y you find are not independent.
Solution. Many examples work here, e.g. Example 5.49 in the notes: Suppose X and Y

have a joint PDF given by fX,Y (x, y) = 1
π

if x2 + y2 ≤ 1, and fX,Y (x, y) = 0 otherwise. Note:∫∫
x2+y2≤1

fX,Y (x, y)dxdy =
1

π
π = 1,
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so fX,Y is a joint PDF. Let x, y ∈ R with x2 + y2 ≤ 1. Using the definition of marginal,

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy =

∫ y=
√
1−x2

y=−
√
1−x2

1

π
dy =

2
√

1− x2
π

.

fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx =

∫ x=
√

1−y2

x=−
√

1−y2

1

π
dx =

2
√

1− y2
π

.

So, if x2 + y2 ≤ 1, then

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

1/π

2
√

1− y2/π
=

1

2
√

1− y2
.

This function is not equal to fX(x) on the set x2 + y2 ≤ 1. Since the function fX|Y (x|y) is
not equal to the function fX(x) on the set x2 + y2 ≤ 1, we conclude that X and Y are not
independent.

3. Question 3

Let X and Y be independent random variables. Suppose X is uniformly distributed in
[0, 1]. Suppose Y is an exponential random variable with parameter 1. That is, Y has density

fY (y) =

{
0 , if y < 0

e−y , if y ≥ 0.

Let Z = max
(
X(1−X) , Y

)
be the maximum of X(1−X) and Y .

Find fZ , the density function of Z.
Simplify your answer to the best of your ability.
Solution. Using the quadratic formula, the function f(t) = t(1 − t) takes the value c ∈

[0, 1/4] when x = (1/2)± (1/2)
√

1− 4c. So, if x ∈ [0, 1], we have

P(X(1−X) ≤ x) = P(X ∈ [0, 1/2− (1/2)
√

1− 4x] or X ∈ [1/2 + (1/2)
√

1− 4x, 1])

= (1/2)− (1/2)
√

1− 4x+ 1− (1/2 + (1/2)
√

1− 4x) = 1−
√

1− 4x.

Now, using the definition of the maximum, and then using independence of X and Y ,

P(Z ≤ t) = P(max(X(1−X), Y ) ≤ t) = P(X(1−X) ≤ t, Y ≤ t) = P(X(1−X) ≤ t)P(Y ≤ t),

for all t ∈ R. Since X ∈ [0, 1], X(1−X) ∈ [0, 1]. Also Y ≥ 0. So P(Z ≤ t) = 0 for all t < 0.
When 0 ≤ t ≤ 1/4, we have

P(Z ≤ t) = (1−
√

1− 4t)(1− e−t), ∀ 0 ≤ t ≤ 1/4

(Since maxx∈[0,1] x(1− x) = 1/4 (with the maximum occurring at x = 1/2), we have X(1−
X) ≤ 1/4.) When t > 1/4, P(X(1−X) ≤ t) = 1, so

P(Z ≤ t) = (1− e−t), ∀ t > 1/4.
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So, differentiating in each case to get the density,

fZ(t) =


d
dt

(0) , if t < 0,
d
dt

[(1−
√

1− 4t)(1− e−t)] , if 0 ≤ t ≤ 1/4,
d
dt

(1− e−t) , if t > 1/4.

=


0 , if t < 0,
1
2
(1− 4t)−1/2(1− e−t) + (1−

√
1− 4t)e−t , if 0 ≤ t ≤ 1/4,

e−t , if t > 1/4.

4. Question 4

• Find a random variable X such that

P(|X| ≥ 3) =
E |X|

3
.

Prove that X satisfies this property. (Hint: can X take only one value?)
• Find a random variable Y such that

P(|Y − EY | ≥ 2) =
var(Y )

4
.

Prove that Y satisfies this property.

Solution. Suppose X = 3 with probability one, i.e. P(X = 3) = 1. Then EX = E(3) = 3
and P(|X| ≥ 3) = P(X = 3) = 1. So, both sides of the desired equality are one.

The same example works for the second part. Let Y = X = 3. Then EY = 3, EY 2 =
E32 = 9, so var(Y ) = EY 2 − (EY )2 = 9 − 9 = 0. Meanwhile, since P(Y = 3) = 1,
P(|Y − EY | ≥ 2) = P(|Y − 3| ≥ 2) = P(Y ≥ 5 or Y ≤ 1) = 0. So, both sides of the desired
equality are zero.

For another example for the second part, suppose Y is uniformly distributed in {−2, 2}.
Then EY = 0 and var(Y ) = 4(1/2) + 4(1/2) = 4. Also, P(|Y − EY | ≥ 2) = P(|Y | = 2) = 1,
so both sides of the desired equality are one.

5. Question 5

Let X and Y be random variables. Let t be a constant. Suppose these random variables
have joint density function

fX,Y (x, y) =

{
tx2y2 , if − 1 ≤ x ≤ 1 and 0 ≤ y ≤ 1,

0 , otherwise.

• Find the constant t such that fX,Y is a joint probability density function.
• Let fY be the marginal density of Y . Show that its third derivative satisfies

d3

dy3
fY (y) = 0, ∀ y ∈ (0, 1).

• Write a formula that computes P(X > Y ) using integrals. You do NOT have to
simplify this formula. Your final answer must be an integral of the following form:∫ x=(··· )

x=(··· )

∫ y=(··· )

y=(··· )
(some function)dydx.
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Solution. We must have
∫∫

R2 fX,Y (x, y)dxdy = 1. We have

1 =

∫∫
R2

fX,Y (x, y)dxdy = t

∫ x=1

x=−1

∫ y=1

y=0

x2y2dydx = t

∫ x=1

x=−1
[x2y3/3]y=1

y=0dx

= t

∫ x=1

x=−1
[x2/3]dx = t[x3/9]x=1

x=−1 = t(2/9).

Solving for t, we get t = 9/2.
By definition of marginal, we have, for any y ∈ (0, 1),

fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx =

∫ x=1

x=−1

9

2
x2y2dx = y2

∫ x=1

x=−1

9

2
x2dx

This function is quadratic in y, so its third derivative is zero.
By definition of joint density, we have

P(X > Y ) =

∫∫
{(x,y)∈R2 : x>y}

fX,Y (x, y)dxdy =

∫ x=1

x=0

∫ y=x

y=0

9

2
x2y2dydx.

6. Question 6

Let X and Y be independent random variables. Suppose X has characteristic function

(Fourier Transform)

φX(t) = e−t
2

, ∀ t ∈ R.

(Recall that φX(t) = EeitX where i =
√
−1, for any t ∈ R.) Suppose Y has moment

generating function
MY (t) = 1 + t4, ∀ t ∈ R.

(Recall that MY (t) = EetY for any t ∈ R.)

Compute E
[
(X + Y )2

]
.

Solution 1. Note that MX(t) = φX(−it) = et
2
. Since X, Y are independent, we have

MX+Y (t) = MX(t)MY (t) = et
2
(1 + t4) for all t ∈ R. Also, recall from the notes that

d2

dt2
|t=0MX+Y (t) = E

d2

dt2
|t=0e

t(X+Y ) = E(X + Y )2.

So,

E(X + Y )2 =
d2

dt2
|t=0MX+Y (t) =

d

dt
|t=0((4t

3 + 2t)et
2

)

= [(4t3 + 2t)(2t) + (12t2 + 2)]|t=0 = 2.

Solution 2. As mentioned above, we can differentiate each MGF separately:

d

dt
|t=0MX(t) = E

d

dt
|t=0e

tX = EX.

EX =
d

dt
|t=0MX(t) =

d

dt
|t=0e

t2 = [2tet
2

]t=0 = 0.

EX2 =
d2

dt2
|t=0MX(t) =

d2

dt2
|t=0e

t2 =
d

dt
|t=02te

t2 = 2.

4



EY =
d

dt
|t=0MY (t) =

d

dt
|t=0(1 + t4) = [4t3]t=0 = 0.

EY 2 =
d2

dt2
|t=0MY (t) =

d2

dt2
|t=0(1 + t4) = 0.

Therefore, using also that X, Y are independent,

E(X + Y )2 = EX2 + EY 2 + 2E(XY ) = 2 + 0 + (EX)(EY ) = 2 + 0 · 0 = 2.

7. Question 7

Consider a population of 30,000 people, where half of them are given a vaccine for a
disease. Suppose all 30,000 people are exposed to a virus causing the disease. We observe
that 90 of the unvaccinated people catch the disease, while 5 of the vaccinated people catch
the disease.

Consider the following statement:
“The number of infections of vaccinated people, divided by the number of infections of

unvaccinated people, is less than 15/100.”
Is the statement true with greater than 90% certainty? Justify your answer.
(Assume that each person’s ability to catch the disease is independent of each other per-

son’s ability to catch the disease.)
(Hint: the estimated probability of a vaccinated person getting the disease is 5/15, 000,

and the estimated probability of an unvaccinated person getting the disease is 90/15, 000.)
(Hint: use the Central Limit Theorem. If Z is a standard Gaussian, then P(|Z| ≤ 2) ≈

.9545. Also,
√

5 ≈ 2.23,
√

90 ≈ 9.5.)
Solution. Let Xi be the indicator random variable which is 1 if the ith vaccinated person

catches the disease and 0 if not, for all i ∈ {1, 2, . . . , 15, 000}. Let Yi be the indicator
random variable which is 1 if the ith unvaccinated person catches the disease and 0 if not,
for all i ∈ {1, 2, . . . , 15, 000}. Then we are assuming the X1, X2, . . . , Y1, Y2, . . . are i.i.d. with
P(X1 = 1) = p = 5/15, 000 and thus E[X1] = p var(X1) = p(1− p). Also, P(Y1 = 1) = q =
90/15, 000 and thus E[Y1] = q var(Y1) = q(1− q). The statement can be written as

X1 + · · ·+X15000

Y1 + · · ·+ Y15000
< .15. (∗)

Then by the central limit theorem, we have

P

(
−2 ≤ X1 + · · ·+X15,000 − 15, 000p√

15, 000p(1− p)
≤ 2

)
≈ .9545

Since 15000p = 5 and 150000p(1− p) = 5(1− p) ≈ 5, we have

P
(

5− 2
√

5 ≤ X1 + · · ·+X15,000 ≤ 5 + 2
√

5
)
≈ .9545

That is,

P (0 ≤ X1 + · · ·+X15,000 ≤ 10) ≈ .9545

Meanwhile,

P

(
−2 ≤ Y1 + · · ·+ Y15,000 − 15, 000q√

15, 000q(1− q)
≤ 2

)
≈ .9545
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Since 15000q = 90 and 150000q(1− q) = 90(1− q) ≈ 90, we have

P
(

90− 2
√

90 ≤ Y1 + · · ·+ Y15,000 ≤ 90 + 2
√

90
)
≈ .9545

That is,
P (71 ≤ Y1 + · · ·+ Y15,000 ≤ 109) ≈ .9545

So, with at least 95.45% certainty, the number of vaccinated people with the disease is at
most 10. Also, with at least 95.45% certainty, the number of unvaccinated people with the
disease is at least 71. So, with at least 90% certainty, we have

X1 + · · ·+X15000

Y1 + · · ·+ Y15000
≤ 10

71
< .15.

So, the statement is true with at least 90% certainty.

8. Question 8

Suppose you are flipping a fair coin, so that each flip of the coin has probability 1/2 of
landing heads, and probability 1/2 of landing tails. What is the expected number of coin
flips that you have to make until you see two consecutive heads appear? (That is, you keep
flipping the coin until you see two heads in a row, at which point you stop flipping the coin
any more, and you count the total number of coin flips you have made.) (Hint: condition
on the first two coin flips.)

(Simplify your final answer to the best of your ability.)
Solution. Let T be the number of coin flips that occur until two successive heads occur.

Let X1 = 1 if the first flip is heads and X1 = 0 otherwise. Let X2 = 1 if the second flip is
heads and X2 = 0 otherwise. From the Total Expectation Theorem,

ET = E(T |X1 = 0)P(X1 = 0) + E(T |X1 = 1, X2 = 0)P(X1 = 1, X2 = 0)

+ E(T |X1 = 1, X2 = 1)P(X1 = 1, X2 = 1)

=
1

2
E(T |X1 = 0) +

1

4
E(T |X1 = 1, X2 = 0) +

1

4
E(T |X1 = 1, X2 = 1).

(Note that P(X1 = 0) = 1/2 since we are flipping a fair coin. Similarly, P(X1 = 1, X2 =
0) = (1/2)2 since this corresponds to flipping a fair coin twice.) If we condition on X1 = 0,
then E(T |X1 = 0) = 1 + ET , since flipping one tail at the start results in “resetting” the
number of flips it takes to observe two heads. That is, one tail at the start is like starting
over again from the beginning, with one additional flip already made. By similar reasoning,
E(T |X1 = 1, X2 = 0) = 2 + ET . Also, E(T |X1 = 1, X2 = 1) = 2, since both heads occurred
during the first two coin flips in this case. In summary,

ET =
1

2
(1 + ET ) +

1

4
(2 + ET ) +

1

4
(2).

Rearranging, we get
1

4
ET =

3

2
.

That is, ET = 6.
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