
Probability Theory 407 Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due March 2, 2PM PST, to be uploaded in blackboard as a single PDF document (in the
Assignments tab).

Homework 6

Exercise 1. Suppose there are ten separate bins. You first place a sphere randomly in one
of the bins, where each bin has an equal probability of getting the sphere. Once again, you
randomly place another sphere uniformly at random in one of the bins. This process occurs
twenty times, so that twenty spheres have been placed in bins. What is the expected number
of empty bins at the end?

Exercise 2. You want to complete a set of 100 baseball cards. Cards are sold in packs of
ten. Assume that each individual card in the pack has a uniformly random chance of being
any element in the full set of 100 baseball cards. (In particular, there is a chance of getting
identical cards in the same pack.) How many packs of cards should you buy in order to get
a complete set of cards? That is, what is the expected number of cards you should buy in
order to get a complete set of cards (rounded up to a multiple of ten)? (Hint: First, just
forget about the packs of cards, and just think about buying one card at a time. Let N be
the number of cards you need to buy in order to get a full set of cards, so that N is a random
variable. More generally, for any 1 ≤ i ≤ 100, let Ni be the number of cards you need to
buy such that you have exactly i distinct cards in your collection (and before buying the last
card, you only had i−1 distinct cards in your collection). Note that N1 = 1. Define N0 = 0.
Then N = N100 =

∑100
i=1(Ni −Ni−1). You are required to compute EN . You should be able

to compute E[Ni −Ni−1]. This is the expected number of additional cards you need to buy
after having already collected i− 1 distinct cards, in order to see your ith new card.)

Exercise 3. Suppose we are drawing cards out of a standard 52 card deck without replacing
them. How many cards should we expect to draw out of the deck before we find (a) a King?
(b) a Heart?

Exercise 4. Let f : R→ R be twice differentiable function. Assume that f is convex. That
is, f ′′(x) ≥ 0, or equivalently, the graph of f lies above any of its tangent lines. That is, for
any x, y ∈ R,

f(x) ≥ f(y) + f ′(y)(x− y).

(In Calculus class, you may have referred to these functions as “concave up.”) Let X be a
discrete random variable. By setting y = E(X), prove Jensen’s inequality:

Ef(X) ≥ f(E(X)).

In particular, choosing f(x) = x2, we have E(X2) ≥ (E(X))2.

Exercise 5. Let n be a positive integer, and let 0 < p < 1. Let Ω = {0, 1}n. Any ω ∈ Ω
can then be written as ω = (ω1, . . . , ωn) with ωi ∈ {0, 1} for each i ∈ {1, . . . , n}. Let P be
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the probability law so that, for any ω ∈ Ω, we have

P(ω) =
n∏

i=1

pωi(1− p)1−ωi = p
∑n

i=1 ωi(1− p)n−
∑n

i=1 ωi .

For each i ∈ {1, . . . , n}, define Xi : Ω→ R so that Xi(ω) = ωi for any ω ∈ Ω. That is, if Ω
and P model the flipping of n distinct biased coins, then Xi = 1 when the ith coin is heads,
and Xi = 0 when the ith coin is tails.

First, show that P(Ω) = 1. Then, compute the expected value of Xi for each i ∈ {1, . . . , n}.
Next, compute the expected value of Y =

∑n
i=1 Xi. Finally, prove that Y is a binomial

random variable with parameters n and p.

Exercise 6 (Inclusion-Exclusion Formula). This Exercise gives an alternate proof of the
following identity, which is known as the Inclusion-Exclusion Formula: Let A1, . . . , An ⊆ Ω.
Then:

P(∪ni=1Ai) =
n∑

i=1

P(Ai)−
∑

1≤i<j≤n

P(Ai ∩ Aj) +
∑

1≤i<j<k≤n

P(Ai ∩ Aj ∩ Ak)

· · ·+ (−1)n+1P(A1 ∩ · · · ∩ An).

Let Y be a random variable such that Y = 1 on ∪ni=1Ai, and such that Y = 0 otherwise.
(That is, Y (ω) = 1 for any ω ∈ ∪ni=1Ai, and Y (ω) = 0 for any other ω ∈ Ω.) For any
i ∈ {1, . . . , n}, let Xi be a random variable such that Xi = 1 on Ai, and Xi = 0 otherwise.

• Show that Y = 1−
∏n

i=1(1−Xi).
• Expand out the product in the previous item, and take the expected value of both

sides of the result. Deduce the Inclusion-Exclusion formula.

Exercise 7. You are trapped in a maze. Your starting point is a room with three doors.
The first door will lead you to a corridor which lets you exit the maze after three hours of
walking. The second door leads you through a corridor which puts you back to the starting
point of the maze after seven hours of walking. The third door leads you through a corridor
which puts you back to the starting point of the maze after nine hours of walking. Each
time you are at the starting point, you choose one of the three doors with equal probability.

Let X be the number of hours it takes for you to exit the maze. Let Y be the number of the
door that you initially choose.

• Compute E(X|Y = i) for each i ∈ {1, 2, 3}, in terms of EX.
• Compute EX.

Exercise 8. Let X, Y and Z be independent geometric random variables with the same
parameter 0 < p < 1. Let k, n be nonnegative integers. Compute P(X = k|X +Y +Z = n).


