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0. HOMEWORK 0

s nn+1)2n+1)
>k ;

for all natural numbers n.

Solution. If n = 1, then the left-hand side is 1, while the right-hand side is % = 1, which
establishes the base case.

For the induction step, assume the desired formula holds for a natural number n. We
must then prove that the formula holds in the case n + 1. We have

The last line used the inductive hypothesis. Continuing, we have

n+1

I
k=1

n+1

P
k=1

2 _ nn+1)(2n+1)

=> K+ (n+1) ;
k=1

+ (n+ 1)

6 6

which is the desired formula for n + 1.
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Exercise 0.4.

Solution. We first show that |J7Z,[—j,j] € R. Let z € UZ,[~4,j]. By definition of
countable union, here exists 7 > 1 such that = € [—j, j|. Since [—7,j] C R, we have x € R.
In conclusion, J;Z,[—j,j] C R.

We now show the reverse inclusion U;’;l[— J,j] 2 R. Let = € R. Since |z| is a nonnegative
real number, there exists a positive integer j > 1 such that |z| < j, i.e. = € [—7,j]. By
definition of countable union, we therefore have » € | J;Z,[J, j]. In conclusion, [ J7Z,[~7,] 2
R.

Thus we have shown that |J72,[—7,j] € R and R C (J;2,[~j, ], which implies that

Part b. We first show that (;2,[—1/5,1/5] € {0}. Let z € (;Z,[-1/4,1/3]. By definition
of countable intersection, z € [—1/4,1/j] for all j > 1. That is, |z| < 1/j for all j > 1.
By e.g. the Archimedean property of the real numbers, the only real number z satisfying
|z| < 1/j for all j > 1 is the real number x = 0. That is, (;2,[-1/4,1/;] € {0}.

We now show the reverse inclusion (\72,[~1/7,1/j] 2 {0}. Let z := 0. Then = satisfies
|z| < 1/j for all 7 > 1. That is, x € [—1/j,1/j] for all j > 1. By definition of countable
intersection, x € (;2,[~1/4,1/j]. In conclusion, (;Z,[-1/4,1/7] 2 {0}.

Thus we have shown that (72,[—1/7,1/j] € {0} and (;Z,[=1/4,1/5] 2 {0}, so that
Nj=1[=1/4,1/5] = {0}, as desired.

U

Exercise 0.5. Let 2 = {1,2,...,10}. Find subsets A;, A, A3 of Q such that A; N Ay =
{2,3}, Al ﬂAg = {3,4}, AgﬁAg = {3, 5}, AlﬂAgﬂAg = {3}, and A1UA2UA3 = {2,3,4, 5}

Solution. All of A;, As, A3 must contain 3, and must be contained in the set {2,3,4,5}.

Moreover, 2 must be contained in both A; and As, but cannot be contained in Az, or else
it would be contained in A; N Az. Similarly 4 is contained in A; and A3z but not A,, and 5
is contained in Ay and As but not A;. From this we obtain

A ={2,3,4} Ay =1{2,3,5} Ay={3,4,5}

1. HOMEWORK 1

Exercise 1.1. Let A, B, C be subsets of a set (2. Prove that

AN(BUC)=(AnB)UANQO).
Then, show that
(A% = A.

2



Solution. We consider all 22 = 8 possibilities for the three statements “z € A”, “z € B”,
“x € C” being true or false. These eight possibilities correspond to the eight rows of the
following truth table. The final two columns of the truth table correspond to each of the
sets AN (BUC) and (AN B)U (ANC). Since these two columns of the truth table are
identical, we conclude that the AN (BUC)=(ANB)U(ANC).

r€A|lzeBlzelCllzeBUC|zeANB|lze ANC|ze(ANB)UANC) |z AN(BUC)
True | True | True True True True True True
True | True | False True True False True True
True | False | True True False True True True
False | True | True True False False False False
True | False | False False False False False False
False | True | False True False False False False
False | False | True True False False False False
False | False | False False False False False False

We now show that (A°)¢ = A. We first show that A C (A°)°. Let z € A. By definition
of the complement, © ¢ A°. By definition of the complement again, z € (A¢)°. That is,
A C (A%)-.

We now show that A O (A°)°. Let z € (A°)°. By definition of the complement, x ¢ A°.
By definition of the complement again, x € A. That is, A O (A°)°.

Since A D (A°)¢ and A C (A°)¢, we conclude that A = (A°).

0]

Exercise 1.2. Let {A4;}32; be subsets of a set Q. Prove that (021 Ai>c = AS.

Solution. Suppose x € (N2, A;)°. That is, z ¢ N2, A;. Recall that N2, A, ={x € Q:V j >
1, x € A;}. Since x is not in the set N2, A;, the negation of the definition of N2, A; applies
to x. That is, x satisfies the negation of the statement: “forall positive integers 7 > 1,
x € A;”. The negation of this statement is: “J a positive integer j > 1 such that = ¢ A;.”
That is, 3 a positive integers j > 1 such that z € Aj. By the definition of countable union,
we conclude that x € U2, AS.

So, we showed that (N2, A4;)° C U2, AS. To conclude, we must show that (N2 A;)°
UX AL So, let x € U2, AS. By reversing the above implications, we conclude that z
(N2, A;)°. That is, (N2, A4;)° D U, A¢, and the proof is complete.

Om U

Exercise 1.3. Let {4;}°, and B be subsets of a set 2. Prove that (Ufil Ai> NB =
Ui, AN B.

Solution. Let x € (U;’il Ai> N B. By definition of intersection, the previous sentence

is equivalent to: € B and z € J;2; A;. By definition of countable union, the previous
sentence is equivalent to: x € A; for some j > 1, and € B. By the definition of intersection,
the previous is equivalent to: x € A; N B for some j > 1. So, by definition of countable
union, the previous statement is equivalent to: = € | J;°, A; N B.

We proved the equivalence of z € <Ufi1 Ai> NB and z € | J;2, A; N B. We conclude that
these two sets are equal. O



Exercise 1.4. Let n be a positive integer, and {2 a set with n elements. For each A C (),
define P(A) = %, where |A] is the number of elements in A. Show that P is a probability
law.

Solution. We first verify that axiom (i) holds. For any A C Q, |A] > 0, so that P(A) =
|A| /n > 0 as well, i.e. axiom (i) holds. We now verify that axiom (iii) holds. Since €2 has n
elements, by definition of P we have P(2) = n/n = 1.

We now verify that axiom (i7) holds. If A and B are disjoint subsets of €2, then |[AU B| =
|A| + | B|. So, by definition of P, we have

_1AuB| 4, |8
n n n

The last equality used the definition of P(A) and P(B).

More generally, if A;, As,... C Q are pairwise disjoint (that is, A4; N A; = 0 for all i # j,
i,j > 1), then the |U2, A;| =37, |A;|. (We note in passing that only finitely many of the
A;’s will be nonempty.) So, by definition of P, we have

- Uz Al A
PULA) = =5 = 5 =) _P4).
i=1 =1

The last equality used the definition of P(A4;) for all i > 1. In conclusion, axiom (ii) holds.
U

P(AUB) —P(A)+P(B).

Exercise 1.5. Let Q = R?, and define a probability law by

1 22 2
P(A) = 2—/ e dxdy
TJa

Verify that P(Q) = 1. Then compute P(A) when A = {(z,y) : 2* + y* < 1}.

Solution. Using polar coordinates, we have

1 2242 1 27 e )2 0 .2
P(Q)=— 6_% drdy = — re” 2 drdf = re”z dr
27 e 2 Jo  Jo 0

o0 7‘2 o0
/ re 2 dr = / e “du=1
0 0

Again using polar coordinates yields

1 2ol L,
P(A) = %/0 /0 re” 2 drdf :/0 re” z dr

Setting u = % leads to

1 1
_r2 2 _
/re 2dr:/e“du:—e“
0 0

Setting u = % then yields




Exercise 1.6. Let A, B be subsets of a set 2.

Prove that A= (AN B)U(ANB) and (AN B)N(ANB) = 0.

Then, prove that AUB = (A~ B)U (B~ A)U (AN B), and that these sets are pairwise
disjoint.

Solution. We first prove that (A~ B)N (AN B) = 0. Recall that AN B = AN B°. So, using
this definition, commuting the intersections, and using B N B¢ = (),

(ANB)N(ANB)=(ANB)YN(ANB)=(BNB)NANA=0NA=1.

We now show that A = (A~ B) U (AN B). We first show that A C (AN B)U (AN B).
Let z € A. Then either x € B or z ¢ B. If x € B, then since z € A as well, the definition of
intersection implies that z € AN B. If x ¢ B then z € B¢ by definition of complement, and
since x € A as well, we have by definition of intersection that x € AN B¢ ie. z € A~ B.
So, in any case either x € AN B or x € AN B°. So, by definition of union, we have
re(ANB)U(ANB).

We now show that A D (AN B)U(ANB). Let x € (AN B)U (AN B). By definition of
union, x € AN B or x € AN B°. In either case, by definition of intersection, we have z € A.
We have therefore shown that A D (A~ B)U (AN B).

Combining A O (AN B)U (AN B) with A C (A~ B)U (AN B) implies that A =
(AN B)U (AN B).

We now show that AUB = (AN B)U (B~ A)U(ANB), and that these sets are pairwise
disjoint.

We first show disjointness. Since A~ B = AN B¢, commuting the intersections, and using
BN B¢ =,

(ANB)N(BNA) =(ANB)YN(BNA)=(BNB)N(ANA)=0NO=0.
Similarly,

(ANB)N(ANB)=(ANB)N(ANB)=(BNB )YNANA=0NA=0.
(BNA)N(ANB)=(BNAYN(ANB)=(ANAY)NBNB=0NB=0.
In conclusion, the three sets (A \ B), (B \ A), (AN B) are pairwise disjoint.

The three sets A~ B, B~ A, and AN B are subsets of AU B, hence so is their union.
That is, (AN B)U (B~ A)U(ANB) C AU B. On the other hand, if x € AU B, then z
by definition of union, z € A or x € B. So, x is either in both A and B or z is in exactly
one of them. That is, rt € ANBorx € AN B°or z € BN A°. So, by definition of union,
re€(ANB)U (B~ A)U(ANB). In conclusion, (AN B)U(BNA)U(ANB) D AUB.
Combined with (AN B)U (B~ A)U(ANB)C AU B, we get the claim

AUB=(ANB)U(BNA)U(ANDB)
U

Exercise 1.7. Let €2 be a sample space, and P a probability law on . Let A, B,C be
subsets of 2.

e Prove that P(AU B) < P(A) + P(B).
e Prove that P(AUBUC) =P(A)+P(A°NB)+P(A°NB°NC).
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Solution. By the previous problem, we can write
AUB=(ANB)U(BNA)U(ANB)
with these three sets being pairwise disjoint. Therefore, by axiom (i) for P,
P(AUB)=P(ANB)+P(B~A)+P(ANDB) (%)
By the previous problem again, B = (AN B) U (B \ A) with these two sets disjoint, hence
P(B)=P(ANB)+P(B\ A) (xx)
Similarly, interchanging the roles of A and B gives
P(A)=P(ANnB)+P(A\ B) (% * x)
Combining (x), (x*) and (* % *) gives
P(AUB) Y P(A~ B)+P(B~ A)+P(AN D)
" pa) + P(B~ A) Y P(A) + P(B) - P(AN B) < P(A) + P(B).

The last inequality used axiom (i) to get P(ANB) >0, ie. —P(AN B) <0.

We now show that P(AUBUC) =P(A)+P(A°NB)+P(A°NB°NC).

An element of AU B U (' is either in A or A¢, and in the latter case it must also be in
B UC, by the definition of the union A U B U C. Therefore

AUBUC =AU (AN (BUC))
Similarly
BUC=BU(B°NC)
so Exercise 1.1 implies that
AUAN(BUC))=AU(A°NB)U(A°NB°NC)

Combining the above shows that

AUBUC = AU(A°NB)U(A°NB°NQC).
The three sets on the right are pairwise disjoint, hence by axiom (i) for P

P(AUBUC)=P(A)+P(A°NB)+P(A°NB°NC)
To see the pairwise disjointness, note that
AN(A°NB)=(ANA)YNB=0NB=1
AN(A°NBNC)=(ANA)YNB°NC=0NB°NC =10
(A°NB)N(A°NB°NC)=(BNB)YNA°NC=0NANC = 0.

Exercise 1.8. Let f : R — R be a function. Show that

Ul eR: f(2) =y} =R

yeR

and that the sets on the left-hand side are disjoint.
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Solution. Let y, z € R with y # z. We first show that {zr e R: f(z) =y} n{zr e R: f(z) =
z} = (. Since f is a function, there cannot exist € R such that f(z) =y and f(z) = z,
since y # z. We conclude that {z e R: f(z) =y} n{z e R: f(x) =2z} = 0.

We now show that Uyer{z € R : f(z) = y} = R. Each set {x € R : f(z) = y} by
its definition is a subset of R, hence Uyer{z € R : f(z) = y} C R, by the definition of
union. We now show that Uyer{r € R : f(x) = y} D R. Let z € R. Define y so that
y = f(z). Since f(z) =y, we have z € {x € R : f(z) = y}. So, by definition of union,
Uyer{z € R : f(z) = y} D R. Combined with Uyer{z € R: f(z) = y} C R, we conclude
that Uyer{r € R: f(z) =y} =R. O

2. HOMEWORK 2

Exercise 2.1. Two fair coins are flipped. If at least one of the coins lands heads, what is
the probability that the first coin is heads?

Solution. Let H denotes a coin flip of “heads” and let T" denote “tails.” The sample space is
0= {<H7 H)7 (H, T)v (T7 H)> (Tv T)}

with each of the four elements of €2 having probability %1. That is, P is uniform on Q. If A
is the event that the first coin is heads and B is the event that at least one coin is heads,
then A= {(H,T),(H,T)}, B={(H,H),(H,T),(T,H)}, AC B. So, letting | - | denote the
number of elements of a set, we have |[AN B| = |A| = 2 and |B| = 3. So, by definition of P
being uniform on {2,

rus) - D)

U

Exercise 2.2. In the Monty Hall problem, show that switching wins with probability % and
staying put wins with probability %

Solution. At the beginning of the game, there are three possibilities, each of which is equally
likely. Either you select the door with the prize, or you select one of the other two doors
which does not contain the prize. In the first case, you will lose by switching your door
choice. In the two second cases, the host will open the empty door you did not select. So,
in the two second cases, you will win if you switch your door choice. So, in exactly two
out of three cases, you will win by switching your door choice. That is, you will win with
probability 2/3 by switching, and you will win with probability 1/3 by keeping your door
choice the same. O

Exercise 2.3. Suppose that you roll 3 distinct, fair, four-sided dice. What is the probability
that the sum of the dice is 77

Solution. The sample space is the set of ordered triples of integers between 1 and 4:
Q={(r,y,2): 1<a,y,2 <4}

which has cardinality 4* = 64. Also, P is uniform on €. The possible (unordered) values
for the dice to sum up to 7 are

1,2,4 1,3,3, 2,2.3



There are 3! = 6 different ways to order the triple (1,2, 4), while there are g—: = 3 different
ways to order the triples (1,3,3) and (2,2,3), respectively. Therefore the probability is
S84 2 = 3 O Solution. The sample space is the set of ordered triples of integers
between 1 and 4:

Q={(z,y,2) : 1 <w,y,z <4}

which has cardinality 4% = 64. Also, P is uniform on ). For each 1 < i < 4, let A; be the
event that the first roll is 1 < ¢ < 4. Then A; N A; =0 for all i # j with 1 <4,j <4 (since
it is not possible for the first die roll to have two different values) and U!_; A; = Q (since the
first die roll must be something between 1 and 4, inclusive). So, by the Total Probability
Theorem, if B is the event that the sum of the rolls is 7,

4

P(B) =Y P(BJA)P(A). (%)

=1

Since P is uniform on Q we have P(A4;) = 1/4. Also, the event B|A; is the event that the
last two rolls sum to 7 —i. So, e.g. B|A; has three elements, namely when the last two rolls
are (2,4), (3,3) or (4,2), so that P(B|A;) = 3/16. Using similar reasoning we get

P(B|A;) = 3/16, P(B|Ay) = 4/16, P(B|A3) = 3/16, P(B|A,) = 2/16.
So,

1< 1 12 3
PBYE-SN"PBIA) = ——(3+44+3+2)=— =2
()4Z(|)4-16(+++)64 16

O

Exercise 2.4. Two people take turns throwing at a dartboard. Person A goes first, and
has probability }1 of hitting the bullseye on each throw. Person B goes second, and has
probability % of hitting the bullseye. Then person A throws after person B, and so on. What
is the probability that person A hits the bullseye before person B?

Solution. Let E be the event that person A hits the bullseye first, and F,, the event that
person A hits the bullseye before the other person on person A’s nth throw, where n > 1.

Then
E=|]JE,
n=1
and the E, are disjoint (E, N E,, = 0 for all n # m, n,m > 1), hence by axiom (ii) for P,
P(E) =) P(E,)
n=1

If person A hits the bullseye on their nth throw, then they hit the bullseye on the nth
throw and missed it on the previous n — 1 throws. Also, person B must have missed the
bullseye n — 1 times. Therefore (by e.g. independence of each individual throw)

w57 -0

8



and therefore
. 1 o=~ /171 1o /1\n 2 1
PE) =3 P =32 (5) =12(3) ~i73
O

Exercise 2.5. Suppose that you roll two distinct, fair, six-sided dice two separate times.
What is the probability that both rolls have the same sum?

Solution. For each 2 < i < 12, let A; be the event that the first two dice sum to 7. Then
A;NA; =0 for all i # j with 2 < 4,5 < 12 (since it is not possible for the first two rolls
to have two different sums) and U!2,A; = Q (since the first two die rolls’ sum must be
something between 2 and 12, inclusive). So, by the Total Probability Theorem, if B is the
event that both separate rolls of two dice have the same sum,

P(B) = ZP(BIAZ-)P(AJ ()

Since P is uniform on {2 we have

1 2 3 4 5
P(As) =5 PlAs)=5 PlA)=5 Plds)=g5 Pld)=
6 5 4 3 2 1
P(A) = — P(A) = — P(A)=— P(dy)=— PAy)=— Pl =—
(A7) 36 (4s) 36 (4) 36 (41o) 36 (A1) 36 (412) 36

Also, the event B|A; is the event that the last two rolls sum to i. Consequently, P(B|A4;) =
P(A4;) for all 2 <i < 12. So,

P(B) ¥ > PA)) 3 0113

O

Exercise 2.6. Around 5% of men are colorblind, and around .25% of women are colorblind.
Given that someone is colorblind, what is the probability that they are a man? (For the
purpose of this problem, half of all people are men, and the other half are women.)

Solution. Let C be the event that a person is colorblind, M the event that the person is a
man, and W the event that the person is a woman. Assume that P(M) = P(W) = 1. Note
that M = W¢and M UW = Q.

Then, using Bayes” Theorem (as in the Medical Testing Example)

P(C|M)P(M) %3 20
(CIMP(M)+P(CIW)P(W) & 14 L1 9]

40

P(M|C) = 5

(=]

Exercise 2.7. Two people are flipping fair coins. Let n be a positive integer. Person [ flips
n 4+ 1 coins. Person I1 flips n coins. Show that the following event has probability 1/2:
Person I has more heads than Person I7.



Solution 1. Let A be the event that Person I has more heads than Person I1. Let S
be the number of heads from the first n coin flips of person I. Let S;; be the number of
heads from the first n coin flips of person I1. Let B; be the event that the (n + 1) coin
flip of person I is heads. Let By be the event that the (n + 1)% coin flip of person I is
tails. Then By N By = () since the (n + 1) coin flip of cannot be both heads and tails. And
By U By = Q, since the (n + 1) coin flip must be either heads or tails. So, by the total
probability theorem,

P(A) =P(A|B1)P(B1) + P(A|B2)P(By).
Now, since the (n + 1) coin flip is a fair coin, P(B;) = P(Bs) = 1/2. That is,

P(A) = 2 (P(4]B) + P(A|By)).

Given that B; occurs, the event A is equal to the event that S; > S;;. Given that By occurs,
the event A is equal to the event S; > S;. So,

P(A) = %(P(S{ > S[[) + P(S[ > S[I)) .

Now, P(S; > Sy;) = P(S1 < Sp7) by symmetry (with respect to interchanging the roles of
person I and person I7). So,

P(A) = %(P(S} > S][) + P(S[ < S[[)) = %

In the last line, we used that the events S; > S;; and S; < Sy are disjoint, and their union
is all of Q, SO P(S[ZS]]>+P(S]<S[[): 1. O

Solution 2. Let A be the event that Person I has more heads than Person I1. Let B be
the event that person I has more heads than person II after they both flip n coins. Let C'
be the event that person I has less heads than person /1 after they both flip n coins. Let D
be the event that person I has the same number of heads as person I[ after they both flip
n coins. Then BNC =CND = BN D = (), since any such intersection involves mutually
exclusive events. Also, BUC U D = (), since after the players each flip n coins, one of the
three events B, C, D must occur.

So, by the total probability theorem,

P(A) =P(A|B)P(B)+P(A|C)P(C) +P(A|D)P(D).
Given that B has occurred, we already know that A has occurred, so that P(A|B) = 1.
Given that C' has occurred, it is impossible for A to occur, so that P(A|C) = 0. And given
that D has occurred, person I has only one more coin flip; if it is a heads, then A occurs, and
if it is tails, then A does not occur. Since the coin is fair, we conclude that P(A|D) = 1/2.
That is,

1 1
P(A)=P(B) + éP(D) = 5(2P(B) +P(D)).

To conclude, it remains to show that 2P(B)+P(D) = 1. As noted already, BNC' = CND =
BND=(,and BUCUD =, so Axiom (ii) for Probability Laws says that

P(B)+P(C)+P(D)=P(BUCUD)=P(Q) =1

Now, events B and C are symmetric with respect to relabeling the players I and I/. Con-
sequently, P(B) = P(C). That is, 2P(B) + P(D) = 1, as desired. O

10



Solution 3. Let C be the number of heads of Person I. Let Cy be the number of heads of
Person 1. Let A = {C} > C5} . Since AUA® = Q and ANA° = (), we have P(A)+P(A4°¢) = 1.
Note that A° = {C; < Cy}. Since the coins are fair, the probability P(A¢) can be equivalently
stated by relabeling the head and tail of the coin. That is, P(A°) is equal to the probability
of the event that Person [ has less than or equal to the number of tails of Person I1. The
latter event is equal to {C} > Cs}. That is, P(A°) = P(C, > C) = P(A). So, 2P(A) =1,
and P(A) =1/2. O

Exercise 2.8. Suppose that a test for a disease is 99.9% accurate, in that if you have the
disease then you will test positive with probability 99.9%, and if you do not have the disease
then you Will test negative with probability 99.9%. Suppose also that the prevalence of the
disease is If you test positive for the disease, what is the probability that you actually

20000
have the disease?

Solution. Let D be the event that you have the disease, P the event that you test positive,
and N the event that you test negative. Then using Bayes’ Theorem (as in the Medical
Testing Example in class)

P(P|D)P(D)
P(P|D)P(D) + P(P|D¢)P(D¢)

We know that P(D) = 5+, and that P(P|D) = 22 Moreover, P(D¢) = 1 — P(D) =

P(D|P) =

19999 20,000° 1000
53399 and P(P|D¢) = 1555 Therefore
999 1
P(P|D)P(D) _ m " 20, 000 _ 999 0.047576
P(P|D)P(D) + P(P|D¢)P(D¢) 1909090 - 000 n m . ;gggg 50008

3. HOMEWORK 3

Exercise 3.1. Let 2 = [0,1] x [0,1]. and define P(A) to be the area of A. Suppose that
A={(z,y): a1 <z <ay} and B ={(z,y € Q:b; <y < by}, where 0 < a; <ay <1 and
0 <b; <by <1. Show that A and B are independent.

Solution. A is a rectangle with area as — a;, and B is a rectangle with area by — b;. And
ANB={(z,y) € Q: a1 <z <ag,b <y<b}
is a rectangle of area (as — a1)(by — by). Therefore
P(ANB) = (ag —a1)(bs — b)) = P(A)P(B)
so A and B are independent. O
Exercise 3.2. Let Q = R?, and define

1 22 4y?
P(A):%/Ae g + da:dy

Suppose that A = {(z,y) : a1 < & < ay} and B = {(z,y) € Q : by <y < by}, where
a1 < as and by < by. Show that A and B are independent.

11



Solution. If A ={(z,y) : a1 <z < ay}, then

A
= — e
21 o Jay

and similarly if B = {(z,y) : b <y < by}, then

b2
27T /b1 /

Since ANB ={(z,y) : a1 <z < as,b; <y <b}, we have

1 bo az

P(4) 27r / /a1 27r /:/
J{/ ‘dyH/a ‘deH/ ”dxH/bfe‘fdy]
G Ll

since the second term in brackets is P(Q = 1. Therefore A and B are independent. [

Finally,

|

}:P(AmB)

Exercise 3.3. Let Q2 be a sample space and P a probability law on 2. Suppose that A and
B are events with A C B. Is it possible for A to be independent of B? Justify your answer.

Solution. Suppose that A and B are independent. Then since AN B = A, we must have
P(A) =P(A)P(B)

This is possible if and only if P(A) = 0 or P(B) = 1. So it is possible for A and B to be
independent, but only under some restrictive assumptions. [l

Exercise 3.4. Let 2 be a sample space, and Ay, ..., A, events. Show that

P(OA,-) - ip( Y PANA)+ Y PANANA) -+ (—1)"P(AN---NA,)

1<i<j<n 1<i<j<k<n

Solution. For any 1 < m < n, let B,, be the set of points x € 2 such that x appears in exactly
m of the sets A;,...,A,. Then the sets By,..., B, are disjoint, and U}, _, B,, = U | A;. So,
by axiom (i7) for probability laws,

P(ULA) = P(UL B) = 3 P(B,)

We are therefore required to show that

D P(Ba) =) P(A)— > P(ANA)

1<i<j<n

+ ) PANA4NA)+- 4 (-1)"TPAN-NA). (%)

1<i<j<k<n

12



Consider now the identity 0 = (1—1)"™ = >";" ((—=1)* (), which follows from the Binomial
Theorem. That is, 1 = > 7" (=1)* (7). Fix 1 < m < k. On the left side of (%), the
“number of times” that the elements of B,, are counted is once, and on the right side of
(%), the “number of times” the set By, is counted is -, (—1)*" ("), which is also 1. We
conclude that (%) holds.

[This proof can be made a bit more precise; see the third solution below.] O
Solution. We induct on n. If n = 1 then there is nothing to show. The case n = 2 was proven

in class in Proposition 2.33. So, the base case is proven and we proceed to the inductive

step.
For the induction step, suppose that n > 2 and that the desired result holds for all unions
of n events. Then given n + 1 events Ay, ..., A,, A1, by the n = 2 case we have

n+1

p(Ua)=P(UA)+ Pl P (40 (U4)) B

Next, the induction hypothesis implies that

P(OAZ):iP(Ai)— Y PANA) -+ (CD)PAN-NA) (2)

1<i<j<n

and since

n

Appi N U A = U(Az NAu)
i=1

=1

another application of the induction hypothesis shows that

P(An+1 N <£Jl141)> = P(CJ(Ai N An+1))

1=

i=1 1<i<j<n

Substituting equations (2) and (3) into equation (1) and collecting terms completes the
induction step. O
Solution. [This proof will only make sense later on in the class when we have covered expected
value.] For any A C 2, we define 14: Q2 — R so that 14(w) =1 whenw € A, and 14(w) =0
whenever w ¢ A. Also, by definition of expected value, E14 =1-P(A) 4+ 0-P(A°) = P(A).
It follows by the definition of union that

n

Lo a (@) =1-T](1 =14, @),

=1

13



since each side is equal to one only when w is in at least one of the sets Ay, ..., A, (in which
case the product on the right is zero). Multiplying out the right sides gives

1U?:1Ai (OJ) = Z 1Ai (W) - Z 1Ai (w)]‘Aj (CU)

1<i<j<n
+ Z 1Al(w)1Ag<w)1Ak(w)_+1A11An
1<i<j<k<n
- Z 1141‘((")) - Z 1AiﬁAj (w)
=1 1<i<j<n
T Z Lasna;na, (W) =+ (‘UnfllAm---mAn (w).
1<i<j<k<n

Taking expected values of both sides completes the proof, since, as we noted above, E14 =
P(A), so that

:ZElAi_ Z El4;n4,
i—1

1<i<j<n

+ Z ElAiﬂAjﬂAk (CL)) — (_1)n_1E1A1ﬂ~~-ﬂAn

1<i<j<k<n

=> P(A4)— > P(ANA)
i=1 1<i<j<n
+ Y PANA4NA) =+ (—)"TPA NN A).
1<i<j<k<n

O

Exercise 3.5.

e Suppose that your car has four tires, and your mechanic removes all four, then later
puts the tires back on the car randomly. What is the probability that no tire is put
on its original wheel?

e Now suppose that your car has n tires, and your mechanic removes all of them, then
later puts the tires back on the car randomly. What is the probability that no tire is
put on its original wheel?

e What is the limit of the probability in (b) as n — co?

Solution. Let A; be the event that the ith tire ends up in its original position, for i = 1,2, 3, 4.
The union U}, A; is the event that at least one tire is put on the original wheel, and according
to the previous problem,

4 4
P(UAZ) =Y PA) - Y PANA)+ Y P(ANANA) - P(A N AN AN Ay
i=1 i=1 i<j i<j<k

3!

Next, P(4;) = 3 = i since there are 4! ways to put the tires on the car, and 3! ways to

put the tires on if tire ¢ must be placed on wheel 1.

14



Similarly, P(4; N 4;) = 2 = L for each pair i < j, and P(4; N A; NA) = 4 =
P(AiNAyNA3N Ay).

Finally, there are (g‘) = 473
1 < j < k. Therefore

4
1 4.3 1 1 1 1 1 1 5
P( Ai>:4-———-— 4——1 - —=1—--4-—— ==

izul 172 13 m 41 276 2 3

ways to choose a pair ¢ < j, and % = 4 ways to choose a triple

Therefore the probability that no tire ends up on its original wheel is

O
Solution. As in part (i), let A; be the event that the ith tire is put in its original position.
If 11 <19 < --- <y, then
(n—k)!
n!
) ways to choose the indices i; < --- < 4. Therefore by problem

and moreover there are (Z
4,

") S Sy (M) (1B (2D
() =S () o5
so the probability that no tire ends up on its original wheel is

D oY e

k! k!
k=1 k=0
O
Solution. The limit is
K e
k=0
O
Exercise 3.6. Let A, B, C' be pairwise independent events such that
1 1 1 35
P(A) = 3 P(B) = 3 P(C) = 1 P(AUBUC) = 18
Are the sets A, B, C' independent? Explain.
Solution. Since A, B, C' are pairwise independent, we have
1 1 1
P(ANB)=P(AP(B) = 6 P(ANC)=P(A)P(C) = 3 P(BNnC)=P(B)P(C) = 3

From problem 4, we know that
P(AUBUC)=PA)+P(B)+P(C)-P(ANB)—P(ANC)-P(BNC)+P(ANBNC)
so solving for P(AN B N C) yields

3% 1 1 1 1 1 1 1

P(ANnBNC)=———-—-—- =
( ) 48 2 3 4+6+8+12 48

15



On the other hand,

so A, B, C are not independent. O

4. HOMEWORK 4

Exercise 4.1. You spin a wheel 24 times, and each time there is a 1 in 72 chance of winning

a prize. Let X be the number of prizes won. Use a Poisson approximation to estimate
P(X =0),P(X =1), and P(X = 2).

1

=5, 50 X can be approximated

Solution. X is a binomial random variable with n = 24 and p =

by a Poisson random variable Y with parameter \ = %
Therefore )
P(X=0)~P(Y =0)=e"3~0.7165
11
PX=1)=PY=1)=e5- 3 ~ 0.2388
and

O

Exercise 4.2. Count the number of distinct ways which you can arrange the letters of the
words CATTERPILLAR and ARUGULA.

Solution. There are 12 letters in the word catterpillar, with 2 Ts, 2 Rs, 2 As, and 2 Ls.
Therefore the number of words is
12!

(2|)'4 = 29,937, 600

Similarly, the number of words which can be formed from arugula is

7!
=12
RIE 60

O

Exercise 4.3. Suppose that X is a random variable with px(—3) = lio,pX(—Q) = %,px(—l) =
Compute the probabilities of the following events
e X >3
e 4< X <TorX>9
e (< X <4dor7< X <10.

Solution. (a) The event {X > 3} is equal to the event {X = 5,6,10}, hence by axiom (ii)
for probability laws,
) 1

P(X >3) =P(X =5+ P(X =6) + P(X =10) = . = -

(b) If 4 < X < 7or X <9, then either X =5, X =6, or X = 10, so by axiom (ii) for
probability laws,

16



P(4<X <7)=P(X=5+P(X=6)+P(X =10)= =

() If0 < X <4or7< X <10, then either X = 3 or X = 10, so by axiom (ii) for
probability laws,

1 1 3
(<X <T)=P(X =3)+P(X =10) = 15 + 30 = o
U
Exercise 4.4. Suppose that the probability that you receive a prize in the mail is —7003000.

Show that you need to receive roughly 7000000 pieces of mail in order for your probability
of winning at least one prize to be about 1 — %

Solution. For any 1 <7 < n, let A; be the event that you do not receive a prize in the mail.

We assume that Ay,..., A, are independent. By assumption,
1
P(A4)=1— ———, V1<i<n.
(4) 7000000 =t=n
The probability of not receiving a prize in n pieces of mail is, by independence of A4, ..., A,,

1=

. B n B n 1 B 1 n
P(NiL, Ay) = HP(AD =11 (1 B 7000000) - (1 B 7000000)
Since

) I\ 1
fm (1-7) =2
choosing n = 7000000, means that

n 1

That is, when n = 7000000, the probability of receiving a prize is

1
PN A) =1-P(MLA) =~ 1 - P

O

Exercise 4.5. Let Q = {—3,—-2,—1,0, 1,2, 3} with the uniform probability law, and suppose
that X(w) = w for all Q € Q. If f: R — R is defined by f(x) = 22, find the probability
mass function of f(X).
Solution. Let Y = f(X) = X?2. Then by definition of Y and axiom (ii) for probability laws
1
P(Y =0)=P(X =0) ==,

PY=1)=PX’=1)=P{X=1}U{X=-1})=PX=1)+P(X=-1)=

NN NN

PY=4)=PX?’=4)=P{X=2U{X=-2})=P(X =2)+P(X =-2)

PY=9)=PX*=9)=P{X=3}u{X=-3})=P(X=3)+P(X =-3) =

P(Y =y) = 0 for all real numbers y # 0,1,4,9 (which is also clear from the fact that the
above probabilities sum to 1). O

17



Exercise 4.6. Let X be geometrically distributed with parameter p, let Y = X%, and let
Z =min{X,n} for a fixed positive integer n. Find the probability mass functions of Y and
Z.

Solution. By definition, the probability mass function of X is given by
PX=k=>0-p"'p VE=123,...

Therefore the only values that Y takes with non-zero probability are 4th powers of positive
integers, and

PY=kY=01-pFp Vk=123,...

The random variable Z only takes the values k = 1,2, ..., n with non-zero probability. If
1 < k < n then the events {X = k} and {min(X,n) = k} are identical, so

P(Z =k)=Pmin(X,n) =k) =P(X =k) = (1 — p)'p,

where the last line used the definition of X. Meanwhile, the events {X > n} and {min(X,n) =
n} are identical, so

_ B o > -1 p(1 _p)n ' n—1
P<Z—n)—P(X>”)_;(1_ ) 1—(1—p) (1=p)
Alternately,
P(Z =) =P(X 20) = 1-P(X <) = 1= Y (1—p)p— 1 —pt U2
=1-(1-(1-p"H=0-p""!
O

5. HOMEWORK 5

Exercise 5.1. Let X be a discrete random variable with finite variance, and define f : R — R
by f(t) = E[(X — t)?]. Show that f(¢) has its unique minimum when ¢ = E[X].

Solution. (X —t)> = X? — 2Xt + t?, hence by the linearity of expectation
f(t) =E[(X —t)’] = E[X? - 2E[X]t + ¢*

Therefore f(t) is a quadratic function of ¢ which is concave up, hence has a unique mini-
mum at its vertex, namely

t =E[X]
We know this from calculus, since the solution ¢ of the equation f'(t) = 0 satisfies 2t —2EX =

0,i.e. t = EX, and the unique critical point of a concave up parabola is its global minimum.
O

Exercise 5.2. Let n be a positive integer and p € [0, 1]. Compute the mean of a binomial
random variable with parameters n and p.
Then, compute the mean of a Poisson random variable with parameter A > 0.

18



Solution. Let X be a binomial random variable with parameters n and p. Recall that X is
the number of heads that result from n biased coin flips. That is, for any 1 < ¢ < n, if we
let X; = 1 if the i"* coin flip is heads, and X = 0 if the i coin flip is tails, then

i=1

More specifically, for each 1 < i < n, X; is a Bernoulli random variables with parameter p.
Therefore, by definition of expected value,

EX;]=1-p+0-(1-p)=p.
Finally, by linearity of expected value,

= Z EX; = np.
i=1
(Once we cover independence, we will see that X7, ..., X,, are independent random variables.)

Suppose that X is a Poisson random variable with parameter A\. Then by definition of
expected value,

zinP(X:n) :e’\in?/\!n:e)‘

0

Exercise 5.3. Let X be a random variable on a sample space €2 taking values in the non-
negative integers. Show that E[X] = >"° P(X > n). Use this to compute the mean of a
geometric random variable with parameter p.

Solution. The event {X > n} = U2, {X = k}, with the events on the right being disjoint.
Hence, by the Total Probability Theorem,

YPXZn)=) YPX=k=) > PX=k=> Y PX=klz

n=1 k=n n>1k>1: k>n n=1 k=1

(Here 1j>, is equal to 1 when k£ > n and it is equal to 0 otherwise.) Since each term in
the double sum is non-negative, as suggested in the hint, we can interchange the order of
summation, yielding

iiP( X = k)lizn = izk:P ):ikP(X:k):ikP(X:k):E[X]_

The last line used the definition of expected value.
Now suppose that X is a geometric random variable with parameter p € (0, 1]. Then

(1—p""

T-(—p) (1—p)"*

P(X >n) Zpl— l=p
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hence

E[X] =) P(X>n)=) (1-p)" "= (1-p"= ﬁ _]19

Alternately, E[X] can be computed directly from the definition:

E[X] =Y np(1—p)" " =p) n(l—p""

This sum is the result of differentiating the function

1 o0
:5 ", Vx| <1
11—z —

term-by-term and setting « = p. (Term-by-term differentiation is valid when |z| < 1, since

the Taylor expansion of 1/(1 — z) converges absolutely for all |z| < 1.) Since £-L = (1fx)2,

the result is

E[X]:#:l

1=(1=p)* p
0
Exercise 5.4. Find real numbers a;; (i,7 > 0) for which > 7% 77 jay; # 3277 D77 aij-

Solution. Let a;; = 1ifi = j, a;j = —1if ¢+ = j + 1, and a;; = 0 otherwise. Then for any
fixed 7,

i=0

hence

DII
j=0 i=0
On the other hand, if + > 1 then

D ay=(-1)+1=0
§=0

while -
> a =1
§=0
SO o -
DRI
i=0 j=0
If we put the entries a,; into an infinite matrix, they appear as follows:
10 0 0
-1 1 0 0
0O -1 1 0
1



O

Exercise 5.5. Let Q = [0, 1].
Consider the probability law on € defined by P([a,b]) =b—a for 0 <a <b < 1. Let n
be a positive integer, and X a random variable which is constant on each interval [;l ety

0 <i<n—1. Show that E[X] = folX t) dt
Now, consider the probability law on Q defined by P([a,b]) =

—fa2\[dt If X(t)is as in
part (a), show that E[X] = fol X(t

Solution.
Since X is constant on each interval [1 J{Ll), we can write

n—1

X (1) = X(0)Xo(t) + X(%)Xl(t) +ot X( )anl(t), vt e [0,1]

where X;(t) = 1if £ <t < = and X;(t) = 0 otherwise, for all 0 <i <n — 1.

Therefore
n . n—1 .
) 1 1
=S x(H)EX] ==Y x(4)
2 MG = 2 X
On the other hand,

[xwa-5 [ xoa-15x(2)

[z H—l
n’?

S
<.
Il
o

. Therefore

/ X(t
as claimed.

Essentially the same proof as part (a) works: again write

since X is constant on each interval

1 n—1
X (1) = XO)Xo(t) + X () Xa(t) + -+ + X (=) X 8
so that
n—1 i n—1 ; it 1
E[X] = X(—)EXZ - X(—)/ = dt
[]Zon[]ZnZQW
n—1
Z / X(t —dt / X(t
O
Exercise 5.6. Let by,...,b, be distinct numbers, representing the quality of n people.

Suppose n people arrive to interview for a job, one at a time, in a random order. That
is, every possible arrival order of these people is equally likely. We can think of an arrival
ordering of the people as an ordered list of the form aq,...,a,, where the list aq,...,a, is
a permutation of the numbers bq,...,b,. Moreover, we interpret a; as the rank of the first
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person to arrive, as as the rank of the second person to arrive, and so on. And all possible
permutations of the numbers by, ..., b, are equally likely to occur.

For each i € {1,...,n}, upon interviewing the i"" person, if a; > a; for all 1 < j < 1,
then the " person is hired. That is, if the person currently being interviewed is better than
the previous candidates, she will be hired. What is the expected number of hirings that will
be made? (Hint: let X; = 1 if the i*" person to arrive is hired, and let X; = 0 otherwise.
Consider > 1" | X;.)

Solution. Let X; = 1 if the i** person to arrive is hired, and let X; = 0 otherwise. Person
1 will always be hired, i.e. P(X; =1) =1, so EX; = 1. Since any arrival order is equally
likely, P(Xys = 1) = 1/2. So, EXy, = 1/2. In general, if ¢ is a positive integer, then
P(X; = 1) = 1/i. This follows since any ordering of the people is equally likely, so there
is a probability of 1/i of the i person having the largest number a; among the numbers
ai,...,a;. So, EX; = 1/i. (More formally, fix i € {1,...,n}, and let 7 € {1,...,i}. Let
A; be the event that a; > aj for every k € {1,...,4} such that k # j. Then U_A; = Q,
and A; N Ay = 0 for every 7,5 € {1,...,1} with j # 5. So, 1 = P(Q ) ZJ L P(4;). We
now claim that P(A;) = P(A;) for every j,j’ € {1,...,i} with j # j'. Given that this is
true, it immediately follows that P(A;) = 1/i, as desired. To prove our claim, suppose we

write any arrival order of the people as ¢y, ..., ¢, where cy,...,c, are distinct elements of
{1,...,n}. Then for any k < i, any arrival order cy,...,c, where a,, exceeds a,...,a.,_,
can be uniquely associated to the arrival order c¢y,...,ck_1,¢i, Chaty -y Cio1, Chy Cit1y - - - 5 Cnr

That is, the number of orderings where the i number exceeds the previous ones is equal
to the number of orderings where the k' number exceeds the first 4 numbers. That is,
P(4;) = P(4))) O

Exercise 5.7. Let X be a Poisson random variable with parameter A\ > 0. Compute
E[(1+ X)71.

Solution. Since X takes values in the negative integers

E[(1+X)" —AZ n—l—l —/\_le‘Aig
n=1 """

(N 1 - -

=)"le A(;%H—l):)\ leMer —1) =211 —e™)

6. HOMEWORK 6

Exercise 6.1. There are 10 different bins, and 20 balls are placed in the bins uniformly at
random. What is the expected number of empty bins?

Solution. Let X be the random variable which counts the number of empty bins. Write
X=X, + -+ Xy
where X; = 1 if bin ¢ is empty, and X; = 0 otherwise. Then
EX|=EXi|+ -+ EXy]=PX;=1)+---+P(X;p=1)
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If the ¢th bin is empty, then all 20 balls must have been placed in the other 9 bins. There
are 920 ways to do this, and 10?° ways to place the balls in the bins overall, hence
9\ 20
P(X;=1) = ()
10
for each i. Therefore
E[X] =10 (3)20
10
O
Exercise 6.2. There are 100 different baseball cards in a set, and the cards are sold in packs
of 10. Each card is equally likely to be included in a pack. What is the expected number of
packs you must buy in order to collect the complete set?

Solution. First assume that you buy the cards one at a time, and let T; be the time when
you receive the ith new card, setting Ty = 0 for convenience. We want to find T7qp.
To do so, consider the random variable T; — T;_;. This random variable is geometrically

distributed with parameter p = 10010%_1) = 1(1’(1)ai, hence
100

E[T, - T, 4] = .

101 — 1

by a result from the previous homework assignment. Moreover, note that
Tho0 = (Troo — Too) + (Tog — Tog + - - - + (T1 — to)

hence

100 100 100
100

1
E[Tio] = ) _B[L = Tia] =) o = 10023 ~ 518.7

- =1
by setting j = 101 — ¢. Finally, to account for the fact that the cards come in packs of 10,
round up to the nearest multiple of 10 to obtain

O

Exercise 6.3. If you draw cards from a standard 52-card deck without replacement, how
many cards can you expect to draw before finding (a) a King or (b) a Heart?

Solution.

()

Suppose we label the non-king cards as {1,...,48}. Let i € {1,...,48}. Let X; = 1 if
the i*" card is drawn before any king is drawn, and X; = 0 otherwise. The number of cards
drawn before the first king is

48
>
i=1

It remains to compute the expected value of this quantity. We claim that EX; = 1/5 for all
i€ {l,...,48}. Assuming this claim, the expected number of cards to be drawn before the
second heart is

48 48
E() X)) =) EX;=48/5.
=1 =1
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We now prove the claim. Suppose we label the heart at the highest point in the deck as
7 = 1, we label the next highest position heart as j = 2 and so on, up to j = 4. Then
there are five possible locations for a non-king card: above the ;7 = 1 king, in between
the 7 = 1 and j = 2 kings, in between the j = 2 and j = 3 kings, etc. For any fixed
i € {1,...,48}, the i"" card is equally likely to be in any of these 5 locations. To see this,
for any of the five £ € {1,...,5} non-heart card locations, let Aj; be the event that the
i" card is in location k. Then U}_,Ay = Q and if k, k' € {1,...,5} with k # k', then
AN Ay = 0. Given any arrangement of cards such that the i** card is in location &, we
can uniquely associate this arrangement to another arrangement where the it card occurs
in location k. We can do this, for example, by swapping all cards in location k with all
cards in location &’. Since the probability law P(Ay) counts the number of arrangements in
Ay, divided by 52!, we conclude that P(Ag) = P(Ay) for all k # k', k, k' € {1,...,5}. So,
1=P(Q) = ZZ:1P(AI~:) =5P(A4;). So, P(4;) = P(Ay) = 1/5. That is, P(X; =1) = 1/5.
And since X; only take values 1 or 0, the definition of expected value says EX; = 1/5 for all
i€ {l,...,48}, as desired.

(b) Suppose we label the non-heart cards as {1,...,39}. Let i € {1,...,39}. Let X; =1
if the i'" card is drawn before any heart is drawn, and X; = 0 otherwise. The number of
cards drawn before the first heart is

39
Z X;.
=1

It remains to compute the expected value of this quantity. We claim that EX; = 1/14 for
all i € {1,...,39}. Assuming this claim, the expected number of cards to be drawn before
the second heart is

39 39
E() X)) =) EX;=39/14,
=1 =1

We now prove the claim. Suppose we label the heart at the highest point in the deck
as 7 = 1, we label the next highest position heart as 7 = 2 and so on, up to j = 13.
Then there are fourteen possible locations for a non-heart card: above the j = 1 heart, in
between the 7 = 1 and 7 = 2 hearts, in between the j = 2 and 7 = 3 hearts, etc. For
any fixed i € {1,...,39}, the i* card is equally likely to be in any of these 14 locations.
To see this, for any of the fourteen k£ € {1,...,14} non-heart card locations, let A; be
the event that the i card is in location k. Then Uit Ay = Q and if k, & € {1,...,14}
with k # k', then A, N Ay = (. Given any arrangement of cards such that the i** card
is in location k, we can uniquely associate this arrangement to another arrangement where
the i*" card occurs in location k’. We can do this, for example, by swapping all cards in
location k& with all cards in location &’. Since the probability law P(Ay) counts the number
of arrangements in Ay divided by 52!, we conclude that P(A) = P(Ay) for all k # K/,
k. ke {1,...,14}. So, 1 = P(Q) = iilP(Ak) = 14P(4;). So, P(4;) = P(Ay) = 1/14.
That is, P(X; = 1) = 1/14. And since X; only take values 1 or 0, the definition of expected
value says EX; = 1/14 for all i € {1,...,39}, as desired. O

Exercise 6.4. Let f be a twice differentiable convex function, and X a discrete random
variable such that E[X| and E[f(X)] exist. Prove Jensen’s inequality: E[f(X)] > f(E[X]).
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Solution. Since f is convex, it lies above all its tangent lines. Therefore

fl@) = f(t)+ f'()(x —1)

for all real numbers = and ¢, hence

JX) =2 @)+ fOX =)
for all t € R, and taking expectations yields

E[f(X)] = f(t) + f'()(B[X] - 1)
If we set t = E[X] then the second term on the right is zero, hence
E[f(X)] > f(E[X])
as desired. U
Exercise 6.5. Let n be a positive integer, Q = {0,1}", and p € (0,1). Define a probability
law P on §2 by
P({w}) = p==1i(1 — p)rmiae

where w = (wy,...,w,). For each 1 < i < n, define a random variable X; : Q@ — R by
X(w) = w;. Finally, define X = X; + -+ 4+ X,,.

Show that P(Q2) = 1. Find E[X;] and E[X]. Show that X is a binomial random variable
with parameters n and p.

Solution.
Below, we will repeatedly use the binomial theorem in the form

n

3 (Z)p’fu _prE=l ()

k=0
By definition of P,

weN weN

= (n ek ()
= (k>p’“(1 —-p)" =1
k=0

since there are (k) elements w such that exactly k£ of the w; are equal to 1.
For any 1 < i < n, E[X;] = P(X; = 1) since X; only takes the values 0 and 1, and by
definition of X,

P(X;=1)=PweQ: Xjw)=1)=PweQiw=1)= > P{w})

weN: w;=1

W n—> " w; ’I’L-l n—1-— (*)
D o SRR SRR D] G P L

weN: w;=1 k=0

Therefore, E[X] = """ | E[X;] = nP(X; = 1) = np.
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Lastly, fix 0 < k < n, and note that

P(X =k)=PweQ: Xn:Xi(w):k):P(WGQ:w1+---+wn:k)

= Y Pw= Y PSR op TR

WEN: w1+ +twn=~k WEN: w1+ +wn=~k
k n—k k n—k
= > prl—p)" " =p"(1-p) >
weE: wi+twn=k weN: w1+t twn=k

== (})

since the number of w = (wy,...w,) € Q such that w; + -+ +w, =k is (Z)
Therefore, X is a binomial random variable.

U

Exercise 6.6. Let Aq,..., A, be events in a probability space ). Define random variables
X and X;, 1 <i<nsothat X =1 on U;A; and X = 0 otherwise, while X; =1 on A; and
X = 0 otherwise.

Show that X =1 —T[",(1 — X;).

Establish the inclusion-exclusion formula by taking expected values of this identity:.

Solution. See the second solution of Exercise 3.4. O

Exercise 6.7. You a trapped in a maze, starting in a room with 3 doors. Door 1 leads to
a corridor which lets you exit the maze after 3 hours of walking. Door 2 leads to a corridor
which returns to the starting point after 7 hours of walking. Door 3 leads to a corridor which
returns to the starting point after 9 hours of walking. You aren’t good at learning from your
mistakes, so every time you return to the starting point, you choose a door uniformly at
random.

Let X be the number of hours it takes you to exit the maze, and Y be the number of the
door you initially choose.

Find E[X|Y = y] for y = 1,2, 3 in terms of E[X].

Determine E[X].

Solution. It is given that E[X|Y = 1] = 3, E[X|Y = 2] = 7+ E[X], and EX|Y =
3] = 9+ E[X]. By conditioning on the result of the first door choice and using the Total
Expectation Theorem, we have
EX|=EX|Y =1PY =1)+ EX|Y =2|P(Y =2)+ E[X|Y =3]P(Y = 3)
1

_ g(E[X]Y = 1]+ E[X]Y = 2] + E[X[V = 3)).

Using part (a) then shows that
1
E[X] = 5(3 YT+ E[X] 49+ E[X])
Solving for E[X] yields
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so E[X] = 19.
U

Exercise 6.8. Let X,Y, Z be independent geometric random variables with the same pa-
rameter p € (0,1). Compute P(X = k| X +Y + Z = n) for k,n positive integers.

Solution. Since XY, Z take values in the positive integers, the event {X +Y + Z = n} has
probability zero if n < 3, in which case the conditional probability is undefined. So assume
n > 3.
_B;) the definition of conditional probability,
PX=kX+Y+Z=n)
PX+Y+Z=n)
lfk>n—1thenP(X =k, X+Y+Z=n)=0,and if 1 <k <n — 2 then

PX=kX+Y+Z=n)=PX=kPY +Z=n—k)

P(X =kl X+Y+Z=n)=

n—k—1
=p(1—=p*"' Y P =yP(Z=n—k—y)
y=1
n—k—1 n—k—1
=p(1—p)*! (L—p)'p(l—p)" v lp=p*1—p"? 1

<
Il
—_

=(n—k=1p'(1—p)""

Similarly,
PX+Y+Z=n)= Y pl—p)"'p(l—p’'pl—p*"
x?yVZZ]‘
T+yY+z=n
n—2n—x—1
=p’(1—p"* Y 1=p(1—p"?° 1
z,y,z>1 rz=1 y=1

T+y+z=n

n—2 n—2 3 3

3 n—3 3 n—3 - p’(I=p)’(n—1)(n—2)
=p(1— n—x—1)=p’(1— =
p°(1—p) Z} )=p"(1-p) ;? 5

Therefore
PX=kKPX+Y=n—k) 2(n —k—1)
PIX+Y+Z=n) C(n=1)(n-2)
form>3and 1 <k<n-2.

There is another, less computational, way to determine P(Y + Z = n — k) and P(X +
Y + 7 =n): A geometric random variable counts the number of trials until the first success,
so the sum of two independent geometric random variables counts the number of trials until
the second success.

Thus if Y + Z = n — k then the last trial was a success, and of the first n — k — 1 trials

exactly one was a success. Therefore
n—k—1
1

PO‘+Z:n—kﬁz( )ﬁﬂ—pﬁk2=ﬂn—k—Dﬁﬂ—ka2

27



Similarly, X +Y + Z counts the number of trials until the third success, hence

P(X+Y+Z=n)= (” ) 1)p3(1 S L 1)2<n =2 (1 -y

Combining these results with P(X = k) = p(1 — p)*! yields the same answer as the first
method. U

k

7. HOMEWORK 7

Exercise 7.1.
a. Give an example (with proof) of two random variables that are independent.
b. Give an example (with proof) of two random variables that are not independent.
c. Find two random variables X, Y such that E[XY] # E[X]|E[Y].

Solution. (a) Let Q ={HH,HT,TH,TT} with the uniform probability law, and let X =1
if the first character is H and X = 0 otherwise, and Y = 1 if the second character is H and
Y = 0 otherwise.

Then
P(X =1,V = 1) = P(HH) — i _P(X = )P(Y = 1)
P(X = 1,Y = 0) = P(HT) — i _P(X = )P(Y = 0)
P(X =0,Y = 1) = P(TH) = i _P(X = 0)P(Y = 1)
and

P(X=0,Y =0)=P(IT) = i =P(X =0)P(Y =0)

so X and Y are independent.
(b) Let X be a random variable with P(X = 0) = P(X =1) = 1, and let Y = —X. Then
P(X=1Y=0)=0+#

é:P(X: DP(Y =0)

N | —

Therefore X and Y are not independent.
(c)Let X be a random variable with P(X = —1) = P(X =1) = 1, and let Y = X. Then
E[X]=E[Y] =0, but XY = X? =1, s0 E[XY] = 1. OJ

Exercise 7.2. Does there exist a random variable which is independent of itself? Either
find such an X, or prove that no such X can exist.

Solution. Let X be a random variable with P(X = ¢) = 1 for some constant ¢. Then
P(X=c¢)=1=P(X =¢)?
and if at least one of x1, x5 is not equal to ¢, then
PX =2, X =29) =0=P(X =21)P(X = 29)

Therefore X is independent of itself.
It also turns out that any random variable which is independent of itself has the above
form for some constant c. U
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Exercise 7.3. Let n be a positive integer and p € (0,1). Suppose that Xi,..., X, are
pairwise independent Bernoulli random variables with parameter p, and let S, = f1t-tXn
Compute E[S,] and var(S,). What does the variance computation tell you as n — co?

Solution.
The linearity of expectation implies that
1 n
E[S,] = = (EX)] +-- + B[X,]) = =X = p

and since the X, are pairwise independent it follows that

V&I‘(Sn) = %(V&I‘(Xﬁ 4+ 4 var(Xn)) _ np(;; p) _ p<1n— p)

Observe that var(S,,) — 0 as n — 0. O

Exercise 7.4. Let X and Y be independent random variables taking on finitely many values.
Show that

for any functions f,g: R — R.

Solution. Since X and Y are independent,

E[f(X)g(Y)] = ) f@)g)P(X =z,Y =y) = > f(2)gy)P(X = 2)P(Y =y)

=3 fl@P(x = )] [ S 9Py = y)| = BIF(OIE[(Y)

Exercise 7.5. Find three random variables X, X5, X5 which are pairwise independent but
not independent.

Solution. Let Ay, Ay, A3 be the events from problem 6 on Homework 3, and for : = 1,2,3
define a random variable X; which is equal to 1 on A; and 0 otherwise. Then the X, are

pairwise independent but not independent. 0]
Exercise 7.6. Let Xi,..., X, be independent Bernoulli random variables with parameter
0<p<l

Solution. a. Show that E[e!X] = (1 — p) + pe! for 1 <i < n.
X; takes the value 1 with probability p and 0 with probability 1 — p, hence

E[e] =1 —p) +e'p=(1—p) + pe'

b. Let S, = X; + -+ + X,,. Show that E[e!*"] = [(1 — p) + pe!]™.
Using part (a) and the generalization of problem 6 to n independent random variables
shows that

6] = Bl ) = BV B = (11— p) + e
c. Use part (b) to compute E[S,] and E[S?].
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Since E[e"] = [(1 — p) + pe']", it follows that

11— p) 4 pel]r

ElSa] =

= np
t=0

Similarly,
d2

B[S = =51 —p) +pel"| _ =np+nn—1)p’

Exercise 7.7. Let X1,..., X, be independent discrete random variables. Show that

n

P(X; <uxy,...,X, <uz,) :HP(Xi < ;)

i=1
for all x1,..., 2, € R.
Solution. Since Xy, ..., X, are independent, we have
P(X1§$17---aXn§$n): Z P(XlzylaaXn:yn)

Y1<T1,.,Yn<Tn

_ Z P(Xlzyl)...P(Xn:yn):[ZP(Xlzyl)]...[ZP(anyn)]

Y1<T1,.,Yn<Tn

Exercise 7.8. Verify that f ol Ry = 1. (Hint: let T = f ol *2dz. Tt suffices
to show that 7% = 1, since T' > 0. )

Solution. Using polar coordinates,

7x2/2d / 6 y2/2d — / / (@ 4y /2dl‘d

/ \/27r V2 Y or !

/ e 2dhdr = / re” Pdr = lim [—e S = lim [1- eV =1,
0=0 r

-0 N—o0 N—oo
[l

27T

8. HOMEWORK &

Exercise 8.1. Let X be a continuous random variable with distribution function fx(z) =

\/%76_:”2/2 V x € R. Show that var(X) = 1.

Solution. E[X] = 0 since fx(z) is an even function, so it is enough to show that E[X?] = 1.
By definition,
E[X?]

1 © 5 _e?
= —— e 2 dx
\ 2T /_oo
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Integrating by parts with « = —z and dv = —xe” 2 and noting that the boundary terms
vanish, we obtain

E[X?] =1 —/ 5 d
[]niﬂo‘om .

= lim —([ re ® /2]£_Tjn+/ e da:)
n—o0 2 _n

r=1

vl

using Exercise 7.8. U

Exercise 8.2. Let X be a random variable such that fx(z) = 2 when 0 < z < /2 and
fx(z) = 0 otherwise. Compute EX? and EX?3.

Solution. By definition,

o V2 ZE4
E[X?] = / 2 fx(z) do = / 2% dr = vy
—o0 0

V2 5.v2 9
E[XS]Z/ L
0 5 1o )

Similarly,

Njot

O

Exercise 8.3 (Numerical Integration). In computer graphics in video games, etc., various
integrations are performed in order to simulate lighting effects. Here is a way to use random
sampling to integrate a function in order to quickly and accurately render lighting effects.
Let 2 = [0,1], and let P be the uniform probably law on €, so that if 0 < a < b < 1,
we have P([a,b]) = b — a. Let Xi,..., X, be independent random variables such that
P(X; €la,b]) =b—aforall0 <a<b<1, foralie{l,....,n}. Let f:[0,1] - R be a
continuous function we would like to integrate. Instead of integrating f directly, we instead
compute the quantity

1 n

- Z F(x

Jim B (%Zf(&-)) = /0 F(t)dt

i var (1 fjfm)) -

That is, as n becomes large, + =30 f(X;) is a good estimate for fo t)dt.

Show that

Solution. By definition of X; we have Ef(X fo t)dt for all i > Iso that E (2 Y7 | f(X;)) =
Ln fo fo t)dt. Also, by mdependence we have

ar (% Zf(X») - Zvar<f<xi>> = Lvar(f(X0)).
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This quantity goes to zero as n — oo. (Since f is continuous on [0, 1], f is bounded by some
constant c on [0,1], i.e. [f(t)| < cforallt € [0,1], s0 | f(X1)] < ¢, s0varf(X;) < E[f(X;)]? <
¢ foralli >1.) O

Exercise 8.4. Let X be a random variable such that X = 1 with probability 1. Show that
X is not a continuous random Variable That is, there does not exist a probability density
function f such that P X <a) f f(z)dz for all x € R. (Hint: if X were continuous,

then the function g(t f f(x)dx would be continuous, by the Fundamental Theorem of
Calculus.)

Solution. As suggested, if X is continuous, then the CDF of X is a continuous function. But
the CDF of X is discontinuous at 1 by assumption, a contradiction. 0

Exercise 8.5. Verify that a Gaussian random variable X with mean g and variance o2

actually has mean p and variance o2.

Let a,b € R with a # 0. Show that aX + b is a normal random variable with mean ayu + b
and variance a?c?.
In particular, conclude that (X — p)/o is a standard normal.

_(@=w)?
e 22 Vr € R, we have

Solution. Since fx(z) = oo

& 1 _(@-w? & o2
EX = €T 202 dx:/ T+ e 202dx
/_oo VA 27rc7 ( 'LL) \/ To

= € 20 €Tr = (& T = 3
a oo V2mo a oo V21 .

where we used Exercise 7.8 in the last step, and a few Changes of variables. Similarly,

_a—w)? o o2
T 202 dx = X + ?dﬂf
/ 27r0 / ( ,u) V2 0
= / (2% 4+ p)e 207dr = p +/ —xQe*Wd:c
—oo V2mo V2o

< 1
= p+ \/ﬁa — (d/dz)o?e 22 }dw
o0 1 .22
= u+ o’ e 2%dr = i+ o’
—0 V2TO

So, var(X) = EX? — (EX)? = p+ 0% — p= o2
Suppose ;4 = o = 1. Then

(t-b)/a

t—b
PlaX +b<t) = P(X < (t—b)/a) = / e )3 = / a2 gy 1\ o

o0

t
:/ ae~ @2 qo /o

—0o0

That is, aX + b has a Gaussian density with mean b and variance a?. The case of general
1, o follows from this case. 0J
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Exercise 8.6. Using the De Moivre-Laplace Theorem, estimate the probability that 1,000,000
coin flips of fair coins will result in more than 501, 000 heads. (Some of the following integrals
may be relevant: fi)oo e 12dt/\/2m = 1/2, fjoo e~ 124t )/ 21 ~ 8413, ffoo e 124t )21 ~
9772, [° e P2dt/ /21 ~ .9987.)

Casinos do these kinds of calculations to make sure they make money and that they do

not go bankrupt. Financial institutions and insurance companies do similar calculations for
similar reasons.

Solution. Let X be the number of heads in 1,000,000 flips. The De Moivre-Laplace limit
theorem states that if S, is the sum of n independent Bernoulli random variables with
parameter %, then

can be closely approximated by a normal random variable. Taking n = 10°, we have
X — 500000
P(X > 501,000) = P(X — 500,000 > 1000) = P(T > 2)

X —
—1—P( 500000 <2>

1 2 2
~1— — 7 ~ (0.022
=00 / e 2 dr ~0.0228

V2T J_so
O

Exercise 8.7. Let X be a uniformly distributed random variable on [—1,1]. Let Y := X?2.
Find fy.

Solution. First, note that for any 0 < a < 1, the definition of X implies that

P(—aﬁXﬁa):/an(s)ds:%/ads:%:a. (%)

By differentiating the CDF and using the definition of Y and , we have for any 0 <t <1,

Fe(t) = TPy <1) = SP(X? < 1) = TR(X| < Vi = SP(-Vi< X < Vi)

dt
() d —1/2
= —2vVt=t .
dt Vi
So, fy(t) =t"1/2 for any 0 <t < 1, and fy(t) = 0 for any other ¢. O

Exercise 8.8. Let X be a uniformly distributed random variable on [0, 1]. Let Y := 4X (1 —

Solution. Using the quadratic formula, note that 4z(1—x) = t occurs when —4x?+4x—t = 0,
i.e. when 22 —z +¢/4 =0, i.e. when x =[1++/1—1¢]/2. So,4z(1 —z)<tand 0 <z <1
when 0 <z <[1—+1—1t]/2and [1++/1—1]/2 <z < 1. So, using set disjointness and the
definition of X,

PAUX1-X)<t)=PO<X<[1—-V1—-t]20or [1+V1-1]/2< X <1)
=PO<X<[1-vV1-t/2)+P([1+V1-t/2<X<1)
=[1-v1—-t]/2)+1-[1+V1-t]/2=1—-+v1—1. (%)
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Then, by differentiating the CDF, we have for any ¢ > 0,

) = Lpy <) = %P(ﬁlX(l —X)<t) = %P(ALX(I —X)<t)

dt
o d 1
© (1= VI=f)=1-n7"

So, fy(t)=1(1—¢t)7"/2 for any 0 < ¢ < 1, and fy(t) = 0 for any other ¢. O
Exercise 8.9. Let X be a uniformly distributed random variable on [0,1]. Find the PDF
of —log(X).

Solution. First, note that for any 0 < a < 1, the definition of X implies that

1 1
P(X >a)= / fx(s)ds = / ds=1—a. (%)
By differentiating the CDF, we have for any ¢ > 0,

d d
= — — < = — > —t
forogx () dtP( log X < t) dtP(X > et

© 1(1 —ehH=em.

dt
S0, fo10gx(t) = e " for any t > 0, and f_ g x(¢) = 0 for any other ¢. O

Exercise 8.10. Let X be a standard normal random variable. Find the PDF of eX.
Solution. First, note that for any 0 < a < 1, the definition of X implies that

a

P(Xga):/_;fx(s)ds:/_ooe‘SQ/zds/\/%. (%)

By differentiating the CDF and using the chain rule, we have for any ¢ > 0,
d d
t) = —P(e* <t)= —P(X < logt
for(t) = SP(X < 1) = SP(X < log

logt
R R T YIS e LS R S RO UL

Codt ) Vor dt Vor t
So, fex(t) = \/%ef(my)?/z% for any ¢ > 0, and f.x(t) = 0 for any other ¢. O

9. HOMEWORK 9

Exercise 9.1. Let X,Y be random variables with joint PDF fxy. Let a,b € R. Using the
definition of expected value, show that E(aX 4 bY) = «EX + bEY'.

Solution. Using the joint pdf, we have

ElaX +0Y] = /_OO /_oo (az + by) f(x,y) dedy

:a/_:x[/_Zf(x,y) dy} da:+b/:;y[/_:f(x,y) dx} dy

=a/w@&@wm+b/myn@ww:aMthEW]

—00 —00
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Exercise 9.2. Let X, Y] be random variables with joint PDF fx, y,. Let X5, Y5 be random
variables with joint PDF fx,y,. Let T: R?* — R? and let S: R? — R? so that ST (z,y) =
(z,y) and T'S(x,y) = (z,y) for every (z,y) € R% Let J(z,y) denote the determinant of the
Jacobian of S at (z,y). Assume that (X, Ys) = T(X;,Y1). Using the change of variables
formula from multivariable calculus, show that

fX27Y2(x7y) = le,Y1(S(xay)) |J($7y)| .

Solution. According to the change of variables theorem, if U is a “nice” subset of R? and ¢
is an injective differentiable function on U, then

|t dudo= [ fota,)]det Do) dady
3(U) U
where D¢(z,y) is the Jacobian of ¢ at (z,y). Since (X, Y2) = T(X1, Y1), it follows that

P((X2,Y5) e U) =P((X1,Y1) € S(U)) = /S(U) fi(u,v) dudv

:Lﬁ@@@W@@MMy
On the other hand,
Hmmaewz/ﬁmwmm
U

by the definition of a pdf. Therefore we have shown that

Lﬁ@wM@—LﬁM%MU@MMM

for all “nice” subsets U C R? which implies that fo(z,y) = fi(S(z,y))|J(z,y)|, at least
outside of some negligible set of points. O

Exercise 9.3. Let X and Y be nonnegative random variables. Recall that we can define
EX ::/ P(X > t)dt.
0

Assume that X <Y. Conclude that EX < EY.

More generally, if X satisfies E | X| < oo, we define EX := Emax(X,0) — Emax(—X,0).
If X,Y are any random variables with X < Y, E|X| < oo and E|Y| < oo, show that
EX <EY.

Exercise 9.4. Let X,Y, Z be independent standard Gaussian random variables. Find the
PDF of max(X,Y, Z).

Solution. We have, for any ¢t € R, using the definition of maximum, independence, and the
definition of a Gaussian,
t ) 3
Pmax(X,Y,Z) <t) =P(X <t,Y <t,Z <t)=P(X <)’ = (/ e /st/\/27r) .
So, by the chain rule,
t

d 2 2 2 ].
-~ £) = LP(max(X,Y, 7) < t :3(/ e~ 2ds Vo) e
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Exercise 9.5. Let X be a random variable uniformly distributed in [0, 1] and let Y be a
random variable uniformly distributed in [0,2]. Suppose X and Y are independent. Find
the PDF of X/Y?2.

Solution. We have, for any t > 0, using the definition of joint PDF and of X and Y,

P(X/Y?<t)=P(X <tY?) = // fxy(z,y)dzdy
{(zy)eR?: x<ty?}

/wmin(l,llt) /y2 z=min(1,4t) y=2 1
= fi(a) ) dyde = | / *dydz
=0 y=min(2,4/x/t) =0 y=min(2,4/x/t) 2

x=min(1,4t)
/ 2 — min(2, /2/1)]dz

"2 - min(2, \/z/t)]dr 0 <t<1/4
2 min(2, /o /t)de L if1/4 <t
2= x/de L if0<t<1/4

I:OI[Q —ax/tlde | ifl/4 <t

(8t — (2/3)(4)*2¢71/7] if0 <t < 1/4

2 —(2/3)t7 /7 Jif1/4 <t

Il
=)

Il
b

st
8

I
N N N N —N— DO

—
5

NI NN NN =

At — (8/3)t if0 <t <1/4
1—(1/3)t7 Y2 ifl/a <t

(4/3)t Lif0<t<1/4
1—(1/3)t7 V2 if1/4 < t.

So,

d

fX/YZ(t):—P(X/YZSt): {4/3 L if0<t<1/4

dt ST ifl/a <t

0
Exercise 9.6. Let X,Y be independent random variables with joint PDF fyy. Show that
var(X +Y) = var(X) + var(Y).
Solution. f(x,y) = fx(x)fy(y) since X and Y are independent, hence

var(X +Y) = /_OO (X +Y — B[X] — E[Y])*f(z, y) dedy

oo

=[5u—HMVn@mmnmw+/‘@—EMY&@M«»M@

oo —00

=1 " (¢ — EIX))(y — EY])fx(2) fy (y) ddy

[e.9]

36



[e.9]

—var () var() + 2 [ (@~ B @) o] [ [ (0= BYDAG) dy

— 00 —00

= var(X) + var(Y)

(e 9]

O

Exercise 9.7. Let X and Y be uniformly distributed random variables on [0, 1]. Assume
that X and Y are independent. Compute the following probabilities:
e P(X > 3/4)
e P(Y < X)
e P(X+Y <1/2)
e P(max(X,Y) > 1/2)
e P(XY < 1/3).
Solution.
a. P(X > 3).
Solution: P(X >3)=1-P(X <3)=1-
b. P(Y < X).
Solution: The joint pdf of X and Y is f(z,y) = 1if0 < z,y < 1 and f(z,y) = 0 otherwise,

hence . .
* 1
P(Y<X):// dydx:/xdx:—
o Jo 0 2
. P(X+Y <1).

Solution: Using the same pdf as in part (b), we have

1 1 1
1 2 [27% 2] x — z?
P(X Y —): I P e
+ <2 /0/0 Yax /02 T dx 5

d. P(max{X,Y} > 3).
Solution: Since X and Y are independent,

P(maX{X,Y} > 5) =1 —P(maX{X,Y} < 5) =1 —P(X < §7y <

—1—P(Xg1>P<Xg1>_1_l_§
2 2 11

Solution: If X < %, then XY < % regardless of the value of Y. If % < X < 1, then we
must have Y < 3LX Therefore

N 1 [ 1 (dr 1 1 1+ In(3)
P(XY<—>:— // dydx = = _:_<1_1 <_>>:—
5) =37 Sy 3" s 3z 3 "3 3

Exercise 9.8. Let X,Y be random variables with EX? < oo and EY? < co. Prove the
Cauchy-Schwarz inequality:

E(XY) < (EX?)V3(EY?)V2.
Then, deduce the following when X, Y both have finite variance:
lcov(X,Y)| < (var(X))Y2(var(Y))'2.

>
=

1
3 1
0

)

N —

O
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(Hint: in the case that EY? > 0, expand out the product E(X — YE(XY)/EY?)2.)

Exercise 9.9. Suppose you go to the bus stop, and the time T" between successive arrivals
of the bus is anything between 0 and 30 minutes, with all arrival times being equally likely.

Suppose you get to the bus stop, and the bus just leaves as you arrive. How long should
you expect to wait for the next bus? What is the probability that you will have to wait at
least 15 minutes for the next bus to arrive?

On a different day, suppose you go to the bus stop and someone says the last bus came 10
minutes ago. How long should you expect to wait for the next bus? What is the probability
that you will have to wait at least 10 minutes for the next bus to arrive?

Solution. The pdf of T is fr(t) = 55 if 0 < ¢ < 30, and fr(t) = 0 otherwise. Therefore

30 t2 30

0 1
E|T| = t t)dt = — tdt = — =15
T /Oofm 5 =l

and

1 [ 1
P(T > 15) = — dt = =
(7> 15) 30/15 2

Let A= {T > 10}. Then the conditional pdf of T given A is frja(t) = 5 if 10 <t < 30,
and frja(t) = 0 otherwise. Therefore

1 30 t2
E[T|A]:—/ it = =
20 /.4 40

which means that you should expect to wait an additional 10 minutes for the bus. Similarly,

30
=20

10

I 1
P(T>20|A):%/ZO it =

]
Exercise 9.10. Let A;, Ay, ... be disjoint events such that P(4;) = 27 for each i > 1.

Assume that U2 A; = Q. Let X be a random variable such that E(X|A;) = (—1)" for
each ¢ > 1. Compute EX.

Solution. By the law of total expectation,

o

E[X] = ZE[X|Ai]P(AZ.) =Y (g

i=1

Beginning with the geometric series

> o' =

: 11—z
=0

for |x] < 1 and multiplying by x shows that
: Cl-x
=1
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Replacing x with —x and multiplying by —1 yields

[e.9]

)il — z
Z( )" 1+

i=1

so setting x = %, we obtain

O

Exercise 9.11. Let X,Y be random variables. For any y € R, assume that E(X|Y =y) =
e . Also, assume that Y has an exponential distribution with parameter A = 2. Compute
EX.

Solution. By the law of total expectation,

Bix] = B ~ iy =2 [ ey

10. HOMEWORK 10

Exercise 10.1. Let X be a binomial random variable with parameters n =2 and p = 1/2.
So, P(X =0)=1/4, P(X =1)=1/2 and P(X =2) = 1/4. And X satisfies EX =1 and
EX?=3/2.

Let Y be a geometric random variable with parameter 1/2. So, for any positive integer k,
P(Y = k) =27% And Y satisfies EY = 2 and EY? = 6.

Let Z be a Poisson random variable with parameter 1. So, for any nonnegative integer k,
P(Z =k) =15, And Z satisfies EZ =1 and EZ? = 2.

Let W be a discrete random variable such that P(W = 0) = 1/2 and P(W = 4) = 1/2,
so that EW = 2 and EW? = 8.

Assume that X, Y, Z and W are all independent. Compute

var(X +Y +Z 4+ W).

Solution. Since the variance of the sum is the sum of the variances for independent random
variables, we have

var(X +Y + Z+ W) =var(X) + var(Y) + var(Z) + var(W) =1/2 + 24+ 1 + 4.
U

Exercise 10.2. Let X4,...,X,, be random variables with finite variance. Define an n x n
matrix A such that A;; = cov(X;, X;) for any 1 < ¢,j < n. Show that the matrix A is
positive semidefinite. That is, show that for any y = (y1,...,y,) € R", we have

y' Ay = Z Yiy; Aij > 0.

3,7=1
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Solution.

Z Yy Aij = Z yiyicov(Xi, X;) Z cov(y; X, y;X;) = var Zyl

3,j=1 3,j=1 i,5=1
The last line used var(Z) > 0 for any random variable Z. O

Exercise 10.3. Using the definition of convergence, show that the sequence of numbers
1,1/2,1/3,1/4,... converges to 0.

Solution. Let ¢ > 0. We need to find m > 0 such that, for all n > m, we have |1/n —0| =
1/n < e. So, choose m to be any integer larger than 1/e, i.e. m > 1/e so that 1/m < e. If

n > m, then 1/n < 1/m < ¢, as desired. O
Exercise 10.4 (Uniqueness of limits). Let 21, x9, ... be a sequence of real numbers. Let
x,y € R. Assume that zq, xs, ... converges to x. Assume also that zq, xs, ... converges to y.

Prove that x = y. That is, a sequence of real numbers cannot converge to two different real
numbers.

Solution. Let € > 0. By assumption, there exists m > 0 such that, for all n > m, |z, — z| <
e. By assumption, there exists p > 0 such that, for all n > p, |z, —y| < . So, if n >
max(m, p), we have
|z, — 2| < g, and ylr, —y| <e.
So, using the triangle inequality, for any € > 0, if n > max(m, p), we have
2 —yl=lr —ap+a, —y| < |z —zn| +|zn —y| <ete=2e
Since € > 0 is arbitrary, we conclude that = = y. 0

Exercise 10.5. Let X be a random variable. Assume that M (t) exists for all ¢ € R, and
assume we can differentiate under the expected value any number of times. For any positive
integer n, show that

d n

M (1) = B(X").
So, in principle, all moments of X can be computed just by taking derivatives of the moment
generating function.

Exercise 10.6. Let X be a standard Gaussian random variable. Compute an explicit
formula for the moment generating function of X. (Hint: completing the square might
be helpful.) From this explicit formula, compute an explicit formula for all moments of
the Gaussian random variable. (The 2n!* moment of X should be something resembling a
factorial.)

Solution.
EetX — /Oo e p—a?/2 4T dx Oo o—(@=2/2,62/2 4T d — /2 OO o=/ dx — ot?/2
—00 \/ —00 \/ —00 V 2m

If n is odd, then EX™ is zero, since EX" = ffo a:”e_mg/zj—i = 0, since the integrand is odd.

21
t2/2

Meanwhile, using the power series expansion of e /*, we get

EetX — et2/2 _ io: <t2/2)k'

k!
k=0
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Equating the k" derivatives at zero of both sides gives
d* (t2/2)F  (2k)!

dt%'t:O K okl

EX? =
O

Exercise 10.7. Construct two random variables X, Y : 2 — R such that X # Y but
Mx (t), My (t) exist for all ¢ € R, and such that Mx(t) = My (¢) for all ¢t € R.

Solution. Let X be a mean zero standard Gaussian and let Y = —X. Then X # Y, but
Mx(t) = My(t) = e*/2. O

Exercise 10.8. Unfortunately, there exist random variables X,Y such that EX" = EY™"
forallm =1,2,3,..., but such that X, Y do not have the same CDF. First, explain why this
does not contradict the Lévy Continuity Theorem, Weak Form. Now, let —1 < a < 1, and
define a density

x\/ 21

ogx 2
ful@) = : 6_%(1 +asin(2rlogz)) ,if x>0
‘ 0 , otherwise.

Suppose X, has density f,. If —1 < a,b < 1, show that EX] = EX] for alln =1,2,3,....
(Hint: write out the integrals, and make a change of variables s = log(z) + n.)

Solution.

o0 o0 1 og 2
EX" = / 2" fu(x)dr = / " e 57 (1+ asin(2wlog z))dx
00 0 V21

_ (s—n)2

1 >
(s—n)n :
- —F (& (& 2 1+(ISIH27KS—TL ds
V2T /_oo ( (2 )

1 & 52
= ee” 2 (1 +asin(2r(s —n)))ds
T / e (2n(s — n)))

TR R0 ¢ asinn(s - n))d
= e 2 +asin(27(s — n S

V2T J o

€n2/2 0 2

~7 (1 + asin(27s))ds = /2.

= e
V2T J_o

52 . . . . . .
The last equality used that the function e~z sin(27s) is odd, so its integral is zero. Since
EX" does not depend on a, the result follows. O

11. HOMEWORK 11

Exercise 11.1. Compute the characteristic function of a uniformly distributed random
variable on [—1,1]. (Some of the following formulas might help to simplify your answer:
et = cos(t) +isin(t), cos(t) = [e® + e "]/2, sin(t) = [e? — e ]/[2i], t € R.)

Solution.

sin(t)

: IR 11 . 1, .
Eeti:_/ eztmdx:__eztr r=1 __ [ezt_e—zt]: -

2], 24t =T 24t
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Exercise 11.2. Let X be a random variable. Assume we can differentiate under the expected
value of Ee™* any number of times. For any positive integer n, show that

limaox(t) = PB(X)

So, in principle, all moments of X can be computed just by taking derivatives of the char-
acteristic function.

Solution. d"
dt"’t 09x(t) = dt — o™ = E(iX)"e" |0 = i"E(X").
O

Exercise 11.3. Let X be a random variable such that E|X|* < co. Prove that for any
t e R,
Ec'™ =1+ itEX — ?EX?/2 + o(t?).
That is,
g%t—? Ec" — [l +itEX — ’EX?/2]| =0

(Hint: it may be helpful to use Jensen’s inequality, to first justify that E|X| < oo and
EX? < 0. Then use the Taylor expansion with error bound: e¥ = 1 + iy — y*/2 —
(i/2) [ (y — s)*e**ds, which is valid for any y € R.)

Actually, thls same bound holds only assuming EX? < oo, but the proof of that bound
requires things we have not discussed.

Solution. Using y = tX in the Taylor expansion with error bound,
tX
X itX — (1X)2)2 — (i/2) / (1X — s)2ei*ds.
0

Taking expected values, rearranging, then taking the absolute values,

X A
/ (tX — s)%e’ds
0

X
/ (tX — s)%ds
0

1 1
S (1/3)(tX)%| < 6t3E|X|3.

1
|Ee"™X — [1+itEX — " EX?/2]| < SE

1
-E
2

IN

IN

Therefore,

lim¢~2 [Ee™ — [1 +itEX — *EX?/2]| = (1/6)E | X|’ lim# = 0.
—

t—0

O

Exercise 11.4. Let XY, Z be independent and uniformly distributed on [0,1]. Note that
fx is not a continuous function.

Using convolution, compute fx.y. Draw fx,y. Note that fx.y is a continuous function,
but it is not differentiable at some points.

Using convolution, compute fxiy.z. Draw fx.y.z. Note that fx,y.z is a differentiable
function, but it does not have a second derivative at some points.
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Make a conjecture about how many derivatives fx,i..;x, has, where Xi,..., X, are in-
dependent and uniformly distributed on [0, 1]. You do not have to prove this conjecture.
The idea of this exercise is that convolution is a kind of average of functions. And the more
averaging you do, the more derivatives fx, ..1x, has.

Solution.

v (8) = fx # fult) = /R Lo () Lo (t — 2)da = /

r=1

lpy(t — x)dx :/ Lyep—1,qdz

=0

=1
=0

SO, ift < 0, fx+y(t) =0.Ift > 2, fXer(t) =0. Andift e [0, 1], then fXJrY = f;:g dr = t.
And if t € [1,2], then fx.y = =l dr=2—t In summary,

r=t—1
0 ,ift <0
t ifo<t<l1
t) = U=
Pe =9, Jifl <t <2
0 Jift > 2.

That is, fxyy is piecewise linear and continuous, and symmetric about the point t = 1.
Similarly breaking into various cases, we have

=2
Ixaviz(t) = fxqv * f2(1) = /RfX+Y(fK)1[o,1} (t —z)dx = . Ixiv (@) lpep—1,qdx

(0 ,ift <0
[ sds Jifo<t<1

- fll_tsds+ff(2—s)ds Jif1 <t <2
[2.(2 - s)ds Jif2<t<3
L0  ift > 3.
(0 Jift <0
22 Lif0<t<1

=< (1/2)1—-(1-t))+ 2t —12/2)-3/2 ,ifl<t<?2
(2s—s*/2)4—2-2(t—1)+ (t—1)%/2 ,if2<t<3

L0 ,ift > 3.
(0 ift <0
£2/2 Jifo<t<1

=q-t?+3t-3/2 ,ifl1<t<?2
(1/2)(t—3)* ,if2<t<3
L0 ,ift > 3.

That is, fxiyiz is piecewise quadratic, continuous, and symmetric about the point ¢ =
3/2.

When n is large, fx,+..+x, looks more and more like a Gaussian density. This observation
agrees with the Central Limit Theorem. O
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Exercise 11.5. Construct two random variables X, Y such that X and Y are each uniformly
distributed on [0, 1], and such that P(X +Y =1) = 1.

Then construct two random variables W, Z such that W and Z are each uniformly dis-
tributed on [0, 1], and such that W 4 Z is uniformly distributed on [0, 2].

(Hint: there is a way to do each of the above problems with about one line of work. That
is, there is a way to solve each problem without working very hard.)

Solution. Let X be uniformly distributed in [0, 1] and define Y := 1 — X.
Let W be uniformly distributed in [0, 1] and let Z := W. Then W + Z = 2W is uniformly
distributed in [0, 2], since P2W < t) =P(W < t/2) =t/2 for all 0 <t < 2. O

Exercise 11.6. Let X be a standard Gaussian random variable. Let ¢ > 0 and let n be a
positive even integer. Show that

P o p) < (=D =8) - 3)(1)
< =

That is, the function ¢ — P(X > t) decays faster than any monomial.

Solution. This follows by combining Markov’s inequality with Exercise 10.6, noting also that
P(X >1t) <P(X|>1). 0J

Exercise 11.7. Let X be a random variable. Let ¢ > 0. Show that
4

EX
P(|X]|>1t) < ”

Solution. This follows from Markov’s inequality with n = 4. 0

Exercise 11.8 (The Chernoff Bound). Let X be a random variable and let » > 0. Show
that, for any ¢t > 0,

P(X >r) <e "Mx(t).

Consequently, if Xi,...,X,, are independent random variables with the same CDF, and if
r,t >0,

1 n
P| - X; > < e "My, ()"
(33 =0) <
For example, if X4, ..., X, are independent Bernoulli random variables with parameter 0 <

% ...+x
P(

n

—p> T) <e (e "lpe' + (1 —p)))".

And if we choose t appropriately, then the quantity P (% > (X —p)| > r) becomes ex-

ponentially small as either n or r become large. That is, % >, Xi becomes very close to its

mean. Importantly, the Chernoff bound is much stronger than either Markov’s or Cheyshev’s
inequality, since they only respectively imply that
1—
- T) < pd-p)

Xi+---+ X, 2p(1 — X1+ + X,
P(‘ 1+t —p >7’)§ P p)’ P(' 1+t . i
nr

n T n
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Solution. Since the exponential function is increasing, we have, for any ¢ > 0 that the events
{X > r} and {eX > "} are the same, for any r > 0. So, their probabilities are the same,
and applying Markov’s inequality gives

tX t Ee't t
P(X >r)=P(" >e") < & = e "Mx(t).
O
12. HOMEWORK 12
Exercise 12.1. Let Xi, X5,... be independent random variables, each with exponential

distribution with parameter A = 1. For any n > 1, let Y, := max(Xy,...,X,). Let
0 <a < 1<b Show that P(Y,, < alogn) — 0 as n — oo, and P(Y,, < blogn) — 1 as
n — 0o. Conclude that Y,,/logn converges to 1 in probability as n — oo.

Exercise 12.2. We say that random variables X7, X5, ... converge to a random variable X
in LQ if
lim E|X, — X|* = 0.

n—oo
Show that, if X7, X, ... converge to X in Ly, then Xy, X, ... converges to X in probability.
Is the converse true? Prove your assertion.

Solution. From Markov’s inequality, we have, for any € > 0,

E|X, — X|?
P(|X, — X| > &) £ =

The right quantity converges to 0 as n — co by assumption. We therefore conclude that
X1, Xs, ... converges in probability to X.

The converse is false in general. We can use the same example from class, where X,, =
nlp/m for all n > 1, and P is uniform on [0, 1]. Then X, X, ... converges in probability
to 0, but EX? =n — 0o as n — oo. O

Exercise 12.3. Let X, X,,... be independent, identically distributed random variables
such that E|X;| < oo and var(X;) < co. For any n > 1, define

_ 1 3 X
n 4 !
=1
Show that Y7, Y, ... converges in probability. Express the limit in terms of EX; and var(X}).

Solution. The weak law of large numbers implies that Y, converges in probability to EX?
as n — oo, since X7,..., X? are i.i.d. with mean EX?. Since EX? = var(X;) + (EX;)?, Y,
converges in probability to var(X;) + (EX;)? as n — co. O
Exercise 12.4. Let f,g,h: R — R. We use the notation f(t) = o(g(t)) V¢t € R to denote
lim_,0 ‘%| = (0. For example, if f(t) = ¢V t € R, then f(t) = o(t?), since hmt_>O| )| =

limy; ¢ [t| = 0. Show: (i) if f(t) = o(g(t)) and if h(t) = o(g(t)), then (f + h)(t) = (g(t))
(ii) If ¢ is any nonzero constant, then o(cg(t)) = o(g(t)). (iii) lim;_ g(t)o(1/g(t)) = 0. (iv)

lim0 0(g(£))/9(t) = 0. (v) o(g(t) 4 o(g(t))) = o(g(t))-
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Sflzt;)@;m (i) We have |f(t) +h(t)] /g()] < [f()/g()] + |h(t)/g(t)], so that f + h(t) =
o(g(t)).

(ii) We have [eg(t)] = |c|[g(¢)|, so o(cg(t)) = o(g(t)).

(iii) If f(t) = o(1/g(t)), then by definition, |f(¢)/(1/g9(t))| = |f(t)g(t)] — 0 as t — 0.

(iv) If f(t) = o(g(t)), then by definition, |f(t)/g(t)] = 0 as t — 0.

(v) If f(t) = o(g(t)), then by definition, |f(t)/g(t)] — 0 as t — 0. So, if h(t) = o(g(t) +
olg(1) = olo(t) + (1)), then i [h(1)/(o(8) + F(1)] = lime 2208 Thie bottom
goes to 1 as ¢t — 0, so that limyg [A(t)/(g(t) + f(2))| = im0 [A(2)/g(#)]. That is, o(g(t) g

o(g(1))) = o(g(t))-

Exercise 12.5. This exercise demonstrates that geometry in high dimensions is different
than geometry in low dimensions.

Let * = (21,...,2,) € R™ Let ||z]| == /23 +---+22. Let ¢ > 0. Show that for all
sufficiently large n, “most” of the cube [—1, 1] is contained in the annulus

A={zeR": (1-¢)y/n/3 <|z| < (1+¢)\/n/3}.
That is, if Xy, ..., X, are each independent and identically distributed in [—1, 1], then for n
sufficiently large

P((X1,... X)) €A) >1—c.
(Hint: apply the weak law of large numbers to X2, ..., X2.)

Exercise 12.6 (Confidence Intervals, Optional). Among 625 members of a bank chosen
uniformly at random among all bank members, it was found that 25 had a savings account.
Give an interval of the form [a, b] where 0 < a,b < 625 are integers, such that with about 95%
certainty, if we sample 625 bank members independently and uniformly at random (from a
very large bank membership), then the number of these people with savings accounts lies in
the interval [a,b]. (Hint: if Y is a standard Gaussian random variable, then P(—2 <Y <
2) =~ .95.)

Solution. Let X; be the indicator random variable which is 1 if the i member had a savings
account and 0 if not, for alli € {1,2,...,625}. Then we are assuming the X7, X, ... arei.i.d.
with P(X; = 1) = p = 25/625 = 1/25 and thus E[X;] = p var(X;) = p(1 — p) = 24/625.
Then by the central limit theorem, we have

Xy oo Xeon —
p o<t R =029 o) o
625p(1 — p)

That s,
p (625p —2/625p(1 — p) < X1+ -+ + Xeps < 625p + zm) ~ .95
Using p = 1/25,
P(25—2@§X1+-~~+X625 325+2\/ﬂ) ~ .95

So, with about 95% certainty, the number of the 625 chosen bank members with savings
accounts lies in the interval [15.2,34.8]. Since the number of bank members is an integer,
this interval can be chosen as [15, 35]. O
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Exercise 12.7 (Hypothesis Testing, Optional). Suppose we run a casino, and we want
to test whether or not a particular roulette wheel is biased. Let p be the probability that
red results from one spin of the roulette wheel. Using statistical terminology, “p = 18/38” is
the null hypothesis, and “p # 18/38” is the alternative hypothesis. (On a standard roulette
wheel, 18 of the 38 spaces are red.) For any i > 1, let X; = 1 if the i** spin is red, and let
X,; = 0 otherwise.

Let 1 := EX; and let 0 := y/var(X;). If the null hypothesis is true, and if Y is a standard
Gaussian random variable

Xy 4+ X, — np

nlggo P ( o\/n
To test the null hypothesis, we spin the wheel n times. In our test, we reject the null
hypothesis if | X; + --- + X,, — nu| > 20+/n. Rejecting the null hypothesis when it is true is
called a type I error. In this test, we set the type I error percentage to be 5%. (The type I
error percentage is closely related to the p-value.)
Suppose we spin the wheel n = 3800 times and we get red 1868 times. Is the wheel biased?
That is, can we reject the null hypothesis with around 95% certainty?

Solution. Assume that the null hypothesis is true. Then o = 1/p(1 — p) = /(18/38)(20/38).
Then, plug in the sample values to get

X144+ X, —np| /(ov/n) = (1868 — 3800(18/38))| /[/(18/38)(20/38)v/3800] ~ 2.2 > 2.
Thus we reject the null hypothesis with around .95% certainty. 0

> 2) = P(|Y| > 2) ~ .05.

Exercise 12.8. Suppose random variables X7, Xy, ... converge in probability to a random
variable X. Prove that Xi, X5, ... converge in distribution to X.
Then, show that the converse is false.

ALL EXERCISES BELOW ARE OPTIONAL. THEY WILL NOT BE GRADED.

Exercise 12.9 (Optional). Let X, X5, ... be independent identically distributed random
variables with P(X; = 1) = P(X; = —1) = 1/2. For any n > 1, define
Xi+---+ X,

Voo
The Central Limit Theorem says that S, converges in distribution to a standard Gaussian
random variable. We show that S,, does not converge in probability to any random variable.
The intuition here is that if S,, did converge in probability to a random variable Z, then
when n is large, .S, is close to Z, Y, : ‘[\S/%" 15” is close to Z, but S,, and Y,, are independent.

And this cannot happen.
Proceed as follows. Assume that S, converges in probability to Z.

Sy =

e Let ¢ > 0. For n very large (depending on ¢), we have P(|S, — Z| > ¢) < ¢ and
P(lY,—Z|>¢) <e.

e Show that P(S, > 0,Y,, > 0) is around 1/4, using independence and the Central
Limit Theorem.

e From the first item, show P(S,, > 0/Z >¢) > 1—¢, P(Y, >0/Z >¢) > 1—¢, s0
P(S,>0,Y,>0[Z >¢) >1— 2e.

e Without loss of generality, for ¢ small, we have P(Z > ¢) > 4/9.
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e By conditioning on Z > ¢, show that P(S,, > 0,Y,, > 0) is at least 3/8, when n is
large.

Exercise 12.10 (Optional). Let X;, Xy, ... be random variables that converge almost surely
to a random variable X. That is,
P(lim X, =X)=1.
n— o0
Show that X7, Xy, ... converges in probability to X in the following way.
e For any € > 0 and for any positive integer n, let

Ane = [ J{w e Q: [Xp(w) - X(w)| > ¢}
Show that An,a 2 An—i—l,a 2 An+27£ 2 T
e Show that P(N%, A, .) =0.
e Using Continuity of the Probability Law, deduce that lim, ., P(A4,.) = 0.
Now, show that the converse is false. That is, find random variables X;, X5, ... that
converge in probability to X, but where X, X5,... do not converge to X almost surely.

Exercise 12.11 (Renewal Theory, Optional). Let ¢, s, ... be positive, independent iden-
tically distributed random variables. Let u € R. Assume Et; = p. For any positive integer
j, we interpret ¢; as the lifetime of the j lightbulb (before burning out, at which point it
is replaced by the (j + 1)% lightbulb). For any n > 1, let T,, :== t; + --- + t,, be the total
lifetime of the first n lightbulbs. For any positive integer ¢, let Ny := min{n > 1: T,, > t}
be the number of lightbulbs that have been used up until time ¢. Show that IV, /t converges
almost surely to 1/ as t — oo. (Hint: by definition of V;, we have T, 1 <t < Ty,. Now
divide the inequalities by N; and apply the Strong Law.)

Solution. From the Strong Law of Large Numbers,
P(lim T,,/n=pu) = 1. (%)
n—oo
In particular,
P(tlim N, = o0) = 1. ()
—00
By definition of Ny, Ty,—1 < t < Ty,. Dividing this by N, we get
Nt - 1 TNt,1 _ TNt,1 < i < TNt.
Ny Ny—1 Ny — Ny~ N
Letting t — oo, (k) implies that lim;_,., NfT;l = 1 with probability one. The combination
of () and (**) implies that, with probability one,
lim T = lim I
t—o0 Nt — 1 t—o0 Nt
So, (* * %) implies that, with probability one,

(5 % )

i t _
iy =
So, with probability one,
N 1
lim — = —
t—oo ¢ o
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Exercise 12.12 (Playing Monopoly Forever, Optional). Let t;,%s,... be independent
random variables, all of which are uniform on {1,2,3,4,5,6}. For any positive integer j, we
think of ¢; as the result of rolling a single fair six-sided die. For any n > 1, let T,, = t;+- - -+,
be the total number of spaces that have been moved after the n' roll. (We think of each
roll as the amount of moves forward of a game piece on a very large Monopoly game board.)
For any positive integer ¢, let N; := min{n > 1: T,, > t} be the number of rolls needed to
get t spaces away from the start. Using Exercise 12.11, show that N;/t converges almost
surely to 2/7 as t — oo.

Solution. Apply Exercise 12.11 with p = Et; = 7/2. O

Exercise 12.13 (Random Numbers are Normal, Optional). Let X be a uniformly
distributed random variable on (0,1). Let X; be the first digit in the decimal expansion of
X. Let X5 be the second digit in the decimal expansion of X. And so on.
e Show that the random variables X, X5, ... are uniform on {0, 1,2,...,9} and inde-
pendent.
e Fix m € {0,1,2,...,9}. Using the Strong Law of Large Numbers, show that with
probability one, the fraction of appearances of the number m in the first n digits of
X converges to 1/10 as n — 0.

(Optional): Show that for any ordered finite set of digits of length k, the fraction of
appearances of this set of digits in the first n digits of X converges to 107% as n — oo.
(You already proved the case k = 1 above.) That is, a randomly chosen number in (0, 1) is
normal. On the other hand, if we just pick some number such that v/2 — 1, then it may not
be easy to say whether or not that number is normal.

(As an optional exercise, try to explicitly write down a normal number. This may not be
so easy to do, even though a random number in (0, 1) satisfies this property!)

Solution. Fix xy,...,z, € {0,1,2,...,9}. If we specify the first n decimals of a number in
(0,1), then the fraction of numbers in (0, 1) with those specified decimals is 107", That is,

P(Xl =T1,--.- ,Xn = l’n) =10"".
By similar reasoning,
P(X;=u1;)=10"", V1i<i<n. (%)

That is, if we specify the i decimal of a number in (0, 1), then the fraction of numbers in
(0,1) with that specified decimal is 10~!. Therefore,

PXi=2,...,X,=2,) =100"=P(X; = 21) - - - P(X,, = z,), Vay,...,x, €4{0,1,...,9}.

That is, Xi,..., X, are independent. Also (%) implies that X, X5, ... are uniformly dis-
tributed in {0,1,...,9}.

Fixm € {0,1,...,9}. Foranyi > 1,let Y; = 1{x,—m). Since X;, X,,... areiid., Y7,Ys,...
are i.i.d. as well. The quantity (Y1 +---+Y,)/n is the fraction of the number of appearances
of m in the first n digits of X. Also by definition of Y;, EY; = P(X; = m) = 1/10 by (x).

So the Strong Law says
. Y44y, 1
Pllm —=—]=1.
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Exercise 12.14 (Optional). Using the Central Limit Theorem, prove the Weak Law of
Large Numbers.

Exercise 12.15 (Optional). Let X7, X5, ... be random variables with mean zero and variance
one. The Strong Law of Large Numbers says that %(Xl +---+ X,,) converges almost surely
to zero. The Central Limit Theorem says that \/LE(X 1+ -+ X,) converges in distribution to
a standard Gaussian random variable. But what happens if we divide by some other power

of n? This Exercise gives a partial answer to this question.

Let € > 0. Show that
Xi+---+ X,

n1/2(log n)1/2)+<
converges to zero almost surely as n — oo. (Hint: Re-do the proof of the Strong Law of
Large Numbers, but divide by n'/?(logn)"/2+¢ instead of n.)

USC DEPARTMENT OF MATHEMATICS, LOS ANGELES, CA
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