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0. Homework 0

Exercise 0.3.
n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6

for all natural numbers n.

Solution. If n = 1, then the left-hand side is 1, while the right-hand side is 1·2·3
6

= 1, which
establishes the base case.

For the induction step, assume the desired formula holds for a natural number n. We
must then prove that the formula holds in the case n+ 1. We have

n+1∑
k=1

k2 =
n∑
k=1

k2 + (n+ 1)2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2.

The last line used the inductive hypothesis. Continuing, we have

n+1∑
k=1

k2 =
2n3 + 3n2 + n+ 6(n+ 1)2

6
=

2n3 + 9n2 + 13n+ 6

6
=

(n+ 1)(n+ 2)(2n+ 3)

6

which is the desired formula for n+ 1. �
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Exercise 0.4.

R =
∞⋃
j=1

[−j, j].

{0} =
∞⋂
j=1

[−1

j
,
1

j
].

Solution. We first show that
⋃∞
j=1[−j, j] ⊆ R. Let x ∈

⋃∞
j=1[−j, j]. By definition of

countable union, here exists j ≥ 1 such that x ∈ [−j, j]. Since [−j, j] ⊆ R, we have x ∈ R.
In conclusion,

⋃∞
j=1[−j, j] ⊆ R.

We now show the reverse inclusion
⋃∞
j=1[−j, j] ⊇ R. Let x ∈ R. Since |x| is a nonnegative

real number, there exists a positive integer j ≥ 1 such that |x| ≤ j, i.e. x ∈ [−j, j]. By
definition of countable union, we therefore have x ∈

⋃∞
j=1[−j, j]. In conclusion,

⋃∞
j=1[−j, j] ⊇

R.
Thus we have shown that

⋃∞
j=1[−j, j] ⊆ R and R ⊆

⋃∞
j=1[−j, j], which implies that

R =
⋃∞
j=1[−j, j].

Part b. We first show that
⋂∞
j=1[−1/j, 1/j] ⊆ {0}. Let x ∈

⋂∞
j=1[−1/j, 1/j]. By definition

of countable intersection, x ∈ [−1/j, 1/j] for all j ≥ 1. That is, |x| < 1/j for all j ≥ 1.
By e.g. the Archimedean property of the real numbers, the only real number x satisfying
|x| < 1/j for all j ≥ 1 is the real number x = 0. That is,

⋂∞
j=1[−1/j, 1/j] ⊆ {0}.

We now show the reverse inclusion
⋂∞
j=1[−1/j, 1/j] ⊇ {0}. Let x := 0. Then x satisfies

|x| < 1/j for all j ≥ 1. That is, x ∈ [−1/j, 1/j] for all j ≥ 1. By definition of countable
intersection, x ∈

⋂∞
j=1[−1/j, 1/j]. In conclusion,

⋂∞
j=1[−1/j, 1/j] ⊇ {0}.

Thus we have shown that
⋂∞
j=1[−1/j, 1/j] ⊆ {0} and

⋂∞
j=1[−1/j, 1/j] ⊇ {0}, so that⋂∞

j=1[−1/j, 1/j] = {0}, as desired.
�

Exercise 0.5. Let Ω = {1, 2, . . . , 10}. Find subsets A1, A2, A3 of Ω such that A1 ∩ A2 =
{2, 3}, A1∩A3 = {3, 4}, A2∩A3 = {3, 5}, A1∩A2∩A3 = {3}, and A1∪A2∪A3 = {2, 3, 4, 5}.

Solution. All of A1, A2, A3 must contain 3, and must be contained in the set {2, 3, 4, 5}.
Moreover, 2 must be contained in both A1 and A2, but cannot be contained in A3, or else

it would be contained in A1 ∩ A3. Similarly 4 is contained in A1 and A3 but not A2, and 5
is contained in A2 and A3 but not A1. From this we obtain

A1 = {2, 3, 4} A2 = {2, 3, 5} A3 = {3, 4, 5}

�

1. Homework 1

Exercise 1.1. Let A,B,C be subsets of a set Ω. Prove that

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Then, show that

(Ac)c = A.
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Solution. We consider all 23 = 8 possibilities for the three statements “x ∈ A”, “x ∈ B”,
“x ∈ C” being true or false. These eight possibilities correspond to the eight rows of the
following truth table. The final two columns of the truth table correspond to each of the
sets A ∩ (B ∪ C) and (A ∩ B) ∪ (A ∩ C). Since these two columns of the truth table are
identical, we conclude that the A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

x ∈ A x ∈ B x ∈ C x ∈ B ∪ C x ∈ A ∩B x ∈ A ∩ C x ∈ (A ∩B) ∪ (A ∩ C) x ∈ A ∩ (B ∪ C)
True True True True True True True True
True True False True True False True True
True False True True False True True True
False True True True False False False False
True False False False False False False False
False True False True False False False False
False False True True False False False False
False False False False False False False False

We now show that (Ac)c = A. We first show that A ⊆ (Ac)c. Let x ∈ A. By definition
of the complement, x /∈ Ac. By definition of the complement again, x ∈ (Ac)c. That is,
A ⊆ (Ac)c.

We now show that A ⊇ (Ac)c. Let x ∈ (Ac)c. By definition of the complement, x /∈ Ac.
By definition of the complement again, x ∈ A. That is, A ⊇ (Ac)c.

Since A ⊇ (Ac)c and A ⊆ (Ac)c, we conclude that A = (Ac)c.
�

Exercise 1.2. Let {Ai}∞i=1 be subsets of a set Ω. Prove that
(⋂∞

i=1Ai

)c
=
⋃∞
i=1A

c
i .

Solution. Suppose x ∈ (∩∞i=1Ai)
c. That is, x /∈ ∩∞i=1Ai. Recall that ∩∞i=1Ai = {x ∈ Ω: ∀ j ≥

1, x ∈ Aj}. Since x is not in the set ∩∞i=1Ai, the negation of the definition of ∩∞i=1Ai applies
to x. That is, x satisfies the negation of the statement: “forall positive integers j ≥ 1,
x ∈ Aj”. The negation of this statement is: “∃ a positive integer j ≥ 1 such that x /∈ Aj.”
That is, ∃ a positive integers j ≥ 1 such that x ∈ Acj. By the definition of countable union,
we conclude that x ∈ ∪∞i=1A

c
i .

So, we showed that (∩∞i=1Ai)
c ⊆ ∪∞i=1A

c
i . To conclude, we must show that (∩∞i=1Ai)

c ⊇
∪∞i=1A

c
i . So, let x ∈ ∪∞i=1A

c
i . By reversing the above implications, we conclude that x ∈

(∩∞i=1Ai)
c. That is, (∩∞i=1Ai)

c ⊇ ∪∞i=1A
c
i , and the proof is complete. �

Exercise 1.3. Let {Ai}∞i=1 and B be subsets of a set Ω. Prove that
(⋃∞

i=1 Ai

)
∩ B =⋃∞

i=1Ai ∩B.

Solution. Let x ∈
(⋃∞

i=1Ai

)
∩ B. By definition of intersection, the previous sentence

is equivalent to: x ∈ B and x ∈
⋃∞
i=1Ai. By definition of countable union, the previous

sentence is equivalent to: x ∈ Aj for some j ≥ 1, and x ∈ B. By the definition of intersection,
the previous is equivalent to: x ∈ Aj ∩ B for some j ≥ 1. So, by definition of countable
union, the previous statement is equivalent to: x ∈

⋃∞
i=1Ai ∩B.

We proved the equivalence of x ∈
(⋃∞

i=1Ai

)
∩B and x ∈

⋃∞
i=1Ai ∩B. We conclude that

these two sets are equal. �
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Exercise 1.4. Let n be a positive integer, and Ω a set with n elements. For each A ⊆ Ω,

define P(A) = |A|
n

, where |A| is the number of elements in A. Show that P is a probability
law.

Solution. We first verify that axiom (i) holds. For any A ⊆ Ω, |A| ≥ 0, so that P(A) =
|A| /n ≥ 0 as well, i.e. axiom (i) holds. We now verify that axiom (iii) holds. Since Ω has n
elements, by definition of P we have P(Ω) = n/n = 1.

We now verify that axiom (ii) holds. If A and B are disjoint subsets of Ω, then |A∪B| =
|A|+ |B|. So, by definition of P, we have

P(A ∪B) =
|A ∪B|

n
=
|A|
n

+
|B|
n

= P(A) + P(B).

The last equality used the definition of P(A) and P(B).
More generally, if A1, A2, . . . ⊆ Ω are pairwise disjoint (that is, Ai ∩ Aj = ∅ for all i 6= j,

i, j ≥ 1), then the |∪∞i=1Ai| =
∑∞

i=1 |Ai|. (We note in passing that only finitely many of the
Ai’s will be nonempty.) So, by definition of P, we have

P(∪∞i=1Ai) =
| ∪∞i=1 Ai|

n
=
∞∑
i=1

|Ai|
n

=
∞∑
i=1

P(Ai).

The last equality used the definition of P(Ai) for all i ≥ 1. In conclusion, axiom (ii) holds.
�

Exercise 1.5. Let Ω = R2, and define a probability law by

P(A) =
1

2π

∫
A

e−
(x2+y2)

2 dxdy

Verify that P(Ω) = 1. Then compute P(A) when A = {(x, y) : x2 + y2 ≤ 1}.

Solution. Using polar coordinates, we have

P(Ω) =
1

2π

∫
R2

e−
(x2+y2)

2 dxdy =
1

2π

∫ 2π

0

∫ ∞
0

re−
r2

2 drdθ =

∫ ∞
0

re−
r2

2 dr

Setting u = r2

2
then yields ∫ ∞

0

re−
r2

2 dr =

∫ ∞
0

e−u du = 1

Again using polar coordinates yields

P(A) =
1

2π

∫ 2π

0

∫ 1

0

re−
r2

2 drdθ =

∫ 1

0

re−
r2

2 dr

Setting u = r2

2
leads to∫ 1

0

re−
r2

2 dr =

∫ 1
2

0

e−u du = −e−u
∣∣∣ 12
0

= 1− e−
1
2

�

4



Exercise 1.6. Let A,B be subsets of a set Ω.
Prove that A = (ArB) ∪ (A ∩B) and (ArB) ∩ (A ∩B) = ∅.
Then, prove that A ∪B = (ArB) ∪ (B rA) ∪ (A ∩B), and that these sets are pairwise

disjoint.

Solution. We first prove that (ArB)∩ (A∩B) = ∅. Recall that ArB = A∩Bc. So, using
this definition, commuting the intersections, and using B ∩Bc = ∅,

(ArB) ∩ (A ∩B) = (A ∩Bc) ∩ (A ∩B) = (B ∩Bc) ∩ A ∩ A = ∅ ∩ A = ∅.

We now show that A = (A r B) ∪ (A ∩ B). We first show that A ⊆ (A r B) ∪ (A ∩ B).
Let x ∈ A. Then either x ∈ B or x /∈ B. If x ∈ B, then since x ∈ A as well, the definition of
intersection implies that x ∈ A∩B. If x /∈ B then x ∈ Bc by definition of complement, and
since x ∈ A as well, we have by definition of intersection that x ∈ A ∩ Bc, i.e. x ∈ A r B.
So, in any case either x ∈ A ∩ B or x ∈ A ∩ Bc. So, by definition of union, we have
x ∈ (A ∩Bc) ∪ (A ∩B).

We now show that A ⊇ (Ar B) ∪ (A ∩ B). Let x ∈ (Ar B) ∪ (A ∩ B). By definition of
union, x ∈ A∩B or x ∈ A∩Bc. In either case, by definition of intersection, we have x ∈ A.
We have therefore shown that A ⊇ (ArB) ∪ (A ∩B).

Combining A ⊇ (A r B) ∪ (A ∩ B) with A ⊆ (A r B) ∪ (A ∩ B) implies that A =
(ArB) ∪ (A ∩B).

We now show that A∪B = (ArB)∪ (BrA)∪ (A∩B), and that these sets are pairwise
disjoint.

We first show disjointness. Since ArB = A∩Bc, commuting the intersections, and using
B ∩Bc = ∅,

(ArB) ∩ (B r A) = (A ∩Bc) ∩ (B ∩ Ac) = (B ∩Bc) ∩ (A ∩ Ac) = ∅ ∩ ∅ = ∅.

Similarly,

(ArB) ∩ (A ∩B) = (A ∩Bc) ∩ (A ∩B) = (B ∩Bc) ∩ A ∩ A = ∅ ∩ A = ∅.

(B r A) ∩ (A ∩B) = (B ∩ Ac) ∩ (A ∩B) = (A ∩ Ac) ∩B ∩B = ∅ ∩B = ∅.
In conclusion, the three sets (ArB), (B r A), (A ∩B) are pairwise disjoint.

The three sets A r B,B r A, and A ∩ B are subsets of A ∪ B, hence so is their union.
That is, (A r B) ∪ (B r A) ∪ (A ∩ B) ⊆ A ∪ B. On the other hand, if x ∈ A ∪ B, then x
by definition of union, x ∈ A or x ∈ B. So, x is either in both A and B or x is in exactly
one of them. That is, x ∈ A ∩ B or x ∈ A ∩ Bc or x ∈ B ∩ Ac. So, by definition of union,
x ∈ (A r B) ∪ (B r A) ∪ (A ∩ B). In conclusion, (A r B) ∪ (B r A) ∪ (A ∩ B) ⊇ A ∪ B.
Combined with (ArB) ∪ (B r A) ∪ (A ∩B) ⊆ A ∪B, we get the claim

A ∪B = (ArB) ∪ (B r A) ∪ (A ∩B)

�

Exercise 1.7. Let Ω be a sample space, and P a probability law on Ω. Let A,B,C be
subsets of Ω.

• Prove that P(A ∪B) ≤ P(A) + P(B).
• Prove that P(A ∪B ∪ C) = P(A) + P(Ac ∩B) + P(Ac ∩Bc ∩ C).

5



Solution. By the previous problem, we can write

A ∪B = (ArB) ∪ (B r A) ∪ (A ∩B)

with these three sets being pairwise disjoint. Therefore, by axiom (i) for P,

P(A ∪B) = P(ArB) + P(B r A) + P(A ∩B) (∗)
By the previous problem again, B = (A ∩B) ∪ (B r A) with these two sets disjoint, hence

P(B) = P(A ∩B) + P(B r A) (∗∗)
Similarly, interchanging the roles of A and B gives

P(A) = P(A ∩B) + P(ArB) (∗ ∗ ∗)
Combining (∗), (∗∗) and (∗ ∗ ∗) gives

P(A ∪B)
(∗)
= P(ArB) + P(B r A) + P(A ∩B)

(∗∗∗)
= P(A) + P(B r A)

(∗∗)
= P(A) + P(B)−P(A ∩B) ≤ P(A) + P(B).

The last inequality used axiom (i) to get P(A ∩B) ≥ 0, i.e. −P(A ∩B) ≤ 0.
We now show that P(A ∪B ∪ C) = P(A) + P(Ac ∩B) + P(Ac ∩Bc ∩ C).
An element of A ∪ B ∪ C is either in A or Ac, and in the latter case it must also be in

B ∪ C, by the definition of the union A ∪B ∪ C. Therefore

A ∪B ∪ C = A ∪ (Ac ∩ (B ∪ C))

Similarly

B ∪ C = B ∪ (Bc ∩ C)

so Exercise 1.1 implies that

A ∪ (Ac ∩ (B ∪ C)) = A ∪ (Ac ∩B) ∪ (Ac ∩Bc ∩ C)

Combining the above shows that

A ∪B ∪ C = A ∪ (Ac ∩B) ∪ (Ac ∩Bc ∩ C).

The three sets on the right are pairwise disjoint, hence by axiom (i) for P

P(A ∪B ∪ C) = P(A) + P(Ac ∩B) + P(Ac ∩Bc ∩ C)

To see the pairwise disjointness, note that

A ∩ (Ac ∩B) = (A ∩ Ac) ∩B = ∅ ∩B = ∅

A ∩ (Ac ∩Bc ∩ C) = (A ∩ Ac) ∩Bc ∩ C = ∅ ∩Bc ∩ C = ∅
(Ac ∩B) ∩ (Ac ∩Bc ∩ C) = (B ∩Bc) ∩ Ac ∩ C = ∅ ∩ Ac ∩ C = ∅.

�

Exercise 1.8. Let f : R→ R be a function. Show that⋃
y∈R

{x ∈ R : f(x) = y} = R

and that the sets on the left-hand side are disjoint.
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Solution. Let y, z ∈ R with y 6= z. We first show that {x ∈ R : f(x) = y} ∩ {x ∈ R : f(x) =
z} = ∅. Since f is a function, there cannot exist x ∈ R such that f(x) = y and f(x) = z,
since y 6= z. We conclude that {x ∈ R : f(x) = y} ∩ {x ∈ R : f(x) = z} = ∅.

We now show that ∪y∈R{x ∈ R : f(x) = y} = R. Each set {x ∈ R : f(x) = y} by
its definition is a subset of R, hence ∪y∈R{x ∈ R : f(x) = y} ⊆ R, by the definition of
union. We now show that ∪y∈R{x ∈ R : f(x) = y} ⊇ R. Let z ∈ R. Define y so that
y = f(z). Since f(z) = y, we have z ∈ {x ∈ R : f(x) = y}. So, by definition of union,
∪y∈R{x ∈ R : f(x) = y} ⊇ R. Combined with ∪y∈R{x ∈ R : f(x) = y} ⊆ R, we conclude
that ∪y∈R{x ∈ R : f(x) = y} = R. �

2. Homework 2

Exercise 2.1. Two fair coins are flipped. If at least one of the coins lands heads, what is
the probability that the first coin is heads?

Solution. Let H denotes a coin flip of “heads” and let T denote “tails.” The sample space is

Ω = {(H,H), (H,T ), (T,H), (T, T )}
with each of the four elements of Ω having probability 1

4
. That is, P is uniform on Ω. If A

is the event that the first coin is heads and B is the event that at least one coin is heads,
then A = {(H,T ), (H,T )}, B = {(H,H), (H,T ), (T,H)}, A ⊆ B. So, letting | · | denote the
number of elements of a set, we have |A ∩ B| = |A| = 2 and |B| = 3. So, by definition of P
being uniform on Ω,

P(A|B) =
P(A ∩B)

P(B)
=

2

3

�

Exercise 2.2. In the Monty Hall problem, show that switching wins with probability 2
3

and

staying put wins with probability 1
3
.

Solution. At the beginning of the game, there are three possibilities, each of which is equally
likely. Either you select the door with the prize, or you select one of the other two doors
which does not contain the prize. In the first case, you will lose by switching your door
choice. In the two second cases, the host will open the empty door you did not select. So,
in the two second cases, you will win if you switch your door choice. So, in exactly two
out of three cases, you will win by switching your door choice. That is, you will win with
probability 2/3 by switching, and you will win with probability 1/3 by keeping your door
choice the same. �

Exercise 2.3. Suppose that you roll 3 distinct, fair, four-sided dice. What is the probability
that the sum of the dice is 7?

Solution. The sample space is the set of ordered triples of integers between 1 and 4:

Ω = {(x, y, z) : 1 ≤ x, y, z ≤ 4}
which has cardinality 43 = 64. Also, P is uniform on Ω. The possible (unordered) values

for the dice to sum up to 7 are

1, 2, 4 1, 3, 3, 2, 2, 3

7



There are 3! = 6 different ways to order the triple (1, 2, 4), while there are 3!
2!

= 3 different
ways to order the triples (1, 3, 3) and (2, 2, 3), respectively. Therefore the probability is
6+3+3

64
= 12

64
= 3

16
. � Solution. The sample space is the set of ordered triples of integers

between 1 and 4:

Ω = {(x, y, z) : 1 ≤ x, y, z ≤ 4}
which has cardinality 43 = 64. Also, P is uniform on Ω. For each 1 ≤ i ≤ 4, let Ai be the

event that the first roll is 1 ≤ i ≤ 4. Then Ai ∩ Aj = ∅ for all i 6= j with 1 ≤ i, j ≤ 4 (since
it is not possible for the first die roll to have two different values) and ∪4

i=1Ai = Ω (since the
first die roll must be something between 1 and 4, inclusive). So, by the Total Probability
Theorem, if B is the event that the sum of the rolls is 7,

P(B) =
4∑
i=1

P(B|Ai)P(Ai). (∗)

Since P is uniform on Ω we have P(Ai) = 1/4. Also, the event B|Ai is the event that the
last two rolls sum to 7− i. So, e.g. B|A1 has three elements, namely when the last two rolls
are (2, 4), (3, 3) or (4, 2), so that P(B|A1) = 3/16. Using similar reasoning we get

P(B|A1) = 3/16, P(B|A2) = 4/16, P(B|A3) = 3/16, P(B|A4) = 2/16.

So,

P(B)
(∗)
=

1

4

4∑
i=1

P(B|Ai) =
1

4 · 16
(3 + 4 + 3 + 2) =

12

64
=

3

16
.

�

Exercise 2.4. Two people take turns throwing at a dartboard. Person A goes first, and
has probability 1

4
of hitting the bullseye on each throw. Person B goes second, and has

probability 1
3

of hitting the bullseye. Then person A throws after person B, and so on. What
is the probability that person A hits the bullseye before person B?

Solution. Let E be the event that person A hits the bullseye first, and En the event that
person A hits the bullseye before the other person on person A’s nth throw, where n ≥ 1.
Then

E =
∞⋃
n=1

En

and the En are disjoint (En ∩ Em = ∅ for all n 6= m, n,m ≥ 1), hence by axiom (ii) for P,

P(E) =
∞∑
n=1

P(En)

If person A hits the bullseye on their nth throw, then they hit the bullseye on the nth
throw and missed it on the previous n − 1 throws. Also, person B must have missed the
bullseye n− 1 times. Therefore (by e.g. independence of each individual throw)

P(En) =
1

4

(3

4

)n−1(2

3

)n−1

=
1

4

(1

2

)n−1

8



and therefore

P(E) =
∞∑
n=1

P(En) =
1

4

∞∑
n=1

(1

2

)n−1

=
1

4

∞∑
n=0

(1

2

)n
=

2

4
=

1

2

�

Exercise 2.5. Suppose that you roll two distinct, fair, six-sided dice two separate times.
What is the probability that both rolls have the same sum?

Solution. For each 2 ≤ i ≤ 12, let Ai be the event that the first two dice sum to i. Then
Ai ∩ Aj = ∅ for all i 6= j with 2 ≤ i, j ≤ 12 (since it is not possible for the first two rolls
to have two different sums) and ∪12

i=2Ai = Ω (since the first two die rolls’ sum must be
something between 2 and 12, inclusive). So, by the Total Probability Theorem, if B is the
event that both separate rolls of two dice have the same sum,

P(B) =
12∑
i=2

P(B|Ai)P(Ai). (∗)

Since P is uniform on Ω we have

P(A2) =
1

36
P(A3) =

2

36
P(A4) =

3

36
P(A5) =

4

36
P(A6) =

5

36

P(A7) =
6

36
P(A8) =

5

36
P(A9) =

4

36
P(A10) =

3

36
P(A11) =

2

36
P(A12) =

1

36

Also, the event B|Ai is the event that the last two rolls sum to i. Consequently, P(B|Ai) =
P(Ai) for all 2 ≤ i ≤ 12. So,

P(B)
(∗)
=

12∑
k=2

[P(Ai)]
2 =

73

648
≈ 0.113

�

Exercise 2.6. Around 5% of men are colorblind, and around .25% of women are colorblind.
Given that someone is colorblind, what is the probability that they are a man? (For the
purpose of this problem, half of all people are men, and the other half are women.)

Solution. Let C be the event that a person is colorblind, M the event that the person is a
man, and W the event that the person is a woman. Assume that P(M) = P(W ) = 1

2
. Note

that M = W c and M ∪W = Ω.
Then, using Bayes’ Theorem (as in the Medical Testing Example)

P(M |C) =
P(C|M)P(M)

P(C|M)P(M) + P(C|W )P(W )
=

1
20
· 1

2
1
20
· 1

2
+ 1

400
1
2

=
20

21
≈ .95

�

Exercise 2.7. Two people are flipping fair coins. Let n be a positive integer. Person I flips
n + 1 coins. Person II flips n coins. Show that the following event has probability 1/2:
Person I has more heads than Person II.
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Solution 1. Let A be the event that Person I has more heads than Person II. Let SI
be the number of heads from the first n coin flips of person I. Let SII be the number of
heads from the first n coin flips of person II. Let B1 be the event that the (n + 1)st coin
flip of person I is heads. Let B2 be the event that the (n + 1)st coin flip of person I is
tails. Then B1 ∩B2 = ∅ since the (n+ 1)st coin flip of cannot be both heads and tails. And
B1 ∪ B2 = Ω, since the (n + 1)st coin flip must be either heads or tails. So, by the total
probability theorem,

P(A) = P(A|B1)P(B1) + P(A|B2)P(B2).

Now, since the (n+ 1)st coin flip is a fair coin, P(B1) = P(B2) = 1/2. That is,

P(A) =
1

2
(P(A|B1) + P(A|B2)) .

Given that B1 occurs, the event A is equal to the event that SI ≥ SII . Given that B2 occurs,
the event A is equal to the event SI > SII . So,

P(A) =
1

2
(P(SI ≥ SII) + P(SI > SII)) .

Now, P(SI > SII) = P(S1 < SII) by symmetry (with respect to interchanging the roles of
person I and person II). So,

P(A) =
1

2
(P(SI ≥ SII) + P(SI < SII)) =

1

2
.

In the last line, we used that the events SI ≥ SII and SI < SII are disjoint, and their union
is all of Ω, so P(SI ≥ SII) + P(SI < SII) = 1. �

Solution 2. Let A be the event that Person I has more heads than Person II. Let B be
the event that person I has more heads than person II after they both flip n coins. Let C
be the event that person I has less heads than person II after they both flip n coins. Let D
be the event that person I has the same number of heads as person II after they both flip
n coins. Then B ∩ C = C ∩D = B ∩D = ∅, since any such intersection involves mutually
exclusive events. Also, B ∪ C ∪D = Ω, since after the players each flip n coins, one of the
three events B,C,D must occur.

So, by the total probability theorem,

P(A) = P(A|B)P(B) + P(A|C)P(C) + P(A|D)P(D).

Given that B has occurred, we already know that A has occurred, so that P(A|B) = 1.
Given that C has occurred, it is impossible for A to occur, so that P(A|C) = 0. And given
that D has occurred, person I has only one more coin flip; if it is a heads, then A occurs, and
if it is tails, then A does not occur. Since the coin is fair, we conclude that P(A|D) = 1/2.
That is,

P(A) = P(B) +
1

2
P(D) =

1

2
(2P(B) + P(D)).

To conclude, it remains to show that 2P(B)+P(D) = 1. As noted already, B∩C = C∩D =
B ∩D = ∅, and B ∪ C ∪D = Ω, so Axiom (ii) for Probability Laws says that

P(B) + P(C) + P(D) = P(B ∪ C ∪D) = P(Ω) = 1.

Now, events B and C are symmetric with respect to relabeling the players I and II. Con-
sequently, P(B) = P(C). That is, 2P(B) + P(D) = 1, as desired. �
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Solution 3. Let C1 be the number of heads of Person I. Let C2 be the number of heads of
Person II. Let A = {C1 > C2} . Since A∪Ac = Ω and A∩Ac = ∅, we have P(A)+P(Ac) = 1.
Note that Ac = {C1 ≤ C2}. Since the coins are fair, the probability P(Ac) can be equivalently
stated by relabeling the head and tail of the coin. That is, P(Ac) is equal to the probability
of the event that Person I has less than or equal to the number of tails of Person II. The
latter event is equal to {C1 > C2}. That is, P(Ac) = P(C1 > C2) = P(A). So, 2P(A) = 1,
and P(A) = 1/2. �

Exercise 2.8. Suppose that a test for a disease is 99.9% accurate, in that if you have the
disease then you will test positive with probability 99.9%, and if you do not have the disease
then you will test negative with probability 99.9%. Suppose also that the prevalence of the
disease is 1

20000
. If you test positive for the disease, what is the probability that you actually

have the disease?

Solution. Let D be the event that you have the disease, P the event that you test positive,
and N the event that you test negative. Then using Bayes’ Theorem (as in the Medical
Testing Example in class)

P(D|P ) =
P(P |D)P(D)

P(P |D)P(D) + P(P |Dc)P(Dc)

We know that P(D) = 1
20,000

, and that P(P |D) = 999
1000

. Moreover, P(Dc) = 1 − P(D) =
19999
20000

and P(P |Dc) = 1
1000

. Therefore

P(P |D)P(D)

P(P |D)P(D) + P(P |Dc)P(Dc)
=

999
1000
· 1

20,000

999
1000
· 1

20,000
+ 1

1000
· 19999

20000

=
999

20998
≈ 0.047576

�

3. Homework 3

Exercise 3.1. Let Ω = [0, 1] × [0, 1]. and define P(A) to be the area of A. Suppose that
A = {(x, y) : a1 ≤ x ≤ a2} and B = {(x, y ∈ Ω : b1 ≤ y ≤ b2}, where 0 ≤ a1 ≤ a2 ≤ 1 and
0 ≤ b1 ≤ b2 ≤ 1. Show that A and B are independent.

Solution. A is a rectangle with area a2 − a1, and B is a rectangle with area b2 − b1. And

A ∩B = {(x, y) ∈ Ω: a1 ≤ x ≤ a2, b1 ≤ y ≤ b2}

is a rectangle of area (a2 − a1)(b2 − b1). Therefore

P(A ∩B) = (a2 − a1)(b2 − b1) = P(A)P(B)

so A and B are independent. �

Exercise 3.2. Let Ω = R2, and define

P(A) =
1

2π

∫
A

e−
(x2+y2)

2 dxdy

Suppose that A = {(x, y) : a1 ≤ x ≤ a2} and B = {(x, y) ∈ Ω : b1 ≤ y ≤ b2}, where
a1 ≤ a2 and b1 ≤ b2. Show that A and B are independent.
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Solution. If A = {(x, y) : a1 ≤ x ≤ a2}, then

P(A) =
1

2π

∫ ∞
−∞

∫ a2

a1

e−
x2+y2

2 dxdy

and similarly if B = {(x, y) : b1 ≤ y ≤ b2}, then

P(B) =
1

2π

∫ b2

b1

∫ ∞
−∞

e−
x2+y2

2 dxdy

Since A ∩B = {(x, y) : a1 ≤ x ≤ a2, b1 ≤ y ≤ b2}, we have

P(A ∩B) =
1

2π

∫ b2

b1

∫ a2

a1

e−
x2+y2

2 dxdy

Finally,

P(A)P(B) =
[ 1

2π

∫ ∞
−∞

∫ a2

a1

e−
x2+y2

2 dxdy
][ 1

2π

∫ b2

b1

∫ ∞
−∞

e−
x2+y2

2 dxdy
]

=
1

4π2

[ ∫ ∞
−∞

e−
y2

2 dy
][ ∫ a2

a1

e−
x2

2 dx
][ ∫ ∞

−∞
e−

x2

2 dx
][ ∫ b2

b1

e−
y2

2 dy
]

=
[ 1

2π

∫ b2

b1

∫ a2

a1

e−
x2+y2

2 dxdy
][ 1

2π

∫ ∞
−∞

∫ ∞
−∞

e−
x2+y2

2 dxdy
]

= P(A ∩B)

since the second term in brackets is P(Ω) = 1. Therefore A and B are independent. �

Exercise 3.3. Let Ω be a sample space and P a probability law on Ω. Suppose that A and
B are events with A ⊆ B. Is it possible for A to be independent of B? Justify your answer.

Solution. Suppose that A and B are independent. Then since A ∩B = A, we must have

P(A) = P(A)P(B)

This is possible if and only if P(A) = 0 or P(B) = 1. So it is possible for A and B to be
independent, but only under some restrictive assumptions. �

Exercise 3.4. Let Ω be a sample space, and A1, . . . , An events. Show that

P
( n⋃
i=1

Ai

)
=

n∑
i=1

P(Ai)−
∑

1≤i<j≤n

P(Ai∩Aj)+
∑

1≤i<j<k≤n

P(Ai∩Aj∩Ak)+· · ·+(−1)n−1P(A1∩· · ·∩An)

Solution. For any 1 ≤ m ≤ n, let Bm be the set of points x ∈ Ω such that x appears in exactly
m of the sets A1, . . . , An. Then the sets B1, . . . , Bm are disjoint, and ∪nm=1Bm = ∪ni=1Ai. So,
by axiom (ii) for probability laws,

P(∪ni=1Ai) = P(∪nm=1Bm) =
n∑

m=1

P(Bm).

We are therefore required to show that
n∑

m=1

P(Bm) =
n∑
i=1

P(Ai)−
∑

1≤i<j≤n

P(Ai ∩ Aj)

+
∑

1≤i<j<k≤n

P(Ai ∩ Aj ∩ Ak) + · · ·+ (−1)n−1P(A1 ∩ · · · ∩ An). (∗)
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Consider now the identity 0 = (1−1)m =
∑m

k=0(−1)k
(
m
k

)
, which follows from the Binomial

Theorem. That is, 1 =
∑m

k=1(−1)k+1
(
m
k

)
. Fix 1 ≤ m ≤ k. On the left side of (∗), the

“number of times” that the elements of Bm are counted is once, and on the right side of
(∗), the “number of times” the set Bm is counted is

∑m
k=1(−1)k+1

(
m
k

)
, which is also 1. We

conclude that (∗) holds.
[This proof can be made a bit more precise; see the third solution below.] �

Solution. We induct on n. If n = 1 then there is nothing to show. The case n = 2 was proven
in class in Proposition 2.33. So, the base case is proven and we proceed to the inductive
step.

For the induction step, suppose that n ≥ 2 and that the desired result holds for all unions
of n events. Then given n+ 1 events A1, . . . , An, An+1, by the n = 2 case we have

P
( n+1⋃
i=1

Ai

)
= P

( n⋃
i=1

Ai

)
+ P(An+1)−P

(
An+1 ∩

( n⋃
i=1

Ai

))
(1)

Next, the induction hypothesis implies that

P
( n⋃
i=1

Ai

)
=

n∑
i=1

P(Ai)−
∑

1≤i<j≤n

P(Ai ∩ Aj) + · · ·+ (−1)n−1P(A1 ∩ · · · ∩ An) (2)

and since

An+1 ∩
n⋃
i=1

Ai =
n⋃
i=1

(Ai ∩ An+1)

another application of the induction hypothesis shows that

P
(
An+1 ∩

( n⋃
i=1

Ai

))
= P

( n⋃
i=1

(Ai ∩ An+1)
)

=
n∑
i=1

P(Ai∩An+1)−
∑

1≤i<j≤n

P(Ai∩Aj ∩An+1)+ · · ·+(−1)n−1P(A1∩· · ·∩An∩An+1) (3)

Substituting equations (2) and (3) into equation (1) and collecting terms completes the
induction step. �
Solution. [This proof will only make sense later on in the class when we have covered expected
value.] For any A ⊆ Ω, we define 1A : Ω→ R so that 1A(ω) = 1 when ω ∈ A, and 1A(ω) = 0
whenever ω /∈ A. Also, by definition of expected value, E1A = 1 ·P(A) + 0 ·P(Ac) = P(A).
It follows by the definition of union that

1∪ni=1Ai
(ω) = 1−

n∏
i=1

(1− 1Ai(ω)),

13



since each side is equal to one only when ω is in at least one of the sets A1, . . . , An (in which
case the product on the right is zero). Multiplying out the right sides gives

1∪ni=1Ai
(ω) =

n∑
i=1

1Ai(ω)−
∑

1≤i<j≤n

1Ai(ω)1Aj(ω)

+
∑

1≤i<j<k≤n

1Ai(ω)1Aj(ω)1Ak(ω)− · · ·+ 1A1 · · · 1An

=
n∑
i=1

1Ai(ω)−
∑

1≤i<j≤n

1Ai∩Aj(ω)

+
∑

1≤i<j<k≤n

1Ai∩Aj∩Ak(ω)− · · ·+ (−1)n−11A1∩···∩An(ω).

Taking expected values of both sides completes the proof, since, as we noted above, E1A =
P(A), so that

P(∪ni=1Ai) = E1∪ni=1Ai

=
n∑
i=1

E1Ai −
∑

1≤i<j≤n

E1Ai∩Aj

+
∑

1≤i<j<k≤n

E1Ai∩Aj∩Ak(ω)− · · ·+ (−1)n−1E1A1∩···∩An

=
n∑
i=1

P(Ai)−
∑

1≤i<j≤n

P(Ai ∩ Aj)

+
∑

1≤i<j<k≤n

P(Ai ∩ Aj ∩ Ak)− · · ·+ (−1)n−1P(A1 ∩ · · · ∩ An).

�

Exercise 3.5.

• Suppose that your car has four tires, and your mechanic removes all four, then later
puts the tires back on the car randomly. What is the probability that no tire is put
on its original wheel?
• Now suppose that your car has n tires, and your mechanic removes all of them, then

later puts the tires back on the car randomly. What is the probability that no tire is
put on its original wheel?
• What is the limit of the probability in (b) as n→∞?

Solution. Let Ai be the event that the ith tire ends up in its original position, for i = 1, 2, 3, 4.
The union ∪4

i=1Ai is the event that at least one tire is put on the original wheel, and according
to the previous problem,

P
( 4⋃
i=1

Ai

)
=

4∑
i=1

P(Ai)−
∑
i<j

P(Ai ∩ Aj) +
∑
i<j<k

P(Ai ∩ Aj ∩ Ak)−P(A1 ∩ A2 ∩ A3 ∩ A4)

Next, P(Ai) = 3!
4!

= 1
4

since there are 4! ways to put the tires on the car, and 3! ways to
put the tires on if tire i must be placed on wheel i.
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Similarly, P(Ai ∩ Aj) = 2!
4!

= 1
4·3 for each pair i < j, and P(Ai ∩ Aj ∩ Ak) = 1

4!
=

P(A1 ∩ A2 ∩ A3 ∩ A4).
Finally, there are

(
4
2

)
= 4·3

2
ways to choose a pair i < j, and 4

3
= 4 ways to choose a triple

i < j < k. Therefore

P
( 4⋃
i=1

Ai

)
= 4 · 1

4
− 4 · 3

2
· 1

4 · 3
+ 4

1

4!
− 1 · 1

4!
= 1− 1

2
+

1

6
− 1

24
=

5

8

Therefore the probability that no tire ends up on its original wheel is

1− 5

8
=

3

8
�

Solution. As in part (i), let Ai be the event that the ith tire is put in its original position.
If i1 < i2 < · · · < ik, then

P(Ai1 ∩ · · · ∩ Aik) =
(n− k)!

n!
and moreover there are

(
n
k

)
ways to choose the indices i1 < · · · < ik. Therefore by problem

4,

P
( n⋃
i=1

Ai

)
=

n∑
k=1

(−1)k−1

(
n

k

)
(n− k)!

n!
=

n∑
k=1

(−1)k−1

k!

so the probability that no tire ends up on its original wheel is

1−
n∑
k=1

(−1)k−1

k!
=

n∑
k=0

(−1)k

k!

�
Solution. The limit is

∞∑
k=0

(−1)k

k!
=

1

e

�

Exercise 3.6. Let A,B,C be pairwise independent events such that

P(A) =
1

2
P(B) =

1

3
P(C) =

1

4
P(A ∪B ∪ C) =

35

48
Are the sets A,B,C independent? Explain.

Solution. Since A,B,C are pairwise independent, we have

P(A ∩B) = P(A)P(B) =
1

6
P(A ∩ C) = P(A)P(C) =

1

8
P(B ∩ C) = P(B)P(C) =

1

12
From problem 4, we know that

P(A∪B ∪C) = P(A) + P(B) + P(C)−P(A∩B)−P(A∩C)−P(B ∩C) + P(A∩B ∩C)

so solving for P(A ∩B ∩ C) yields

P(A ∩B ∩ C) =
35

48
− 1

2
− 1

3
− 1

4
+

1

6
+

1

8
+

1

12
=

1

48
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On the other hand,

P(A)P(B)P(C) =
1

2
· 1

3
· 1

4
=

1

24
so A,B,C are not independent. �

4. Homework 4

Exercise 4.1. You spin a wheel 24 times, and each time there is a 1 in 72 chance of winning
a prize. Let X be the number of prizes won. Use a Poisson approximation to estimate
P(X = 0),P(X = 1), and P(X = 2).

Solution. X is a binomial random variable with n = 24 and p = 1
72

, soX can be approximated

by a Poisson random variable Y with parameter λ = 1
3
.

Therefore
P(X = 0) ≈ P(Y = 0) = e−

1
3 ≈ 0.7165

P(X = 1) ≈ P(Y = 1) = e−
1
3 · 1

3
≈ 0.2388

and

P(X = 2) ≈ P(Y = 2) =
1

18
e−

1
3 ≈ 0.0896

�

Exercise 4.2. Count the number of distinct ways which you can arrange the letters of the
words CATTERPILLAR and ARUGULA.

Solution. There are 12 letters in the word catterpillar, with 2 Ts, 2 Rs, 2 As, and 2 Ls.
Therefore the number of words is

12!

(2!)4
= 29, 937, 600

Similarly, the number of words which can be formed from arugula is

7!

(2!)2
= 1260

�

Exercise 4.3. Suppose thatX is a random variable with pX(−3) = 1
10
, pX(−2) = 1

5
, pX(−1) =

3
20
, pX(0) = 1

5
, pX(3) = 1

10
, pX(5) = 3

20
, pX(6) = 1

20
, pX(10) = 1

20
.

Compute the probabilities of the following events

• X > 3
• 4 < X < 7 or X > 9
• 0 < X < 4 or 7 < X ≤ 10.

Solution. (a) The event {X > 3} is equal to the event {X = 5, 6, 10}, hence by axiom (ii)
for probability laws,

P(X > 3) = P(X = 5) + P(X = 6) + P(X = 10) =
5

20
=

1

4
(b) If 4 < X < 7 or X < 9, then either X = 5, X = 6, or X = 10, so by axiom (ii) for

probability laws,

16



P(4 < X < 7) = P(X = 5) + P(X = 6) + P(X = 10) =
5

20
=

1

4
(c) If 0 < X < 4 or 7 < X ≤ 10, then either X = 3 or X = 10, so by axiom (ii) for

probability laws,

P(4 < X < 7) = P(X = 3) + P(X = 10) =
1

10
+

1

20
=

3

20
�

Exercise 4.4. Suppose that the probability that you receive a prize in the mail is 1
7000000

.
Show that you need to receive roughly 7000000 pieces of mail in order for your probability
of winning at least one prize to be about 1− 1

e
.

Solution. For any 1 ≤ i ≤ n, let Ai be the event that you do not receive a prize in the mail.
We assume that A1, . . . , An are independent. By assumption,

P(Ai) = 1− 1

7000000
, ∀ 1 ≤ i ≤ n.

The probability of not receiving a prize in n pieces of mail is, by independence ofA1, . . . , An,

P(∩ni=1Ai) =
n∏
i=1

P(Ai) =
n∏
i=1

(
1− 1

7000000

)
=
(

1− 1

7000000

)n
Since

lim
k→∞

(
1− 1

k

)k
=

1

e
choosing n = 7000000, means that

P(∩ni=1Ai) ≈
1

e
.

That is, when n = 7000000, the probability of receiving a prize is

P([∩ni=1Ai]
c) = 1−P(∩ni=1Ai) ≈ 1− 1

e
.

�

Exercise 4.5. Let Ω = {−3,−2,−1, 0, 1, 2, 3} with the uniform probability law, and suppose
that X(ω) = ω for all Ω ∈ Ω. If f : R → R is defined by f(x) = x2, find the probability
mass function of f(X).

Solution. Let Y = f(X) = X2. Then by definition of Y and axiom (ii) for probability laws

P(Y = 0) = P(X = 0) =
1

7
,

P(Y = 1) = P(X2 = 1) = P({X = 1} ∪ {X = −1}) = P(X = 1) + P(X = −1) =
2

7
,

P(Y = 4) = P(X2 = 4) = P({X = 2} ∪ {X = −2}) = P(X = 2) + P(X = −2) =
2

7
,

P(Y = 9) = P(X2 = 9) = P({X = 3} ∪ {X = −3}) = P(X = 3) + P(X = −3) =
2

7
.

P(Y = y) = 0 for all real numbers y 6= 0, 1, 4, 9 (which is also clear from the fact that the
above probabilities sum to 1). �
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Exercise 4.6. Let X be geometrically distributed with parameter p, let Y = X4, and let
Z = min{X,n} for a fixed positive integer n. Find the probability mass functions of Y and
Z.

Solution. By definition, the probability mass function of X is given by

P(X = k) = (1− p)k−1p ∀ k = 1, 2, 3, . . .

Therefore the only values that Y takes with non-zero probability are 4th powers of positive
integers, and

P(Y = k4) = (1− p)k−1p ∀ k = 1, 2, 3, . . .

The random variable Z only takes the values k = 1, 2, . . . , n with non-zero probability. If
1 ≤ k < n then the events {X = k} and {min(X,n) = k} are identical, so

P(Z = k) = P(min(X,n) = k) = P(X = k) = (1− p)k−1p,

where the last line used the definition ofX. Meanwhile, the events {X ≥ n} and {min(X,n) =
n} are identical, so

P(Z = n) = P(X ≥ n) =
∞∑
k=n

(1− p)k−1p =
p(1− p)n−1

1− (1− p)
= (1− p)n−1

Alternately,

P(Z = n) = P(X ≥ n) = 1−P(X < n) = 1−
n−1∑
k=1

(1− p)k−1p = 1− p1− (1− p)n−1

1− (1− p)

= 1− (1− (1− p)n−1) = (1− p)n−1

�

5. Homework 5

Exercise 5.1. LetX be a discrete random variable with finite variance, and define f : R→ R
by f(t) = E[(X − t)2]. Show that f(t) has its unique minimum when t = E[X].

Solution. (X − t)2 = X2 − 2Xt+ t2, hence by the linearity of expectation

f(t) = E[(X − t)2] = E[X2]− 2E[X]t+ t2

Therefore f(t) is a quadratic function of t which is concave up, hence has a unique mini-
mum at its vertex, namely

t = E[X]

We know this from calculus, since the solution t of the equation f ′(t) = 0 satisfies 2t−2EX =
0, i.e. t = EX, and the unique critical point of a concave up parabola is its global minimum.

�

Exercise 5.2. Let n be a positive integer and p ∈ [0, 1]. Compute the mean of a binomial
random variable with parameters n and p.

Then, compute the mean of a Poisson random variable with parameter λ > 0.
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Solution. Let X be a binomial random variable with parameters n and p. Recall that X is
the number of heads that result from n biased coin flips. That is, for any 1 ≤ i ≤ n, if we
let Xi = 1 if the ith coin flip is heads, and X0 = 0 if the ith coin flip is tails, then

X =
n∑
i=1

Xi.

More specifically, for each 1 ≤ i ≤ n, Xi is a Bernoulli random variables with parameter p.
Therefore, by definition of expected value,

E[Xi] = 1 · p+ 0 · (1− p) = p.

Finally, by linearity of expected value,

E[X] =
n∑
i=1

EXi = np.

(Once we cover independence, we will see thatX1, . . . , Xn are independent random variables.)
Suppose that X is a Poisson random variable with parameter λ. Then by definition of

expected value,

E[X] =
∞∑
n=0

nP(X = n) = e−λ
∞∑
n=1

nλn

n!
= e−λ

∞∑
n=1

λn

(n− 1)!

= λe−λ
∞∑
n=0

λn

n!
= λe−λeλ = λ.

�

Exercise 5.3. Let X be a random variable on a sample space Ω taking values in the non-
negative integers. Show that E[X] =

∑∞
n=1 P(X ≥ n). Use this to compute the mean of a

geometric random variable with parameter p.

Solution. The event {X ≥ n} = ∪∞k=n{X = k}, with the events on the right being disjoint.
Hence, by the Total Probability Theorem,

∞∑
n=1

P(X ≥ n) =
∞∑
n=1

∞∑
k=n

P(X = k) =
∑
n≥1

∑
k≥1: k≥n

P(X = k) =
∞∑
n=1

∞∑
k=1

P(X = k)1k≥n

(Here 1k≥n is equal to 1 when k ≥ n and it is equal to 0 otherwise.) Since each term in
the double sum is non-negative, as suggested in the hint, we can interchange the order of
summation, yielding

∞∑
k=1

∞∑
n=1

P(X = k)1k≥n =
∞∑
k=1

k∑
n=1

P(X = k) =
∞∑
k=1

kP(X = k) =
∞∑
k=0

kP(X = k) = E[X].

The last line used the definition of expected value.
Now suppose that X is a geometric random variable with parameter p ∈ (0, 1]. Then

P(X ≥ n) =
∞∑
k=n

p(1− p)k−1 = p
(1− p)n−1

1− (1− p)
= (1− p)n−1
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hence

E[X] =
∞∑
n=1

P(X ≥ n) =
∞∑
n=1

(1− p)n−1 =
∞∑
m=0

(1− p)m =
1

1− (1− p)
=

1

p

Alternately, E[X] can be computed directly from the definition:

E[X] =
∞∑
n=1

np(1− p)n−1 = p

∞∑
n=1

n(1− p)n−1

This sum is the result of differentiating the function

1

1− x
=
∞∑
n=0

xn, ∀ |x| < 1

term-by-term and setting x = p. (Term-by-term differentiation is valid when |x| < 1, since
the Taylor expansion of 1/(1−x) converges absolutely for all |x| < 1.) Since d

dx
1

1−x = 1
(1−x)2

,

the result is

E[X] =
p

(1− (1− p))2
=

1

p
�

Exercise 5.4. Find real numbers ai,j (i, j ≥ 0) for which
∑∞

i=0

∑∞
j=0 aij 6=

∑∞
j=0

∑∞
i=0 aij.

Solution. Let aij = 1 if i = j, aij = −1 if i = j + 1, and aij = 0 otherwise. Then for any
fixed j,

∞∑
i=0

aij = 1 + (−1) = 0

hence
∞∑
j=0

∞∑
i=0

aij = 0

On the other hand, if i ≥ 1 then
∞∑
j=0

aij = (−1) + 1 = 0

while
∞∑
j=0

a0j = 1

so
∞∑
i=0

∞∑
j=0

aij = 1

If we put the entries aij into an infinite matrix, they appear as follows:
1 0 0 0 · · ·
−1 1 0 0 · · ·
0 −1 1 0 · · ·
0 0 −1 1 · · ·
...

...
...

...
. . .

 .
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Exercise 5.5. Let Ω = [0, 1].
Consider the probability law on Ω defined by P([a, b]) = b − a for 0 ≤ a ≤ b ≤ 1. Let n

be a positive integer, and X a random variable which is constant on each interval [ i
n
, i+1
n

),

0 ≤ i ≤ n− 1. Show that E[X] =
∫ 1

0
X(t) dt.

Now, consider the probability law on Ω defined by P([a, b]) =
∫ b
a

1
2
√
t
dt. If X(t) is as in

part (a), show that E[X] =
∫ 1

0
X(t) 1

2
√
t
dt.

Solution.
Since X is constant on each interval [ i

n
, i+1
n

), we can write

X(t) = X(0)X0(t) +X
( 1

n

)
X1(t) + · · ·+X

(n− 1

n

)
Xn−1(t), ∀ t ∈ [0, 1]

where Xi(t) = 1 if i
n
≤ t < i+1

n
and Xi(t) = 0 otherwise, for all 0 ≤ i ≤ n− 1.

Therefore

E[X] =
n∑
i=1

X
( i
n

)
E[Xi] =

1

n

n−1∑
i=0

X
( i
n

)
On the other hand, ∫ 1

0

X(t) dt =
n−1∑
i=0

∫ i+1
n

i
n

X(t) dt =
1

n

n−1∑
i=0

X
( i
n

)
since X is constant on each interval [ i

n
, i+1
n

). Therefore

E[X] =

∫ 1

0

X(t) dt

as claimed.
Essentially the same proof as part (a) works: again write

X(t) = X(0)X0(t) +X
( 1

n

)
X1(t) + · · ·+X

(n− 1

n

)
Xn−1(t)

so that

E[X] =
n−1∑
i=0

X
( i
n

)
E[Xi] =

n−1∑
i=0

X
( i
n

)∫ i+1
n

i
n

1

2
√
t
dt

=
n−1∑
i=0

∫ i+1
n

i
n

X(t)
1

2
√
t
dt =

∫ 1

0

X(t)
1

2
√
t
dt

�

Exercise 5.6. Let b1, . . . , bn be distinct numbers, representing the quality of n people.
Suppose n people arrive to interview for a job, one at a time, in a random order. That
is, every possible arrival order of these people is equally likely. We can think of an arrival
ordering of the people as an ordered list of the form a1, . . . , an, where the list a1, . . . , an is
a permutation of the numbers b1, . . . , bn. Moreover, we interpret a1 as the rank of the first
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person to arrive, a2 as the rank of the second person to arrive, and so on. And all possible
permutations of the numbers b1, . . . , bn are equally likely to occur.

For each i ∈ {1, . . . , n}, upon interviewing the ith person, if ai > aj for all 1 ≤ j < i,
then the ith person is hired. That is, if the person currently being interviewed is better than
the previous candidates, she will be hired. What is the expected number of hirings that will
be made? (Hint: let Xi = 1 if the ith person to arrive is hired, and let Xi = 0 otherwise.
Consider

∑n
i=1 Xi.)

Solution. Let Xi = 1 if the ith person to arrive is hired, and let Xi = 0 otherwise. Person
1 will always be hired, i.e. P(X1 = 1) = 1, so EX1 = 1. Since any arrival order is equally
likely, P(X2 = 1) = 1/2. So, EX2 = 1/2. In general, if i is a positive integer, then
P(Xi = 1) = 1/i. This follows since any ordering of the people is equally likely, so there
is a probability of 1/i of the ith person having the largest number ai among the numbers
a1, . . . , ai. So, EXi = 1/i. (More formally, fix i ∈ {1, . . . , n}, and let j ∈ {1, . . . , i}. Let
Aj be the event that aj > ak for every k ∈ {1, . . . , i} such that k 6= j. Then ∪ij=1Aj = Ω,

and Aj ∩ Aj′ = ∅ for every j, j′ ∈ {1, . . . , i} with j 6= j′. So, 1 = P(Ω) =
∑i

j=1 P(Aj). We

now claim that P(Aj) = P(Aj′) for every j, j′ ∈ {1, . . . , i} with j 6= j′. Given that this is
true, it immediately follows that P(Ai) = 1/i, as desired. To prove our claim, suppose we
write any arrival order of the people as c1, . . . , cn where c1, . . . , cn are distinct elements of
{1, . . . , n}. Then for any k < i, any arrival order c1, . . . , cn where aci exceeds ac1 , . . . , aci−1

can be uniquely associated to the arrival order c1, . . . , ck−1, ci, ck+1, . . . , ci−1, ck, ci+1, . . . , cn.
That is, the number of orderings where the ith number exceeds the previous ones is equal
to the number of orderings where the kth number exceeds the first i numbers. That is,
P(Ai) = P(Ak).) �

Exercise 5.7. Let X be a Poisson random variable with parameter λ > 0. Compute
E[(1 +X)−1].

Solution. Since X takes values in the negative integers,

E[(1 +X)−1] = e−λ
∞∑
n=0

λn

(n+ 1)n!
= e−λ

∞∑
n=0

λn

(n+ 1)!
= λ−1e−λ

∞∑
n=1

λn

n!

= λ−1e−λ
( ∞∑
n=0

λn

n!
− 1
)

= λ−1e−λ(eλ − 1) = λ−1(1− e−λ)

�

6. Homework 6

Exercise 6.1. There are 10 different bins, and 20 balls are placed in the bins uniformly at
random. What is the expected number of empty bins?

Solution. Let X be the random variable which counts the number of empty bins. Write

X = X1 + · · ·+X10

where Xi = 1 if bin i is empty, and Xi = 0 otherwise. Then

E[X] = E[X1] + · · ·+ E[X10] = P(X1 = 1) + · · ·+ P(X10 = 1)
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If the ith bin is empty, then all 20 balls must have been placed in the other 9 bins. There
are 920 ways to do this, and 1020 ways to place the balls in the bins overall, hence

P(Xi = 1) =
( 9

10

)20

for each i. Therefore

E[X] = 10 ·
( 9

10

)20

�

Exercise 6.2. There are 100 different baseball cards in a set, and the cards are sold in packs
of 10. Each card is equally likely to be included in a pack. What is the expected number of
packs you must buy in order to collect the complete set?

Solution. First assume that you buy the cards one at a time, and let Ti be the time when
you receive the ith new card, setting T0 = 0 for convenience. We want to find T100.

To do so, consider the random variable Ti − Ti−1. This random variable is geometrically

distributed with parameter p = 100−(i−1)
100

= 101−i
100

, hence

E[Ti − Ti−1] =
100

101− i
by a result from the previous homework assignment. Moreover, note that

T100 = (T100 − T99) + (T99 − T98 + · · ·+ (T1 − t0)

hence

E[T100] =
100∑
i=1

E[Ti − Ti−1] =
100∑
i=1

100

101− i
= 100

100∑
j=1

1

j
≈ 518.7

by setting j = 101 − i. Finally, to account for the fact that the cards come in packs of 10,
round up to the nearest multiple of 10 to obtain⌈E[T100]

10

⌉
= 52

�

Exercise 6.3. If you draw cards from a standard 52-card deck without replacement, how
many cards can you expect to draw before finding (a) a King or (b) a Heart?

Solution.
(a)
Suppose we label the non-king cards as {1, . . . , 48}. Let i ∈ {1, . . . , 48}. Let Xi = 1 if

the ith card is drawn before any king is drawn, and Xi = 0 otherwise. The number of cards
drawn before the first king is

48∑
i=1

Xi.

It remains to compute the expected value of this quantity. We claim that EXi = 1/5 for all
i ∈ {1, . . . , 48}. Assuming this claim, the expected number of cards to be drawn before the
second heart is

E(
48∑
i=1

Xi) =
48∑
i=1

EXi = 48/5.
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We now prove the claim. Suppose we label the heart at the highest point in the deck as
j = 1, we label the next highest position heart as j = 2 and so on, up to j = 4. Then
there are five possible locations for a non-king card: above the j = 1 king, in between
the j = 1 and j = 2 kings, in between the j = 2 and j = 3 kings, etc. For any fixed
i ∈ {1, . . . , 48}, the ith card is equally likely to be in any of these 5 locations. To see this,
for any of the five k ∈ {1, . . . , 5} non-heart card locations, let Ak be the event that the
ith card is in location k. Then ∪5

k=1Ak = Ω and if k, k′ ∈ {1, . . . , 5} with k 6= k′, then
Ak ∩ Ak′ = ∅. Given any arrangement of cards such that the ith card is in location k, we
can uniquely associate this arrangement to another arrangement where the ith card occurs
in location k′. We can do this, for example, by swapping all cards in location k with all
cards in location k′. Since the probability law P(Ak) counts the number of arrangements in
Ak divided by 52!, we conclude that P(Ak) = P(Ak′) for all k 6= k′, k, k′ ∈ {1, . . . , 5}. So,
1 = P(Ω) =

∑5
k=1 P(Ak) = 5P(A1). So, P(A1) = P(A2) = 1/5. That is, P(Xi = 1) = 1/5.

And since Xi only take values 1 or 0, the definition of expected value says EXi = 1/5 for all
i ∈ {1, . . . , 48}, as desired.

(b) Suppose we label the non-heart cards as {1, . . . , 39}. Let i ∈ {1, . . . , 39}. Let Xi = 1
if the ith card is drawn before any heart is drawn, and Xi = 0 otherwise. The number of
cards drawn before the first heart is

39∑
i=1

Xi.

It remains to compute the expected value of this quantity. We claim that EXi = 1/14 for
all i ∈ {1, . . . , 39}. Assuming this claim, the expected number of cards to be drawn before
the second heart is

E(
39∑
i=1

Xi) =
39∑
i=1

EXi = 39/14.

We now prove the claim. Suppose we label the heart at the highest point in the deck
as j = 1, we label the next highest position heart as j = 2 and so on, up to j = 13.
Then there are fourteen possible locations for a non-heart card: above the j = 1 heart, in
between the j = 1 and j = 2 hearts, in between the j = 2 and j = 3 hearts, etc. For
any fixed i ∈ {1, . . . , 39}, the ith card is equally likely to be in any of these 14 locations.
To see this, for any of the fourteen k ∈ {1, . . . , 14} non-heart card locations, let Ak be
the event that the ith card is in location k. Then ∪14

k=1Ak = Ω and if k, k′ ∈ {1, . . . , 14}
with k 6= k′, then Ak ∩ Ak′ = ∅. Given any arrangement of cards such that the ith card
is in location k, we can uniquely associate this arrangement to another arrangement where
the ith card occurs in location k′. We can do this, for example, by swapping all cards in
location k with all cards in location k′. Since the probability law P(Ak) counts the number
of arrangements in Ak divided by 52!, we conclude that P(Ak) = P(Ak′) for all k 6= k′,
k, k′ ∈ {1, . . . , 14}. So, 1 = P(Ω) =

∑14
k=1 P(Ak) = 14P(A1). So, P(A1) = P(A2) = 1/14.

That is, P(Xi = 1) = 1/14. And since Xi only take values 1 or 0, the definition of expected
value says EXi = 1/14 for all i ∈ {1, . . . , 39}, as desired. �

Exercise 6.4. Let f be a twice differentiable convex function, and X a discrete random
variable such that E[X] and E[f(X)] exist. Prove Jensen’s inequality: E[f(X)] ≥ f(E[X]).
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Solution. Since f is convex, it lies above all its tangent lines. Therefore

f(x) ≥ f(t) + f ′(t)(x− t)

for all real numbers x and t, hence

f(X) ≥ f(t) + f ′(t)(X − t)

for all t ∈ R, and taking expectations yields

E[f(X)] ≥ f(t) + f ′(t)(E[X]− t)

If we set t = E[X] then the second term on the right is zero, hence

E[f(X)] ≥ f(E[X])

as desired. �

Exercise 6.5. Let n be a positive integer, Ω = {0, 1}n, and p ∈ (0, 1). Define a probability
law P on Ω by

P({ω}) = p
∑n
i=1 ωi(1− p)n−

∑n
i=1 ωi

where ω = (ω1, . . . , ωn). For each 1 ≤ i ≤ n, define a random variable Xi : Ω → R by
X(ω) = ωi. Finally, define X = X1 + · · ·+Xn.

Show that P(Ω) = 1. Find E[Xi] and E[X]. Show that X is a binomial random variable
with parameters n and p.

Solution.
Below, we will repeatedly use the binomial theorem in the form

n∑
k=0

(
n

k

)
pk(1− p)n−k = 1. (∗)

By definition of P,

P(Ω) =
∑
ω∈Ω

P({ω}) =
∑
ω∈Ω

p
∑n
i=1 ωi(1− p)n−

∑n
i=1 ωi

=
n∑
k=0

(
n

k

)
pk(1− p)n−k (∗)

= 1

since there are
(
n
k

)
elements ω such that exactly k of the ωi are equal to 1.

For any 1 ≤ i ≤ n, E[Xi] = P(Xi = 1) since Xi only takes the values 0 and 1, and by
definition of Xi,

P(Xi = 1) = P(ω ∈ Ω: Xi(ω) = 1) = P(ω ∈ Ω: ωi = 1) =
∑

ω∈Ω: ωi=1

P({ω})

=
∑

ω∈Ω: ωi=1

p
∑n
j=1 ωi(1− p)n−

∑n
j=1 ωi = p

n−1∑
k=0

(
n− 1

k

)
pk(1− p)n−1−k (∗)

= p

Therefore, E[X] =
∑n

i=1 E[Xi] = nP(X1 = 1) = np.
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Lastly, fix 0 ≤ k ≤ n, and note that

P(X = k) = P(ω ∈ Ω:
n∑
i=1

Xi(ω) = k) = P(ω ∈ Ω: ω1 + · · ·+ ωn = k)

=
∑

ω∈Ω: ω1+···+ωn=k

P({ω}) =
∑

ω∈Ω: ω1+···+ωn=k

p
∑n
j=1 ωi(1− p)n−

∑n
j=1 ωi

=
∑

ω∈Ω: ω1+···+ωn=k

pk(1− p)n−k = pk(1− p)n−k
∑

ω∈Ω: ω1+···+ωn=k

= pk(1− p)n−k
(
n

k

)
,

since the number of ω = (ω1, . . . ωn) ∈ Ω such that ω1 + · · ·+ ωn = k is
(
n
k

)
.

Therefore, X is a binomial random variable.
�

Exercise 6.6. Let A1, . . . , An be events in a probability space Ω. Define random variables
X and Xi, 1 ≤ i ≤ n so that X = 1 on ∪iAi and X = 0 otherwise, while Xi = 1 on Ai and
X = 0 otherwise.

Show that X = 1−
∏n

i=1(1−Xi).
Establish the inclusion-exclusion formula by taking expected values of this identity.

Solution. See the second solution of Exercise 3.4. �

Exercise 6.7. You a trapped in a maze, starting in a room with 3 doors. Door 1 leads to
a corridor which lets you exit the maze after 3 hours of walking. Door 2 leads to a corridor
which returns to the starting point after 7 hours of walking. Door 3 leads to a corridor which
returns to the starting point after 9 hours of walking. You aren’t good at learning from your
mistakes, so every time you return to the starting point, you choose a door uniformly at
random.

Let X be the number of hours it takes you to exit the maze, and Y be the number of the
door you initially choose.

Find E[X|Y = y] for y = 1, 2, 3 in terms of E[X].
Determine E[X].

Solution. It is given that E[X|Y = 1] = 3, E[X|Y = 2] = 7 + E[X], and E[X|Y =
3] = 9 + E[X]. By conditioning on the result of the first door choice and using the Total
Expectation Theorem, we have

E[X] = E[X|Y = 1]P(Y = 1) + E[X|Y = 2]P(Y = 2) + E[X|Y = 3]P(Y = 3)

=
1

3

(
E[X|Y = 1] + E[X|Y = 2] + E[X|Y = 3]).

Using part (a) then shows that

E[X] =
1

3

(
3 + 7 + E[X] + 9 + E[X]

)
Solving for E[X] yields

1

3
E[X] =

19

3
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so E[X] = 19.
�

Exercise 6.8. Let X, Y, Z be independent geometric random variables with the same pa-
rameter p ∈ (0, 1). Compute P(X = k|X + Y + Z = n) for k, n positive integers.

Solution. Since X, Y, Z take values in the positive integers, the event {X + Y + Z = n} has
probability zero if n < 3, in which case the conditional probability is undefined. So assume
n ≥ 3.

By the definition of conditional probability,

P(X = k|X + Y + Z = n) =
P(X = k,X + Y + Z = n)

P(X + Y + Z = n)

If k ≥ n− 1 then P(X = k,X + Y + Z = n) = 0, and if 1 ≤ k ≤ n− 2 then

P(X = k,X + Y + Z = n) = P(X = k)P(Y + Z = n− k)

= p(1− p)k−1

n−k−1∑
y=1

P(Y = y)P(Z = n− k − y)

= p(1− p)k−1

n−k−1∑
y=1

(1− p)y−1p(1− p)n−k−y−1p = p3(1− p)n−3

n−k−1∑
y=1

1

= (n− k − 1)p3(1− p)n−3

Similarly,

P(X + Y + Z = n) =
∑

x,y,z≥1
x+y+z=n

p(1− p)x−1p(1− p)y−1p(1− p)z−1

= p3(1− p)n−3
∑

x,y,z≥1
x+y+z=n

1 = p3(1− p)n−3

n−2∑
x=1

n−x−1∑
y=1

1

= p3(1− p)n−3

n−2∑
x=1

(n− x− 1) = p3(1− p)n−3

n−2∑
j=1

j =
p3(1− p)3(n− 1)(n− 2)

2

Therefore
P(X = k)P(X + Y = n− k)

P(X + Y + Z = n)
=

2(n− k − 1)

(n− 1)(n− 2)

for n ≥ 3 and 1 ≤ k ≤ n− 2.
There is another, less computational, way to determine P(Y + Z = n − k) and P(X +

Y +Z = n): A geometric random variable counts the number of trials until the first success,
so the sum of two independent geometric random variables counts the number of trials until
the second success.

Thus if Y + Z = n − k then the last trial was a success, and of the first n − k − 1 trials
exactly one was a success. Therefore

P(Y + Z = n− k) =

(
n− k − 1

1

)
p2(1− p)n−k−2 = (n− k − 1)p2(1− p)n−k−2
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Similarly, X + Y + Z counts the number of trials until the third success, hence

P(X + Y + Z = n) =

(
n− 1

2

)
p3(1− p)n−3 =

(n− 1)(n− 2)

2
p3(1− p)n−3

Combining these results with P(X = k) = p(1− p)k−1 yields the same answer as the first
method. �

7. Homework 7

Exercise 7.1.
a. Give an example (with proof) of two random variables that are independent.
b. Give an example (with proof) of two random variables that are not independent.
c. Find two random variables X, Y such that E[XY ] 6= E[X]E[Y ].

Solution. (a) Let Ω = {HH,HT, TH, TT} with the uniform probability law, and let X = 1
if the first character is H and X = 0 otherwise, and Y = 1 if the second character is H and
Y = 0 otherwise.

Then

P(X = 1, Y = 1) = P(HH) =
1

4
= P(X = 1)P(Y = 1)

P(X = 1, Y = 0) = P(HT ) =
1

4
= P(X = 1)P(Y = 0)

P(X = 0, Y = 1) = P(TH) =
1

4
= P(X = 0)P(Y = 1)

and

P(X = 0, Y = 0) = P(TT ) =
1

4
= P(X = 0)P(Y = 0)

so X and Y are independent.
(b) Let X be a random variable with P(X = 0) = P(X = 1) = 1

2
, and let Y = −X. Then

P(X = 1, Y = 0) = 0 6= 1

2
· 1

2
= P(X = 1)P(Y = 0)

Therefore X and Y are not independent.
(c)Let X be a random variable with P(X = −1) = P(X = 1) = 1

2
, and let Y = X. Then

E[X] = E[Y ] = 0, but XY = X2 = 1, so E[XY ] = 1. �

Exercise 7.2. Does there exist a random variable which is independent of itself? Either
find such an X, or prove that no such X can exist.

Solution. Let X be a random variable with P(X = c) = 1 for some constant c. Then

P(X = c) = 1 = P(X = c)2

and if at least one of x1, x2 is not equal to c, then

P(X = x1, X = x2) = 0 = P(X = x1)P(X = x2)

Therefore X is independent of itself.
It also turns out that any random variable which is independent of itself has the above

form for some constant c. �
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Exercise 7.3. Let n be a positive integer and p ∈ (0, 1). Suppose that X1, . . . , Xn are
pairwise independent Bernoulli random variables with parameter p, and let Sn = X1+···+Xn

n
.

Compute E[Sn] and var(Sn). What does the variance computation tell you as n→∞?

Solution.
The linearity of expectation implies that

E[Sn] =
1

n

(
E[X1] + · · ·+ E[Xn]

)
=
np

n
= p

and since the Xi are pairwise independent it follows that

var(Sn) =
1

n2
(var(X1) + · · ·+ var(Xn)) =

np(1− p)
n2

=
p(1− p)

n

Observe that var(Sn)→ 0 as n→∞. �

Exercise 7.4. Let X and Y be independent random variables taking on finitely many values.
Show that

E[f(X)g(Y )] = E[f(X)]E[g(Y )]

for any functions f, g : R→ R.

Solution. Since X and Y are independent,

E[f(X)g(Y )] =
∑
x,y∈R

f(x)g(y)P(X = x, Y = y) =
∑
x,y∈R

f(x)g(y)P(X = x)P(Y = y)

=
[∑
x∈R

f(x)P(X = x)
][∑

y∈R

g(y)P(Y = y)
]

= E[f(X)]E[g(Y )]

�

Exercise 7.5. Find three random variables X1, X2, X3 which are pairwise independent but
not independent.

Solution. Let A1, A2, A3 be the events from problem 6 on Homework 3, and for i = 1, 2, 3
define a random variable Xi which is equal to 1 on Ai and 0 otherwise. Then the Xi are
pairwise independent but not independent. �

Exercise 7.6. Let X1, . . . , Xn be independent Bernoulli random variables with parameter
0 < p < 1.

Solution. a. Show that E[etXi ] = (1− p) + pet for 1 ≤ i ≤ n.
Xi takes the value 1 with probability p and 0 with probability 1− p, hence

E[etXi ] = e0(1− p) + etp = (1− p) + pet

b. Let Sn = X1 + · · ·+Xn. Show that E[etSn ] = [(1− p) + pet]n.
Using part (a) and the generalization of problem 6 to n independent random variables

shows that

E[etSn ] = E[etX1 · · · etXn ] = E[etX1 ] · · ·E[etXn ] = [(1− p) + pet]n

c. Use part (b) to compute E[Sn] and E[S2
n].
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Since E[etSn ] = [(1− p) + pet]n, it follows that

E[Sn] =
d

dt
[(1− p) + pet]n

∣∣∣
t=0

= np

Similarly,

E[S2
n] =

d2

dt2
[(1− p) + pet]n

∣∣∣
t=0

= np+ n(n− 1)p2

�

Exercise 7.7. Let X1, . . . , Xn be independent discrete random variables. Show that

P(X1 ≤ x1, . . . , Xn ≤ xn) =
n∏
i=1

P(Xi ≤ xi)

for all x1, . . . , xn ∈ R.

Solution. Since X1, . . . , Xn are independent, we have

P(X1 ≤ x1, . . . , Xn ≤ xn) =
∑

y1≤x1,...,yn≤xn

P(X1 = y1, . . . , Xn = yn)

=
∑

y1≤x1,...,yn≤xn

P(X1 = y1) · · ·P(Xn = yn) =
[ ∑
y1≤x1

P(X1 = y1)
]
· · ·
[ ∑
yn≤xn

P(Xn = yn)
]

=
n∏
i=1

P(Xi ≤ xi)

�

Exercise 7.8. Verify that
∫∞
−∞

1√
2π
e−x

2/2dx = 1. (Hint: let T =
∫∞
−∞

1√
2π
e−x

2/2dx. It suffices

to show that T 2 = 1, since T > 0.)

Solution. Using polar coordinates,

T 2 =

∫ ∞
−∞

1√
2π
e−x

2/2dx

∫ ∞
−∞

1√
2π
e−y

2/2dy =
1

2π

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)/2dxdy

=
1

2π

∫ r=∞

r=0

∫ 2π

θ=0

re−r
2/2dθdr =

∫ r=∞

r=0

re−r
2/2dr = lim

N→∞
[−e−r2/2]r=Nr=0 = lim

N→∞
[1− e−N2/2] = 1.

�

8. Homework 8

Exercise 8.1. Let X be a continuous random variable with distribution function fX(x) =
1√
2π
e−x

2/2 ∀ x ∈ R. Show that var(X) = 1.

Solution. E[X] = 0 since fX(x) is an even function, so it is enough to show that E[X2] = 1.
By definition,

E[X2] =
1√
2π

∫ ∞
−∞

x2e−
x2

2 dx
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Integrating by parts with u = −x and dv = −xe−x
2

2 and noting that the boundary terms
vanish, we obtain

E[X2] = lim
n→∞

1√
2π

∫ n

−n
(−x)

d

dx
e−

x2

2 dx

= lim
n→∞

1√
2π

(
[−xe−x2/2]x=n

x=−n +

∫ n

−n
e−

x2

2 dx
)

=
1√
2π

∫ ∞
−∞

e−
x2

2 dx = 1

using Exercise 7.8. �

Exercise 8.2. Let X be a random variable such that fX(x) = x when 0 ≤ x ≤
√

2 and
fX(x) = 0 otherwise. Compute EX2 and EX3.

Solution. By definition,

E[X2] =

∫ ∞
−∞

x2fX(x) dx =

∫ √2

0

x3 dx =
x4

4

∣∣∣√2

0
= 1

Similarly,

E[X3] =

∫ √2

0

x4 dx =
x5

5

∣∣∣√2

0
=

2
5
2

5
�

Exercise 8.3 (Numerical Integration). In computer graphics in video games, etc., various
integrations are performed in order to simulate lighting effects. Here is a way to use random
sampling to integrate a function in order to quickly and accurately render lighting effects.
Let Ω = [0, 1], and let P be the uniform probably law on Ω, so that if 0 ≤ a < b ≤ 1,
we have P([a, b]) = b − a. Let X1, . . . , Xn be independent random variables such that
P(Xi ∈ [a, b]) = b − a for all 0 ≤ a < b ≤ 1, for all i ∈ {1, . . . , n}. Let f : [0, 1] → R be a
continuous function we would like to integrate. Instead of integrating f directly, we instead
compute the quantity

1

n

n∑
i=1

f(Xi).

Show that

lim
n→∞

E

(
1

n

n∑
i=1

f(Xi)

)
=

∫ 1

0

f(t)dt.

lim
n→∞

var

(
1

n

n∑
i=1

f(Xi)

)
= 0.

That is, as n becomes large, 1
n

∑n
i=1 f(Xi) is a good estimate for

∫ 1

0
f(t)dt.

Solution. By definition ofXi we have Ef(Xi) =
∫ 1

0
f(t)dt for all i ≥ 1so that E

(
1
n

∑n
i=1 f(Xi)

)
=

1
n
n
∫ 1

0
f(t)dt =

∫ 1

0
f(t)dt. Also, by independence we have

var

(
1

n

n∑
i=1

f(Xi)

)
=

1

n2

n∑
i=1

var(f(Xi)) =
1

n
var(f(X1)).

31



This quantity goes to zero as n→∞. (Since f is continuous on [0, 1], f is bounded by some
constant c on [0, 1], i.e. |f(t)| ≤ c for all t ∈ [0, 1], so |f(X1)| ≤ c, so varf(Xi) ≤ E[f(Xi)]

2 ≤
c2 for all i ≥ 1.) �

Exercise 8.4. Let X be a random variable such that X = 1 with probability 1. Show that
X is not a continuous random variable. That is, there does not exist a probability density
function f such that P(X ≤ a) =

∫ a
−∞ f(x)dx for all x ∈ R. (Hint: if X were continuous,

then the function g(t) =
∫ t
−∞ f(x)dx would be continuous, by the Fundamental Theorem of

Calculus.)

Solution. As suggested, if X is continuous, then the CDF of X is a continuous function. But
the CDF of X is discontinuous at 1 by assumption, a contradiction. �

Exercise 8.5. Verify that a Gaussian random variable X with mean µ and variance σ2

actually has mean µ and variance σ2.
Let a, b ∈ R with a 6= 0. Show that aX + b is a normal random variable with mean aµ+ b

and variance a2σ2.
In particular, conclude that (X − µ)/σ is a standard normal.

Solution. Since fX(x) = 1√
2πσ

e−
(x−µ)2

2σ2 , ∀x ∈ R, we have

EX =

∫ ∞
−∞

x
1√
2πσ

e−
(x−µ)2

2σ2 dx =

∫ ∞
−∞

(x+ µ)
1√
2πσ

e−
x2

2σ2 dx

= µ

∫ ∞
−∞

1√
2πσ

e−
x2

2σ2 dx = µ

∫ ∞
−∞

1√
2π
e−

x2

2 dx = µ,

where we used Exercise 7.8 in the last step, and a few changes of variables. Similarly,

EX2 =

∫ ∞
−∞

x2 1√
2πσ

e−
(x−µ)2

2σ2 dx =

∫ ∞
−∞

(x+ µ)2 1√
2πσ

e−
x2

2σ2 dx

=

∫ ∞
−∞

1√
2πσ

(x2 + µ)e−
x2

2σ2 dx = µ+

∫ ∞
−∞

1√
2πσ

x2e−
x2

2σ2 dx

= µ+

∫ ∞
−∞

1√
2πσ

x
[
− (d/dx)σ2e−

x2

2σ2

]
dx

= µ+ σ2

∫ ∞
−∞

1√
2πσ

e−
x2

2σ2 dx = µ+ σ2.

So, var(X) = EX2 − (EX)2 = µ+ σ2 − µ = σ2.
Suppose µ = σ = 1. Then

P(aX + b ≤ t) = P(X ≤ (t− b)/a) =

∫ (t−b)/a

−∞
e−x

2/2dx/
√

2π =

∫ t−b

−∞
ae−x

2/[2a2]dx/
√

2π

=

∫ t

−∞
ae−(x+b)2/[2a2]dx/

√
2π.

That is, aX + b has a Gaussian density with mean b and variance a2. The case of general
µ, σ follows from this case. �
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Exercise 8.6. Using the De Moivre-Laplace Theorem, estimate the probability that 1, 000, 000
coin flips of fair coins will result in more than 501, 000 heads. (Some of the following integrals

may be relevant:
∫ 0

−∞ e
−t2/2dt/

√
2π = 1/2,

∫ 1

−∞ e
−t2/2dt/

√
2π ≈ .8413,

∫ 2

−∞ e
−t2/2dt/

√
2π ≈

.9772,
∫ 3

−∞ e
−t2/2dt/

√
2π ≈ .9987.)

Casinos do these kinds of calculations to make sure they make money and that they do
not go bankrupt. Financial institutions and insurance companies do similar calculations for
similar reasons.

Solution. Let X be the number of heads in 1, 000, 000 flips. The De Moivre-Laplace limit
theorem states that if Sn is the sum of n independent Bernoulli random variables with
parameter 1

2
, then

Sn − n
2√

n
4

can be closely approximated by a normal random variable. Taking n = 106, we have

P(X ≥ 501, 000) = P(X − 500, 000 ≥ 1000) = P
(X − 500000

500
≥ 2
)

= 1−P
(X − 500000

500
< 2
)
≈ 1− 1√

2π

∫ 2

−∞
e−

x2

2 dx ≈ 0.0228

�

Exercise 8.7. Let X be a uniformly distributed random variable on [−1, 1]. Let Y := X2.
Find fY .

Solution. First, note that for any 0 < a < 1, the definition of X implies that

P(−a ≤ X ≤ a) =

∫ a

−a
fX(s)ds =

1

2

∫ a

−a
ds =

2a

2
= a. (∗)

By differentiating the CDF and using the definition of Y and , we have for any 0 ≤ t ≤ 1,

fY (t) =
d

dt
P(Y ≤ t) =

d

dt
P(X2 ≤ t) =

d

dt
P(|X| ≤

√
t) =

d

dt
P(−
√
t ≤ X ≤

√
t)

(∗)
=

d

dt
2
√
t = t−1/2.

So, fY (t) = t−1/2 for any 0 ≤ t ≤ 1, and fY (t) = 0 for any other t. �

Exercise 8.8. Let X be a uniformly distributed random variable on [0, 1]. Let Y := 4X(1−
X). Find fY .

Solution. Using the quadratic formula, note that 4x(1−x) = t occurs when −4x2+4x−t = 0,
i.e. when x2 − x + t/4 = 0, i.e. when x = [1±

√
1− t]/2. So, 4x(1− x) ≤ t and 0 < x < 1

when 0 ≤ x ≤ [1−
√

1− t]/2 and [1 +
√

1− t]/2 ≤ x ≤ 1. So, using set disjointness and the
definition of X,

P(4X(1−X) ≤ t) = P(0 ≤ X ≤ [1−
√

1− t]/2 or [1 +
√

1− t]/2 ≤ X ≤ 1)

= P(0 ≤ X ≤ [1−
√

1− t]/2) + P([1 +
√

1− t]/2 ≤ X ≤ 1)

= [1−
√

1− t]/2) + 1− [1 +
√

1− t]/2 = 1−
√

1− t. (∗)
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Then, by differentiating the CDF, we have for any t > 0,

fY (t) =
d

dt
P(Y ≤ t) =

d

dt
P(4X(1−X) ≤ t) =

d

dt
P(4X(1−X) ≤ t)

(∗)
=

d

dt
(1−

√
1− t) =

1

2
(1− t)−1/2.

So, fY (t) = 1
2
(1− t)−1/2 for any 0 < t < 1, and fY (t) = 0 for any other t. �

Exercise 8.9. Let X be a uniformly distributed random variable on [0, 1]. Find the PDF
of − log(X).

Solution. First, note that for any 0 < a < 1, the definition of X implies that

P(X ≥ a) =

∫ 1

a

fX(s)ds =

∫ 1

a

ds = 1− a. (∗)

By differentiating the CDF, we have for any t > 0,

f− logX(t) =
d

dt
P(− logX ≤ t) =

d

dt
P(X ≥ e−t)

(∗)
=

d

dt
(1− e−t) = e−t.

So, f− logX(t) = e−t for any t > 0, and f− logX(t) = 0 for any other t. �

Exercise 8.10. Let X be a standard normal random variable. Find the PDF of eX .

Solution. First, note that for any 0 < a < 1, the definition of X implies that

P(X ≤ a) =

∫ a

−∞
fX(s)ds =

∫ a

−∞
e−s

2/2ds/
√

2π. (∗)

By differentiating the CDF and using the chain rule, we have for any t > 0,

feX (t) =
d

dt
P(eX ≤ t) =

d

dt
P(X ≤ log t

(∗)
=

d

dt

∫ log t

−∞
e−s

2/2ds/
√

2π =
1√
2π
e−(log t)2/2 d

dt
log t =

1√
2π
e−(log t)2/2 1

t

So, feX (t) = 1√
2π
e−(log t)2/2 1

t
for any t > 0, and feX (t) = 0 for any other t. �

9. Homework 9

Exercise 9.1. Let X, Y be random variables with joint PDF fX,Y . Let a, b ∈ R. Using the
definition of expected value, show that E(aX + bY ) = aEX + bEY .

Solution. Using the joint pdf, we have

E[aX + bY ] =

∫ ∞
−∞

∫ ∞
−∞

(ax+ by)f(x, y) dxdy

= a

∫ ∞
−∞

x
[ ∫ ∞
−∞

f(x, y) dy
]
dx+ b

∫ ∞
−∞

y
[ ∫ ∞
−∞

f(x, y) dx
]
dy

= a

∫ ∞
−∞

xfX(x) dx+ b

∫ ∞
−∞

yfY (y) dy = aE[X] + bE[Y ]

�
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Exercise 9.2. Let X1, Y1 be random variables with joint PDF fX1,Y1 . Let X2, Y2 be random
variables with joint PDF fX2,Y2 . Let T : R2 → R2 and let S : R2 → R2 so that ST (x, y) =
(x, y) and TS(x, y) = (x, y) for every (x, y) ∈ R2. Let J(x, y) denote the determinant of the
Jacobian of S at (x, y). Assume that (X2, Y2) = T (X1, Y1). Using the change of variables
formula from multivariable calculus, show that

fX2,Y2(x, y) = fX1,Y1(S(x, y)) |J(x, y)| .

Solution. According to the change of variables theorem, if U is a “nice” subset of R2 and φ
is an injective differentiable function on U , then∫

φ(U)

f(u, v) dudv =

∫
U

f(φ(x, y))| detDφ(x, y)| dxdy

where Dφ(x, y) is the Jacobian of φ at (x, y). Since (X2, Y2) = T (X1, Y1), it follows that

P((X2, Y2) ∈ U) = P((X1, Y1) ∈ S(U)) =

∫
S(U)

f1(u, v) dudv

=

∫
U

f1(S(x, y))|J(x, y)| dxdy

On the other hand,

P((X2, Y2) ∈ U) =

∫
U

f2(x, y) dxdy

by the definition of a pdf. Therefore we have shown that∫
U

f2(x, y) dxdy =

∫
U

f1(S(x, y))|J(x, y)| dxdy

for all “nice” subsets U ⊆ R2, which implies that f2(x, y) = f1(S(x, y))|J(x, y)|, at least
outside of some negligible set of points. �

Exercise 9.3. Let X and Y be nonnegative random variables. Recall that we can define

EX :=

∫ ∞
0

P(X > t)dt.

Assume that X ≤ Y . Conclude that EX ≤ EY .
More generally, if X satisfies E |X| <∞, we define EX := E max(X, 0)− E max(−X, 0).

If X, Y are any random variables with X ≤ Y , E |X| < ∞ and E |Y | < ∞, show that
EX ≤ EY .

Exercise 9.4. Let X, Y, Z be independent standard Gaussian random variables. Find the
PDF of max(X, Y, Z).

Solution. We have, for any t ∈ R, using the definition of maximum, independence, and the
definition of a Gaussian,

P(max(X, Y, Z) ≤ t) = P(X ≤ t, Y ≤ t, Z ≤ t) = P(X ≤ t)3 =
(∫ t

−∞
e−s

2/2ds/
√

2π
)3

.

So, by the chain rule,

fmax(X,Y,Z)(t) =
d

dt
P(max(X, Y, Z) ≤ t) = 3

(∫ t

−∞
e−s

2/2ds/
√

2π
)2

e−t
2/2 1√

2π
.
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Exercise 9.5. Let X be a random variable uniformly distributed in [0, 1] and let Y be a
random variable uniformly distributed in [0, 2]. Suppose X and Y are independent. Find
the PDF of X/Y 2.

Solution. We have, for any t > 0, using the definition of joint PDF and of X and Y ,

P(X/Y 2 ≤ t) = P(X ≤ tY 2) =

∫∫
{(x,y)∈R2 : x≤ty2}

fX,Y (x, y)dxdy

=

∫ x=min(1,4t)

x=0

∫ y=2

y=min(2,
√
x/t)

fX(x)fY (y)dydx =

∫ x=min(1,4t)

x=0

∫ y=2

y=min(2,
√
x/t)

1

2
dydx

=
1

2

∫ x=min(1,4t)

x=0

[2−min(2,
√
x/t)]dx

=

{
1
2

∫ x=4t

x=0
[2−min(2,

√
x/t)]dx , if 0 < t < 1/4

1
2

∫ x=1

x=0
[2−min(2,

√
x/t)]dx , if 1/4 < t

=

{
1
2

∫ x=4t

x=0
[2−

√
x/t]dx , if 0 < t < 1/4

1
2

∫ x=1

x=0
[2−

√
x/t]dx , if 1/4 < t

=

{
1
2
[8t− (2/3)(4t)3/2t−1/2] , if 0 < t < 1/4

1
2
[2− (2/3)t−1/2] , if 1/4 < t

=

{
4t− (8/3)t , if 0 < t < 1/4

1− (1/3)t−1/2 , if 1/4 < t

=

{
(4/3)t , if 0 < t < 1/4

1− (1/3)t−1/2 , if 1/4 < t.

So,

fX/Y 2(t) =
d

dt
P(X/Y 2 ≤ t) =

{
4/3 , if 0 < t < 1/4
1
6
t−3/2 , if 1/4 < t.

�

Exercise 9.6. Let X, Y be independent random variables with joint PDF fX,Y . Show that

var(X + Y ) = var(X) + var(Y ).

Solution. f(x, y) = fX(x)fY (y) since X and Y are independent, hence

var(X + Y ) =

∫ ∞
−∞

(X + Y − E[X]− E[Y ])2f(x, y) dxdy

=

∫ ∞
−∞

(x− E[X])2fX(x)fY (y) dxdy +

∫ ∞
−∞

(y − E[Y ])2fX(x)fY (y) dxdy

+2

∫ ∞
−∞

(x− E[X])(y − E[Y ])fX(x)fY (y) dxdy
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= var(X) + var(Y ) + 2
[ ∫ ∞
−∞

(x− E[X])fX(x) dx
][ ∫ ∞

−∞
(y − E[Y ])fY (y) dy

]
= var(X) + var(Y )

�

Exercise 9.7. Let X and Y be uniformly distributed random variables on [0, 1]. Assume
that X and Y are independent. Compute the following probabilities:

• P(X > 3/4)
• P(Y < X)
• P(X + Y < 1/2)
• P(max(X, Y ) > 1/2)
• P(XY < 1/3).

Solution.
a. P(X > 3

4
).

Solution: P(X > 3
4
) = 1−P(X ≤ 3

4
) = 1− 3

4
= 1

4
.

b. P(Y < X).
Solution: The joint pdf of X and Y is f(x, y) = 1 if 0 ≤ x, y ≤ 1 and f(x, y) = 0 otherwise,

hence

P(Y < X) =

∫ 1

0

∫ x

0

dydx =

∫ 1

0

x dx =
1

2

c. P(X + Y < 1
2
).

Solution: Using the same pdf as in part (b), we have

P
(
X + Y <

1

2

)
=

∫ 1
2

0

∫ 1
2
−x

0

dydx =

∫ 1
2

0

1

2
− x dx =

x− x2

2

∣∣∣ 12
0

=
1

8

d. P(max{X, Y } > 1
2
).

Solution: Since X and Y are independent,

P
(

max{X, Y } > 1

2

)
= 1−P

(
max{X, Y } ≤ 1

2

)
= 1−P

(
X ≤ 1

2
, Y ≤ 1

2

)
= 1−P

(
X ≤ 1

2

)
P
(
X ≤ 1

2

)
= 1− 1

4
=

3

4
Solution: If X < 1

3
, then XY < 1

3
regardless of the value of Y . If 1

3
≤ X ≤ 1, then we

must have Y < 1
3X

. Therefore

P
(
XY <

1

3

)
=

1

3
+

∫ 1

1
3

∫ 1
3x

0

dydx =
1

3
+

∫ 1

1
3

dx

3x
=

1

3

(
1− ln

(1

3

))
=

1 + ln(3)

3

�

Exercise 9.8. Let X, Y be random variables with EX2 < ∞ and EY 2 < ∞. Prove the
Cauchy-Schwarz inequality:

E(XY ) ≤ (EX2)1/2(EY 2)1/2.

Then, deduce the following when X, Y both have finite variance:

|cov(X, Y )| ≤ (var(X))1/2(var(Y ))1/2.
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(Hint: in the case that EY 2 > 0, expand out the product E(X − YE(XY )/EY 2)2.)

Exercise 9.9. Suppose you go to the bus stop, and the time T between successive arrivals
of the bus is anything between 0 and 30 minutes, with all arrival times being equally likely.

Suppose you get to the bus stop, and the bus just leaves as you arrive. How long should
you expect to wait for the next bus? What is the probability that you will have to wait at
least 15 minutes for the next bus to arrive?

On a different day, suppose you go to the bus stop and someone says the last bus came 10
minutes ago. How long should you expect to wait for the next bus? What is the probability
that you will have to wait at least 10 minutes for the next bus to arrive?

Solution. The pdf of T is fT (t) = 1
30

if 0 ≤ t ≤ 30, and fT (t) = 0 otherwise. Therefore

E[T ] =

∫ ∞
−∞

tfT (t) dt =
1

30

∫ 30

0

t dt =
t2

60

∣∣∣30

0
= 15

and

P(T > 15) =
1

30

∫ 30

15

dt =
1

2

Let A = {T ≥ 10}. Then the conditional pdf of T given A is fT |A(t) = 1
20

if 10 ≤ t ≤ 30,
and fT |A(t) = 0 otherwise. Therefore

E[T |A] =
1

20

∫ 30

10

t dt =
t2

40

∣∣∣30

10
= 20

which means that you should expect to wait an additional 10 minutes for the bus. Similarly,

P(T > 20|A) =
1

20

∫ 30

20

dt =
1

2

�

Exercise 9.10. Let A1, A2, . . . be disjoint events such that P(Ai) = 2−i for each i ≥ 1.
Assume that ∪∞i=1Ai = Ω. Let X be a random variable such that E(X|Ai) = (−1)i+1 for
each i ≥ 1. Compute EX.

Solution. By the law of total expectation,

E[X] =
∞∑
i=1

E[X|Ai]P(Ai) =
∞∑
i=1

(−1)i+12−i

Beginning with the geometric series

∞∑
i=0

xi =
1

1− x

for |x| < 1 and multiplying by x shows that

∞∑
i=1

xi =
x

1− x
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Replacing x with −x and multiplying by −1 yields

∞∑
i=1

(−1)i+1xi =
x

1 + x

so setting x = 1
2
, we obtain

E[X] =
1
2

1 + 1
2

=
1

3

�

Exercise 9.11. Let X, Y be random variables. For any y ∈ R, assume that E(X|Y = y) =
e−|y|. Also, assume that Y has an exponential distribution with parameter λ = 2. Compute
EX.

Solution. By the law of total expectation,

E[X] =

∫ ∞
0

E[X|Y = y]fY (y) dy = 2

∫ ∞
0

e−3y dy =
2

3

�

10. Homework 10

Exercise 10.1. Let X be a binomial random variable with parameters n = 2 and p = 1/2.
So, P(X = 0) = 1/4, P(X = 1) = 1/2 and P(X = 2) = 1/4. And X satisfies EX = 1 and
EX2 = 3/2.

Let Y be a geometric random variable with parameter 1/2. So, for any positive integer k,
P(Y = k) = 2−k. And Y satisfies EY = 2 and EY 2 = 6.

Let Z be a Poisson random variable with parameter 1. So, for any nonnegative integer k,
P(Z = k) = 1

e
1
k!

. And Z satisfies EZ = 1 and EZ2 = 2.
Let W be a discrete random variable such that P(W = 0) = 1/2 and P(W = 4) = 1/2,

so that EW = 2 and EW 2 = 8.
Assume that X, Y, Z and W are all independent. Compute

var(X + Y + Z +W ).

Solution. Since the variance of the sum is the sum of the variances for independent random
variables, we have

var(X + Y + Z +W ) = var(X) + var(Y ) + var(Z) + var(W ) = 1/2 + 2 + 1 + 4.

�

Exercise 10.2. Let X1, . . . , Xn be random variables with finite variance. Define an n × n
matrix A such that Aij = cov(Xi, Xj) for any 1 ≤ i, j ≤ n. Show that the matrix A is
positive semidefinite. That is, show that for any y = (y1, . . . , yn) ∈ Rn, we have

yTAy =
n∑

i,j=1

yiyjAij ≥ 0.
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Solution.
n∑

i,j=1

yiyjAij =
n∑

i,j=1

yiyjcov(Xi, Xj) =
n∑

i,j=1

cov(yiXi, yjXj) = var(
n∑
i=1

yiXi) ≥ 0.

The last line used var(Z) ≥ 0 for any random variable Z. �

Exercise 10.3. Using the definition of convergence, show that the sequence of numbers
1, 1/2, 1/3, 1/4, . . . converges to 0.

Solution. Let ε > 0. We need to find m ≥ 0 such that, for all n ≥ m, we have |1/n− 0| =
1/n ≤ ε. So, choose m to be any integer larger than 1/ε, i.e. m > 1/ε so that 1/m < ε. If
n ≥ m, then 1/n ≤ 1/m < ε, as desired. �

Exercise 10.4 (Uniqueness of limits). Let x1, x2, . . . be a sequence of real numbers. Let
x, y ∈ R. Assume that x1, x2, . . . converges to x. Assume also that x1, x2, . . . converges to y.
Prove that x = y. That is, a sequence of real numbers cannot converge to two different real
numbers.

Solution. Let ε > 0. By assumption, there exists m ≥ 0 such that, for all n ≥ m, |xn − x| <
ε. By assumption, there exists p ≥ 0 such that, for all n ≥ p, |xn − y| < ε. So, if n ≥
max(m, p), we have

|xn − x| < ε, and y |xn − y| < ε.

So, using the triangle inequality, for any ε > 0, if n ≥ max(m, p), we have

|x− y| = |x− xn + xn − y| ≤ |x− xn|+ |xn − y| ≤ ε+ ε = 2ε.

Since ε > 0 is arbitrary, we conclude that x = y. �

Exercise 10.5. Let X be a random variable. Assume that MX(t) exists for all t ∈ R, and
assume we can differentiate under the expected value any number of times. For any positive
integer n, show that

dn

dtn
|t=0MX(t) = E(Xn).

So, in principle, all moments of X can be computed just by taking derivatives of the moment
generating function.

Exercise 10.6. Let X be a standard Gaussian random variable. Compute an explicit
formula for the moment generating function of X. (Hint: completing the square might
be helpful.) From this explicit formula, compute an explicit formula for all moments of
the Gaussian random variable. (The 2nth moment of X should be something resembling a
factorial.)

Solution.

EetX =

∫ ∞
−∞

etxe−x
2/2 dx√

2π
=

∫ ∞
−∞

e−(x−t)2/2et
2/2 dx√

2π
= et

2/2

∫ ∞
−∞

e−x
2/2 dx√

2π
= et

2/2.

If n is odd, then EXn is zero, since EXn =
∫∞
−∞ x

ne−x
2/2 dx√

2π
= 0, since the integrand is odd.

Meanwhile, using the power series expansion of et
2/2, we get

EetX = et
2/2 =

∞∑
k=0

(t2/2)k

k!
.
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Equating the kth derivatives at zero of both sides gives

EX2k =
d2k

dt2k
|t=0

(t2/2)k

k!
=

(2k)!

2kk!
.

�

Exercise 10.7. Construct two random variables X, Y : Ω → R such that X 6= Y but
MX(t),MY (t) exist for all t ∈ R, and such that MX(t) = MY (t) for all t ∈ R.

Solution. Let X be a mean zero standard Gaussian and let Y = −X. Then X 6= Y , but
MX(t) = MY (t) = et

2/2. �

Exercise 10.8. Unfortunately, there exist random variables X, Y such that EXn = EY n

for all n = 1, 2, 3, . . ., but such that X, Y do not have the same CDF. First, explain why this
does not contradict the Lévy Continuity Theorem, Weak Form. Now, let −1 < a < 1, and
define a density

fa(x) :=

{
1

x
√

2π
e−

(log x)2

2 (1 + a sin(2π log x)) , if x > 0

0 , otherwise.

Suppose Xa has density fa. If −1 < a, b < 1, show that EXn
a = EXn

b for all n = 1, 2, 3, . . ..
(Hint: write out the integrals, and make a change of variables s = log(x) + n.)

Solution.

EXn =

∫ ∞
−∞

xnfa(x)dx =

∫ ∞
0

xn
1

x
√

2π
e−

(log x)2

2 (1 + a sin(2π log x))dx

=
1√
2π

∫ ∞
−∞

e(s−n)ne−
(s−n)2

2 (1 + a sin(2π(s− n)))ds

=
1√
2π

∫ ∞
−∞

esne−
s2

2 (1 + a sin(2π(s− n)))ds

=
en

2/2

√
2π

∫ ∞
−∞

e−
(s−n)2

2 (1 + a sin(2π(s− n)))ds

=
en

2/2

√
2π

∫ ∞
−∞

e−
s2

2 (1 + a sin(2πs))ds = en
2/2.

The last equality used that the function e−
s2

2 sin(2πs) is odd, so its integral is zero. Since
EXn does not depend on a, the result follows. �

11. Homework 11

Exercise 11.1. Compute the characteristic function of a uniformly distributed random
variable on [−1, 1]. (Some of the following formulas might help to simplify your answer:
eit = cos(t) + i sin(t), cos(t) = [eit + e−it]/2, sin(t) = [eit − e−it]/[2i], t ∈ R.)

Solution.

EeitX =
1

2

∫ 1

−1

eitxdx =
1

2

1

it
eitx|x=1

x=−1 =
1

2it
[eit − e−it] =

sin(t)

t
.

�
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Exercise 11.2. LetX be a random variable. Assume we can differentiate under the expected
value of EeitX any number of times. For any positive integer n, show that

dn

dtn
|t=0φX(t) = inE(Xn).

So, in principle, all moments of X can be computed just by taking derivatives of the char-
acteristic function.

Solution.
dn

dtn
|t=0φX(t) = E

dn

dtn
|t=0e

itX = E(iX)neitX |t=0 = inE(Xn).

�

Exercise 11.3. Let X be a random variable such that E |X|3 < ∞. Prove that for any
t ∈ R,

EeitX = 1 + itEX − t2EX2/2 + o(t2).

That is,

lim
t→0

t−2
∣∣EeitX − [1 + itEX − t2EX2/2]

∣∣ = 0

(Hint: it may be helpful to use Jensen’s inequality, to first justify that E |X| < ∞ and
EX2 < ∞. Then, use the Taylor expansion with error bound: eiy = 1 + iy − y2/2 −
(i/2)

∫ y
0

(y − s)2eisds, which is valid for any y ∈ R.)
Actually, this same bound holds only assuming EX2 < ∞, but the proof of that bound

requires things we have not discussed.

Solution. Using y = tX in the Taylor expansion with error bound,

eitX = 1 + itX − (tX)2/2− (i/2)

∫ tX

0

(tX − s)2eisds.

Taking expected values, rearranging, then taking the absolute values,∣∣EeitX − [1 + itEX − t2EX2/2]
∣∣ ≤ 1

2
E

∣∣∣∣∫ tX

0

(tX − s)2eisds

∣∣∣∣
≤ 1

2
E

∣∣∣∣∫ tX

0

(tX − s)2ds

∣∣∣∣
≤ 1

2
E
∣∣(1/3)(tX)3

∣∣ ≤ 1

6
t3E |X|3 .

Therefore,

lim
t→0

t−2
∣∣EeitX − [1 + itEX − t2EX2/2]

∣∣ = (1/6)E |X|3 lim
t→0

t = 0.

�

Exercise 11.4. Let X, Y, Z be independent and uniformly distributed on [0, 1]. Note that
fX is not a continuous function.

Using convolution, compute fX+Y . Draw fX+Y . Note that fX+Y is a continuous function,
but it is not differentiable at some points.

Using convolution, compute fX+Y+Z . Draw fX+Y+Z . Note that fX+Y+Z is a differentiable
function, but it does not have a second derivative at some points.
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Make a conjecture about how many derivatives fX1+···+Xn has, where X1, . . . , Xn are in-
dependent and uniformly distributed on [0, 1]. You do not have to prove this conjecture.
The idea of this exercise is that convolution is a kind of average of functions. And the more
averaging you do, the more derivatives fX1+···+Xn has.

Solution.

fX+Y (t) = fX ∗ fY (t) =

∫
R

1[0,1](x)1[0,1](t− x)dx =

∫ x=1

x=0

1[0,1](t− x)dx =

∫ x=1

x=0

1x∈[t−1,t]dx

So, if t < 0, fX+Y (t) = 0. If t > 2, fX+Y (t) = 0. And if t ∈ [0, 1], then fX+Y =
∫ x=t

x=0
dx = t.

And if t ∈ [1, 2], then fX+Y =
∫ x=1

x=t−1
dx = 2− t. In summary,

fX+Y (t) =


0 , if t < 0

t , if 0 ≤ t < 1

2− t , if 1 ≤ t < 2

0 , if t ≥ 2.

That is, fX+Y is piecewise linear and continuous, and symmetric about the point t = 1.
Similarly breaking into various cases, we have

fX+Y+Z(t) = fX+Y ∗ fZ(t) =

∫
R
fX+Y (x)1[0,1](t− x)dx =

∫ x=2

x=0

fX+Y (x)1x∈[t−1,t]dx

=



0 , if t < 0∫ t
0
sds , if 0 ≤ t < 1∫ 1

1−t sds+
∫ t

1
(2− s)ds , if 1 ≤ t < 2∫ 2

t−1
(2− s)ds , if 2 ≤ t < 3

0 , if t ≥ 3.

=



0 , if t < 0

t2/2 , if 0 ≤ t < 1

(1/2)(1− (1− t)2) + (2t− t2/2)− 3/2 , if 1 ≤ t < 2

(2s− s2/2)4− 2− 2(t− 1) + (t− 1)2/2 , if 2 ≤ t < 3

0 , if t ≥ 3.

=



0 , if t < 0

t2/2 , if 0 ≤ t < 1

−t2 + 3t− 3/2 , if 1 ≤ t < 2

(1/2)(t− 3)2 , if 2 ≤ t < 3

0 , if t ≥ 3.

That is, fX+Y+Z is piecewise quadratic, continuous, and symmetric about the point t =
3/2.

When n is large, fX1+···+Xn looks more and more like a Gaussian density. This observation
agrees with the Central Limit Theorem. �
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Exercise 11.5. Construct two random variables X, Y such that X and Y are each uniformly
distributed on [0, 1], and such that P(X + Y = 1) = 1.

Then construct two random variables W,Z such that W and Z are each uniformly dis-
tributed on [0, 1], and such that W + Z is uniformly distributed on [0, 2].

(Hint: there is a way to do each of the above problems with about one line of work. That
is, there is a way to solve each problem without working very hard.)

Solution. Let X be uniformly distributed in [0, 1] and define Y := 1−X.
Let W be uniformly distributed in [0, 1] and let Z := W . Then W +Z = 2W is uniformly

distributed in [0, 2], since P(2W ≤ t) = P(W ≤ t/2) = t/2 for all 0 ≤ t ≤ 2. �

Exercise 11.6. Let X be a standard Gaussian random variable. Let t > 0 and let n be a
positive even integer. Show that

P(X > t) ≤ (n− 1)(n− 3) · · · (3)(1)

tn
.

That is, the function t 7→ P(X > t) decays faster than any monomial.

Solution. This follows by combining Markov’s inequality with Exercise 10.6, noting also that
P(X > t) ≤ P(|X| > t). �

Exercise 11.7. Let X be a random variable. Let t > 0. Show that

P(|X| > t) ≤ EX4

t4
.

Solution. This follows from Markov’s inequality with n = 4. �

Exercise 11.8 (The Chernoff Bound). Let X be a random variable and let r > 0. Show
that, for any t > 0,

P(X > r) ≤ e−trMX(t).

Consequently, if X1, . . . , Xn are independent random variables with the same CDF, and if
r, t > 0,

P

(
1

n

n∑
i=1

Xi > r

)
≤ e−trn(MX1(t))

n.

For example, if X1, . . . , Xn are independent Bernoulli random variables with parameter 0 <
p < 1, and if r, t > 0,

P

(
X1 + · · ·+Xn

n
− p > r

)
≤ e−trn(e−tp[pet + (1− p)])n.

And if we choose t appropriately, then the quantity P
(

1
n
|
∑n

i=1(Xi − p)| > r
)

becomes ex-

ponentially small as either n or r become large. That is, 1
n

∑n
i=1Xi becomes very close to its

mean. Importantly, the Chernoff bound is much stronger than either Markov’s or Cheyshev’s
inequality, since they only respectively imply that

P

(∣∣∣∣X1 + · · ·+Xn

n
− p
∣∣∣∣ > r

)
≤ 2p(1− p)

r
, P

(∣∣∣∣X1 + · · ·+Xn

n
− p
∣∣∣∣ > r

)
≤ p(1− p)

nr2
.
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Solution. Since the exponential function is increasing, we have, for any t > 0 that the events
{X > r} and {etX > etr} are the same, for any r > 0. So, their probabilities are the same,
and applying Markov’s inequality gives

P(X > r) = P(etX > etr) ≤ EetX

etr
= e−trMX(t).

�

12. Homework 12

Exercise 12.1. Let X1, X2, . . . be independent random variables, each with exponential
distribution with parameter λ = 1. For any n ≥ 1, let Yn := max(X1, . . . , Xn). Let
0 < a < 1 < b. Show that P(Yn ≤ a log n) → 0 as n → ∞, and P(Yn ≤ b log n) → 1 as
n→∞. Conclude that Yn/ log n converges to 1 in probability as n→∞.

Exercise 12.2. We say that random variables X1, X2, . . . converge to a random variable X
in L2 if

lim
n→∞

E |Xn −X|2 = 0.

Show that, if X1, X2, . . . converge to X in L2, then X1, X2, . . . converges to X in probability.
Is the converse true? Prove your assertion.

Solution. From Markov’s inequality, we have, for any ε > 0,

P(|Xn −X| > ε) ≤ E |Xn −X|2

ε2
.

The right quantity converges to 0 as n → ∞ by assumption. We therefore conclude that
X1, X2, . . . converges in probability to X.

The converse is false in general. We can use the same example from class, where Xn =
n1[0,1/n] for all n ≥ 1, and P is uniform on [0, 1]. Then X1, X2, . . . converges in probability
to 0, but EX2

n = n→∞ as n→∞. �

Exercise 12.3. Let X1, X2, . . . be independent, identically distributed random variables
such that E |X1| <∞ and var(X1) <∞. For any n ≥ 1, define

Yn :=
1

n

n∑
i=1

X2
i .

Show that Y1, Y2, . . . converges in probability. Express the limit in terms of EX1 and var(X1).

Solution. The weak law of large numbers implies that Yn converges in probability to EX2
1

as n→∞, since X2
1 , . . . , X

2
n are i.i.d. with mean EX2

1 . Since EX2
1 = var(X1) + (EX1)2, Yn

converges in probability to var(X1) + (EX1)2 as n→∞. �

Exercise 12.4. Let f, g, h : R → R. We use the notation f(t) = o(g(t)) ∀ t ∈ R to denote

limt→0

∣∣f(t)
g(t)

∣∣ = 0. For example, if f(t) = t3 ∀ t ∈ R, then f(t) = o(t2), since limt→0 |f(t)
t2
| =

limt→0 |t| = 0. Show: (i) if f(t) = o(g(t)) and if h(t) = o(g(t)), then (f + h)(t) = o(g(t)).
(ii) If c is any nonzero constant, then o(cg(t)) = o(g(t)). (iii) limt→0 g(t)o(1/g(t)) = 0. (iv)
limt→0 o(g(t))/g(t) = 0. (v) o(g(t) + o(g(t))) = o(g(t)).
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Solution. (i) We have |f(t) + h(t)| / |g(t)| ≤ |f(t)/g(t)| + |h(t)/g(t)|, so that f + h(t) =
o(g(t)).

(ii) We have |cg(t)| = |c| |g(t)|, so o(cg(t)) = o(g(t)).
(iii) If f(t) = o(1/g(t)), then by definition, |f(t)/(1/g(t))| = |f(t)g(t)| → 0 as t→ 0.
(iv) If f(t) = o(g(t)), then by definition, |f(t)/g(t)| → 0 as t→ 0.
(v) If f(t) = o(g(t)), then by definition, |f(t)/g(t)| → 0 as t → 0. So, if h(t) = o(g(t) +

o(g(t))) = o(g(t) + f(t)), then limtø0 |h(t)/(g(t) + f(t))| = limt→0
|h(t)/g(t)|

1+f(t)/g(t)
. The bottom

goes to 1 as t → 0, so that limtø0 |h(t)/(g(t) + f(t))| = limt→0 |h(t)/g(t)|. That is, o(g(t) +
o(g(t))) = o(g(t)). �

Exercise 12.5. This exercise demonstrates that geometry in high dimensions is different
than geometry in low dimensions.

Let x = (x1, . . . , xn) ∈ Rn. Let ‖x‖ :=
√
x2

1 + · · ·+ x2
n. Let ε > 0. Show that for all

sufficiently large n, “most” of the cube [−1, 1]n is contained in the annulus

A := {x ∈ Rn : (1− ε)
√
n/3 ≤ ‖x‖ ≤ (1 + ε)

√
n/3}.

That is, if X1, . . . , Xn are each independent and identically distributed in [−1, 1], then for n
sufficiently large

P((X1, . . . , Xn) ∈ A) ≥ 1− ε.
(Hint: apply the weak law of large numbers to X2

1 , . . . , X
2
n.)

Exercise 12.6 (Confidence Intervals, Optional). Among 625 members of a bank chosen
uniformly at random among all bank members, it was found that 25 had a savings account.
Give an interval of the form [a, b] where 0 ≤ a, b ≤ 625 are integers, such that with about 95%
certainty, if we sample 625 bank members independently and uniformly at random (from a
very large bank membership), then the number of these people with savings accounts lies in
the interval [a, b]. (Hint: if Y is a standard Gaussian random variable, then P(−2 ≤ Y ≤
2) ≈ .95.)

Solution. Let Xi be the indicator random variable which is 1 if the ith member had a savings
account and 0 if not, for all i ∈ {1, 2, . . . , 625}. Then we are assuming the X1, X2, . . . are i.i.d.
with P(X1 = 1) = p = 25/625 = 1/25 and thus E[X1] = p var(X1) = p(1 − p) = 24/625.
Then by the central limit theorem, we have

P

(
−2 ≤ X1 + · · ·+X625 − 625p√

625p(1− p)
≤ 2

)
≈ .95

That is,

P
(

625p− 2
√

625p(1− p) ≤ X1 + · · ·+X625 ≤ 625p+ 2
√

625p(1− p)
)
≈ .95

Using p = 1/25,

P
(

25− 2
√

24 ≤ X1 + · · ·+X625 ≤ 25 + 2
√

24
)
≈ .95

So, with about 95% certainty, the number of the 625 chosen bank members with savings
accounts lies in the interval [15.2, 34.8]. Since the number of bank members is an integer,
this interval can be chosen as [15, 35]. �
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Exercise 12.7 (Hypothesis Testing, Optional). Suppose we run a casino, and we want
to test whether or not a particular roulette wheel is biased. Let p be the probability that
red results from one spin of the roulette wheel. Using statistical terminology, “p = 18/38” is
the null hypothesis, and “p 6= 18/38” is the alternative hypothesis. (On a standard roulette
wheel, 18 of the 38 spaces are red.) For any i ≥ 1, let Xi = 1 if the ith spin is red, and let
Xi = 0 otherwise.

Let µ := EX1 and let σ :=
√

var(X1). If the null hypothesis is true, and if Y is a standard
Gaussian random variable

lim
n→∞

P

( ∣∣∣∣X1 + · · ·+Xn − nµ
σ
√
n

∣∣∣∣ ≥ 2

)
= P(|Y | ≥ 2) ≈ .05.

To test the null hypothesis, we spin the wheel n times. In our test, we reject the null
hypothesis if |X1 + · · ·+Xn − nµ| > 2σ

√
n. Rejecting the null hypothesis when it is true is

called a type I error. In this test, we set the type I error percentage to be 5%. (The type I
error percentage is closely related to the p-value.)

Suppose we spin the wheel n = 3800 times and we get red 1868 times. Is the wheel biased?
That is, can we reject the null hypothesis with around 95% certainty?

Solution. Assume that the null hypothesis is true. Then σ =
√
p(1− p) =

√
(18/38)(20/38).

Then, plug in the sample values to get

|X1 + · · ·+Xn − np| /(σ
√
n) = |(1868− 3800(18/38))| /[

√
(18/38)(20/38)

√
3800] ≈ 2.2 > 2.

Thus we reject the null hypothesis with around .95% certainty. �

Exercise 12.8. Suppose random variables X1, X2, . . . converge in probability to a random
variable X. Prove that X1, X2, . . . converge in distribution to X.

Then, show that the converse is false.

ALL EXERCISES BELOW ARE OPTIONAL. THEY WILL NOT BE GRADED.

Exercise 12.9 (Optional). Let X1, X2, . . . be independent identically distributed random
variables with P(X1 = 1) = P(X1 = −1) = 1/2. For any n ≥ 1, define

Sn :=
X1 + · · ·+Xn√

n
.

The Central Limit Theorem says that Sn converges in distribution to a standard Gaussian
random variable. We show that Sn does not converge in probability to any random variable.
The intuition here is that if Sn did converge in probability to a random variable Z, then

when n is large, Sn is close to Z, Yn :=
√

2S2n−Sn√
2−1

is close to Z, but Sn and Yn are independent.

And this cannot happen.
Proceed as follows. Assume that Sn converges in probability to Z.

• Let ε > 0. For n very large (depending on ε), we have P(|Sn − Z| > ε) < ε and
P(|Yn − Z| > ε) < ε.
• Show that P(Sn > 0, Yn > 0) is around 1/4, using independence and the Central

Limit Theorem.
• From the first item, show P(Sn > 0|Z > ε) > 1 − ε, P(Yn > 0|Z > ε) > 1 − ε, so

P(Sn > 0, Yn > 0|Z > ε) > 1− 2ε.
• Without loss of generality, for ε small, we have P(Z > ε) > 4/9.
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• By conditioning on Z > ε, show that P(Sn > 0, Yn > 0) is at least 3/8, when n is
large.

Exercise 12.10 (Optional). Let X1, X2, . . . be random variables that converge almost surely
to a random variable X. That is,

P( lim
n→∞

Xn = X) = 1.

Show that X1, X2, . . . converges in probability to X in the following way.

• For any ε > 0 and for any positive integer n, let

An,ε :=
∞⋃
m=n

{ω ∈ Ω: |Xm(ω)−X(ω)| > ε}.

Show that An,ε ⊇ An+1,ε ⊇ An+2,ε ⊇ · · · .
• Show that P(∩∞n=1An,ε) = 0.
• Using Continuity of the Probability Law, deduce that limn→∞P(An,ε) = 0.

Now, show that the converse is false. That is, find random variables X1, X2, . . . that
converge in probability to X, but where X1, X2, . . . do not converge to X almost surely.

Exercise 12.11 (Renewal Theory, Optional). Let t1, t2, . . . be positive, independent iden-
tically distributed random variables. Let µ ∈ R. Assume Et1 = µ. For any positive integer
j, we interpret tj as the lifetime of the jth lightbulb (before burning out, at which point it
is replaced by the (j + 1)st lightbulb). For any n ≥ 1, let Tn := t1 + · · · + tn be the total
lifetime of the first n lightbulbs. For any positive integer t, let Nt := min{n ≥ 1: Tn ≥ t}
be the number of lightbulbs that have been used up until time t. Show that Nt/t converges
almost surely to 1/µ as t → ∞. (Hint: by definition of Nt, we have TNt−1 < t ≤ TNt . Now
divide the inequalities by Nt and apply the Strong Law.)

Solution. From the Strong Law of Large Numbers,

P( lim
n→∞

Tn/n = µ) = 1. (∗)

In particular,
P( lim

t→∞
Nt =∞) = 1. (∗∗)

By definition of Nt, TNt−1 < t ≤ TNt . Dividing this by Nt, we get

Nt − 1

Nt

TNt−1

Nt − 1
=
TNt−1

Nt

≤ t

Nt

≤ TNt
Nt

. (∗ ∗ ∗)

Letting t → ∞, (∗∗) implies that limt→∞
Nt−1
Nt

= 1 with probability one. The combination

of (∗) and (∗∗) implies that, with probability one,

lim
t→∞

TNt−1

Nt − 1
= lim

t→∞

TNt
Nt

= µ.

So, (∗ ∗ ∗) implies that, with probability one,

lim
t→∞

t

Nt

= µ.

So, with probability one,

lim
t→∞

Nt

t
=

1

µ
.
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Exercise 12.12 (Playing Monopoly Forever, Optional). Let t1, t2, . . . be independent
random variables, all of which are uniform on {1, 2, 3, 4, 5, 6}. For any positive integer j, we
think of tj as the result of rolling a single fair six-sided die. For any n ≥ 1, let Tn = t1+· · ·+tn
be the total number of spaces that have been moved after the nth roll. (We think of each
roll as the amount of moves forward of a game piece on a very large Monopoly game board.)
For any positive integer t, let Nt := min{n ≥ 1: Tn ≥ t} be the number of rolls needed to
get t spaces away from the start. Using Exercise 12.11, show that Nt/t converges almost
surely to 2/7 as t→∞.

Solution. Apply Exercise 12.11 with µ = Et1 = 7/2. �

Exercise 12.13 (Random Numbers are Normal, Optional). Let X be a uniformly
distributed random variable on (0, 1). Let X1 be the first digit in the decimal expansion of
X. Let X2 be the second digit in the decimal expansion of X. And so on.

• Show that the random variables X1, X2, . . . are uniform on {0, 1, 2, . . . , 9} and inde-
pendent.
• Fix m ∈ {0, 1, 2, . . . , 9}. Using the Strong Law of Large Numbers, show that with

probability one, the fraction of appearances of the number m in the first n digits of
X converges to 1/10 as n→∞.

(Optional): Show that for any ordered finite set of digits of length k, the fraction of
appearances of this set of digits in the first n digits of X converges to 10−k as n → ∞.
(You already proved the case k = 1 above.) That is, a randomly chosen number in (0, 1) is
normal. On the other hand, if we just pick some number such that

√
2− 1, then it may not

be easy to say whether or not that number is normal.
(As an optional exercise, try to explicitly write down a normal number. This may not be

so easy to do, even though a random number in (0, 1) satisfies this property!)

Solution. Fix x1, . . . , xn ∈ {0, 1, 2, . . . , 9}. If we specify the first n decimals of a number in
(0, 1), then the fraction of numbers in (0, 1) with those specified decimals is 10−n. That is,

P(X1 = x1, . . . , Xn = xn) = 10−n.

By similar reasoning,

P(Xi = xi) = 10−1, ∀ 1 ≤ i ≤ n. (∗)
That is, if we specify the ith decimal of a number in (0, 1), then the fraction of numbers in
(0, 1) with that specified decimal is 10−1. Therefore,

P(X1 = x1, . . . , Xn = xn) = 10−n = P(X1 = x1) · · ·P(Xn = xn), ∀x1, . . . , xn ∈ {0, 1, . . . , 9}.
That is, X1, . . . , Xn are independent. Also (∗) implies that X1, X2, . . . are uniformly dis-
tributed in {0, 1, . . . , 9}.

Fix m ∈ {0, 1, . . . , 9}. For any i ≥ 1, let Yi = 1{Xi=m}. Since X1, X2, . . . are i.i.d., Y1, Y2, . . .
are i.i.d. as well. The quantity (Y1 + · · ·+Yn)/n is the fraction of the number of appearances
of m in the first n digits of X. Also by definition of Yi, EYi = P(Xi = m) = 1/10 by (∗).
So the Strong Law says

P

(
lim
n→∞

Y1 + · · ·+ Yn
n

=
1

10

)
= 1.
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Exercise 12.14 (Optional). Using the Central Limit Theorem, prove the Weak Law of
Large Numbers.

Exercise 12.15 (Optional). LetX1, X2, . . . be random variables with mean zero and variance
one. The Strong Law of Large Numbers says that 1

n
(X1 + · · ·+Xn) converges almost surely

to zero. The Central Limit Theorem says that 1√
n
(X1 + · · ·+Xn) converges in distribution to

a standard Gaussian random variable. But what happens if we divide by some other power
of n? This Exercise gives a partial answer to this question.

Let ε > 0. Show that
X1 + · · ·+Xn

n1/2(log n)(1/2)+ε

converges to zero almost surely as n → ∞. (Hint: Re-do the proof of the Strong Law of
Large Numbers, but divide by n1/2(log n)(1/2)+ε instead of n.)
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