Please provide complete and well-written solutions to the following exercises.

Due November 16, 12PM noon PST, to be uploaded as a single PDF document to blackboard (under the Assignments tab).

Homework 6

Exercise 1. Let X_1, \ldots, X_n be a random sample from an exponential distribution with unknown location parameter $\theta > 0$, i.e. X_1 has density

$$g(x) := 1_{x \ge \theta} e^{-(x-\theta)}, \quad \forall x \in \mathbf{R}.$$

Fix $\theta_0 \in \mathbf{R}$. Suppose we want to test that hypothesis H_0 that $\theta \leq \theta_0$ versus the alternative H_1 that $\theta > \theta_0$. That is, $\Theta = \mathbf{R}$, $\Theta_0 = \{\theta \in \mathbf{R} : \theta \leq \theta_0\}$ and $\Theta_0^c = \Theta_1 = \{\theta \in \mathbf{R} : \theta > \theta_0\}$.

- Explicitly describe the rejection region of the generalized likelihood ratio test for this hypothesis. (Hint: it might be easier to describe the region using $x_{(1)} = \min(x_1, \ldots, x_n)$.)
- (Optional) If H_0 is true, then does

$$2\log \frac{\sup_{\theta \in \Theta} f_{\theta}(X_1, \dots, X_n)}{\sup_{\theta \in \Theta_0} f_{\theta}(X_1, \dots, X_n)}$$

converge in distribution to a chi-squared distribution as $n \to \infty$?

Exercise 2. Let X_1, \ldots, X_n be a random sample from a Gaussian random variable with unknown mean $\mu \in \mathbf{R}$ and unknown variance $\sigma^2 > 0$.

Fix $\mu_0 \in \mathbf{R}$. Suppose we want to test that hypothesis H_0 that $\mu = \mu_0$ versus the alternative H_1 that $\mu \neq \mu_0$.

- Explicitly describe the rejection region of the generalized likelihood ratio test for this hypothesis.
- Give an explicit formula for the p-value of this hypothesis test. (Hint: If S^2 denotes the sample variance and \overline{X} denotes the sample mean, you should then be able to use the statistic $\frac{(\overline{X}-\mu_0)^2}{S^2}$. Since we have an explicit formula for Snedecor's distribution, you should then be able to write an explicit integral formula for the p-value of this test.)

Exercise 3. Write down the generalized likelihood ratio estimate for the following alpha particle data, as we did in class for a slightly different data set. The corresponding test treats individual counts of alpha particles as independent Poisson random variables, versus the alternative that the probability of a count appearing in each box of data is a sequence of nonnegative numbers that sum to one. (In doing so, you should need to compute a maximum likelihood estimate using a computer.)

m	0, 1 or 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	≥ 17
# of Intervals	16	26	58	102	125	146	163	164	120	100	72	54	20	12	10	4

Plot the MLE for the Poisson statistic (i.e. plot the denominator of the generalized likelihood ratio test statistic $\frac{\sup_{\theta \in \Theta} f_{\theta}(X)}{\sup_{\theta \in \Theta_0} f_{\theta}(X)}$) as a function of λ .

Finally, compute the value s of Pearson's chi-squared statistic S, and compute the probability that $S \geq s$ (assuming H_0 holds). Does the probability $\mathbf{P}(S \geq s)$ give you confidence that the null hypothesis is true?