Quiz 5 occurs November 9, in the discussion section. The quiz will be based upon the problems below.

Quiz 5 Problems

Exercise 1. Suppose X is a Gaussian distributed random variable with known variance $\sigma^2 > 0$ but unknown mean. Fix $\mu_0, \mu_1 \in \mathbf{R}$. Assume that $\mu_0 - \mu_1 > 0$. We want to test the hypothesis H_0 that $\mu = \mu_0$ versus the hypothesis H_1 that $\mu = \mu_1$. Fix $\alpha \in (0,1)$. Explicitly describe the UMP test for the class of tests whose significance level is at most α .

Your description of the test should use the function $\Phi(t) := \int_{-\infty}^{t} e^{-x^2/2} dx / \sqrt{2\pi}$, $\Phi : \mathbf{R} \to (0,1)$, and/or the function $\Phi^{-1} : (0,1) \to \mathbf{R}$. (Recall that $\Phi(\Phi^{-1}(s)) = s$ for all $s \in (0,1)$ and $\Phi^{-1}(\Phi(t)) = t$ for all $t \in \mathbf{R}$.)

Exercise 2. Let X_1, \ldots, X_n be i.i.d. random variables, and denote $X = (X_1, \ldots, X_n)$. Let $\{f_{\theta} : \theta \in \Theta\}$ be a family of multivariable PDFs. Assume that X has distribution f_{θ} . Suppose Θ consists of two points, i.e. $\Theta = \{\theta_0, \theta_1\}$. Let Z be a sufficient statistic for θ . Consider the likelihood ratio test of the null hypothesis H_0 that $\theta = \theta_0$ versus the alternative H_1 that $\theta = \theta_1$.

Show that the likelihood ratio is a function of Z.

Exercise 3. Suppose X is a binomial distributed random variable with parameters n = 100 and $\theta \in [0, 1]$ where θ is unknown. Suppose we want to test the hypothesis H_0 that $\theta = 1/2$ versus the hypothesis H_1 that $\theta \neq 1/2$. Consider the hypothesis test that rejects the null hypothesis if and only if |X - 50| > 10.

Using e.g. the central limit theorem, do the following:

- Give an approximation to the significance level α of this hypothesis test
- Plot an approximation of the power function $\beta(\theta)$ as a function of θ .
- Estimate p-values for this test when X = 50, and also when X = 70 or X = 90.

Exercise 4. Suppose X_1, \ldots, X_n is a random sample from a Gaussian random variable X with unknown mean $\mu_X \in \mathbf{R}$ and unknown variance $\sigma^2 > 0$. Suppose Y_1, \ldots, Y_m is a random sample from a Gaussian random variable Y with unknown mean $\mu_Y \in \mathbf{R}$ and unknown variance $\sigma^2 > 0$.

Assume that X_1, \ldots, X_n is independent of Y_1, \ldots, Y_m , i.e. assume that X, Y are independent.

Assume that n + m > 2. Define

$$\overline{X} := \frac{1}{n} \sum_{i=1}^{n} X_i, \qquad \overline{Y} := \frac{1}{m} \sum_{i=1}^{m} Y_i,$$

$$S_X^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2, \qquad S_Y^2 := \frac{1}{m-1} \sum_{i=1}^m (Y_i - \overline{Y})^2,$$
$$S^2 := \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2}.$$

Show that

$$\frac{\overline{X} - \overline{Y} - \mu_X + \mu_Y}{S\sqrt{\frac{1}{n} + \frac{1}{m}}}$$

has Student's t-distribution with n + m - 2 degrees of freedom. Deduce the following confidence intervals for the difference of the means

$$\mathbf{P}\left(\overline{X} - \overline{Y} - tS\sqrt{\frac{1}{n} + \frac{1}{m}} < \mu_X - \mu_Y < \overline{X} - \overline{Y} + tS\sqrt{\frac{1}{n} + \frac{1}{m}}\right)$$

$$= \frac{\Gamma(\frac{p+1}{2})}{\sqrt{p}\sqrt{\pi}\Gamma(p/2)} \int_{-t}^{t} \left(1 + \frac{s^2}{p}\right)^{-(p+1)/2} ds,$$

where p = n + m - 2.

Exercise 5. Suppose you have a random sample of size 6 from a Gaussian random variable with unknown mean $\mu \in \mathbf{R}$ and unknown variance $\sigma^2 > 0$. Suppose this random sample is

Explicitly construct a 95% confidence interval for the variance $\sigma^2 > 0$.

Your final answer might depend on the function $\Phi(t) := \int_{-\infty}^{t} e^{-x^2/2} dx / \sqrt{2\pi}$, $\Phi : \mathbf{R} \to (0, 1)$, and/or $\Phi^{-1} : (0, 1) \to \mathbf{R}$, and/or the $c_p(t) := \int_0^t \frac{x^{p/2-1}e^{-x/2}}{2^{p/2}\Gamma(p/2)} dx$ and/or c_p^{-1} , and/or the corresponding function for Student's t-distribution.

You should not need to use a central limit theorem.

Exercise 6. Suppose you have a random sample of size 3 from a Gaussian random variable with unknown mean $\mu_X \in \mathbf{R}$ and variance 2. Suppose this random sample is

Suppose you have another random sample of size 3 from another Gaussian random variable with unknown mean $\mu_Y \in \mathbf{R}$ and variance 3. Suppose this random sample is

Suppose all these random samples are independent of each other.

Explicitly construct a 99% confidence interval for the difference $\mu_X - \mu_Y$.

Your final answer might depend on the function $\Phi(t) := \int_{-\infty}^{t} e^{-x^2/2} dx / \sqrt{2\pi}$, $\Phi : \mathbf{R} \to (0, 1)$, and/or $\Phi^{-1} : (0, 1) \to \mathbf{R}$.

You should not need to use a central limit theorem.