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1. Python, IPython, Packages

Python is a freely available software. You should download and install this software on
your personal computer. Specifically, download Anaconda (a popular Python distribution
platform) from here: https://www.anaconda.com/download. Instructions for downloading
and installing this software can be found: here. It might be helpful to bring a laptop to class
with Python installed. Students who do not own a laptop may consider the USC Laptop
Loaner Program: https://itservices.usc.edu/spaces/laptoploaner/.

We will most commonly be using the Jupyter notebook, within Anaconda.
Once you open Jupyter Notebook, you can run a block of code by typing some commands,

holding shift and pressing enter (or pressing the “play” button).
Jupyter Notebok runs IPython, an enhanced Python interpreter.
We will be using some widely used packages in this course. Packages contain pre-written

programs. Make sure the following packages are installed in Anaconda:

• Numpy (Numerical Python): best for homogeneous (numerical) data types
• Pandas: data structures and data manipulation, best for heterogeneous data types
• SciPy: optimization, linear algebra, integration, etc.
• Matplotlib: data visualization
• Scikit-learn (sklearn): machine learning

Time permitting, we might be able to cover some tools from the following packages:

• keras: deep learning library that interfaces with the following two packages:
• TensorFlow: Google’s machine learning library
• PyTorch: Meta’s machine learning library

Although we will be learning about these packages, we will also try to understand how
they work, instead of relying on the packages to do all of the work.

It is considered good practice to only import packages that you will use. At the start of
a script, use the command import numpy to import the Numpy package.

Coding Convention. We will be using the Numpy and pandas packages so frequently
that we will always assume every block of code we write is preceded by the following
commonly used commands:

import numpy as np

import pandas as pd

These commands let us use packages succinctly, e.g. np.pi is shorter than numpy.pi.
If you want to brush up on the basics of coding in Python, I recommend this website.
Coding Style. Since Python is an open source language, the Python coding community

has adopted a coding style that one should try to follow. For more details on these style
specifics, see e.g. here and here. Whenever possible, try to follow this style. For example,
every equals sign should have one space on its left and one space on its right. Functions
and variable names should be descriptive, with lower case words separated by underscores
(basketball_data could be a matrix of basketball data, rather than bdata), etc.

You might prefer adding comments with # symbols, though style dictates that comments
should appear above or below lines of code, rather than to the right of a code line. We can
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also add comments by changing a coding cell in Jupyter to Markdown (using a dropdown
menu to the right of the “fast forward” symbol). In a Markdown cell, the commands #, ##
and ### can produce ever larger text headings.

1.1. Introduction. As an introduction to Python let’s begin with some basic syntax. Arith-
metic operations such as 1 + 4 or 5 - 2.5 produce their expected outputs. Multiplication
uses the asterisk symbol, so that 3 * 6 evaluates to 18. Strings can be surrounded by single
or double quotes. Strings can be multiplied, e.g. 's'*4 outputs 'ssss'. Also 6 / 3 evalu-
ates to 2. Exponents use the ** symbol, so 2**3 evaluates to 8. The irrational number π is
built into the numpy package, so that typing np.pi and pressing shift-enter results in

3.141592653589793.

Variables are defined using the equals sign1. For example, x = 2 assigns the value 2 to the
variable x. With this assignment, 3 * x produces the output 6. Vectors can also be assigned
to variable names: x = np.array([2, 3]) assigns the array (2, 3) to the variable name x.
Within Python, this array is a list of numbers that is not explicitly identified as a row vector
or as a column vector, as we might do in a linear algebra class. (The array can be viewed with
the command print(x) .) If we wanted to represent x as a row vector row_x, we could use
the command row_x = x[np.newaxis, :]. Similarly, col_x = x[:, np.newaxis] assigns
the column vector

(
2
3

)
to the variable col_x. To see the difference between these objects,

observe that the commands x.shape, x_row.shape and x_col.shape have outputs (2, ),
(1, 2) and (2, 1), respectively.

The attributes of an object in Python can be found with the ? command. For example,
x? returns the attributes of x. (Also basically everything in Python is an object: numbers,
strings, data structures, functions, classes, modules, etc. are all objects.)

The zeroth entry2 of a vector x can be accessed with the command x[0]. A vector or matrix
can be transposed with the np.transpose command. For example, np.transpose(x_row)
returns a column vector identical to x_col. Alternatively, x_row.T is also the transpose of
x_row.

A 2× 3 matrix can be created with the command

x = np.array([ [3, 1, 2], [5, 3, 6] ])

Syntactically, this 2×3 matrix is entered into Python as an array of two length three arrays,
hence the nested brackets. The command x.shape returns (2, 3), denoting that x is a 2× 3
matrix. However, the “array of arrays” structure is also reflected in x[0] evaluating to
[3,1,2], the first row of the matrix. The (1, 2) entry of x (i.e. 6) can be accessed as either
x[1][2] or x[1, 2]. Sub-arrays can be accessed by e.g. x[:, :2], which outputs the

matrix

(
3 1
5 3

)
, as does x[:, 0:2]

WARNING. Slicing, like the range command, uses half open intervals. For example, if
z = np.array([8, 7, 6, 5]), then z[1:3] will output all entries between and including
indices 1 and 2 (but not 3), i.e. the output is (7, 6). Similarly, x[1:2, 1:2] outputs 3,
which is identical to x[1, 1].

1Python allows you to assign a number value to a variable x, and then assign a vector value to x, and
then assign a number value to x. Other programming languages do not allow variables to change types.

2Other programming languages might denote the initial entry of a vector as the 1 entry.
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Matrix multiplication can be done with the @ symbol. If y = np.array([[1, 2], [1, 3]]),
then y@y returns(

1 2
1 3

)(
1 2
1 3

)
=

(
1 · 1 + 2 · 1 1 · 2 + 2 · 3
1 · 1 + 3 · 1 1 · 2 + 3 · 3

)
=

(
3 8
4 11

)
.

Numpy syntax streamlines vector and matrix operations. For example, 2*np.array([3,4])
evaluates to [6,8]. Component-wise operations borrow syntax from the arithmetic of real
numbers:

• np.array([2, 3]) + np.array([4, 5]) evaluates to [6, 8].
• np.array([6, 8]) / np.array([2, 4]) evaluates to [3, 2].
• np.array([6, 8]) * np.array([2, 4]) evaluates to [12, 32].

The last command should not be confused with the dot product of two vectors, such as
np.dot(np.array([6, 8]), np.array([2, 4])), which evaluates to 6·2+8·4 = 12+32 =
44.

Matrix powers of x=np.array([[1, 2], [1, 3]]) can be computed as follows:
np.linalg.matrix_power(x,3) has output(

1 2
1 3

)3

=

(
11 30
15 41

)
.

The % command takes a modulus, so 5 % 2 outputs 1, and // is floor division, so 7 // 2

outputs 3.
Sub-arrays can be accessed in the following way.

x = np.array([4, 6, 8, 9, 3])

y = x[2:4]

print(y)

The output of this program is the array (8, 9). If we then use the command y[0]=2,
then print(y) returns the array (2, 9). Moreover, print(x) returns the array (4, 6, 2, 9, 3).
That is, changing the value of y also changes the value of x. In Python, the sub-array y
is considered a sub-object of y, and changes to y are inherited by x. Moreover, y is never
allocated its own memory as an array distinct of x.

1.2. Data Structures. A tuple is a fixed-length, immutable ordered sequence of Python
objects. For example tup = (4, 5, 6) creates a tuple with three elements, and so does
tup = 4, 5, 6 or tup = tuple([4, 5, 6]). A string can also be converted to a tuple:
tuple("foo") outputs the tuple ("f", "o", "o"). Tuple elements can be accessed with
squared brackets, so tup[0] outputs 4 and tup[1] outputs 5. Objects inside tuples can be
modified, e.g.

tup = ("foo", [4, 5], 5)

tup[1].append(6)

outputs ("foo", [4, 5, 6], 5). Tuples can be concatenated with the + sign. As with
lists or strings, multiplying a tuple by a positive integer n will concatenate it with itself
n times: (3, 4, 5)*3 outputs (3, 4, 5, 3, 4, 5, 3, 4, 5). Tuples can be unpacked
with assignments. For example, a, b, c = tup outputs a = 4, b = 5 and c = 6. We can
e.g. swap variables this way with the command b, a = a, b.
Immutable data types include: int, float, complex, bool, tuple, str, None. With

the commands x = 5 followed by x = 6, we can change the value of x, but since integers
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are immutable, the original x is removed from memory and replaced by the new x value.
Similarly, we can assign a tuple to x, but the tuple itself cannot be changed. Mutable (not
immutable) data types include: list, set and dict. The following function will tell you
whether or not something is immutable in Python (except for tuples of integers).

def is_immutable(x):

if type(x) in (list, dict, set):

print(f"{x} mutable")

else:

print(f"{x} is immutable")

(The indentations here are part of proper syntax. The standard indentation is four spaces.
IPython will automatically convert a Tab to four spaces, in case you are used to using tabs
instead of spaces.)

Immutable data types must be used for elements of sets or keys in dictionaries. For
example, Python disallows set elements to be lists: {[1, 2], 3} produces an exception,
though {(1, 2), 3} is allowed. Immutable data types can be considered more “reliable,”
since the data cannot change. In contrast, mutable data types are memory efficient, since
e.g. updating a few entries in a list does not require creating an entirely new list in memory.

In the following example, we iterate over a list of tuples and print out the results. The f

at the beginning of the string indicates a formatted string, which allows the variables a, b, c
to be substituted into the string at the positions specified by the curly brackets {· · · }.

seq = [(1, 2, 3), (4, 5, 6), (7, 8, 9)]

for a, b, c in seq:

print(f'x={a}, y={b}, z={c}')

outputs
x=1, y=2, z=3

x=4, y=5, z=6

x=7, y=8, z=9

Besides a formatted string, a raw string with r prefix will treat \ as a literal rather than an
escape character. For example, print(r"foo\nfop") and print("foo\\nfop") both print
foo\nfop, whereas print("foo\nfop") will print

foo

fop

since the \n commands denotes a line break.
In the following example, the rest variable is assigned a list of the values after a and b.

values = 1, 2, 3, 4, 5

a, b, *rest = values

So, rest = [3, 4, 5], although values is a tuple.
If we only care about the variables a, b, we could also use the command

a, b, *_ = values

to make no assignment of values after 1 and 2. The underscore can be used in other instances
(e.g. for loops) when you do not want to assign a variable to a value.

A list is a variable-length, mutable sequence of Python objects, e.g. lis = [4, 5, 6]

creates a list with three elements, as does lis = list((4, 5, 6)). Tuple elements can be
accessed with squared brackets, so lis[0] outputs 4 and lis[1] outputs 5. The command
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ran = range(5) or ran = range(0, 5) is similar but distinct from a list of the sequence
0, 1, 2, 3, 4. Unlike tuples, lists can be modified, e.g. lis.append(7) results in lis being
[4, 5, 6, 7]. To insert at a specific entry of the list, we can use lis.insert(2, 5.4) to
get lis that is [4, 5, 5.4, 6, 7]. However, the insert command is more computationally
expensive than appending. The pop function removes the stated entry of a list: lis.pop(0)
returns 4, and then lis takes the form [5, 5.4, 6, 7]. The command lis.remove(5)

makes lis have the form [5.4, 6, 7]. This command removes the stated entry of the list
(with the smallest index in case of ties). We can check for membership of an element in a
list; e.g. 6 in lis returns True and 6 not in lis returns False.
Lists can be concatenated with the + operation. Multiple elements can be added to a list

with the extend function. Lists can be sorted with the sort function. List elements can be
sliced with :. For example

lis3 = [6, 7, 4, 1, 9, 6, 7, 0, 10]

print(lis3[1:4])

print(lis3[4:])

print(lis3[:2])

print(lis3[-1:3])

outputs
[7, 4, 1]

[9, 6, 7, 0, 10]

[6, 7]

[1, 9, 6, 7]

A dictionary is a bijection between two sequences of objects, sometimes called a hash
map or an associative array. A dictionary is instantiated with curly brackets, e.g.

diction = {"a" : 5, "c" : 7, "e" : "nine"}

is a dictionary with two sequences of length three, where dict["a"] returns 5, dict["c"]
returns 7 and dict["e"] returns “nine”. The sequence a, b, e can be called keys and the
sequence 5, 7, nine can be called values, so a dictionary is a collection of key-value ordered
pairs. (The keys of the dictionary must be immutable, e.g. a key value cannot be a list.)
We can create new elements of a dictionary with an assignment diction["f"] = 10 gives

{'a': 5, 'c': 7, 'e': 'nine', 'f': 10}

The pop function can remove elements of the dictionary, e.g. diction.pop("c") re-
turns 7 and then diction takes the form {'a': 5, 'e': 'nine', 'f': 10}. Similarly,
del diction["c"] deletes that same entry from the dictionary. To output the keys and val-
ues separately as lists, we can use list(diction.keys()) and list(diction.values()).
Two dictionaries can be merged with the update function, so

diction.update({"c": 8, "e": "n", "g": 12})

outputs

{'a': 5, 'e': 'n', 'f': 10, 'c': 8, 'g': 12}

Note that the updated values take the place of old values. A dictionary can be created with
the zip function.

dict(zip(range(5), reversed(range(5))))

outputs
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{0: 4, 1: 3, 2: 2, 3: 1, 4: 0}

A set is an unordered collection of unique immutable elements. A set can be cre-
ated with the set function or with curly braces, e.g. set([1, 3, 2, 4, 2, 1]) outputs
{1, 2, 3, 4}, as does {1, 3, 2, 4, 2, 1}. We can take the union of two sets using the
union function or the | symbol.

{1, 2, 3}.union({2, 3, 4})

outputs

{1, 2, 3, 4}

as does {1, 2, 3}|{2, 3, 4}We can take the intersection of two sets using the intersection
function or the & symbol.

{1, 2, 3}.intersection({2, 3, 4})

outputs

{2, 3}

as does {1, 2, 3}&{2, 3, 4}. Set containment can be checked with the issubset or
issuperset functions. Set equality can be checked with the == symbol, so

{1, 2 ,3} == {2, 3, 1}

returns True.

1.2.1. Useful Built-in Sequence Functions. If seq is a sequence of objects, then enumerate(seq)
outputs an iterable (i.e. used in a for loop) set of tuples of the form (0, s0), (1, s1), . . . , (n, sn)
where s0, . . . , sn are the elements of seq.

for index, value in enumerate({4, 5, 6}):

print(f"index = {index}, value = {value}")

outputs
index = 0, value = 4

index = 1, value = 5

index = 2, value = 6

Also, list(enumerate({4, 5, 6})) outputs [(0, 4), (1, 5), (2, 6)].
The sorted function returns a sorted list when given an input sequence of elements.
The zip function outputs an iterable sequence of length k tuples when given an input

of k sequences of elements. The output’s length is the shortest input sequence length. For
example,

list(zip([1, 3, 4], ("a", "b", "c", "t")))

outputs

[(1, 'a'), (3, 'b'), (4, 'c')]

The reversed function outputs an iterable sequence in reversed order.
The functions enumerate, sorted, reversed are all generator objects, i.e. they output

one element at a time to save memory. You can create your own generator object by replacing
a return command in a function with a yield command. (Technically a generator object
should be implemented in Python with a yield command, so you could say enumerate is
not a generator object since it is implemented in C, but we will not make such a distinction
in these notes.)
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1.2.2. Comprehensions. A comprehension is basically a one-line for loop. Comprehensions
are a convenient way to apply functions over sequences. The second line of the following
code is an example of a list comprehension.

strings = ["a", "as", "bat", "car", "dove", "python"]

[x.upper() for x in strings if len(x) > 2]

outputs

['BAT', 'CAR', 'DOVE', 'PYTHON']

The list comprehension is equivalent to the following for loop:

strings = ["a", "as", "bat", "car", "dove", "python"]

output = []

for string in strings:

if len(string)>2:

output.append(string.upper())

print(output)

Dictionary and set comprehensions can be created analogously. However, if we take a
list comprehension and replace the outer square brackets with parentheses, we will get a
generator expression (i.e. we will not get a tuple comprehension).

List comprehensions can also be nested. Before nesting, the following block of code outputs
all names in a list with at least two “a” characters.

all_data = [["Ezequiel", "Denver", "John", "Janiyah", "Vihaan"],

["Maria", "Juan", "Javier", "Natalia", "Ainhoa"]]

names_of_interest = []

for name_list in all_data:

enough_a = [name for name in name_list if name.count("a") >= 2]

names_of_interest.extend(enough_a)

names_of_interest

outputs

['Janiyah', 'Vihaan', 'Maria', 'Natalia']

The for loop can be combined with the comprehension to get a nested list comprehension:

[name for name_list in all_data for name in name_list if name.count("a") >= 2]

The inner line for name in name_list if name.count("a") >= 2 also appears in the
original code block we wrote above, though in the nested comprehension we put the outer
for loop as another comprehension on the left side.

The nested comprehension should be contrasted with the slightly different comprehension
put inside another one.

[[x for x in name_list if x.count("a") >=2 ] for name_list in all_data]

whose output is

[['Janiyah', 'Vihaan'], ['Maria', 'Natalia']]

1.3. Functions. The polynomial

f(x) = x2 − x− 1, ∀x ∈ R
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is quadratic with two real zeros. (From the quadratic formula, f as zeros at 1±
√
1+4
2

= 1±
√
5

2
.)

Here is syntax for a function definition:

def myfun(x):

return x**2 - x - 1

After making this definition, we can call this function. That is, myfun(0) returns −1 and
myfun(2) returns 1. We can also rename this function with e.g. f = myfun, so that f(0)
returns −1 and f(2) returns 1. Since math expressions work for numpy array inputs, we
can also input numpy arrays to f , so that f(np.array([0, 2])) returns [-1, 1]. We can
plot this function using the matplotlib package:

import matplotlib.pyplot as plt

x = np.arange(-1, 1, .02)

plt.plot(x, myfun(x))

plt.show()

Grid lines can be added to the plot with the plt.grid(True) command. The axes can
be defined by e.g. plt.axis([-1, 1, -2, 2]). Axes can be labelled with commands
plt.xlabel('horizontal axis') and plt.ylabel('vertical axis') .

Here the arange function outputted the points −1,−1+ .02,−1+ .04,−1+ .06, . . . , 1− .02,
i.e. evenly spaced consecutive points with spacing .02 on the interval [−1, 1).
Functions can have multiple arguments and optional arguments with default values, e.g.

def myfun2(x, y, z = 4):

return x**2 - y - z

print(

myfun2(1, 1),

myfun2(1, 1, 3),

myfun2(1, 1, z = 3)

)

outputs −4, −3, −3. Optional (keyword) arguments must appear to the right of non-optional
(positional) arguments. Multiple outputs can be used with a single return statement.
Python allows you to make short single-line functions that are inputs into other functions

using the lambda keyword. These functions are called anonymous functions. For example,
we could rewrite myfun as an anonymous function with

myfun_anonymous = lambda x: x**2 - x - 1

Below is an example demonstrating the use of an anonymous function.
def apply_to_list(some_list, func):

return [func(x) for x in some_list]

ints = [4, 0, 1, 5, 6]

apply_to_list(ints, lambda x: x * 2)

which outputs

[8, 0, 2, 10, 12]

Functions in the numpy package include: sin, cos, tan, log, exp. For-loops use the
following syntax:

for i in range(4):

print(i)
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This will print the integers from 0 to 3 in increasing order. Here range(4) is a sequence
of integers from 0 to 3. (The output of the range function is not an array. Its data type is
“range,” which is similar to a generator.)

Python for-loops can also iterate over items of any sequence:
words = ['cat', 'window', 'dogs']

for w in words:

print(w, len(w))

This code has output
cat 3

window 6

dogs 4

While-loops use the following syntax:
i = 1

while i<10:

print(i)

i = i + 1

Single conditionals use the following syntax:
if x<10:

print(x)

else:

print(x + 1)

Multiple conditionals use the following syntax:
if x<10:

print(x)

elif 10<= x <12:

print(x + 1)

elif 12<= x <13:

print(x + 2)

else:

print(x + 3)

There are a few ways to measure the time of parts of Python code. For a small bit of
code, we can use the %timeit special function with syntax %timeit 5*2 to get an output of

5.62 ns ± 0.139 ns per loop (mean ± std. dev. of 7 runs, 100,000,000 loops each)

That is, multiplying 5 times 2 takes approximately 5.62 nanoseconds, i.e. 5.62×10−9 seconds.
Alternatively, we can use the time package to set various time “checkpoints”, and then

measure their differences.
import time

first_time = time.time()

time.sleep(1)

second_time = time.time()

time.sleep(2)

third_time = time.time()

print(third_time - first_time)

print(second_time - first_time)
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The output from this code is
3.0013132095336914

1.0004501342773438

When running a for loop for a long time, it can sometimes be helpful to check its progress.
The tqdm package adds a progress bar to such a for loop with the following syntax.

from tqdm import tqdm

import time

for i in tqdm(range(100)):

time.sleep(.1)

Exercise 1.1. In Python, do the following:

• Perform the following operation, and report the result:(
2 3
4 5

)(
1 2
3 4

)
+ 4

(
1 2
1 2

)
.

• Plot the function f(x) = x3 + ex for x values in the interval [0, 3].
• Describe the output of the following program.

x = 1

while x != 0:

x = x / 2

print(x)

Exercise 1.2. In Python, the logical value True represents true, and the logical value False
represents a false statement. For example, 3<5 evaluates to a True, and 5<3 evaluates to
False.

Python’s logical operations include: and for logical and, or for logical or, not for logical
negation. Python’s relational operations include: < for less than, <= for less than or equal
to, == for equality, != for not equality. (The command & is logical and that also works for
arrays. The command | is logical or that also works for arrays.)

• Compute the following expression by hand, and in Python:

( (2<3) and (4<2) ) or not(4<8).

• Describe the output of the following program.

x=1

while (x<5) and not(x< -5):

x = x + np.random.random()

print(x)

• Logical operations can also apply to vectors, using Numpy functions. Compute the
output of the following program by hand, and in Python:

x = np.array([False, True, False])

y = np.array([True, True, False])

z = np.array([False, False, True])

a = (x & y) | z

print(a)

(Note: Numpy’s logical arrays can also be summed, where True acts as 1 and False acts as
0, so the sum of [True, True, False] would be 2.)
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1.3.1. Opening and Closing Files. In the discussion below, I first save the following .txt file
as myfile.txt .

Here is a text file,

to be used for testing

stuff in Python.

To open this file, we can use the following command.

fil = open(r"C: ...\myfile.txt, encoding = "utf-8")

For convenience I use a raw string so I can write single \ characters. Also, the optional
encoding = "utf-8" uses UTF-8 encoding (UTF-8 is a standard 8-bit (1 byte) character
encoding, which is typically but not always the default encoding choice.) We can print this
file e.g. using:

for line in fil:

print(line)

To save memory, it is recommended to close any opened file after the file is used, using

fil.close()

Alternatively, you can automatically close a file by nesting it within a with statement.
with open(r"C: ...\myfile.txt", encoding = "utf-8") as fil:

lines = [x.rstrip() for x in fil]

which outputs

['Here is a text file,', 'to be used for testing', 'stuff in Python.']

A portion of a file can be read using fil.read(10) will output ten characters from fil.
fil.tell() will output the current file’s reading position. fil.seek(3) will change the file
reading position to the third byte.

2. Floating Point Number System

Definition 2.1. The most common number system used on computers is the double pre-
cision floating point system. This number system includes any number of the form

±(1.a1a2 · · · a52) · 2b11···b1−1023 = ±
(
1 +

52∑
i=1

2−iai

)
· 2

∑10
j=0 2

jbj+1−1023,

where a1, . . . , a52, b1, . . . , b11 ∈ {0, 1} are binary digits, and b1, . . . , b11 are not all 0 and
they are not all 1. Numbers of this form are called normal numbers. The 52-bit binary
number .a1 · · · a52 is called the mantissa, and the 11-bit exponent b11 · · · b1 − 1023 is called
the exponent of the floating point number. One bit is need to store the sign (+ or −) for
a total of 52 + 11 + 1 = 64 bits.

In Python, the binary representation of (−1)c · (1.a1a2 · · · a52) · 2b11···b1−1023 with c ∈ {0, 1}
is ordered as

cb11b10 · · · b1a1a2a3 · · · a52.
Below, we will discuss how the command .hex() can show the binary representation of a
floating point number in Python.

The case b1 = · · · = b11 = 0 has a special meaning, corresponding to subnormal num-
bers. In this case, the corresponding number is

±(0.a1a2 · · · a52) · 21−1023 = ±(0.a1a2 · · · a52) · 2−1022.
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(The case a1 = · · · = a52 = 0 with a positive sign corresponds to 0, and with a negative sign
it corresponds to −0. The floating point representations of 0 and −0 are technically different,
despite them being formally equal.) The case b1 · · · b11 = 1 has a special meaning, denoting
±∞ if ai = 0 for all 1 ≤ i ≤ 52, or NaN (Not a Number) if ai ̸= 0 for some 1 ≤ i ≤ 52.

Remark 2.2. A normal number has a unique representation as a double precision floating
point number.

Remark 2.3. Here the term “double” signifies that 64 is twice as large as 32. A less precise
32-bit number system, single precision floating point arithmetic, uses a 23 bit mantissa and
an 8 bit exponent. Half precision arithmetic, a 16-bit number system uses a 10 bit mantissa
and 5 bit exponent. Google’s proprietary TPUs also use a 16-bit number system with a 7 bit
mantissa and 8 bit exponent, called “bfloat16”. NVIDIA GPUs use a 19-bit number system
named “tf32” with a 10 bit mantissa (as in half precision) and an 8 bit exponent (as in single
precision). Some applications even use 8-bit precision.

The largest exponent of a double precision floating point number is the binary digit with
11 ones (minus 1), minus 1023, i.e.

−1023− 1 +
11∑
i=1

2i−1 = −1024 + 211 − 1 = −1024 + 2048− 1 = 1023.

The smallest exponent of a double precision floating point normal number is the number 1,
minus 1023, i.e. −1022.
So, the largest double precision floating point number is

1.1 · · · 1 · 21023 ≈ 1.8× 10308.

This number in Python is output from the np.finfo('d').max command. We can al-
ready see some arithmetic issues with this number. For example, np.finfo('d').max+1
will be equal to np.finfo('d').max. Why? (We will discuss this issue more in Sec-
tion 2.1.) (To see this try the commands np.finfo('d').max==np.finfo('d').max+1 or
np.finfo('d').max-(np.finfo('d').max+1).) Since 21023 < 21024, in some computer al-
gebra systems, 21024 evaluates to infinity. (In Python, positive infinity is represented by
float('inf'), so expressions such as 2<float('inf') evaluate to True.) In Python 3,
there is no memory restriction on the memory storage for an integer. That is, integers (of
type int) can be represented with more than 64 bits of memory (unlike double precision float-
ing point values, which use only 64 bits of memory). Consequently, 2**1023==2**1023 +1

evaluates to False. Also, 2**1030==2**1030 +1 evaluates to False. This feature can be
nice for certain integer computations, however it can also lead to running out of memory, as
in the following program.

x = 1

while x != 0:

x = 2 * x

print(x)

The smallest positive double precision floating point number corresponds to a52 = 1, and
ai = 0 for all 1 ≤ i ≤ 51. In this case,

0.0 · · · 01 · 2−1022 = 2−52 · 2−1022 = 2−1074 ≈ 4.941× 10−324.

13



Since this is the smallest positive real number, we might worry about e.g. dividing it by
2. Indeed, 2**(-1074) /2 evaluates to 0, 2**(-1075) evaluates to 2−1074 and 2**(-1076)

evaluates to 0. (Evidently, computing 2−1075 results in “rounding up” to the closest double
precision number, but 2−1074/2 results in “rounding down” to the closest double precision
number.)

The smallest positive double precision floating point normal number is

1 · 21−1023 = 2−1022 ≈ 2.225× 10−308.

This number is output from the np.finfo('d').tiny command.
As we have seen from a few examples, arithmetic on computers results in rounding errors.

Adding small integers to np.finfo('d').max results in a rounding error. And dividing
2−1074 by two evaluates to zero, another rounding error. The rounding error for additions
close to 1 can be approximated by np.finfo('d').eps, known as machine epsilon. Machine
epsilon is defined to be the distance from 1 to the next largest double precision floating point
number, which is

2−52 ≈ 2.22× 10−16.

Consequently, (1+2**(-53))-1 evaluates to 0. (We will discuss this issue more in Section
2.1.) Note also that the smallest positive subnormal number is

np.finfo('d').tiny*np.finfo('d').eps

By default, Python displays the decimal representation of a float point number, rather
than its binary representation. However, these decimal representations are perhaps a bit
deceiving. For example, 1/10 has an exact, infinite decimal representation as

1

10
= .0001100110011001 . . . =

1

24
+

1

25
+

0

26
+

0

27
+

1

28
+

1

29
+

0

210
+

0

211
+

1

212
+ · · · .

Rewriting this in base 16, we have

1

10
= .0001100110011001 . . . =

1

24

(
1 +

9

16
+

9

162
+

9

163
+ · · ·

)
.

Since these series are infinite, we cannot write 1/10 exactly as a double precision floating
point number. We can only write 1/10 approximately as such a number. It turns out that
the closest such number is

2−4
(
1 +

9

16
+

9

162
+

9

163
+ · · ·+ 9

1612
+

10

1613

)
.

(Note that 52 binary digits corresponds to 52/4 = 13 digits in base 16.) Python can display
the binary representation of any double precision floating point number with the float.hex
command. Consecutive groups of four binary digits are rewritten as base sixteen (hexa-
decimal) digits. In the hexadecimal representation of a number, the letters a,b,c,d,e,f

correspond to 10, 11, 12, 13, 14, 15. The hexadecimal representation of 1/10 is then

1.999999999999a · 2−4.

The command (1/10).hex() outputs this representation as

0x1.999999999999ap-4

As anticipated, the remaining thirteen digits 999999999999a represent the mantissa of the
hexadecimal representation of 1/10 described above.
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This rounding error can propagate through other operations. For example, .3/.1 does
not evaluate to 3, since the numerator is slightly smaller than .3 and the denominator is
slightly larger than .1. In order to see that .3/.1, we can either evaluate .3/.1 <3 or
check the hexadecimal representation of .3/.1 in Python. Here are some examples of exact
hexadecimal representations of numbers:

RealNumber PythonCommand HexRepresentation
2−1074 np.finfo('d').tiny * np.finfo('d').eps 0.0000000000001p-1022

2−1022 np.finfo('d').tiny 1.0000000000000p-1022

2−52 np.finfo('d').eps 1.0000000000000p-52

−2−52 -np.finfo('d').eps -1.0000000000000p-52

(2− 2−52) · 21023 np.finfo('d').max 1.fffffffffffffp+1023

0 0.0 0.0p+0

0 −0.0 -0.0p+0

Exercise 2.4. Let F be the set of all positive double precision floating point numbers (except
for NaNs and Infs), that have the exponent 1023 (in their hexadecimal representation in
Python). (For example, np.finfo('d').max is in F , since)

• How many elements are in F? That is, what is the cardinality |F| of F .
• What fraction of elements of F are in the interval [21023, 21024)?
• What fraction of elements of F are in the interval [21023, 3

2
21023)?

• Using e.g. Numpy’s random function, write a program that estimates the fraction of
x ∈ F that satisfy the expression x * (1/x)==1. (It would take a pretty long time
to check how many elements of F satisfy this equation, so you should not do that.)

Warning: Numpy’s random function tries to find a uniformly random chosen number in the
interval (0, 1) and then round it to the nearest floating point number. This operation is
different than choosing a floating point number uniformly over all (positive) floating point
numbers with a fixed exponent. (This is the point of the second and third items of this
exercise.) For this reason, your answer to the last part of the question might be different
from the output of the program:

x = np.random.rand(1000)

sum(x* (1/x) == 1) / 1000

2.1. Floating Point Arithmetic.

Definition 2.5 (Floating Point Addition). Let x, y be positive normal numbers, as
defined in Definition 2.1. Then the addition of x and y is defined as follows.

• Represent each of x and y as binary numbers of the form

x = (1.a1a2 · · · a52) · 2ex , y = (1.ã1ã2 · · · ã52) · 2ey .
(Here ex, ey are integers and a1, . . . , a52, ã1, . . . , ã52 ∈ {0, 1}.)

• Write both x and y using the same exponent. For example, if ex ≥ ey, we write

x = (1.a1a2 · · · a52) · 2ex , y = (.0 · · · 01ã1ã2 · · · ã52) · 2ex .
• Add the digits x and y componentwise with carrying rules. (Since the numbers have
the same exponent, you can use the addition and carry rules you learned in grade
school.) We then get

x+ y = (1.c1 · · · ck) · 2ex ,
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for some positive integer k ≥ 52. (In the case ex = ey, we might need to change the
exponent in this step to write x+ y itself as a floating point number.)

• In the case k > 52, round the result from the previous step to a floating point number
such as

(1.c1 · · · c52) · 2ex .
(Truncating to 52 decimal places corresponds to “rounding down.”) (Python will
round to the nearest floating point number, and it will round towards zero in case of
a tie. For example 1+eps/2 returns 1, 1+eps/1.9 is equal to 1+eps, and -1-(eps/2)

returns −1.)

(According to the above definition, we might need to take k very large in order to perform
addition. However, Python only requires k ≤ 55 bits to store y during the addition step.)

Example 2.6. Suppose for simplicity we have a floating point arithmetic system in base
ten with three digits stored in the mantissa, and we want to add

x = 1.312× 103, y = 1.929× 102.

We first write
x = 1.312× 103, y = .1929× 103.

Adding componentwise leads to

x+ y = 1.5049× 103.

Since the arithmetic system only stores three digits, the final computed value of x+ y is the
rounded answer

1.505× 103.

In certain implementations, extra unnecessary bits might be discarded in the computation
described in Definition 2.5, e.g. adding x = 250 and y = 2−50 näıvely might require about
100 bits of storage for y when we write both x and y using the same exponent, but such
storage is not really needed since the addition of x and y is just x. (In this case, adding y
to x does not change the digits of x at all.)

Remark 2.7. Floating point subtraction is defined in a similar way to addition. Multiplica-
tion and division are even simpler, since Step 2 of Definition 2.5 is not needed. For example,
to multiply, just multiply the mantissas and add the exponents.

Proposition 2.8. Let x, y be positive normal numbers, as defined in Definition 2.1. Assume
that x + y < 21024. Let fl(x + y) denote the double precision floating point representation of
x+ y. Then there exists δ ∈ R with |δ| ≤ 2−52 such that

fl(x+ y) = (x+ y)(1 + δ).

Proof. This follows from the last part of Definition 2.5. □

Definition 2.9. Let x be a real number, and let x∗ ∈ R be a computed value of x (such as
fl(x)). We define the absolute error of x∗ to be

|x− x∗| .
If x ̸= 0, we define the relative error of x∗ to be

|x− x∗|
|x|
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So, Proposition 2.8 says that the relative error of the computation fl(x + y) relative to
x+ y is

|fl(x+ y)− (x+ y)|
x+ y

≤ 2−52,

whenever x, y > 0 are normal double precision floating number numbers with x+ y < 21024.
Iterating Proposition 2.8 k times gives

Proposition 2.10. Let x1, . . . , xk be positive normal numbers, as defined in Definition 2.1.

Assume that
∑k

i=1 xi < 21024. Then the relative error of fl
(∑k

i=1 xi

)
relative to

∑k
i=1 xi is

at most

(1 + 2−52)k−1 − 1 ≈ (k − 1)2−52.

To justify the approximation, note that the binomial theorem implies that

(1 + 2−52)k−1 =
k−1∑
j=0

(
k − 1

j

)
(2−52)j = 1 + (k − 1)2−52 + (1/2)(k − 1)(k − 2)(2−52)2 + · · ·

If k is small (say k < 220), then the term (1/2)(k − 1)(k − 2)(2−52)2 is much smaller than
(k − 1)2−52. The same comment applies for the remaining terms in the sum.

Exercise 2.11. Do the following plot in Python

import matplotlib.pyplot as plt

x = np.arange(.988, 1.012, .0001)

y = x**7 - 7*x**6 + 21*x**5 - 35*x**4 + 35*x**3 - 21*x**2 + 7*x - 1

plt.plot(x, y)

plt.show()

This is the function y(x) = (x−1)7 for x ∈ [.988, 1.012]. Does the plot look like a polynomial?
Explain why or why not.

Exercise 2.12. Suppose we want to solve the linear system of equations

17x1 + 5x2 = 22,

1.7x1 + .5x2 = 2.2.

Note that (x1, x2) = (1, 1) is a solution to this system of equations.
Python can numerically solve this system with the following program

A = np.array([ [ 17, 5], [1.7, .5] ])

b = np.array([22, 2.2])

x = np.linalg.solve(A, b)

• What is the solution x that is output from the program?
• Is the output of the program an actual solution of the original system of equations?
• What is the determinant of A? What does Python output from the command
np.linalg.det(A)?

Warning: for a 2× 2 matrix A and a scalar t > 0, we have det(tA) = t2det(A). So, the value
of a determinant does not necessarily say anything about how well we can solve a linear
system of equations of the form Ax = b.
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Exercise 2.13. The sin function, like other special functions such as cos, exp, log, etc.,
cannot be computed exactly on a computer. A common way to compute these special
functions is via power series. Recall that sin has the following power series that is absolutely
convergent for all x ∈ R:

sin(x) =
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
.

With this power series in mind, run the following program when x = π/2, 11π/2, 21π/2 and
31π/2. (Before you run the program, set x to a specific value.)

s = 0

t = x

n = 1

while s + t != s:

s = s + t

t = -(x**2) * t / ((n + 1) * (n + 2))

n = n + 2

print(s)

When the program terminates, the value of s is the computed value of sin(x). For each value
of x stated above, answer the following:

• What is the absolute error of the computation of sin(x)?
• How many terms of the power series were used in the computation of sin(x)?
• What is the largest term in the power series expansion of sin(x)? (Hint: consider
using the numpy.max command)

2.1.1. Subtraction and Loss of Significance. Analogues of Propositions 2.8 and 2.10 hold for
multiplication and division. For example

Proposition 2.14. Let x, y be positive normal numbers, as defined in Definition 2.1. Let ⊙
denote multiplication or division. Assume that 2−1022 < x ⊙ y < 21024. Let fl(x⊙ y) denote
the double precision floating point representation of x ⊙ y. Then there exists δ ∈ R with
|δ| ≤ 2−52 such that

fl(x⊙ y) = (x⊙ y)(1 + δ).

Unfortunately Proposition 2.10 can not hold for a succession of addition and subtraction.
To see why, suppose for simplicity we have a floating point arithmetic system in base ten
with three digits stored in the mantissa, and we want to subtract

x = 1.234× 100, and y = 1.233× 100.

When we perform the subtraction x− y, we get

0.001× 100

The final answer must be a floating point number, so the output of the program is

1.000× 10−3.

Since x and y shared the most significant digits in their mantissas, the subtraction x−y had
only one significant digit. Then the returned value of x− y has zero significant digits in the
mantissa. Since significant digits were lost in the mantissa, this issue is known as a loss of
significance.
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For this single subtraction, no error has actually occurred, since x− y = 10−3. However,
combining other operations with subtractions can cause substantial errors. For example, the
expression

(1 + 2−53)− 1

returns the value 0 in Python, when it should be equal to 2−53. The absolute error of 2−53 is
quite small, but the relative error is not even defined. Even more alarming, the expression

253((1 + 2−53)− 1)

returns the value 1 in Python, when it should be equal to 0. That is, there is an absolute
error of 1. This observation leads to the following heuristic.

Heuristic for Floating Point Arithmetic: Subtractions are dangerous, but addition,
multiplication and division are generally safe (concerning relative errors).

The relative safety of addition, multiplication and division follows from the analogues of
Propositions 2.8 and 2.10. The danger of using subtraction can be formalized in the following
statement.

Proposition 2.15. Let x and y be positive normal double precision floating point numbers
with x > y. (Since x > y, 1− y/x > 0.) Let p, q be nonnegative integers such that

2−q ≤ 1− y

x
≤ 2−p.

Let d be the number of zeros at the end of the mantissa in the computation of x − y. (We
could say d is the number of significant binary digits that are lost in computing x− y.) Then

p ≤ d ≤ q.

Proof. Let 1 ≤ s, t < 2 and let m,n be integers such that

x = s2m, y = t2n.

Write y = t2n−m2m so that x − y = (s − t2n−m)2m. Since x > y, s − t2n−m > 0, so that
s− t2n−m is a mantissa representation of x− y. This mantissa satisfies

s− t2n−m = s
(
1− t2n

s2m

)
= s

(
1− y

x

)
.

Since 1 ≤ s < 2, our assumption implies that

2−q ≤ s− t2n−m < 2 · 2−p.

That is, the mantissa’s binary representation starts with at least p zeros, and at most q
zeros. □

Example 2.16. Near zero, the function

f(x) =
√
x2 + 1− 1

exhibits some loss of significance errors, as the following plot shows.

import matplotlib.pyplot as plt

x = np.arange(-10 ** - 7, 10 ** -7, 10 ** -10)

y = np.sqrt( x**2 + 1) - 1

z = x**2 / (np.sqrt(2**2 + 1) + 1)

plt.plot(x, y, 'r', x, z, 'b')

plt.text(-.8e-7, 4e-15, r'$\sqrt{x^{2}+1}-1$', color='red')
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plt.text(.5e-7, .5e-15, r'$\frac{x^{2}}{1+\sqrt{x^{2}+1}}$', color='blue')

plt.xlabel('x-axis')

plt.ylabel('y-axis')

plt.show()

However, by multiplying and dividing by
√
x2 + 1 + 1, we can rewrite f as

f(x) =
x2

√
x2 + 1 + 1

, ∀x ∈ R,

which avoids the loss of significance of the previous formula.

Exercise 2.17. Suppose we want to compute the quantity

x− sin(x)

for any real x ∈ R. For x near zero, there will be a loss of significance error, so we should
perhaps try to find a better way to compute this quantity.

• Find the loss of significance (i.e. the number of zero bits at the end of the binary
mantissa) when x − sin(x) is computed directly in double precision floating point
arithmetic in Python, when x = 2−25.

• Find the loss of significance (i.e. the number of zero bits at the end of the mantissa)
when x− sin(x) is computed as

x3

3!
− x5

5!
,

when x = 2−25. (Your answer can be off by one or two from the true value.)
• Estimate the relative error when x− sin(x) is computed as

x3

3!
− x5

5!
,

when x = 2−25. (Your answer does not have to exactly correct. It is okay to be
approximately correct.)

Exercise 2.18. This exercise examines an unstable recurrence computation.
Consider the following recursion with x0 := 1 and x1 := 1/3.

xn+1 =
13

3
xn −

4

3
xn−1, ∀n ≥ 1.

• Verify that the recurrence is solved by xn := (1/3)n for all n ≥ 0.
• Using Python, solve for x40. For example, use

x = np.array([1, 1/3])

for i in range(2,41):

x = np.append(x, (13/3)*x[i-1] - (4/3)*x[i-2])

print(x[40])

Is the answer what you expected to get? (Hint: examine a logarithmically scaled
plot in the y-axis, using matplotlib.pyplot.semilogy.)

• With a different initial condition, the above recurrence can have other solutions. To
find them, rewrite the recurrence as(

13/3 −4/3
1 0

)(
xn

xn−1

)
=

(
xn+1

xn

)
, ∀n ≥ 1.
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Then note that the eigenvalues of the matrix A :=

(
13/3 −4/3
1 0

)
are 1/3 and 4, so

iterating the recurrence shows that(
13/3 −4/3
1 0

)n(
x1

x0

)
=

(
xn+1

xn

)
, ∀n ≥ 0.

Since A has two distinct eigenvalues, it is diagonalizable, so if

(
x2

x1

)
is written as a

linear combination a1v1+a2v2 of the corresponding eigenvectors v1, v2 ∈ R2 of A, the
recurrence becomes

a1(1/3)
n0v1 + a24

nv2 =

(
xn+1

xn

)
, ∀n ≥ 0.

• Show that in the case x1 = 1 and x2 = 1/3, we have a2 = 0. However, small
numerical errors that occur in the computation of the recurrence correspond to a2
being computed to be nonzero. Explain how this relates to the logarithmic plot you
examined above.

2.1.2. Simulation of Random Variables.

Remark 2.19. A Monte Carlo simulation simulates a large number samples from some ran-
dom quantity. For example, the command rng=np.random.rand(1000) generates a length
1000 vector that simulates 1000 numbers that are equally likely to take any value in (0, 1).
And the command np.random.randint(0, 2, 1000) represents a vector of 1000 fair coin
flips, since each entry of the vector should have probability 1/2 of taking the value 0 or 1.
(The same is accomplished with np.round(np.random.rand(1000)) .)

In a Monte Carlo simulation, one often sums the results of n samples and then divides by
n. For example, the Law of Large Numbers says that, for a large number (such as 10000),
np.mean(np.random.randint(0, 2, 1000)) should be close to 1/2. That is, roughly half
of 10000 coin flips will be heads, and roughly half of these flips will be tails. (Though actually
it is unlikely that exactly 5000 of the coin flips will be heads.)

Exercise 2.20 (Numerical Integration). Consider the function

f(t) := t3 + 1.

In this case, we can easily compute ∫ 1

0

f(t)dt =
5

4
.

Sometimes, especially in computer graphics applications, integrals are too complicated to
compute directly, so we instead use randomness to estimate the integral. That is, we pick
n random points in [0, 1], and average the values of f at these points, as in the following
program.

n = 10**5

t = np.random.rand(n)

f = t**3 +1

np.mean(f)
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Using this program with n = 105, 106, 107 and 108, report the estimated values for the integral
of f , along with their relative errors.

Now, compute the exact value of
∫ 5

3
log xdx, and modify the above program to give esti-

mates for the value of this integral and report relative errors, using a number of points n
where n = 105, 106, 107 and 108.

Remark 2.21. When Python or other computer programs generate “random numbers”
using e.g. np.random.rand or np.random.randn, these numbers are not actually random or
independent. These numbers are pseudorandom. That is, functions such as rand output
numbers in a deterministic way, but these numbers behave as if they were random. All
“random” numbers generated by computers are actually pseudorandom, and this includes
slot machines at casinos, video games, etc. So, when using Monte Carlo simulation as we did
above, we should be careful about interpreting our results, since it is generally impossible to
take random samples on a computer.

And, theoretically, if you knew enough about the random number generator that a slot
machine is using, you could predict its output.

2.1.3. Statistical Estimation and Numpy.

Exercise 2.22. In this exercise, we will compare the run time of built-in vectorized functions
versus a naive for loop

• Compare the time it takes to compute a dot product using numpy’s np.dot function,
versus using a for loop. More specifically, use x=np.random.randn(10 ** k) and
y=np.random.randn(10 ** k) for k = 3, 4, 5, 6, 7, and compute the dot product of
x and y in the two different specified ways (vectorized numpy and for loop). Do the
run times increase exponentially with k?

• Compare the time it takes to compute a matrix product using numpy’s np.dot func-
tion, versus using a for loop. More specifically, use A=np.random.randn(10 ** k, 10 ** k)

and B=np.random.rand(10 ** k, 10 ** k) for k = 1, 2, 3, 4, and compute the ma-
trix product AB using A @ B, versus a for loop. Do the run times increase exponen-
tially with k?

(Optional:) Repeat the above exercise for 32-bit arithmetic, using the np.float32 command.

Exercise 2.23. The links below contain .csv files, each with 1000 (pseudo) random samples
from a Gaussian distribution with variance one and unknown mean µ ∈ R

gaussian data
gaussian data v2
Recall that a basic question in parametric statistics is to estimate the unknown mean µ.

From statistics class, we know that a good estimator for the mean will be the sample mean
(since e.g. it is the MLE for the mean). Using the following commands, we can import the
first .csv file into a Numpy array, and then take the sample mean to estimate µ.

x = np.genfromtxt("gaussian_data.csv", delimiter=",")

np.mean(x)

The output is −.00968. I used µ = 0 to generate these samples, so the mean estimate
is pretty close to reality. However, the second file is exactly the same as the first, but I
intentionally created two outliers to skew the final result. The output of the above program
for the second file is 11371.66, which is quite far from the true value µ = 0. With this
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example in mind, we ask: what is a good estimate of the unknown mean µ that is robust to
noise (or robust to outliers)? There are many possible good answers, and one such answer
is the median. The following program

x = np.genfromtxt("gaussian_datav2.csv", delimiter=",")

np.median(x)

has output −.03. Can you think of a better way to remove the outliers and estimate the
unknown mean? (This question is intentionally open ended.)

2.1.4. Additional Comments. Classical numerical analysis often bounds the numerical errors
of a numerical algorithm, e.g. that estimates the integral of a function.

Modern numerical analysis also examines the behavior of algorithms that work well with
noisy data (i.e. algorithms that work well in the average case, rather than the worst case).
Sometimes we can even guarantee the performance of an algorithm when it is given adver-
sarial data (i.e. some inputs to the algorithm can be chosen arbitrarily).

For more details on the use of “guard bits” and “sticky bits” in implementation of e.g.
addition in Python, see Numerical Computing with IEEE Floating Point Arithmetic, Michael
Overton

3. Numerical Linear Algebra

3.0.1. Review of Linear Algebra.

Definition 3.1 (Linear combination). Let V be a vector space over a field F. Let
u1, . . . , un ∈ V and let α1, . . . , αn ∈ F. Then

∑n
i=1 αiui is called a linear combination

of the vector elements u1, . . . , un.

Definition 3.2 (Linear dependence). Let V be a vector space over a field F. Let S be
a subset of V . We say that S is linearly dependent if there exists a finite set of vectors
u1, . . . , un ∈ S and there exist α1, . . . , αn ∈ F which are not all zero such that

∑n
i=1 αiui = 0.

Definition 3.3 (Linear independence). Let V be a vector space over a field F. Let S be
a subset of V . We say that S is linearly independent if S is not linearly dependent.

Example 3.4. The set S = {(1, 0), (0, 1)} is linearly independent in R2. The set S ∪ (1, 1)
is linearly dependent in R2, since (1, 0) + (0, 1)− (1, 1) = 0.

Definition 3.5 (Span). Let V be a vector space over a field F. Let S ⊆ V be a finite
or infinite set. Then the span of S, denoted by span(S), is the set of all finite linear
combinations of vectors in S. That is,

span(S) =

{
n∑

i=1

αiui : n ∈ N, αi ∈ F, ui ∈ S, ∀ i ∈ {1, . . . , n}

}
.

Remark 3.6. We define span(∅) := {0}.
Theorem 3.7 (Span as a Subspace). Let V be a vector space over a field F. Let S ⊆ V .
Then span(S) is a subspace of V such that S ⊆ span(S). Also, any subspace of V that
contains S must also contain span(S).

Definition 3.8 (Normed Linear Space). Let F denote either R or C. Let V be a vector
space over F. A normed linear space is a vector space V equipped with a norm. A norm
is a function V → R, denoted by ∥·∥, which satisfies the following properties.
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(a) For all v ∈ V , for all α ∈ F, ∥αv∥ = |α| ∥v∥. (Homogeneity)
(b) For all v ∈ V with v ̸= 0, ∥v∥ is a positive real number; ∥v∥ > 0. And v = 0 if and

only if ∥v∥ = 0. (Positive definiteness)
(c) For all v, w ∈ V , ∥v + w∥ ≤ ∥v∥+ ∥w∥. (Triangle Inequality)

Definition 3.9 (Complex Conjugate). Let i :=
√
−1. Let x, y ∈ R, and let z = x+iy ∈ C.

Define z := x− iy. Define |z| :=
√

x2 + y2. Note that |z|2 = zz.

Definition 3.10 (Inner Product). Let F denote either R or C. Let V be a vector space
over F. An inner product space is a vector space V equipped with an inner product.
An inner product is a function V × V → F, denoted by ⟨·, ·⟩, which satisfies the following
properties.

(a) For all v, v′, w ∈ V , ⟨v + v′, w⟩ = ⟨v, w⟩+ ⟨v′, w⟩. (Linearity in the first argument).
(b) For all v, w ∈ V , for all α ∈ F, ⟨αv, w⟩ = α⟨v, w⟩. (Homogeneity in the first argument)
(c) For all v ∈ V , if v ̸= 0, then ⟨v, v⟩ is a positive real number; ⟨v, v⟩ > 0. (Positivity)

(d) For all v, w ∈ V , ⟨v, w⟩ = ⟨w, v⟩. (Conjugate symmetry)

Exercise 3.11. Using the above properties, show the following things.

(e) For all v, v′, w ∈ V , ⟨w, v+ v′⟩ = ⟨w, v⟩+ ⟨w, v′⟩. (Linearity in the second argument)
(f) For all v, w ∈ V , for all α ∈ F, ⟨v, αw⟩ = α⟨v, w⟩.
(g) For all v ∈ V , ⟨v, 0⟩ = ⟨0, v⟩ = 0.
(h) ⟨v, v⟩ = 0 if and only if v = 0.

Remark 3.12. If F = R, then property (d) says that ⟨v, w⟩ = ⟨w, v⟩.

Lemma 3.13. Let ⟨, ⟩ be an inner product on a vector space V . Then the function ∥·∥ : V →
R defined by ∥v∥ :=

√
⟨v, v⟩ is a norm on V .

Definition 3.14 (Orthogonal Vectors). Let V be an inner product space, and let v, w ∈
V . We say that v, w are orthogonal if ⟨v, w⟩ = 0.

Definition 3.15 (Orthogonal Set, Orthonormal Set). Let V be an inner product space
and let (v1, . . . , vn) be a collection of vectors in V . The set of vectors (v1, . . . , vn) is said to
be orthogonal if ⟨vi, vj⟩ = 0 for all i, j ∈ {1, . . . , n} with i ̸= j. If additionally ⟨vi, vi⟩ = 1
for all i ∈ {1, . . . , n}, the set of vectors (v1, . . . , vn) is called orthonormal.

Corollary 3.16. Let V be an inner product space, and let v1, . . . , vn ∈ V be an orthonormal
set of vectors. Then ∥∥∥∥∥

n∑
i=1

αivi

∥∥∥∥∥
2

=
n∑

i=1

|αi|2 .

Corollary 3.17. Any set of orthonormal vectors is linearly independent.

Definition 3.18 (Orthonormal Basis). Let V be an inner product space. An orthonor-
mal basis of V is a collection (v1, . . . , vn) of orthonormal vectors that is also a basis for
V .

Corollary 3.19. Let V be an n-dimensional inner product space. Let (v1, . . . , vn) be an
orthonormal set in V . Then (v1, . . . , vn) is an orthonormal basis of V .
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Theorem 3.20. Let V be an inner product space. Let (v1, . . . , vn) be an orthonormal basis
of V . Then, for any v ∈ V , we have

v =
n∑

i=1

⟨v, vi⟩vi.

Definition 3.21 (Unit Vector). Let V be a normed linear space, and let v ∈ V . If ∥v∥ = 1,
we say that v is a unit vector.

Remark 3.22. Let v ̸= 0. Then v/ ∥v∥ is a unit vector.

Theorem 3.23 (Gram-Schmidt Orthogonalization). Let v1, . . . , vn be a linearly inde-
pendent set of vectors in an inner product space V . Then we can create an orthogonal set of
vectors in V as follows. Define

w1 := v1.

w2 := v2 −
〈
v2,

w1

∥w1∥

〉
w1

∥w1∥
.

w3 := v3 −
〈
v3,

w1

∥w1∥

〉
w1

∥w1∥
−
〈
v3,

w2

∥w2∥

〉
w2

∥w2∥
.

And so on. In general, for k ∈ {2, . . . , n}, define

wk := vk −
k−1∑
j=1

〈
vk,

wj

∥wj∥

〉
wj

∥wj∥
.

Then for each k ∈ {1, . . . , n}, (w1, . . . , wk) is an orthogonal set of nonzero vectors in V .
Also, span(w1, . . . , wk) = span(v1, . . . , vk) for each k ∈ {1, . . . , n}. Finally, note that the
set (w1/ ∥w1∥ , . . . , wn/ ∥wn∥) is an orthonormal set of vectors in V with the same span as
v1, . . . , vn.

Definition 3.24 (Transpose). Let A be an m × n matrix with entries Aij, 1 ≤ i ≤ m,
1 ≤ j ≤ n. Then the transpose AT of A is defined to be the n × m matrix with entries
(AT )ij := Aji, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Exercise 3.25. Let A be an m×n matrix. Let B be an ℓ×m matrix. Show that (BA)T =
ATBT .

Remark 3.26. If A is an n× n invertible matrix, then ITn = (AA−1)T = (A−1)TAT , so AT

is also invertible.

Definition 3.27 (Adjoint of a Matrix). Let A be an m × n matrix with Ajk ∈ C,
1 ≤ j ≤ m, 1 ≤ k ≤ n. The adjoint of A, denoted by A∗, is an n ×m matrix with entries
(A∗)jk := Akj, 1 ≤ j ≤ n, 1 ≤ k ≤ m.

Definition 3.28 (Normal Matrix). Let A be an n × n matrix with values in C. We say
that A is normal if AA∗ = A∗A.

Definition 3.29 (Self-Adjoint Matrix). Let F denote R or C. A square matrix A with
elements in F is said to be self-adjoint if A = A∗. The term Hermitian is a synonym of
self-adjoint.
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Definition 3.30 (Unitary Matrix/ Orthogonal Matrix). Let A be an n × n matrix
with elements in C. We say that A is unitary if AA∗ = A∗A = I. In the case that A has
real entries and AAT = ATA = I, we say that A is orthogonal.

Definition 3.31. Amatrix A is said to be diagonalizable if there exists an invertible matrix
Q and a diagonal matrix D such that A = QDQ−1. That is, a matrix A is diagonalizable if
and only if it is similar to a diagonal matrix.

Definition 3.32 (Eigenvector and Eigenvalue). Let V be a vector space over a field
F. Let T : V → V be a linear transformation. An eigenvector of T is a nonzero vector
v ∈ V such that, there exists λ ∈ F with T (v) = λv. The scalar λ is then referred to as the
eigenvalue of the eigenvector v.

Theorem 3.33 (The Spectral Theorem for Normal Matrices). Let F denote either R
or C. Let A be an n × n matrix with entries in F. Then there exists an orthonormal basis
of Fn consisting of eigenvectors of A. In particular, A is diagonalizable with A = QDQ−1,
where the columns of Q are eigenvectors of A and QQ∗ = Q∗Q = I.

Theorem 3.34 (The Spectral Theorem for Self-Adjoint Matrices). Let F denote
either R or C. Let A be an n×n matrix with entries in F. Then there exists an orthonormal
basis of F n consisting of eigenvectors of A. In particular, A is diagonalizable with A =
QDQ−1, where the columns of Q are eigenvectors of A and QQ∗ = Q∗Q = I. Moreover, all
eigenvalues of A are real, i.e. D has real entries.

Theorem 3.35 (The Spectral Theorem for Unitary Matrices). Let F denote either
R or C. Let A be an n×n matrix with entries in F. Then there exists an orthonormal basis
of F n consisting of eigenvectors of A. In particular, A is diagonalizable with A = QDQ−1,
where the columns of Q are eigenvectors of A. Moreover, all eigenvalues of T have absolute
value 1.

We will discuss algorithms for Spectral Theorems in Section 3.2.3.

3.1. Row Operations, Multiplication, Gaussian Elimination, LU, Ax=b. We begin
our discussion of row operations on matrices with some examples.

Example 3.36 (Type 1: Interchange two Rows). For example, we can swap the first
and third rows of the matrix 1 2

3 5
0 8


to get 0 8

3 5
1 2

 .

Define

E :=

0 0 1
0 1 0
1 0 0

 .
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Note that

E

1 2
3 5
0 8

 =

0 0 1
0 1 0
1 0 0

1 2
3 5
0 8

 =

0 8
3 5
1 2

 .

Remark 3.37. E as defined above is invertible. In fact, E = E−1. In general, if E is the
n× n matrix that swaps two rows of an n× n matrix A, then EA is A with those two rows
swapped. So EEA = A for all n× n matrices A, so EE = In, i.e. E is invertible.

Example 3.38 (Type 2: Multiply a row by a nonzero scalar). For example, let’s
multiply the second row of the following matrix by 2.1 2

3 5
0 8

 .

We then get 1 2
6 10
0 8

 .

Define

E :=

1 0 0
0 2 0
0 0 1

 .

Note that

E

1 2
3 5
0 8

 =

1 0 0
0 2 0
0 0 1

1 2
3 5
0 8

 =

1 2
6 10
0 8


Remark 3.39. E as defined above has inverse1 0 0

0 1/2 0
0 0 1

 .

In general, suppose E corresponds to multiplying the ith row of a given matrix by α ∈ F,
α ̸= 0. Then E is a matrix with ones on the diagonal, except for the ith entry on the diagonal,
which is α. And all other entries of E are zero. Then, we see that E−1 exists and is a matrix
with ones on the diagonal, except for the ith entry on the diagonal, which is α−1. And all
other entries of E−1 are zero. In particular, E is invertible.

Example 3.40 (Adding one row to another). Let’s add two copies of the first row of
the following matrix to the third row. 1 2

3 5
0 8

 .

We then get 1 2
3 5
2 12

 .
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Define

E :=

1 0 0
0 1 0
2 0 1

 .

Note that

E

1 2
3 5
0 8

 =

1 0 0
0 1 0
2 0 1

1 2
3 5
0 8

 =

1 2
3 5
2 12

 .

Remark 3.41. E as defined above has inverse 1 0 0
0 1 0
−2 0 1

 .

That is, adding 2 copies of row one to row three is inverted by adding −2 copies of row one
to row three. In a similar way, a general row addition operator is seen to be invertible.

Remark 3.42 (Summary of Row Operations). The three row operations (Type 1, Type
2, and Type 3) are all invertible.

Remark 3.43 (Solving Systems of Linear Equations). Let A be an m× n matrix, let
x ∈ Rn be a variable vector, and let b ∈ Rm be a known vector. Consider the system of
linear equations

Ax = b.

Let E be any elementary row operation. Since E is invertible, finding a solution x to the
system Ax = b is equivalent to finding the solution x to the system EAx = Eb. By applying
many elementary row operations, you have seen in a previous course how to solve the system
Ax = b. That is, you continue to apply elementary row operations E1, . . . , Ek such that
E1 · · ·EkA in row-echelon form, and you then solve E1 · · ·EkAx = E1 · · ·Ekb. A matrix
B is in row-echelon form if each row is either zero, or its left-most nonzero entry is 1, with
zeros below the 1.

Remark 3.44 (Inverting a Matrix). Let A be an invertible n × n matrix. You learned
in a previous course an algorithm for inverting A using elementary row operations. Below,
we will prove that this algorithm works.

Remark 3.45 (Column Operations). In the above discussion, we could have also used
column operations instead of row operations. Column operations would then correspond to
multiplying the matrices E on the right side, rather than the left side. The invertibility of
column operations would therefore still hold.

Definition 3.46 (Rank). The rank of a matrix A is equal to the dimension of the space
spanned by the columns of A.

Proposition 3.47. Let A be a real n× n matrix. Then A is invertible if and only if A has
rank n.

Lemma 3.48. Let A be a matrix in row-echelon form. Then the rank of A is equal to the
number of nonzero rows of A.
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Theorem 3.49. Let A be an m × n matrix of rank r. Then, there exist a finite number of
elementary row and column operations which, when applied to A, produce the matrix(

Ir×r 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
.

Proof. We first use row reduction to put A into row-echelon form. So, after this row reduc-
tion, the first r rows of A have some zeros, and then a 1 with zeros below this 1. And the
remaining m − r rows are all zero. (In case r = 0, then we are done, so we may assume
that r > 0.) Now, the first row of A has some zeros, then a 1 with zeros below this 1. So,
by adding copies of the column that contains the entry 1 to each column to the right, the
remaining entries of the first row can be made to be zero. And we still keep our matrix in
row-echelon form. Now, the second row of A has some zeros, then a 1 with zeros above and
below this 1. So, by adding copies of the column that contains this entry 1 to each column
to the right, the remaining entries of the second row can be made to be zero. And once
again, our matrix is still in row-echelon form. We then continue this procedure. The first r
rows then each have exactly one entry of 1, and all remaining entries in the matrix are zero.
By swapping columns as needed, A is then put into the required form, as desired. □

Corollary 3.50 (A Factorization Theorem). Let A be an m×n matrix of rank r. Then,
there exists an m×m matrix B and an n×n matrix C such that B is the product of a finite
number of elementary row operations, C is the product of a finite number of elementary
column operations, and such that

A = B

(
Ir×r 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
C.

Lemma 3.51. Let A be an m× n matrix. Let B be an m×m invertible matrix, and let C
be an n× n invertible matrix. Then

rank(A) = rank(BA) = rank(AC) = rank(BAC).

Lemma 3.52. Let A be an m× n matrix with rank r. Then AT also has rank r.

Lemma 3.53. Let A be an n×n matrix. Then A is invertible if and only if it is the product
of elementary row and column operations.

Remark 3.54. Suppose A is an invertible matrix, and we have elementary row operations
E1, . . . , Ej such that

E1 · · ·EjA = In.

Multiplying both sides by A−1 on the right,

E1 · · ·EjIn = A−1.

So, to compute A−1 from A, it suffices to find row operations that turn A into the identity.
And we then apply these operations to In to give A−1. This is the algorithm for computing
the inverse A−1 that you learned in a previous class.
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3.1.1. Multiplying Matrices.

Example 3.55 (Multiplying Matrices). The näıve way to multiply two real n × n ma-
trices requires approximately na arithmetic operations where a = 3. (The output matrix
has n2 entries, and each entry requires at most 2n arithmetic operations, so a total of
2n · n2 operations could be needed.) However, there seems to be some redundancy in all of
these operations, so one might hope to improve the number of required operations. In fact,
a < 2.3728639 also possible [Gal14] (building upon Coppersmith-Winograd, Stothers, and
Williams.) I do not think the algorithm with such a value of a has been implemented in
practice, since the implied constants in its analysis are quite large, and apparently the algo-
rithm does not parallelize. On the other hand, Strassen’s algorithm has been implemented,
and it has a = log 7/ log 2 ≈ 2.807.

Example 3.56 (Computing Determinants). Let n > 0 be an integer. Suppose we want
to compute the determinant of a real n× n matrix A with entries Aij, i, j ∈ {1, . . . , n}. An
inefficient but straightforward way to do this is to directly use a definition of the determinant.
Let Sn denote the set of all permutations on n elements. For any σ ∈ Sn, let sign(σ) := (−1)j,
where σ can be written as a composition of j transpositions (Exercise: this quantity is well-
defined). (A transposition σ ∈ Sn satisfies σ(i) = i for at least n− 2 elements of {1, . . . , n}.)
Then

det(A) =
∑
σ∈Sn

sign(σ)
n∏

i=1

Aiσ(i).

This sum has |Sn| = n! terms. So, if we use this formula to directly compute the determinant
of A, in the worst case we will need to perform at least (n + 1) · n! arithmetic operations.
This is quite inefficient. We know a better algorithm from linear algebra class. We first
perform row operations on A to make it upper triangular. Suppose B is an n×n real matrix
such that BA represents one single row operation on A (i.e. adding a multiple of one row
to another row, or swapping the positions of two rows). Then there are real n× n matrices
B1, . . . , Bm such that

B1 · · ·BmA (∗)
is an upper triangular matrix. The matrices B1, . . . , Bm can be chosen to first eliminate the
left-most column of A under the diagonal, then the second left-most column entries under
the diagonal, and so on. That is, we can choose m ≤ n(n − 1)/2, and each row operation
involves at most 3n arithmetic operations. So, the multiplication of (∗) uses at most

3mn ≤ 2n3

arithmetic operations. The determinant of the upper diagonal matrix (∗) is then the product
of its diagonal elements, and

det(B1 · · ·BmA) = det(B1) · · · det(Bm) det(A).

That is,

det(A) =
det(B1 · · ·BmA)

det(B1) · · · det(Bm)
.

So, det(A) can be computed with at most 2n3+m+n ≤ 4n3 = O(n3) arithmetic operations.
Can we do any better?
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It turns out that this is possible. Indeed, if it is possible to multiply two n × n real
matrices with O(na) arithmetic operations for some a > 0, then it is possible to compute
the determinant of an n× n matrix with O(na) arithmetic operations.

Remark 3.57. Interestingly, computing the permanent of a matrix

per(A) =
∑
σ∈Sn

n∏
i=1

Aiσ(i)

is #P-complete, so we expect this quantity cannot be computed using a polynomial number
(in n, e.g. n3) of arithmetic operations on a computer, even though we can do this for
the determinant. However, for any ε > 0, there is a (1 + ε) polynomial time randomized
approximation algorithm for computing the permanent of a matrix with nonnegative entries
[JSV04]. That is, for any ε > 0, and 0 < δ < 1 there is a randomized algorithm such that
the following holds. For any n × n matrix A of nonnegative real numbers, the algorithm
runs in time that is polynomial in 1/ε, n, and log(1/δ), and with probability at least 1 − δ
the algorithm outputs a real number p such that

p ≤ per(A) ≤ (1 + ε)p.

On the other hand, for any constant c, the problem of approximating the permanent of an
arbitrary matrix A is #P-hard [Aar11].

Theorem 3.58 (Gaussian Elimination/ LU Factorization). Let F denote R or C. Let
A be an n× n matrix with values in F. Then there exist n× n matrices P,L, U such that

PA = LU,

where L is lower triangular with ones on its diagonal and values in F, U is upper triangular
with values in F, and P is a permutation matrix (i.e. P is the identity matrix with its rows
permuted). Moreover, P,L, U can be computed with at most 5n3 arithmetic operations.

Remark 3.59. Even in the case n = 1, we can see the LU factorization is not unique.

Proof. We first apply a permutation matrix P1 to A such that the top left entry of P1A has
largest absolute value in its first column. In the case that the first column of A is zero, let
L1 be the identity. Otherwise, let L1 denote the (lower triangular) row operation matrix
such that L1P1A has zeros below the top left entry. We now iterate this procedure. Apply a
permutation matrix P2 to L1P1A that fixes the first row, and such that the second diagonal
entry has largest absolute value among the lowest n− 1 entries in the second column. When
all entries below and including the diagonal are zero in the second column, let L2 be the
identity. Otherwise, let L2 denote the (lower triangular) row operation matrix (that fixes the
first row) such that L2P2L1P1A has zeros below the diagonal. We continue this procedure.
We arrive at an upper triangular matrix U such that

Ln−1Pn−1 · · ·L1P1A = U.

For each 1 ≤ k ≤ n − 1, define L′
k := Pn−1 · · ·Pk+1LkPk+1 · · ·Pn−1. Note that L′

1, . . . , L
′
n−1

are lower triangular. To see this, we first write

Pk+1LkPk+1 = Pk+1(Lk − I + I)Pk+1 = Pk+1(Lk − I)Pk+1 + I.

Now, Lk − I is nonzero only in its kth column below the kth row, and Pk+1 only permutes
rows below the kth row. So, Pk+1(Lk − I) also is only nonzero in its kth column below the
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kth row. Then multiplying on the right by Pk+1 permutes the columns to the right of the kth

column (i.e. it has no effect); in block form we have

Lk =

Ik−1 0 0
0 1 0
0 vk In−k

 , Pk+1 =

(
Ik 0
0 ∗

)
.

Therefore,

Pk+1(Lk − I)Pk+1 =

(
Ik 0
0 ∗

)0k−1 0 0
0 0 0
0 vk 0n−k

(
Ik 0
0 ∗

)

=

0k−1 0 0
0 0 0
0 v′k 0n−k

(
Ik 0
0 ∗

)
=

0k−1 0 0
0 0 0
0 v′k 0n−k

 .

We conclude Pk+1LkPk+1 is lower triangular. By a similar argument, Pk+2Pk+1LkPk+1Pk+2

is lower triangular. Iterating this argument, we conclude that L′
1, . . . , L

′
n−1 are all lower

triangular.
By definition of L′

1, . . . , L
′
n−1, we have

U = Ln−1Pn−1 · · ·L1P1A = L′
n−1 · · ·L′

1Pn−1 · · ·P1A.

Finally, define L′ := L′
n−1 · · ·L′

1, and define P := Pn−1 · · ·P1. We have

U = L′PA.

So, let L := (L′
1)

−1 · · · (L′
n−1)

−1, so that LL′ = I, and

LU = LL′PA = PA.

(Alternatively, once we have the expression for L′, we could just solve directly for its inverse,
which is straightforward since L′ is lower triangular, and then define L := (L′)−1 directly.)

Each iteration requires at most n2 arithmetic operations, and there are n−1 such iterations,
so completing the computation requires at most n3 arithmetic operations. □

Exercise 3.60. Write your own program in Python that finds the LU decomposition of
a given n × n real matrix (without using any matrix decomposition programs in Python).
Then apply your program to the matrix

A =


0 1 1 0 2
2 3 0 0 0
4 5 1 0 2
−6 0 1 2 0
3 0 4 0 −1

 .

Exercise 3.61. Suppose A is an n× n matrix of the form

A =



1 0 0 · · · 0 1
−1 1 0 · · · 0 1
−1 −1 1 · · · 0 1
...

...
...

. . .
...

...
−1 −1 −1 · · · 1 1
−1 −1 −1 · · · −1 1


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Find an LU decomposition of A. Hint: use

L =



1 0 0 · · · 0 0
−1 1 0 · · · 0 0
−1 −1 1 · · · 0 0
...

...
...

. . .
...

...
−1 −1 −1 · · · 1 0
−1 −1 −1 · · · −1 1

 .

What U do you get? Explain why, when n is large, this LU decomposition would lead to a
large loss of significance.

Exercise 3.62. Suppose A is an n × n real matrix with rank n. Let L1, L2 be real n × n
lower triangular matrices, and let U1, U2 be real n× n upper triangular matrices. Suppose

A = L1U1 = L2U2.

Show that there exists a real n × n diagonal matrix D with nonzero diagonal entries such
that

L1 = L2D, U1 = D−1U2.

In this sense, the LU factorization of A is unique, up to multiplication by D.

Exercise 3.63. Let L be a complex n × n lower triangular matrix with nonzero diagonal
entries. Describe an algorithm that computes L−1 with at most 5n3 arithmetic operations.
Then, write a program in Python that finds L−1 for such an n × n matrix (without using
any built-in matrix inversion things in Python), and apply your program when L is

L =


1 0 0 0 0
2 3 0 0 0
4 5 6 0 0
−6 0 1 2 0
1 0 4 0 3

 .

Finally, verify that your computed version of L−1 satisfies LL−1 = L−1L = I (at least
approximately).

(Hint: L−1 is also lower triangular. Starting with the top row of L−1 and working your
way down, what entries must L−1 have? Try starting from the diagonal entries and then
moving to the left, one entry at a time.)

(Hint: it might be helpful to access portions of a row of a matrix L in Python. For
example, if 1 ≤ j < i ≤ n are integers, the command L(i, j+1: i) is the ith row of L
starting from entry j + 1 and ending at enetry i. And L(j+1 : i, j) is the jth column of
L, starting at entry j + 1 and ending at entry i. )

Exercise 3.64 (Matrix Inversion). There are a few standard algorithms that invert an
invertible matrix. One such algorithm uses the LU decomposition. Suppose A is an invertible
matrix. Using the LU decomposition, show that PA = LU , with L,U invertible, L lower
triangular, U upper triangular, and P a permutation matrix, so that A = P TLU . Then,
with Exercise 3.63, describe an algorithm for computing A−1 as U−1L−1P that uses at most
20n3 arithmetic operations.

33



As we mentioned in Remark 3.43, the linear system Ax = b can be solved (if a solution
exists) by performing elementary row operations on A. These elementary row operations
are encoded in the LU decomposition, so the LU decomposition can solve a linear system of
equations.

Theorem 3.65 (Solving Systems of Linear Equations). Let A be a complex n × n
matrix. Let b ∈ Cn. Consider the equation

Ax = b

where x ∈ Cn is unknown. Let PA = LU be the LU decomposition of A that we found
(together with an algorithm) in Theorem 3.58. If a solution x′ ∈ Cn exists to the equation
Ax′ = b, then some x ∈ Cn satisfying Ax = b can be found by solving the following two
triangular systems, whose solutions exist

• First solve for y ∈ Cn in the equation Ly = Pb,
• Then solve for x ∈ Cn in the equation Ux = y, and output x,

Remark 3.66. Solving linear triangular systems is easy. Note LUx = PAx = Pb.

Proof. First, note that L is lower triangular with ones on its diagonal, so a solution y exists
to Ly = Pb (i.e. L is invertible). Since P is invertible, x ∈ Cn satisfies PAx = Pb if and only
if Ax = b. Since Ly = Pb, and PA = LU , we have PAx = LUx = Ly. Since L is invertible,
we have Ux = y. That is, Ax = b is solvable for x if and only if Ux = y is solvable for x. We
assumed that some x′ ∈ Cn solves Ax′ = b, so we deduce this same x′ solves Ux′ = y. □

Remark 3.67. Recall that if A is a real n× n matrix with rank n, and if b ∈ Rn, then the
equation Ax = b can always be solved for some unique x ∈ Rn. More generally, if A perhaps
does not have full rank, then Ax = b can be solved only if b is in the span of the columns of
A. In this case, the solution x might not be unique. For this reason, solving for Ux = y in
Theorem 3.65 might result in a non-unique solution x to Ax = b.

Exercise 3.68. Let

A =


0 1 1 0 2
2 3 0 0 0
4 5 1 0 2
−6 0 1 2 0
3 0 4 0 −1

 .

Using the LU decomposition of A, solve the equation

Ax = b,

using Python code (without using any built-in linear algebra solvers) where b = (2, 4, 3, 1, 5)T .
(Note that solving a linear system such as Ly = b when L is lower triangular should be
relatively straightforward, by e.g. first solving for y1, then y2, and so on.)

Definition 3.69. A self-adjoint n × n matrix A is said to be positive semidefinite if all
eigenvalues of A are nonnegative. If additionally all eigenvalues of A are positive, A is called
positive definite.

Theorem 3.70. Let A be an n× n self-adjoint matrix with values in C. Then the following
are equivalent.
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(i) All eigenvalues of A are nonnegative.
(ii) There exists an n× n matrix B with values in C such that A = B∗B.
(iii) For any x ∈ Cn ∖ {0}, we have x∗Ax ≥ 0.

Moreover, strict equality holds in (i) and (iii) if and only if all eigenvalues of A are positive.

Proof. We will show that (i) implies (ii), (ii) implies (iii), and (iii) implies (i), thereby
obtaining the equivalence of all three conditions. In all cases, since A is self-adjoint, the
Spectral Theorem 3.34 says A = QDQ∗ with D an n × n diagonal matrix with real entries
and Q is unitary n × n. If (i) holds, D has nonnegative entries, A = Q

√
D
√
DQ∗ =

(Q
√
D)(Q

√
D)∗, so (ii) holds with B := (Q

√
D)∗. If (ii) holds and x ∈ Cn ∖ {0}, then

x∗Ax = x∗B∗Bx = (Bx)∗Bx = ∥Bx∥2 ≥ 0, so (iii) holds. If (iii) holds and if v ∈ Cn ∖ {0}
is an eigenvector of A with eigenvalue λ ∈ R, then λ ∥v∥2 = λv∗v = v∗Av ≥ 0. We conclude
that λ ≥ 0 since v ̸= 0 implies ∥v∥ ≠ 0 so that (i) holds. □

Corollary 3.71. Let F denote R or C. Let A be a self-adjoint positive definite n×n matrix
with elements in F. Then there exist n× n matrices L,U with elements in F such that

A = LU,

where L is lower triangular, U is upper triangular. Moreover, L and U can be computed with
at most 5n3 arithmetic operations.

Proof. We repeat the proof of Theorem 3.58. Observe first that the top left entry of A must
be positive by Theorem 3.70(iii), so we can take P1 = I. Similarly, every other Pk can be
taken to be the identity matrix. We prove this by contradiction. Suppose for example that
at step k of the proof of Theorem 3.58, we find that all entries in the kth column of the
matrix below and including the kth entry are all zero. If this occurs, then the top left k × k
minor of Lk · · ·L1A has a zero row in its kth row. So the vector x ∈ Rn with a 1 in the kth

entry and a zero in its other entries satisfies

0 < xTLk · · ·L1AL
T
1 · · ·LT

k x = xT

(
Ak ∗
0 0

)
LT
1 · · ·LT

k x

= xT

(
0 ∗
0 0

)
LT
1 · · ·LT

k x = xT

(
0 ∗
0 0

)
x = 0.

The first inequality used Theorem 3.70. The penultimate equality used that LT
1 · · ·LT

k is
upper triangular. The last equality used the definition of x. With this contradiction, we
conclude we can choose P = I in Theorem 3.58.

□

Exercise 3.72. Write a computer program on your own that finds the LU factorization of
the matrix

A =


6 0 −4 0
0 7 0 −1
−4 0 6 0
0 −1 0 7

 .

3.2. QR Decomposition, Eigenvalues, Power Method, QR Algorithm.
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3.2.1. QR Decomposition. Due to examples of LU factorizations such as Exercise 3.61, the
LU decomposition (or equivalently, Gaussian elimination) might not be the best method for
solving linear systems of equations. There is another matrix factorization, the QR decom-
position, which sometimes behaves better for solving linear systems of equations. The QR
decomposition also has other applications not directly related to solving linear systems.

We will construction the QR decomposition iteratively with the following lemma. The
idea of the QR decomposition is that, rather than using row operations to force a column
of a matrix to have many zeros, we will apply a (complex) rotation to the matrix to force a
column to have many zeros.

Lemma 3.73. Let e1 = (1, 0, . . . , 0)T . Let w ∈ Cn. Then there exists v ∈ Cn with ∥v∥ = 1
and there exists α ∈ C such that

(I − 2vv∗)w = αe1.

Moreover, I−2vv∗ is a unitary matrix, and we can choose α := −∥w∥ e
√
−1 θ where θ ∈ [0, 2π)

satisfies w1 = |w1| e
√
−1 θ, i.e. θ is the angle w1 makes with the positive real axis.

Proof. First, note that the matrix I − 2vv∗ is unitary since (I − 2vv∗)v = v − 2v ∥v∥2 = −v
and for any x perpendicular to v, we have v∗x = 0 so (I − 2vv∗)x = x, i.e. there is an
orthonormal basis of Cn that diagonalizes I − 2vv∗ with all eigenvalues 1 or −1.

If w = 0, choose α = 0, so below, assume w ̸= 0. Now, we will choose α so that
vv∗w = 1

2
(w− αe1). Also, we will choose v := w−αe1

∥w−αe1∥ (we will choose α so the denominator

is nonzero). Then

vv∗w =
(w − αe1)(w − αe1)

∗

∥w − αe1∥2
w = (w − αe1)

∥w∥2 − αw1

∥w∥2 − αw1 − w1α + |α|2
.

We want to choose α so this quantity is 1
2
(w − αe1), i.e. we choose α so that

2
(
∥w∥2 − αw1

)
= ∥w∥2 − αw1 − w1α + |α|2 . (∗∗)

That is, we choose α so that

∥w∥2 = −αw1 + w1α + |α|2 = 2Im(w1α) + |α|2 .
We can then choose α ∈ C so that the imaginary part of w1α is zero, and such that |α| = ∥w∥.
For example, if w1 = reiθ where i =

√
−1, r > 0 and θ ∈ [0, 2π), then we can choose

α := −∥w∥ eiθ,
so that (∗∗) holds and αw1 = −r ∥w∥. We now verify (recalling w ̸= 0) that

∥w − αe1∥2 = 2(∥w∥2 − αw1) = 2(∥w∥2 + ∥w∥ r) > 0,

so that we have not divided by zero in the definition of α, so that (∗) holds as required. □

Theorem 3.74 (QR Factorization). Let F denote R or C. Let A be an m×n matrix with
values in F, with m ≥ n. Then there exists an m ×m unitary matrix Q (with values in F)
and an m× n upper triangular matrix R (with values in F) such that

A = QR.

Moreover, Q is obtained by applying n−1 unitary matrices to the columns of A, and at most
8n2m arithmetic operations are required to compute the matrices Q and R.
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Proof. Let w be the first column of A. We would like to apply a rotation (i.e. a unitary
matrix) to A that rotates w into a vector with all entries zero except for the first entry. The
unitary matrix will be I − 2vv∗ for some v ∈ Cm with ∥v∥ = 1. This is possible by Lemma
3.73. We then have a unitary matrix U1 = I − 2vv∗ such that

U1A =

(
a1 ∗
0 A2

)
,

where A2 is an (m−1)× (n−1) matrix. We can then iterate this procedure, finding a vector
v2 ∈ Cm−1 such that I − 2v2v

∗
2 and such that (I − 2v2v

∗
2)A2 has zeros below the first entry

of its first column. Define then

U2 :=

(
1 0
0 I − 2v2v

∗
2

)
.

Then U2U1A is upper triangular with zeros below its first two diagonal entries. After iterating
this procedure n − 1 times, we have found m ×m unitary matrices U1, . . . , Un−1 such that
R := Un−1 · · ·U1A is upper triangular. Define Q := U∗

1 · · ·U∗
n−1, so that A = QR.

Since (I−2vv∗)w = w−2v(v∗w) = w−v(2)(v∗w), computing (I−2vv∗)w requires at most
4m arithmetic operations, so that (I − 2vv∗)A requires at most 4nm operations. Iterating
n−1 times, we require at most 4n2m operations to compute R. Since (I−2vv∗)∗ = I−2vv∗,
each of the unitary matrices U1, . . . , Un−1 is also self-adjoint, so Q = U1 · · ·Un−1, and doing
that multiplication also requires at most 4n2m operations, for a total of at most 8n2m
operations. □

The above algorithm using Lemma 3.73 is preferred in practice. The QR decomposition
can also be constructed via the Gram-Schmidt orthogonalization. However, the subtractions
in the Gram-Schmidt procedure lead to loss of significance errors and instability.

Proof. Denote the columns of A as A1, . . . , An, and denote the output of Theorem 3.23 as
Q1, . . . , Qn. Let Q denote the matrix with columns Q1, . . . , Qn. Define rij := ⟨Aj, Qi⟩. Since
Q1, . . . , Qn are an orthonormal basis of Cn, we have by Theorem 3.20, for each 1 ≤ j ≤ n,

Aj =
n∑

i=1

⟨Aj, Qi⟩Qi =
n∑

i=1

rijQi.

That is, akj =
∑n

i=1 qkirij for all 1 ≤ j ≤ m, 1 ≤ k ≤ n. That is, A = QR.
By the definition of the Gram-Schmidt procedure rii > 0 for all 1 ≤ i ≤ n. Also, by

definition of the Gram-Schmidt Orthogonalization, if 1 ≤ j < i ≤ n, then Qi is orthogonal
to Aj, so that rij = ⟨Qi, Aj⟩ = 0. That is, R is upper triangular.

Lastly, note that the kth step of the Gram-Schmidt procedure uses at most 5km arithmetic
operations, so n total steps results in at most n(n + 1)(5/2)m arithmetic operations, with
one final normalization step using at most 2nm operations, for a total of at most 5n2m
operations. □

Lemma 3.75. Let A be a complex n×n matrix with rank n. Then there is a unique way to
write a QR decomposition A = QR where R has nonnegative diagonal entries.

Proof. Suppose A = QR = Q0R0. Since A has rank n, R is invertible. Then Q∗
0Q = R0R

−1.
The matrix on the left is unitary and the matrix on the right is upper triangular with
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nonnegative diagonal entries. So, we must have R0R
−1 = I, so that R0 = R and similarly

Q = Q0. □

Theorem 3.70(ii) says that a self-adjoint positive definite matrix can be written as A =
B∗B, and this factorization is useful for many applications. However, Theorem 3.70(ii) was
not constructive. Below, we describe an algorithm for finding this decomposition.

Theorem 3.76 (Cholesky Decomposition). Let F denote R or C. Let A be an n×n self-
adjoint positive definite matrix with values in F. Then there exists an n×n upper triangular
matrix B with elements in F such that

A = B∗B.

Moreover, B =
√
(U∗)−1LU where A = LU is an LU decomposition of A (from Corollary

3.71), so that B can be computed from Corollary 3.71 and Exercise 3.63 below. Lastly, the
Cholesky decomposition A = B∗B is unique up to multiplication of B by a diagonal matrix
with entries with absolute value 1.

Proof. From Corollary 3.71, we can write A = LU where L is lower triangular, and U is
upper triangular. Since A is self-adjoint, we have

LU = A = A∗ = U∗L∗.

Since A is positive definite, U,L are invertible (otherwise 0 < det(A) = det(L) det(U) = 0).
So,

(U∗)−1L = L∗U−1.

The matrix on the left is lower triangular and the matrix on the right is upper triangular.
Therefore, both of these matrices must be diagonal. That is, there is a diagonal matrix D
such that D = (U∗)−1L, i.e. L = U∗D. Then

A = LU = U∗DU. (‡)

Then D = (U∗)−1AU−1 = (U−1)∗AU−1. From Theorem 3.70, for any x ∈ Fn ∖ {0},

x∗Dx = (U−1x)∗AU−1x > 0.

So, D is diagonal with positive values. Defining
√
D as the diagonal matrix with entries the

square roots of the entries of D, (‡) becomes

A = U∗
√
D
√
DU = (

√
DU)∗

√
DU.

We then define B :=
√
DU . Since B =

√
(U∗)−1LU , Corollary 3.71 and Exercise 3.63

complete the algorithm for computing B.
To see the uniqueness of the Cholesky decomposition, write A = B∗B = C∗C with C,B

lower triangular. Then (CB−1)∗CB−1 = I, so that CB−1 is a lower triangular, unitary
matrix, i.e. CB−1 = D where D is a diagonal matrix with entries with absolute value 1, so
that C = DB. □
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3.2.2. Matrix Norms as a Measure of Error. Norms are used in numerical analysis to bound
the errors in matrix computations.

An n ×m matrix can be treated as a vector of length nm, so that a set of matrices can
be equipped with a vector norm.

However, there are also other natural norms on the set of matrices, e.g. ones related to
eigenvalues or singular values of the matrix, which we describe further below.

Definition 3.77 (Singular Values). Let A be an m × n complex matrix. Then the sin-
gular values of A are the square roots of the eigenvalues of A∗A. (Theorem 3.70 says the
eigenvalues of A∗A are nonnegative.)

Definition 3.78 (Vector ℓp Norms). Let 1 ≤ p < ∞. Let x ∈ Cn. Define the ℓp norm of
x to be

∥x∥p :=
( n∑

i=1

|xi|p
)1/p

.

Also define the ℓ∞ norm of x to be

∥x∥∞ := max
1≤i≤n

|xi| .

Proposition 3.79. The ℓp norm is a norm for any 1 ≤ p ≤ ∞, i.e. the definition of a norm
from Definition 3.8 holds.

Proof. We will show the triangle inequality holds. The case p = ∞ follows from the scalar
triangle inequality, so assume 1 ≤ p < ∞. Let x, y ∈ Cn. We need to show that ∥x+ y∥p ≤
∥x∥p + ∥y∥p. By scaling, we may assume ∥x∥p = 1 − t, ∥y∥p = t, for some t ∈ (0, 1) (zeros

and infinities being trivial). Define v := x/(1− t), w := y/t. Then by convexity of s 7→ |s|p
on R,

|(1− t)vi + twi|p ≤ (1− t) |vi|p + t |wi|p , ∀ 1 ≤ i ≤ n

Summing over 1 ≤ i ≤ n, we get

∥x+ y∥pp ≤ (1− t) ∥v∥pp + t ∥w∥pp = (1− t) + t = 1.

So, ∥x+ y∥p ≤ 1 = ∥x∥p + ∥y∥p. □

Definition 3.80 (Standard Inner Product). Let x, y ∈ Cn. Define the standard inner
product of x and y by

⟨x, y⟩ :=
n∑

i=1

xiyi.

One can check that the standard inner product is an inner product, i.e. Definition 3.10
holds in this case.

Theorem 3.81 (Hölder’s Inequality). Let 1 ≤ p ≤ ∞, and let q be dual to p (so 1/p +
1/q = 1). Let x, y ∈ Cn. Then

|⟨x, y⟩| ≤ ∥x∥p ∥y∥q .
The case p = q = 2 recovers the Cauchy-Schwarz inequality:

|⟨x, y⟩| ≤ ∥x∥2 ∥y∥2 .
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Proof. By scaling, we may assume ∥x∥p = ∥y∥q = 1 (zeros and infinities being trivial). Also,
the case p = 1, q = ∞ follows from the triangle inequality, so we assume 1 < p < ∞. From
concavity of the log function, we have

|xiyi| = (|xi|p)1/p(|yi|q)1/q ≤
1

p
|xi|p +

1

q
|yi|q , ∀ 1 ≤ i ≤ n.

Summing over 1 ≤ i ≤ n, we get |⟨x, y⟩| ≤ 1
p
+ 1

q
= 1 = ∥x∥p ∥y∥q. □

Corollary 3.82 (Duality for ℓp Norms). Let 1 ≤ p ≤ ∞, and let q be dual to p (so
1/p+ 1/q = 1). Let y ∈ Cn. Then

∥y∥p = sup
x∈Rn : ∥x∥q≤1

|⟨x, y⟩| .

Proof. Hölder’s inequality, Theorem 3.81, implies that supx∈Rn : ∥x∥q≤1 |⟨x, y⟩| ≤ ∥y∥p. To get

the other corresponding inequality, consider x ∈ Cn defined by xi := ∥y∥−(p−1)
p yi |yi|p−2 1yi ̸=0

for all 1 ≤ i ≤ n. Since 1/p+ 1/q = 1, p+ q = pq, and q(p− 1) = p, so

∥x∥qq = ∥y∥−q(p−1)
p

n∑
i=1

|yi|q(p−1) = ∥y∥−p
p

n∑
i=1

|yi|p = ∥y∥p−p
p = 1.

⟨x, y⟩ = ∥y∥−(p−1)
p

n∑
i=1

|yi|p = ∥y∥p .

Therefore, supx∈Rn : ∥x∥q≤1 |⟨x, y⟩| ≥ ∥y∥p. □

A natural class of matrix norms is defined in analogy with Corollary 3.82.

Definition 3.83. Let A be an m× n complex matrix. Let 1 ≤ p, q ≤ ∞. Define the p → q
norm of A to be

∥A∥p→q := sup
x∈Cn : ∥x∥p≤1

∥Ax∥q .

Proposition 3.84. The p → q norm is a norm for any 1 ≤ p, q ≤ ∞, i.e. the definition of
a norm from Definition 3.8 holds.

Proof. We will show the triangle inequality holds. Let A,B be m × n complex matrices.
Fix x ∈ Cn with ∥x∥p ≤ 1. From the triangle inequality for the ℓq norm, ∥(A+B)x∥q ≤
∥Ax∥q+∥Bx∥q. Taking the supremum over x on both sides, we get ∥A+B∥p→q ≤ ∥A∥p→q+

∥B∥p→q. □

The supremum definition makes these norms difficult to compute directly. Still, in certain
cases, Corollary 3.82 can give simpler expressions for these norms.

Exercise 3.85. Let A be an m× n complex matrix. Show the following

• ∥A∥1→1 = max1≤j≤n

∑m
i=1 |aij|.

• ∥A∥∞→∞ = max1≤i≤n

∑m
j=1 |aij|.

• ∥A∥22→2 is equal to the largest eigenvalue of AA∗ (or of A∗A). That is, ∥A∥2→2 is the
largest singular value of A.

• For any 1 ≤ p, q ≤ ∞, ∥AB∥p→q ≤ ∥A∥p→q ∥B∥p→q.
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Theorem 3.86 ([GVL13, Theorem 3.3.1]). Let ∥·∥ denote any matrix norm. Let A be an
n × n complex matrix. Assume that A has an LU factorization of the form A = LU , and
the diagonal entries of L and U are all positive. Assume

• All operations use normal floating point numbers.
• For any floating point numbers x, y used in the algorithm, for any operation ⊙ among
addition, subtraction, multiplication, and division, we have

fl(x⊙ y) = x⊙fl y.

Here ⊙fl denotes the floating point implementation of an operation such as addition.
• For any floating point numbers x, y used in the algorithm, for any operation ⊙ among
addition, subtraction, multiplication, and division, there exists δ ∈ R with |δ| ≤ ε such
that

x⊙fl y = (x⊙ y)(1 + δ).

Then the algorithm in Theorem 3.58 outputs a factorization L̃, Ũ such that

∥A− L̃Ũ∥ ≤ 3(1− (1 + 2−52)n)
(
∥A∥+ ∥L∥ ∥U∥

)
.

Recall from Exercise 3.61 that ∥L∥ or ∥U∥ can be exponentially large in n, in which case
this theorem has limited significance.

3.2.3. Power Method.

Exercise 3.87 (The Power Method). This exercise gives an algorithm for finding the
eigenvectors and eigenvalues of a symmetric matrix. In modern statistics, this is often a
useful thing to do. The Power Method described below is not the best algorithm for this
task, but it is perhaps the easiest to describe and analyze.

Let A be an n×n real symmetric matrix. Let λ1 ≥ · · · ≥ λn be the (unknown) eigenvalues
of A, and let v1, . . . , vn ∈ Rn be the corresponding (unknown) eigenvectors of A such that
∥vi∥ = 1 and such that Avi = λivi for all 1 ≤ i ≤ n.
Given A, our first goal is to find v1 and λ1. For simplicity, assume that 1/2 < λ1 < 1, and

0 ≤ λn ≤ · · · ≤ λ2 < 1/4. Suppose we have found a vector v ∈ Rn such that ∥v∥ = 1 and
|⟨v, v1⟩| > 1/n. (An exercise more suitable for a probability class shows that a randomly
chosen v satisfies this property, with probability at least 1/2.) Let k be a positive integer.
Show that

Akv

approximates v1 well as k becomes large. More specifically, show that for all k ≥ 1,∥∥Akv − ⟨v, v1⟩λk
1v1

∥∥2 ≤ n− 1

16k
.

(Hint: use the spectral theorem for symmetric matrices.)
Since |⟨v, v1⟩|λk

1 > 2−k/n, this inequality implies that Akv is approximately an eigenvector
of A with eigenvalue λ1. That is, by the triangle inequality,∥∥A(Akv)− λ1(A

kv)
∥∥ ≤

∥∥Ak+1v − ⟨v, v1⟩λk+1
1 v1

∥∥+ λ1

∥∥⟨v, v1⟩λk
1v1 − Akv

∥∥ ≤ 2

√
n− 1

4k
.

Moreover, by the reverse triangle inequality,∥∥Akv
∥∥ =

∥∥Akv − ⟨v, v1⟩λk
1v1 + ⟨v, v1⟩λk

1v1
∥∥ ≥ 1

n
2−k −

√
n− 1

4k
.
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In conclusion, if we take k to be large (say k > 10 log n), and if we define z := Akv, then
z is approximately an eigenvector of A, that is∥∥∥∥A Akv

∥Akv∥
− λ1

Akv

∥Akv∥

∥∥∥∥ ≤ 4n3/22−k ≤ 4n−4.

And to approximately find the first eigenvalue λ1, we simply compute

zTAz

zT z
.

That is, we have approximately found the first eigenvector and eigenvalue of A.
Remarks. To find the second eigenvector and eigenvalue, we can repeat the above proce-

dure, where we start by choosing v such that ⟨v, v1⟩ = 0, ∥v∥ = 1 and |⟨v, v2⟩| > 1/(10
√
n).

To find the third eigenvector and eigenvalue, we can repeat the above procedure, where we
start by choosing v such that ⟨v, v1⟩ = ⟨v, v2⟩ = 0, ∥v∥ = 1 and |⟨v, v3⟩| > 1/(10

√
n). And

so on.
Google’s PageRank algorithm uses the power method to rank websites very rapidly. In

particular, they let n be the number of websites on the internet (so that n is roughly 109).
They then define an n× n matrix C where Cij = 1 if there is a hyperlink between websites
i and j, and Cij = 0 otherwise. Then, they let B be an n × n matrix such that Bij is 1
divided by the number of 1’s in the ith row of C, if Cij = 1, and Bij = 0 otherwise. Finally,
they define

A = (.85)B + (.15)D/n

where D is an n× n matrix all of whose entries are 1.
The power method finds the eigenvector v1 of A, and the size of the ith entry of v1 is

proportional to the “rank” of website i.

Exercise 3.88. Consider the following symmetric real matrix

A =


5 1 −2 3 1
1 3 6 0 0
−2 6 0 1 1
3 0 1 1 2
1 0 1 2 3

 .

Using the power method (i.e. by examining large powers of A in Python), find the largest
eigenvalue λ ∈ R of A and a corresponding eigenvector v ∈ R5 with ∥v∥2 = 1.

Note that (A − λvvT )v = Av − λv = 0, and if w is any other eigenvector of A, then
(A − λvvT )w = Aw. Using this observation, apply the power method to A − λvvT to find
the second largest eigenvalue of A.

Finally, compare your results with the built-in Python function np.linalg.eig.

3.2.4. Eigenvalues and the QR Algorithm. The power method just described can find the
first few eigenvalues and eigenvectors of a self-adjoint matrix relatively quickly. However,
finding all eigenvalues and eigenvectors with this method can be costly. Thankfully, there is
an efficient way to find all eigenvalues and eigenvectors of a matrix simultaneously, using a
cleverly chosen sequence of QR decompositions.
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Algorithm 3.89 (QR Algorithm for Eigenvalues). Input: A symmetric n × n real
matrix A (or a self-adjoint complex matrix A), a number of iterations k.
Output: An n× n matrix D′ whose diagonal entries approximate the eigenvalues of A.

Define A0 := A. For each 1 ≤ j ≤ k, do the following.

• Write Aj−1 in its QR Factorization as Aj−1 =: QjRj (using the algorithm from
Theorem 3.74, which uses either Householder reflections (i.e. Lemma 3.73) or Gram-
Schmidt orthogonalization).

• Define Aj := RjQj.

Output D′ := Ak.

Intuition. When Aj−1 = QjRj, if (hypothetically) Rj = DQT
j , then RjQj = DQT

j Qj =
D. That is, reversing the order in the QR factorization might produce something close to a
diagonal matrix.

Theorem 3.90. Let A be a real symmetric n × n positive definite matrix with distinct
eigenvalues λ1 > · · · > λn > 0. (From the spectral theorem 3.34, write A = QDQ−1 where
Q is an orthogonal matrix.) Assume that D is ordered so that Dii = λi for all 1 ≤ i ≤ n.
Assume that QT has an LU decomposition QT = LU where the diagonal entries of U are
positive.

Then as k → ∞, the sequence of matrices A1, A2, . . . in Algorithm 3.89 converges to D,
and Q1 · · ·Qk converges to Q.

Proof. Note that A = A0 = Q1R1 and

A2 = Q1R1Q1R1 = Q1A1R1 = Q1Q2R2R1.

More generally, we can prove by induction on k that

Ak = Q1 · · ·QkRk · · ·R1. (‡)
Since A = QDQ−1, Ak = QDkQ−1, so recalling QT = LU , so L = QTU−1,

QDkLD−k = QDkQTU−1D−k = AkU−1D−k (‡)
= Q1 · · ·QkRk · · ·R1U

−1D−k. (∗∗)
Recall that the diagonal entries of L are all 1. For any 1 ≤ i, j ≤ n, note that

(DkLD−k)ij =


1 , if i = j

Lij

(
λi

λj

)k

, if i > j

0 , otherwise.

Since λi < λj when i > j, DkLD−k converges to the identity matrix as k → ∞. So,
QDkLD−k converges to Q as k → ∞, and (∗∗) implies that Q1 · · ·QkRk · · ·R1U

−1D−k

converges to Q as k → ∞. The matrix Q itself has a unique QR factorization as Q = Q · I
with nonnegative diagonal entries on the second term (by Lemma 3.75). So, as k → ∞,
Q1 · · ·Qk converges to Q (the diagonal entries of D and D−1 are positive). Multiplying
both sides by Q−1

k , Q1 · · ·Qk−1 converges to QQ−1
k as k → ∞ as well. So, as k → ∞, Qk

converges to I. From Algorithm 3.89, Ak = QkRk. It also follows by induction that Ak

is symmetric and similar to A = A0 (we know A = A0 is symmetric, and Algorithm 3.89
says Ak = RkQk = QT

kQkRkQk = QT
kAk−1Qk.) Since Ak = QkRk, Ak is symmetric, and

Qk converges to I as k → ∞, it follows that Ak converges to a diagonal matrix as k → ∞.
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Since Ak is similar to A, as k → ∞, Ak converges to a diagonal matrix whose elements are
the eigenvalues of A. Since Ak = (Q1 · · ·Qk)

TA(Q1 · · ·Qk) and Q1 · · ·Qk converges to Q as
k → ∞, we must have Ak converging to D as k → ∞, since A = QDQT , i.e. QTAQ = D.

□

Remark 3.91. This argument shows that Ak converges exponentially fast to a diagonal
matrix whose elements are the eigenvalues of A, in theory.

Exercise 3.92. Consider the following symmetric real matrix

A =


5 1 −2 3 1
1 3 6 0 0
−2 6 0 1 1
3 0 1 1 2
1 0 1 2 3

 .

Using the QR algorithm, find all eigenvalues and eigenvectors of A.
Finally, compare your results with the built-in Python function np.linalg.eig.

In order to decrease the computation time in the QR algorithm, the matrix A can be
pre-processed into a similar tridiagonal matrix. This step can be done by a modification of
the QR factorization. If A is a symmetric real n × n matrix, and w ∈ Rn−1 is the lowest
n− 1 entries of the first column of A, then Lemma 3.73 says we can find v ∈ Cn−1 such that
the (n− 1)× (n− 1) unitary matrix I − 2vv∗ satisfies (I − 2vv∗)w = αe1. So, if

Q :=

(
1 0
0 I − 2vv∗

)
,

then QA has a first column with zeros below its first two entries. But then QAQT also has
a first column with zeros below its first two entries, since multiplying on the right by QT

has no effect on those zero entries. Since A is symmetric, QAQT then must have zeros in its
first row after its first two entries. In summary, QAQT has the form

QAQT =


∗ ∗ 0 · · · 0
∗ ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
...

...
...

. . .
...

0 ∗ ∗ · · · ∗


We can then iterate this procedure, letting w be the lowest n−2 entries of the second column
of QAQT . After n− 1 iterations, we obtain a tridiagonal matrix QAQT . The NCM package
command eigsvdgui illustrates this procedure.

3.3. Least Squares. In Theorem 3.65, we used the LU decomposition of a square matrix
A to solve the equation Ax = b, if a solution x exists. If A does not have full rank, then a
solution to the equation Ax = b might not exist. In such a case, we still might want to find
a vector x that “most closely” solves the equation Ax = b. More precisely, we want to find
a vector x that minimizes the quantity ∥Ax− b∥2, or equivalently, ∥Ax− b∥22.
Definition 3.93 (Least Squares Problem). Let A be an m× n real matrix. Let b ∈ Rm.
The least squares problem asks for a vector x ∈ Rn minimizing

∥Ax− b∥22 .
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Example 3.94. Suppose we have data points (a1, b1), . . . , (am, bm) ∈ R2 and we would like
to find the “best fit” line to the data. More specifically, we would like to find x0, x1 ∈ R
such that the linear function

f(t) := x0 + x1t, ∀ t ∈ R
minimizes the sum of squared differences

m∑
i=1

[f(ai)− bi]
2 =

m∑
i=1

[x0 + x1ai − bi]
2.

We can rewrite this sum of squares in matrix form as

∥Ax− b∥2

where x =
(
x0

x1

)
, b = (b1, . . . , bm)

T , and

A =


1 a1
1 a2
...

...
1 am

 .

So, finding the “best fit” line is a special case of the least squares minimization problem.
More generally, let k ≥ 1 be an integer, and suppose we would like to we would like to

find the “best fit” degree k polynomial to the data, i.e. we would like to find x0, . . . , xk ∈ R
such that the polynomial

f(t) := x0 + x1t+ · · ·+ xkt
k, ∀ t ∈ R

minimizes the sum of squared differences
m∑
i=1

[f(ai)− bi]
2 =

m∑
i=1

[x0 + x1ai + · · ·+ xka
k
i − bi]

2.

We can rewrite this sum of squares in matrix form as

∥Ax− b∥2

where x = (x0, . . . , xk)
T , b = (b1, . . . , bm)

T , and A is a Vandermonde matrix

A =


1 a1 a21 · · · ak1
1 a2 a22 · · · ak2
...

...
...

. . .
...

1 am a2m · · · akm

 .

As before, finding the “best fit” degree k polynomial is a special case of the least squares
minimization problem.

Lemma 3.95. Let A be an m× n real matrix. Let b ∈ Rm.
The vector x ∈ Rn minimizes ∥Ax− b∥ if and only if ATAx = AT b.

Proof. Let t ∈ R and consider the function f : R → R defined by

f(t) := ∥A(x+ ty)− b∥22 = ∥Ax− b+ tAy∥22 = ∥Ax− b∥22 + 2tyTAT (Ax− b) + t2 ∥Ay∥22 .
This function is quadratic in t, and a minimum occurs at t = 0 if and only if yTAT (Ax−b) = 0
for all y ∈ Rn, i.e. when AT (Ax− b) = 0. □
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Exercise 3.96. Let A be an m× n real matrix with m ≥ n. Show that A has rank n if and
only if ATA is positive definite.

(Hint: ATA is always positive semidefinite.)

Lemma 3.95 and Exercise 3.96 together imply the following.

Proposition 3.97. Let A be an m × n real matrix with m ≥ n. Suppose A has rank n.
Then there is a unique solution of the least squares problem given by

x = (ATA)−1AT b.

In this case, the matrix (ATA)−1AT is called the pseudoinverse of A. (When A is a
non-square matrix, it will not have an inverse, but (ATA)−1ATA = I.)

Explicitly inverting a matrix is generally not advisable. For this reason, when m,n are
large, it is not a good idea to use Proposition 3.97 and its explicit formula for the xminimizing
the least squares problem. We can instead minimize a full rank least squares problem using
the two methods described below.

Theorem 3.98 (Least Squares via Cholesky Decomposition). Let A be an m×n real
matrix with m ≥ n. Suppose A has rank n. The unique solution of the least squares problem
can be found in the following way

• Find the Cholesky decomposition L∗L of A∗A, where L is an n× n lower triangular
real matrix (using the algorithm from Theorem 3.76, which uses an LU factorization
of A∗A.)

• Solve the equation L∗y = A∗b for y ∈ Rn.
• Solve the equation Lx = y for x ∈ Rn.

Proof. From Lemma 3.95 and Proposition 3.97, there is a unique solution x ∈ Rn to the
equation A∗Ax = A∗b. By assumption, we have L∗Lx = A∗b. Since A∗A is positive definite
by Exercise 3.96, L is invertible, so there is a unique solution y to the equation L∗y = A∗b.
Similarly, there is a unique solution x′ to Lx′ = y. Once these equations are solved, we have
A∗b = L∗y = L∗Lx′. That is, x = x′. □

Theorem 3.99 (Least Squares via QR Decomposition). Let A be an m×n real matrix
with m ≥ n. Suppose A has rank n. The unique solution of the least squares problem can be
found in the following way

• Find the QR decomposition QR of A, (using the algorithm from Theorem 3.74, which
uses either Householder reflections (i.e. Lemma 3.73) or Gram-Schmidt orthogonal-
ization.)

• Solve the equation Rx = Q∗b for x ∈ Rn.

Proof. From Lemma 3.95 and Proposition 3.97, there is a unique solution x ∈ Rn to the
equation A∗Ax = A∗b. Since A∗A = R∗Q∗QR = R∗R, we can rewrite the first equation as
R∗Rx = R∗Q∗b. Since R is n × n and upper triangular, and A has rank n, R is invertible,
so we can rewrite the equation as Rx = Q∗b. □

Exercise 3.100. Suppose we have data points (0, 1), (1, 3), (2, 3), (3, 5), (4, 2) ∈ R2 denoted
as {(ai, bi)}5i=1. Find the line that best fits the data. That is, find the line f : R → R
that minimizes the sum of squared differences

∑5
j=1 |f(ai)− bi|2. Use either a Cholesky
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decomposition or a QR decomposition, with your own method written in Python (i.e. don’t
use any built-in Python matrix decomposition functions).

Then, find the best fit degree two polynomial, and the best fit degree three polynomial to
these data points.

3.4. Singular Value Decomposition (SVD). Recall the definition of singular values in
Definition 3.77.

Remark 3.101. If m = n, if A is self-adjoint, and if λ ∈ R is an eigenvalue of A with
eigenvector v ∈ Cn, then A∗Av = A2v = λ2v, so that |λ| is a singular value of A.

The Spectral Theorem 3.33 3.34 says that a square matrix A can be written as A = QDQ−1

under some assumptions. In general, not every matrix can be written in this way. However,
a different decomposition, known as the singular value decomposition, can be applied to any
matrix.

Theorem 3.102 (Singular Value Decomposition (SVD)). Let F denote R or C. Let A
be an m× n matrix with values in F with m ≤ n. Then there exists a p× p diagonal matrix
D with positive entries (p ≤ m), an m ×m unitary matrix U , an n × n unitary matrix V ,
each with elements in F such that

A = U

(
D 0
0 0

)
V.

Moreover, AA∗ = U

(
D2 0
0 0

)
U∗ and V =

(
(D−1, 0)U∗A

···

)
where D has no zero diagonal entries.

(And U,D can be obtained from the QR Algorithm 3.89 applied to AA∗.) (In the case p = m
we have A = U(D, 0)V , AA∗ = UD2U∗, etc.)

Proof. Theorem 3.70 implies that AA∗ and A∗A are self-adjoint positive semidefinite. The
Spectral Theorem 3.34 implies that unitary m × m U and diagonal p × p D with positive
entries exists such that p ≤ m and

AA∗ = U

(
D2 0
0 0

)
U∗. (‡)

We can apply the QR Algorithm 3.89 and Theorem 3.90 to AA∗ to compute U,D in the

factorization AA∗ = U

(
D2 0
0 0

)
U∗ (at least when all entries of D are positive and distinct).

Recall D is diagonal with positive entries so D−1 exists. Define Z := (D−1, 0)U∗A. Then

ZZ∗ = (D−1, 0)U∗AA∗U

(
D−1

0

)
= (D−1, 0)

(
D2 0
0 0

)(
D−1

0

)
= D−1D2D−1 = I.

By its definition, Z is an m× n matrix with m orthogonal rows. Since m ≤ n, we can add
extra rows to Z as necessary to obtain an n× n matrix V with orthogonal rows.

Finally, observe that

U

(
D 0
0 0

)
V = U

(
D 0
0 0

)(
Z

· · ·

)
= U

(
D 0
0 0

)(
(D−1, 0)U∗A

· · ·

)
= U

(
D
0

)
(D−1, 0)U∗A

= U

(
I 0
0 0

)
U∗A = U

(
I −

(
0 0
0 I

))
U∗A = A− U

(
0 0
0 I

)
U∗A = A.
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In the last line we used U

(
0 0
0 I

)
U∗A = 0, which follows since

U

(
0 0
0 I

)
U∗AA∗ (‡)

= U

(
0 0
0 I

)(
D2 0
0 0

)
U∗ = U0U∗ = 0. (∗∗)

Therefore,

U

(
0 0
0 I

)
U∗A

[
U

(
0 0
0 I

)
U∗A

]∗
=

[
U

(
0 0
0 I

)
U∗AA∗

]
(· · · ) (∗∗)

= 0,

so that U

(
0 0
0 I

)
U∗A = 0. We have therefore shown the existence of the SVD. Lastly, in

order to conclude that V is a unitary matrix, we have used Lemma 3.103 below. □

Lemma 3.103. Let C be an n× n complex matrix such that CC∗ = I. Then C∗C = I.

Proof. By assumption, we have C∗CC∗C = C∗C, i.e. (C∗C)2 = C∗C. Since C∗C is a
self-adjoint positive semidefinite matrix, the spectral theorem 3.34 implies that there is a
unitary n × n matrix U and a diagonal matrix D with nonnegative diagonal entries such
that C∗C = UDU∗. Since (C∗C)2 = C∗C, we have

UD2U∗ = UDU∗.

That is, D2 = D. Since D is diagonal with nonnegative diagonal entries, we conclude that
D = I, so that C∗C = UIU∗ = UU∗ = I. □

Exercise 3.104.

• Give an example of a real 2 × 2 matrix A with a non-unique singular value decom-
position. That is, find a diagonal 2 × 2 matrix D, unitary 2 × 2 matrices U1 ̸= U2,
unitary 2× 2 matrices V1 ̸= V2 such that

A = U1DV1 = U2DV2.

• Give an example of a real 2 × 3 matrix A with a non-unique singular value decom-
position. That is, find a diagonal 2 × 2 matrix D, unitary 2 × 2 matrices U1 ̸= U2,
unitary 3× 3 matrices V1 ̸= V2 such that

A = U1(D, 0)V1 = U2(D, 0)V2.

3.4.1. Additional Comments. We noted in Theorem 3.86 a performance guarantee of the LU
factorization. Yet this guarantee can be quite bad in the worst case, due to the example
from Exercise 3.61. On the other hand, there are various known average-case guarantees for
the LU factorization, such as: https://arxiv.org/abs/2206.01726

We remarked above that the matrix p → q norms can be difficult to compute exactly for
certain p, q. For more precise computational hardness statements, see e.g.
https://arxiv.org/abs/1802.07425 and https://epubs.siam.org/doi/10.1137/S0097539704441629.

For very large matrices, SVD decompositions are difficult to compute efficiently, due to the
need to multiply large matrices to compute the SVD. To alleviate this issue, we can try to
reduce the dimension of the matrices while preserving their structure. For more on this topic
see e.g. https://arxiv.org/abs/0909.4061 or https://en.wikipedia.org/wiki/Johnson Linden-
strauss lemma
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The LU and QR decomposition solve linear systems of equations relatively quickly, though
one could try to decrease their computation times even more. For more on this topic, see
e.g. https://arxiv.org/abs/2007.10254.

4. Clustering

4.1. Principal Component Analysis (PCA). Principal Component Analysis is a proce-
dure for reducing the dimension of data points, without losing too much “information” in
the data. As we will see, PCA is an application of the singular value decomposition.

Algorithm 4.1 (Principal Component Analysis). Input: positive integers m ≤ n,
vectors x(1), . . . , x(m) ∈ Rn, an integer 1 ≤ q < n. Output: vectors y(1), . . . , y(m) ∈ Rq

• Let A be the m× n matrix whose rows are x(1), . . . , x(m).
• From Theorem 3.102, write a singular value decomposition of A as

A = U

(
D 0
0 0

)
V,

where U is m×m, D is p× p (p ≤ m), and V is n× n. Assume that Dii ≥ Di+1,i+1

for all 1 ≤ i ≤ p− 1. (Recall U, V are unitary by Theorem 3.102.)
• Let y(1), . . . , y(m) ∈ Rq be the rows of

U

(
D 0
0 0

)(
Iq
0

)
.

We will always use q ≤ p.

Exercise 4.2. In the Definition of PCA, we assumed that the diagonal matrix D satisfied
Dii ≥ Di+1,i+1 for all 1 ≤ i ≤ p − 1. Show that there always exists a singular value
decomposition with this property. That is, if A is an m × n complex matrix with m ≤ n,
show that there exists an integer p ≤ m, there exists a diagonal p × p matrix D with
nonnegative values, there exist unitary m×m U and unitary n× n V such that

A = U

(
D 0
0 0

)
V,

and such that Dii ≥ Di+1,i+1 for all 1 ≤ i ≤ p− 1.

Definition 4.3. The map x(i) 7→ y(i), 1 ≤ i ≤ m from Rn to Rq in Algorithm 4.1 could be
called a spectral embedding. Letting Iq denote the q × q identity matrix, we could writey(1)

...
y(m)

 =

x(1)

...
x(m)

V ∗
(
Iq
0

)
(Here we denote x(i), y(i) as row vectors, for each 1 ≤ i ≤ m.) Put another way,

y(i) := x(i)V ∗
(
Iq
0

)
, ∀ 1 ≤ i ≤ m.

That is, the map x(i) 7→ y(i), 1 ≤ i ≤ m from Rn to Rq is a linear function. That is, PCA

can be understood as a linear function. Note that V ∗
(
Iq
0

)
is an n × q matrix. For each
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1 ≤ j ≤ q, the jth column of V ∗
(
Iq
0

)
is called a jth principal component of A, or a jth

right singular vector of A. Since V is unitary, the principal components are orthogonal to
each other.

Remark 4.4. In Algorithm 4.1, we could alternatively let y(1), . . . , y(m) be the rows of

U

(
D 0
0 0

)(
Iq 0
0 0

)
V,

but V only applies a rotation to the data, so including or not including V makes no difference
for finding a clustering of our data points. However, in this other definition, the map x(i) 7→
y(i), 1 ≤ i ≤ m from Rn to Rn is a linear projection (i.e. T 2 = T ). To see this, note thaty(1)

...
y(m)

 =

x(1)

...
x(m)

V ∗
(
Iq 0
0 0

)
V

(Here we denote x(i), y(i) as row vectors, for each 1 ≤ i ≤ m.) Put another way,

y(i) := x(i)V ∗
(
Iq 0
0 0

)
V, ∀ 1 ≤ i ≤ m.

Define then T (x) := xV ∗
(
Iq 0
0 0

)
V for all x ∈ Rn. Then

T 2(x) = T (T (x)) = xV ∗
(
Ip 0
0 0

)
V V ∗

(
Iq 0
0 0

)
V = xV ∗

(
Iq 0
0 0

)
V = T (x), ∀x ∈ Rn.

The idea of Algorithm 4.1 is that we would like to choose p so that

A ≈ U

(
D 0
0 0

)(
Iq 0
0 0

)
V. (∗)

Typically, D will have q large entries with other p− q entries close to zero, in which case (∗)

holds, since (by Theorem 3.102), (∗) reduces to showing that D ≈ D

(
Iq 0
0 0

)
.

Although the ≈ symbol here is not rigorous, we could make it rigorous with Definition
3.83, Exercise 3.85 and the following Exercise.

Exercise 4.5. Let A be a real m× n matrix, and define

∥A∥2→2 := sup
x∈Rn : ∥x∥2≤1

∥Ax∥2 .

Let U be an m×m orthogonal matrix, let V be an n×n orthogonal matrix, let D be a p×p
diagonal matrix with nonzero entries such that Dii ≥ Di+1,i+1 for all 1 ≤ i < p. Show that∥∥∥∥U (

D 0
0 0

)
V − U

(
D 0
0 0

)(
Iq 0
0 0

)
V

∥∥∥∥
2→2

= Dq+1,q+1.

from sklearn import datasets

iris = datasets.load_iris()

data = iris.data
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The command data.shape reveals that data is a 150 by 4 matrix. Each row corresponds
to a different flower that is measured, and each of the four columns corresponds to four
measurements of a flower: sepal length, sepal width, petal length and petal width (all in
centimeters). There are three different flower species that are measured in this table: Setosa,
Versicolour and Virginica. We will use PCA to try to group the data points (rows of the
matrix) into three distinct groups.

U, D_vector, V = np.linalg.svd(data)

# D_vector is an array of p = 4 singular values of data

# Let's check that UDV = data

D_truncated = np.zeros([150, 4])

D_truncated[:4, :4] = np.diag(D_vector)

print(np.linalg.norm( U @ D_truncated @ V - data))

# This number is small, so U D_truncated V ~ data

The singular values of data are approximately: 96, 18, 3 and 2. So, it looks like the largest
two singular values capture most of the information about the data, that is,

A ≈ U

(
D 0
0 0

)(
I2 0
0 0

)
V.

Recall that A = U

(
D 0
0 0

)
V . Recall that U is 150 × 150,

(
D 0
0 0

)
is 150 by 4, and V is

4× 4. The product

U

(
D 0
0 0

)(
I2
0

)
then is a 150 × 2 matrix, which we can plot (i.e. we can plot 150 of these two-dimensional
vectors in the plane).

import matplotlib.pyplot as plt

D_truncated = np.zeros([150, 2])

D_truncated[:2, :2] = np.diag(D_vector[:2])

pca_data = U @ D_truncated

plt.plot(

pca_data[:, 0],

pca_data[:, 1],

'o'

)

plt.xlabel('1st component')

plt.ylabel('2nd component')

plt.savefig('iris1.pdf')

plt.show()

fig, ax = plt.subplots()

ax.scatter(

pca_data[:, 0],

pca_data[:, 1],

c = iris.target

)

plt.xlabel('1st component')
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Figure 1. Plot of 2-dimensional output of PCA, Iris data set

plt.ylabel('2nd component')

plt.savefig('iris2.pdf')

plt.show()
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Figure 2. Plot of PCA output in two dimensions. Three classes of irises
labelled. Iris data set

4.2. k-Means Clustering. In the previous section, we used PCA to reduce the dimension
of our data. We then tried to identify clusters of data points from two and three dimensional
plots. There are various ways to rigorously try to find clusters of data points. One popular
method is k-means clustering.
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Definition 4.6 (k-means Clustering). Let w(1), . . . , w(m) ∈ Rq. Let 1 ≤ k ≤ m be an
integer. Then k-means clustering is the following optimization problem: find a partition
S1, . . . , Sk of {1, . . . ,m} minimizing the quantity

k∑
i=1

∑
j∈Si

∥∥∥w(j) − 1

|Si|
∑
ℓ∈Si

w(ℓ)
∥∥∥2

2
, (∗)

over all such partitions of S1, . . . , Sk. That is, find the partition of the points w(1), . . . , w(m)

into k clusters that minimizes the above function.

For each 1 ≤ i ≤ k, the term 1
|Si|

∑
y∈Si

y is the center of mass (or barycenter) of the

points in Si, so each term in the sum is the squared distance of some point in Si from
the barycenter of Si. So, k-means clustering can be seen as a kind of geometric version of
least-squares regression. We emphasize that k is fixed.

Remark 4.7. In case Si is empty for some 1 ≤ i ≤ k, we define 1
|Si|

∑
y∈Si

y := 0. However,

we may assume that S1, . . . , Sk are all nonempty, a priori. To see why, note that if e.g.
S1 = ∅ then m ≥ k implies there is some 1 ≤ t ≤ k such that |St| ≥ 2. Then, writing

St = {x, . . .}, the partition S̃1, . . . , S̃k satisfying S̃r := Sr for all r ̸= 1, r ̸= t, S̃1 := {x},
S̃t := St ∖ {x}, then

k∑
i=1

∑
j∈S̃i

∥∥∥w(j) − 1

|S̃i|

∑
ℓ∈S̃i

w(ℓ)
∥∥∥2

2
−

k∑
i=1

∑
j∈Si

∥∥∥w(j) − 1

|Si|
∑
ℓ∈Si

w(ℓ)
∥∥∥2

2

=
∑

j∈St∖{x}

∥∥∥w(j) − 1

|St| − 1

∑
ℓ∈St∖{x}

w(ℓ)
∥∥∥2

2
−

∑
j∈St

∥∥∥w(j) − 1

|St|
∑
ℓ∈St

w(ℓ)
∥∥∥2

2

We then conclude this quantity is negative by Exercise 4.9, i.e. the quantity (∗) is smaller

for the partition S̃1, . . . , S̃k.

Exercise 4.8. Let w(1), . . . , w(m) ∈ Rq. Let y ∈ Rq. Show that

m∑
j=1

∥∥∥w(j) − 1

m

m∑
ℓ=1

w(ℓ)
∥∥∥2

2
≤

m∑
j=1

∥∥∥w(j) − y
∥∥∥2

2
.

That is, the barycenter is the point in Rq that minimizes the sum of squared distances.

Exercise 4.9. Let w(1), . . . , w(m) ∈ Rq with m ≥ 2. Show that

m∑
i=1

∥∥∥w(i) − 1

m

m∑
j=1

w(j)
∥∥∥2

2
>

m−1∑
i=1

∥∥∥w(i) − 1

m− 1

m−1∑
j=1

w(j)
∥∥∥2

2
.

How can we solve the k-means clustering problem? The most basic algorithm is a
“gradient-descent” procedure known as Lloyd’s Algorithm.

Algorithm 4.10 (Lloyd’s Algorithm). Let w(1), . . . w(m) ∈ Rq. Choose z(1), . . . , z(k) ∈ Rq

(randomly or deterministically), and define Ti := ∅ for all 1 ≤ i ≤ k. Repeat the following
procedure:
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• For each 1 ≤ i ≤ k, re-define

Ti :=
{
j ∈ {1, . . . ,m} :

∥∥w(j) − z(i)
∥∥ = min

ℓ=1,...,k

∥∥w(j) − z(ℓ)
∥∥}.

(If more than one ℓ achieves this minimum, assign j to Tℓ where ℓ is an arbitrary
index ℓ achieving this minimum.) (The sets T1, . . . , Tm are called Voronoi regions.)

• For each 1 ≤ i ≤ k, re-define z(i) := 1
|Ti|

∑
j∈Ti

w(j).

Once this procedure is iterated a specified number of times, output Si := Ti for all 1 ≤ i ≤ k.

Algorithm 4.10 can be considered a “gradient-descent” procedure since the first step of
the iteration always decreases the quantity (∗) by the definition of (∗), and the second step
of the iteration always decreases (∗) by Exercise 4.8.

While each iteration of Lloyd’s Algorithm 4.10 decreases the value of the quantity (∗) (non-
strictly), iterating this algorithm many times does not guarantee that a global minimum of
(∗) is found. To see why, recall that the local minimum of a function f : R → R may not
be the same as a global minimum. So, while Lloyd’s Algorithm 4.10 is simple and it might
work well in certain situations, it has no general theoretical guarantees, since it will only
approach a local minimum of (∗) rather than a global minimum. Some work has been done
to make a “wise” choice of the initial points y(1), . . . , y(k).
So, are there any efficient algorithms with theoretical guarantees? For any ε > 0, there is

a 9 + ε factor approximation algorithm for the k-means clustering problem [KMN+04] with
a polynomial running time (that does not depend on k). That is, it is possible in polynomial
time to find a partition S1, . . . , Sk whose value is at most 9 + ε times the minimum possible
value of (∗). This algorithm is based upon [Mat00]. This factor of 9 was improved to 6.457
in [ANFSW0] and to 6.12903 in [GOR+21], and then to 5.912 in [CAEMN22]. It was shown
[ACKS15] that there exists some ε > 0 such that approximating the k-means clustering
problem with a multiplicative factor of 1 + ε for all k is NP-hard. This result was improved
in [CAS19]. Still, there is a rather large gap between the best general purpose algorithm,
and the hardness result. Many algorithms can approximately solve the k-means clustering
problem to a multiplicative factor of 1 + ε, but these algorithms always have an exponential
dependence on k for their run times [HPM04]. So, if we try to use k = 100, which occurs in
some applications, these algorithms seem to be impractical.

It is possible to combine dimension-reduction techniques (such as PCA or the Johnson-
Lindenstrass Lemma, Theorem 5.2) with the above algorithms [CEM+15, MMR18], thereby
saving time by working in lower dimensions. However, these techniques do not seem to
improve the exponential run times in k.
Some streaming algorithms are known for k-means clustering [Che09, FMS07]. For exam-

ple, the algorithm of [Che09] uses memory of size O(q2k2ε−2(logm)8) to approximately solve
the k-means problem within a multiplicative factor of 1+ε. Note that the points themselves
are not actually stored in this algorithm, otherwise the memory requirement would be at
least Ω(n). In fact, only the barycenters of the clusters are typically stored in these streaming
algorithms, which drastically reduces the memory requirement.

Since k-means clustering uses unlabelled data (despite the fact that k needs to be speci-
fied), it is considered a method in unsupervised learning.

In the code below, I begin with the PCA data from the previous section on the iris

dataset, and I then run k-means clustering to try to recover the original data clusters (of
three iris species).
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from sklearn import datasets

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

ds = datasets.load_iris()

data = ds.data

nrow, ncol = data.shape

q = 2 # number of principal components

U, D_vector, V = np.linalg.svd(data)

print(D_vector)

D_truncated = np.zeros([nrow, q])

D_truncated[:q, :q] = np.diag(D_array[:q])

pca_data = U @ D_truncated

Now run k-means on PCA data.

k = 3

km = KMeans(n_clusters=k).fit(pca_data)

labels = km.labels_

centers = km.cluster_centers_

if q == 2:

fig, ax = plt.subplots()

ax.scatter(

pca_data[:, 0],

pca_data[:, 1],

c = labels.astype(float)

)

ax.set_xlabel('1st component')

ax.set_ylabel('2nd component')

ax.scatter(centers[:, 0], centers[:, 1], c = 'r')

plt.show()

if q == 3:

fig = plt.figure()

ax = fig.add_subplot(projection='3d')

#ax.view_init(45, 45, 45)

ax.scatter(

pca_data[:, 0],

pca_data[:, 1],

pca_data[:, 2],

c = labels.astype(float)

)

ax.set_xlabel('1st component')

ax.set_ylabel('2nd component')
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ax.set_zlabel('3rd component')

ax.scatter(

centers[:, 0],

centers[:, 1],

c = 'r'

)

plt.show()

11 10 9 8 7 6 5
1st component

2

1

0

1

2

3

2n
d 

co
m

po
ne

nt

Figure 3. Clusters found from k-means with k = 3, q = 2, with centers. Iris
data set. Compare to the true iris data as shown in Figure 2.

Remark 4.11. When I first tried to run this program in Jupyter, I got an Attribute Error,
which was fixed by running pip install threadpoolctl == 3.1.0 in the console.

Exercise 4.12. In this exercise, we will perform some additional analysis on the sklearn
built in data sets. For the iris data set, recall that we used PCA to embed the data points
(i.e. 150 vectors in R4) into R2. We then ran KMeans from the sklearn package, with k = 3
clusters, and we plotted the resulting k clusters (with k different colors in a scatter plot),
along with the k cluster centers

• Add some more information to our previous plot by also plotting the lines between
the Voronoi regions. (Hint: if z(1), z(2) ∈ R2 are two centers of two Voronoi regions,
then the boundary between the regions is a line that is perpendicular to the straight
line between z(1) and z(2), and this line passes through the point (z(1) + z(2))/2. This
should be enough information to find the equation of this line.)

• Compute the percentage of mis-classified points (e.g. an output of 2% means that
only about 2% of data points were mis-classified, i.e. about 98% of data points are
correctly clustered).

• Sometimes a dataset is so large, it is difficult to directly use PCA on the data (e.g. the
number 150 might be a trillion instead). We can still use PCA though by randomly
sampling a small subset of rows of the data matrix, and hopefully performing PCA
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on this subset of the data will still be relevant for the full set of data. This statement
can be made rigorous, but let’s test it out ourselves. Randomly sample 20 rows from
the data matrix (using e.g. the random.sample command from the random package),
perform PCA on that resulting dataset, run k-means, and then repeat the above
procedure to check for the number of mis-classified points (on the original dataset)
that results from the clustering you got from the smaller dataset. (Once you have the
cluster centers from the smaller dataset, you can then cluster the larger dataset using
the cluster centers from the smaller dataset.) How did the number of mis-classified
points change compared to performing PCA on your original dataset?

Repeat the above the for sklearn wine dataset (with k = 3), and the sklearn digits dataset
(with k = 10).

Exercise 4.13. Let A be anm×nmatrix with nonnegative entries. A nonnegative matrix
factorization for A with k classes is a factorization of the form

A = WH,

where W is an m× k matrix, H is a k× n matrix, and both W,H have nonnegative entries.
Sometimes writing a factorization in this way is impossible. (If a factorization exists like this,
then A must have rank at most k.) However, we can still try to find W,H that approximately
satisfy WH ≈ A. This is exactly what the Python function NMF does (from the sklearn

package). (More specifically, Python tries to find W,H that minimize a norm of A −WH,
plus some “regularizing terms”. For details, see the sklearn documentation.)

Nonnegative matrix factorization is used in several machine learning applications, e.g. to
cluster data into similar groups, in recommendation algorithms, etc. To illustrate this, let’s
consider the matrix A whose entries are the numbers in the following table

apple banana bell pepper crab broccoli carrot pear shrimp
calories 130 110 25 100 45 30 100 100
sodium 0 0 40 330 80 60 0 240
potassium 260 450 220 300 460 250 190 220
carbohydrates 34 30 6 0 8 7 26 0
vitaminA 2 2 4 0 6 110 0 4
vitaminC 8 15 190 4 220 10 10 4

• Verify that A has rank 6, so that we know for sure we cannot write A = WH exactly
with k = 3.

• Find an approximate nonnegative matrix factorization of A with 3 classes with the
Python commands

from sklearn.decomposition import NMF

model = NMF(n_components = 3, init = 'random', random_state = 0)

W = model.fit_transform(A)

H = model.components_

Do the matrices W,H satisfy A = WH? If not, check the value of the norm of
A−WH and compare it with the norm of A.

• Each of the three rows of H corresponds to a different class of food. The largest
entry in a column of H sorts the food into a given class. For example, the first row
of H seems to correspond to “fruits,” since the columns for apple, banana, and pear
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all have largest values in their top entries. (Carrot also seems to have a largest value
here even though it is not a fruit.) What classes of foods do the other two rows of H
seem to represent, and which food items are in those classes according to H?

• Each column of W also corresponds to a different class of food (like the rows of
H). The largest entry in a row of W indicates which food characteristics are most
important for being in each class. For example, calories, potassium, carbohydrates
and vitamin A have their largest entries in the first column of W, so these four
characteristics are the most significant contributions to being in the class of “fruits”
in this table. (Carrot is the only one with a large value of vitamin A so it is unclear
why exactly it got sorted in to the class of “fruits.”) What food characteristics are
most important for the other two classes of foods, according to W?

• When k = 4 instead of 3, is the carrot still in the same class as the apple, banana
and pear?

Exercise 4.14 (Finding Topics from Text). In this exercise, we are going to examine
a subset of the fetch_20newsgroups dataset from sklearn. This dataset has about 18000
newsgroups posts on 20 topics. This dataset was assembled in 1995 by Ken Lang. (A
newsgroup is an online forum that preceded the world wide web.) For simplicity, we will just
look at a subset of the dataset covering 6 different topics, as specified below in categories.

import numpy as np

from sklearn.datasets import fetch_20newsgroups

categories = [

"comp.graphics",

"misc.forsale",

"rec.sport.baseball",

"sci.space",

"talk.politics.misc",

"talk.religion.misc",

]

# import data, remove extraneous bits of text

dataset = fetch_20newsgroups(

remove = ("headers", "footers", "quotes"),

subset = "all",

categories = categories,

shuffle = True,

random_state = 42,

)

labels = dataset.target

unique_labels, category_sizes = np.unique(labels, return_counts=True)

true_k = unique_labels.shape[0]

print(f"{len(dataset.data)} documents - {true_k} categories")

To get an idea of what the dataset looks like, let’s run the command
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for i in range(3):

print(dataset.data[i],'\n', dataset.target[i])

which prints the first three entries of the dataset, together with their target values.

Olympus Stylus, 35mm, pocket sized, red-eye reduction, timer, fully automatic.

Time & date stamp, carrying case. Smallest camera in its class.

Rated #2 in Consumer Reports. Excellent condition and only 4 months old.

Worth $169.95. Purchased for $130. Selling for $100.

1

As will I, and the Ultimate Lurker.

2

I know this has been asked a million time, but..

What was the ftp site carrying 30-40 .ZIPs of full POV "source" files,

including JACK.ZIP and KETTLE.ZIP? I've once been there but

unfortunately lost the address.

I'm in a little hurry with it, so please e-mail me at

jtheinon@kruuna.helsinki.fi. Thanks..

0

That is, the first block of text is in category 1 (miscellaneous for sale items), the next
block of text is in category 2 (recreational sports, baseball), and the last block of text is in
category 0 (computer graphics). We can view the number of documents in each category
with the command print(category_sizes).
In this exercise, we will try to classify the documents correctly. To begin, we will use an

“unsupervised” approach, i.e. we will just look at the documents themselves and pretend
that we do not know the topic labels. The goal will be to correctly separate the documents
into six different categories.

As a first step, we will convert each text document into a sequence of vectors. More
specifically, each word in a document will be mapped to a vector. This task can be done
with the CountVectorizer function.

import time as time

from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer(

max_df = 0.5,

min_df = 5,

stop_words = "english",

)

# eliminate words appearing in more than 50% of documents

# or appearing in less than 5 of the documents

t0 = time.time()

vector_data = vectorizer.fit_transform(dataset.data)

print(f"vectorization done in {time.time() - t0:.3f} s")
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print(f"n_samples: {X.shape[0]}, n_features: {X.shape[1]}")

With the data vectorized, we can now try to sort the data into six categories using e.g.
k-means clustering.

k = 6

km = KMeans(n_clusters=k).fit(vector_data)

predicted_labels = km.labels_

centers = km.cluster_centers_

Write a program that can check the classification error from this procedure. That is, check
how many of the documents are put into the correct group. (For any given permutation of
the predicted labels, check the number of labels that agree with the original labels, then take
the minimum over all such permutations of the labels 0, 1, 2, 3, 4, 5.) I got a classification
error of around 80%, i.e. only around 20% of the documents are grouped together correctly.
This is barely better than a random sorting of around 1− 1/6 ≈ .833. So, we didn’t do very
well. Do you get any better performance by changing the parameters .5 and 5? I did not. I
thought that some topics might mention certain words exclusively, i.e. maybe some words in
the space postings might only appear in the space postings (e.g. “moon” ), so if we change
.5 to .3, you might expect better performance. However, I did not notice significantly better
performance.

Repeat the above procedure using TfidfVectorizer instead of CountVectorizer. The
vectorizer TfidfVectorizer will weight the word by its text frequency (the number of times
the word appears in one of the newsgroup postings) multiplied by its inverse document
frequency (which is typically 1 + log(1/x) where x the number of newsgroup postings where
this word appears). In this way, TfidfVectorzer will decrease the effect of commonly
encountered words such as “a”, “an”, “the” and so on. It might seem that the .5 or .3 cutoff
we used for CountVectorizer would have a similar effect. So let’s see how TfidVectorizer

does. I got a classification error of around 45% which is a lot better than before.
Now let’s try to “preprocess” the vectorized data matrix using e.g. NMF, and then apply

k-means clustering, to see if we can improve our classification.

from sklearn.decomposition import NMF

model = NMF(n_components = 6, init = 'random', random_state = 0)

W = model.fit_transform(vector_data)

H = model.components_

After applying k-means clustering to W , did you notice any better performance compared
to the previous approach?

As a final approach, let’s take a “supervised learning” perspective, i.e. we will use an
algorithm whose input is labelled data (newsgroup postings with their specified categories),
and then using that information we will try to predict the categories of a new batch of
newsgroup postings. More specifically, we will use a support vector machine with a kernel
(a few more details will be provided on this approach in another exercise).

How does the run time and performance of this approach compare to the previous ap-
proaches?

from scipy.stats import loguniform

from sklearn.model_selection import RandomizedSearchCV

from sklearn.svm import SVC
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dataset_train = fetch_20newsgroups(

remove = ("headers", "footers", "quotes"),

subset = "train",

categories = categories,

shuffle = True,

random_state = 42,

)

dataset_test = fetch_20newsgroups(

remove = ("headers", "footers", "quotes"),

subset = "test",

categories = categories,

shuffle = True,

random_state = 42,

)

combined_data = dataset_train.data + dataset_test.data

labels_train = dataset_train.target

vectorizer = TfidfVectorizer(

max_df = 0.5,

min_df = 10,

stop_words = "english",

)

t0 = time.time()

# we use a vectorizer on the entire dataset, otherwise

# the functions below will output errors

vector_data = vectorizer.fit_transform(combined_data)

print("Vectorized All Data in Time: %0.3f" % (time.time() - t0))

vector_data_train = vector_data[:len(dataset_train.data)]

vector_data_test = vector_data[len(dataset_train.data):]

t0 = time.time()

param_grid = {

"C": loguniform(1e3, 1e5),

"gamma": loguniform(1e-4, 1e-1),

}

clf = RandomizedSearchCV(

SVC(kernel = "rbf", class_weight = "balanced"), param_grid, n_iter=10

)

clf = clf.fit(vector_data_train, labels_train)

print("SVC Search Fit in Time: %0.3f" % (time.time() - t0))
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t0 = time.time()

y_pred = clf.predict(vector_data_test)

true_labels = dataset_test.target

print("Prediction done in %0.3fs" % (time.time() - t0))

prediction_error = np.sum(y_pred != true_labels) / len(true_labels)

print("prediction error: %0.3f" % prediction_error)

Exercise 4.15 (Eigenfaces). The goal of facial recognition is to identify the name of
someone when given a picture of their face. Suppose we know that our image data set has
k distinct faces in it. One way to perform facial recognition is to perform a singular value
decomposition on a large amount of facial images. That is, each row of the data matrix
corresponds to a facial image, and we apply SVD to the data matrix A. Each facial image
must be the same size image (same pixel width and same pixel height). We then write the

SVD of A as A = U

(
D 0
0 0

)
V . Then, for any image vector (i.e. for any row vector x

representing an image), the dimension reduced image is (recalling Definition 4.3)

xV ∗
(
Iq
0

)
.

One way to assign a name to this image x is to apply k-means clustering to the dimension
reduced data

U

(
D 0
0 0

)(
Iq
0

)
,

and then check which cluster center the vector xV ∗
(
Iq
0

)
is closest to. Suppose y is such

a cluster center. We then assign a name to x as the most frequently observed name in
the cluster associated to y. In this exercise, you will do this procedure on the lfw_people

dataset in the sklearn package. This data set consists of several different grayscale facial
images of famous people; we will only use data from people with at least 70 images in the
data set, which amounts to 7 different world leaders from the early 2000s. Below is some
code to get you started.

import numpy as np

from sklearn.datasets import fetch_lfw_people

lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

# lfw_people.images is a 3-dimensional array, consisting of n_samples of

# images, where each image has width w and height h, in pixels. the

# grayscale value of each image is a real number between 0 and 1

n_samples, h, w = lfw_people.images.shape

train_images = lfw_people.images[100:1+n_samples, :, :]

test_images = lfw_people.images[0:100, :, :]

# the label to predict is the ID of the person

y = lfw_people.target
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target_names = lfw_people.target_names

n_classes = target_names.shape[0]

# put the image data into a 2-dimensional array, where each row of

# the matrix corresponds to a distinct image

train_data = train_images.reshape(train_images.shape[0], -1)

test_data = test_images.reshape(test_images.shape[0], -1)

In this code, we have separated the images into 100 test images, and the remaining set
of training images. We will perform PCA on the training set of images in order to try to
predict the names of the images in the testing set. (Even though we know the identities of
the first 100 facial images, we will temporarily assume we do not know their identities.)

To complete this exercise, we do not necessarily need to examine the images, but if you
want to see one of them you could use the following code

# plot a few images

import matplotlib.pyplot as plt

plt.imshow(lfw_people.images[0].reshape((h, w)), cmap=plt.cm.gray)

• Perform PCA on the training data (train_data), with q = 10 principal components.
(Later on we will consider different parameters q). (Do not use any built in PCA
functions. Just do the PCA yourself.)

• As suggested above, perform k-means clustering on the PCA training data with k = 7.
Then, predict the label of the first 100 images (test_data) using the procedure we
described above (assigning the cluster center label that is closest to the image vector).
Print out the fraction of correctly classified test images. (I got around 40%, which is
just okay, but at least it is better than random assignment, which would get about
14%.) Also report the amount of time it took to perform this entire task, using e.g.
the following commands:

from time import time

t0 = time()

... [insert code here] ...

print("classification done in %0.3fs" % (time() - t0))

(Hint: it might be helpful to use the following Numpy functions; unique with
return_counts = True, and where)

• Repeat the previous step with the original training data (train_data), rather than
the PCA dimension reduced data. (I got the same fraction of correct classification,
with about ten times the run time.)

• Using the PCA dimension reduced data (pca_train_data and pca_test_data), use
the code below to try to get a better percentage of correctly classified images. Do
this step for p = 10 and again for p = 50. Did your results improve for p = 50?

from scipy.stats import loguniform

from sklearn.model_selection import RandomizedSearchCV

from sklearn.svm import SVC

t0 = time()
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param_grid = {

"C": loguniform(1e3, 1e5),

"gamma": loguniform(1e-4, 1e-1),

}

clf = RandomizedSearchCV(

SVC(kernel = "rbf", class_weight = "balanced"), param_grid, n_iter=10

)

clf = clf.fit(pca_train_data, y[100:1+n_samples])

print("done in %0.3fs" % (time() - t0))

print("Best estimator found by grid search:")

print(clf.best_estimator_)

print("Predicting people's names on the test set")

t0 = time()

y_pred = clf.predict(pca_test_data)

print("done in %0.3fs" % (time() - t0))

number_correct = np.sum(y_pred == true_test_labels)

print("fraction of correct classifications: %0.3f" % (number_correct/100))

print("classification done in %0.3fs" % (time() - t0))

• (Optional) Repeat the above where you replace the training data matrix with the
mean-subtracted training data matrix. Do your results improve?

• (Optional) Use randomized SVD instead of SVD and compare your results.s
• (Optional) For the SVC option kernel, try inputs other than rbf, and see if your
results improve.

Remark 4.16. As an alternative to k-means clustering and SVC, here is an implementation
of kNN (k Nearest Neighbors).

from sklearn.neighbors import KNeighborsClassifier

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler

t0 = time()

k = 7

clf = Pipeline(

steps=[

#("scaler", StandardScaler()),

("knn", KNeighborsClassifier(n_neighbors = k))

]

)

clf = clf.fit(train_data, y[test_size:1+n_samples])

y_pred = clf.predict(test_data)

number_correct = np.sum(y_pred == true_test_labels)

print("fraction of correct classifications: %0.3f" % (number_correct/test_size))
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print("Prediction took", time() - t0, "seconds")

For a more detailed view of the success of the classifier, we can print out a report and
a confusion matrix. A confusion matric C is defined so that entry Cij is the number of
observations known to be in class i and predicted to be in class j (in this case 0 ≤ i, j ≤ 9.)
So, e.g. C3,9 = 10 means there are ten examples of digit 3 that were (mistakenly) classified
as digit 9.

report = metrics.classification_report(

true_test_labels,

y_pred,

digits = 7,

zero_division = 0

)

confusion = metrics.confusion_matrix(

true_test_labels,

test_labels

)

print(

f"Classification report for classifier:\n"

f"{report}\n"

f"{confusion}\n"

)

which gave the output

Classification report for classifier:

precision recall f1-score support

0 0.5000000 0.3125000 0.3846154 16

1 0.5200000 0.6842105 0.5909091 38

2 0.6666667 0.3000000 0.4137931 20

3 0.5619835 0.9066667 0.6938776 75

4 0.0000000 0.0000000 0.0000000 18

5 0.0000000 0.0000000 0.0000000 11

6 0.6250000 0.2272727 0.3333333 22

accuracy 0.5500000 200

macro avg 0.4105214 0.3472357 0.3452184 200

weighted avg 0.4849605 0.5500000 0.4812920 200

[[ 8 0 0 8 0 0 0]

[19 1 0 18 0 0 0]

[10 1 0 9 0 0 0]

[34 4 0 37 0 0 0]

[10 1 0 7 0 0 0]

[ 5 0 0 6 0 0 0]

[14 2 0 6 0 0 0]]

65



In the classification report, the precision is the number of total positives divided by (total
positives plus false positives). Recall is the number of total positives divided by (total
positives plus false negatives). And f1 score is the harmonic mean of precision and recall.
Lastly, support is the number of images in the given class.

Exercise 4.17 (Classifying Hand Written Digits). In a previous exercise, we tried to
classify handwritten digits from the sklearn built-in digits dataset, using k-means clustering.
However, that approach was not very successful. In this exercise taken from the sklearn
documentation, we will instead use a support vector machine (SVM)

import matplotlib.pyplot as plt

from sklearn import datasets, metrics, svm

from sklearn.model_selection import train_test_split

Let’s first plot a few of the images to see what they look like. Each image is an 8 by 8
grayscale bitmap, i.e. at 8× 8 matrix whose entries have values in {0, 1, . . . , 16}.
digits = datasets.load_digits()

_, axes = plt.subplots(nrows = 1, ncols = 4, figsize = (10, 3))

for ax, image, label in zip(axes, digits.images, digits.target):

ax.set_axis_off()

ax.imshow(image, cmap = plt.cm.gray_r, interpolation = "nearest")

ax.set_title("Training: %i" % label)

As in a previous exercise

# flatten the images

n_samples = len(digits.images)

data = digits.images.reshape((n_samples, -1))

# Create a classifier: a support vector classifier

clf = svm.SVC(gamma=0.001)

# Split data into 50% train and 50% test subsets

data_train, data_test, labels_train, labels_test = train_test_split(

data, digits.target, test_size = 0.5, shuffle = False

)

For each image vector x ∈ R64, the SVC function by default first embeds that vector x into

ϕ(x), where ϕ : R64 → Rn for n large, where ϕ satisfies ⟨ϕ(x), ϕ(y)⟩ = e−γ∥x−y∥2 for all vectors
x, y ∈ R64, where γ = .001. (Optional Exericse: show that such a ϕ exists.) Then, for the
set of embedded image vectors ϕ(x), SVC uses a support vector machine to classify the data
in the training set. More specifically, for each pair (i, j) of digits 0 ≤ i < j ≤ 9, SVC chooses
a single support vector machine on the training set. (Actually it is impractical to use the
embedding ϕ directly. Instead, the SVM is rewritten just in terms of inner products of the

form ⟨ϕ(x), ϕ(y)⟩ = e−γ∥x−y∥2 . The latter function is called a kernel. In this way, we only
need to consider the kernel itself, i.e. we do not explicitly need to consider the embedding
ϕ.)

The support vector machine (SVM) is a linear classifier that classifier defined in the
following way. Let x(1), . . . , x(k) ∈ Rn and let y1, . . . , yk ∈ {−1, 1} be given. Assume that
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there exists w ∈ Rn such that

sign(⟨w, x(i)⟩) = yi, ∀ 1 ≤ i ≤ k.

That is, assume there is a hyperplane perpendicular to w that can classify the vectors
x(1), . . . , x(k) into two groups (one labelled with +1, the other labelled with −1.) (Even
without this assumption, an SVM can be defined, but suppose for now that this assumption
holds.) The problem is to find the vector w. (We only know that w exists, but we would like
an algorithm that finds the vector w.) One way to do this is to use the perceptron algorithm,
but that algorithm can only work when the two groups of vectors can be separated by a
hyperplane. The SVM is an alternative way to find a vector w that can try to separate the
two groups of vectors with a hyperplane, even when no separating hyperplane exists.

The SVM w is defined as follows. Let λ > 0 and suppose we want to find the w ∈ Rn and
z1, . . . , zk ∈ R minimizing

λ ∥w∥2 + 1

k

k∑
i=1

zi.

subject to the linear constraints

yi⟨w, x(i)⟩ ≥ 1− zi, zi ≥ 0, ∀ 1 ≤ i ≤ k.

This is a quadratic minimization problem subject to linear constraints, so there are estab-
lished optimization methods for this task.

To explain what is going on here, consider the quantity

θ := min
{
∥w∥ : ∀ 1 ≤ i ≤ k, yi⟨w, x(i)⟩ ≥ 1

}
= min

{
∥w∥ : ∀ 1 ≤ i ≤ k, yi

〈 w

∥w∥
, x(i)

〉
≥ 1

∥w∥

}
.

The quantity yi⟨ w
∥w∥ , x

(i)⟩ is the distance of vector x(i) from the hyperplane perpendicular

to w. So, the vector w minimizing the quantity θ corresponds to the hyperplane through
the origin that has the largest uniform distance to the vectors x(1), . . . , x(k). Put another
way, the margin 1/θ measures how wide a symmetric “slab” through the origin can be that
separates the vectors x(1), . . . , x(k) into their two classes.

# Learn the digits on the train subset

clf.fit(data_train, labels_train)

# Predict the value of the digit on the test subset

predicted = clf.predict(data_test)

_, axes = plt.subplots(nrows = 1, ncols = 4, figsize = (10, 3))

for ax, image, prediction in zip(axes, data_test, predicted):

ax.set_axis_off()

image = image.reshape(8, 8)

ax.imshow(image, cmap = plt.cm.gray_r, interpolation = "nearest")

ax.set_title(f"Prediction: {prediction}")

print(

f"Classification report for classifier {clf}:\n"
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f"{metrics.classification_report(labels_test, predicted, digits = 4)}\n"

)

First, run the above code. What classification error do you get? Also, if you remove the
command gamma=0.001, does the classification error improve?
Your task in this exercise is to do adapt the above code to the MNIST dataset. It should

be possible to get around 98% correct classification on the test set. (Hint: just use linear
SVC, i.e. don’t use any kernel method. The above code uses a Gaussian RBF kernel for
SVC, since the argument gamma = 0.001 is used. However, you will probably find that the
Gaussian RBF kernel is just too slow when dealing with the 60,000 images in the MNIST
dataset.) For MNIST, restrict the training set to the first k · 1000 samples for k = 1, 2, 3, 4, 5
with both linear SVC and Gaussian RBF SVC with γ = .001. How does the computation
time grow with k?

5. Dimension Reduction

A dimension reduction technique is a way of mapping vectors in a high dimensional space to
a much lower dimensional space, while still preserving some structure of the high dimensional
vectors. We have already encountered two dimension reduction techniques. The most basic
dimension reduction technique is PCA (or more specifically, the spectral embedding from
Definition 4.3). Another dimension reduction technique is NMF, which we saw in Exercise
4.13, where the matrix W is a dimension reduced version of the matrix A.
There is another perhaps even more elementary version of dimension reduction, known as

Johnson-Lindenstrauss dimension reduction. In this setting, we choose a random projection
from Rn to RO(logn) which with high probability almost preserves pairwise distances between
a set of n vectors in Rn. There are various ways to use randomness to achieve this goal. We
will focus on using a matrix of i.i.d. Gaussians.

5.0.1. Johson-Lindenstrauss.

Theorem 5.1 (Concentration of measure for Gaussians, Lipschitz function form)).
Let f : Rn → R. Suppose that for all x, y ∈ Rn, |f(x)− f(y)| ≤ ∥x− y∥, so that f is 1-
Lipschitz. Let X = (X1, . . . , Xn) be a mean zero Gaussian random vector with identity
convariance matrix. Then for all t > 0,

P (x ∈ Rn : |f(x)− Ef(X)| ≥ t) ≤ 2e−2t2/π2

.

Proof. We assume that f all partial derivatives of f exist and are continuous. Let Y =
(Y1, . . . , Yn) be another mean zero Gaussian random vector with identity convariance matrix,
such that Y and X are independent. Let 0 ≤ θ ≤ π/2 and define

Zθ := X sin θ + Y cos θ.

By rotation invariance of a Gaussian random vector, Zθ and d
dθ
Zθ = X cos θ − Y sin θ have

the same joint distribution as X and Y (since the vectors (sin θ, cos θ) and (cos θ,− sin θ) are
orthogonal in R2.) Let ϕ : R → [0,∞) be a convex function. Using then Jensen’s Inequality,
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then the Chain Rule, then Jensen’s inequality and Fubini’s Theorem,

Eϕ(f(X)− Ef(Y )) ≤ Eϕ(f(X)− f(Y )) = Eϕ
(∫ π/2

0

d

dθ
f(Zθ)dθ

)
= Eϕ

(∫ π/2

0

⟨(∇f)(Zθ),
d

dθ
Zθ⟩dθ

)
= Eϕ

( 1

π/2

∫ π/2

0

π

2
⟨(∇f)(Zθ),

d

dθ
Zθ⟩dθ

)
≤ E

1

π/2

∫ π/2

0

ϕ
(π
2
⟨(∇f)(Zθ),

d

dθ
Zθ⟩

)
dθ =

1

π/2

∫ π/2

0

Eϕ
(π
2
⟨(∇f)(Zθ),

d

dθ
Zθ⟩

)
dθ

=
1

π/2

∫ π/2

0

Eϕ
(π
2
⟨(∇f)(X), Y ⟩

)
dθ = Eϕ

(π
2
⟨(∇f)(X), Y ⟩

)
Let α ∈ R and let ϕ(x) := eαx for all x ∈ R. Then using independence in Y and Fubini’s

Theorem,

E exp(α[f(X)− Ef(Y )]) ≤ E exp
(
α
π

2

n∑
i=1

∂f

∂xi

(X)Yi

)
= EX

n∏
i=1

EY exp
(
α
π

2

∂f

∂xi

(X)Yi

)
.

Using an explicit computation, for any s ∈ R and for any 1 ≤ i ≤ n,

EY e
sYi =

∫ ∞

−∞
esye−y2/2 dy√

2π
= es

2/2

∫ ∞

−∞
e−(y−s)2/2 dy√

2π
= es

2/2.

So, applying this inequality with s = απ
2

∂f
∂xi

(X) for each 1 ≤ i ≤ n,

E exp(α[f(X)− Ef(Y )]) ≤ E exp
(
α2π

2

8

n∑
i=1

( ∂f

∂xi

(X)
)2)

≤ exp
(
α2π

2

8

)
.

(Since f is 1-Lipschitz, |⟨∇f(x), y⟩| ≤ 1 for all x, y ∈ Rn with ∥y∥ ≤ 1. In particular, using
y := ∇f(x)/ ∥∇f(x)∥, we get ∥∇f(x)∥ ≤ 1.) So,

P(f(X)− Ef(Y ) > t) = P(exp(α[f(X)− Ef(Y )]) > eαt)

≤ e−αt exp
(
α2π

2

8

)
= exp

(
− αt+ α2π

2

8

)
.

The minimum α occurs when α = 4t/π2, so making this choice of α, we get

P(f(X)− Ef(Y ) > t) ≤ exp(−2t2/π2).

Similarly, P(f(X)− Ef(Y ) < −t) ≤ exp(−2t2/π2), so that

P(|f(X)− Ef(Y )| > t) = P(f(X)− Ef(Y ) > t) +P(f(X)− Ef(Y ) < −t)

≤ 2 exp(−2t2/π2).

□

Theorem 5.2 (Johnson-Lindenstrauss Lemma). Let x(1), . . . , x(m) ∈ Rn. Let ε > 0.

Then there exists a linear function h : Rn → R⌈212ε−2 logm⌉ such that∥∥x(i) − x(j)
∥∥ ≤

∥∥h(x(i))− h(x(j))
∥∥ ≤ (1 + ε)

∥∥x(i) − x(j)
∥∥ , ∀ 1 ≤ i, j ≤ m.

One proves this via the probabilistic method. By concentration of measure, a random
projection does what we require.
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Proof. Fix 1 ≤ k ≤ m. Let Π: Rm → Rm be the orthogonal projection such that

Π(z1, . . . , zm) := (z1, . . . , zk, 0, . . . , 0), ∀ (z1, . . . , zm) ∈ Rm.

Let X = (X1, . . . , Xm) be a standard m-dimensional Gaussian random vector. Define

a := E ∥ΠX∥ .
We will eventually show that a ≥ 10−2

√
k. Observe

E ∥ΠX∥2 = E
k∑

i=1

X2
i = kEX2

1 . = k. (∗)

Now, by Theorem 5.1 for the 1-Lipschitz function x 7→ ∥Πx∥,

E ∥ΠX∥4 =
∫ ∞

0

4u3P(∥ΠX∥ ≥ u)du

=

∫ 2a

0

4u3P(∥ΠX∥ ≥ u)du+

∫ ∞

2a

4u3P(∥ΠX∥ ≥ u)du

≤
∫ 2a

0

4u3du+

∫ ∞

2a

4u3P(| ∥ΠX∥ − a| > u/2)du

≤ 16a4 + 8

∫ ∞

2a

u3e−u2/2π2

du = 16a4 + 8(2π2)(2a2 + π2)e−2a2/π2 ≤ 16a4 + 2π4

≤ 16a4 + 200k2 ≤ 216

(∫
Rm

∥Πx∥2 γm(x)dx
)2

, using Jensen’s inequality and (∗).

So, if Z := ∥ΠX∥ is a random variable, we have shown that EZ4 < c(EZ2)2 where
c := 216. So, using Hölder’s Inequality, for p = 3/2, q = 3,

EZ2 = E(Z2/3Z4/3) ≤ (EZ)2/3(EZ4)1/3 ≤ (EZ)2/3c1/3(EZ2)2/3.

Using this inequality and (∗),

EZ ≥ c−1/2
√
EZ2 ≥ 216−1/2

√
k. (∗∗)

In summary, a ≥ 2−4
√
k for a defined above.

Let A be an m × m matrix of i.i.d. standard Gaussian random variables. Fix x(0) ∈
Rm with ∥x∥ = 1. By rotation invariance of the Gaussian measure, A and AQ have the
same distribution where Q is a fixed m × m orthogonal matrix, so if we choose Q so that
Q(1, 0, . . . , 0)T = x(0), we get

P
(
A ∈ Rm×m :

∣∣ ∥∥ΠAx(0)
∥∥
2
− a

∣∣ ≥ εa
)
= P

(
A ∈ Rm×m :

∣∣ ∥∥ΠA(1, 0, . . . , 0)T∥∥
2
− a

∣∣ ≥ εa
)

= P (X ∈ Rm | ∥ΠX∥ − a| ≥ εa) .

So, by Theorem 5.1 applied to the 1-Lipschitz function x 7→ ∥Πx∥, and using a ≥ 2−4
√
k,

for any ε > 0, and for any

P
(
A ∈ Rm×m :

∣∣ ∥∥ΠAx(0)
∥∥
2
− a

∣∣ ≥ εa
)
≤ 2e−2ε2a2/π2 ≤ 2e−2−10kε2 .

Let x(1), . . . , x(n) be n points in Rm. If k ≥ 212ε−2 log n, the union bound shows that

P

(
A ∈ Rm×m : ∃ i ̸= j :

∣∣∣∣ ∥∥∥∥ΠA(
x(i) − x(j)

∥x(i) − x(j)∥

)∥∥∥∥− a

∣∣∣∣ ≥ εa

)
≤

(
n

2

)
2e−2−10kε2 < 1.
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For any 1 ≤ i ≤ n, define yi := ΠAx(i)/(a(1− ε)). Then ∃ A ∈ Rn×m such that

1 ≤
∥∥∥∥ y(i) − y(j)

∥x(i) − x(j)∥

∥∥∥∥ ≤ 1 + ε

1− ε
≤ 1 + 3ε, ∀ 1 ≤ i, j ≤ n.

So, our required embedding is h := ΠA
a(1−ε)

, so that h(x(i)) = y(i) for all 1 ≤ i ≤ n. Note

that h is linear and its nonzero entries form a rectangular matrix of i.i.d. Gaussians. Also,
we can choose k := ⌈212ε−2 log n⌉. (In fact, if we choose k to be slightly larger, then the
probability becomes exponentially small, so essentially all A satisfies our desired property,
hence essentially all linear projections h : Rn → RO(ε−2 logn) satisfy our desired property.) □

Remark 5.3. The Johnson-Lindenstrauss projection h can be implemented in Python with
the GaussianRandomProjection function, with optional parameter eps (the same as the
parameter ε from Theorem 5.2), where the dimension of the range of the linear function h
is automatically computed.

import numpy as np

from sklearn import random_projection

x = np.random.rand(100, 10000)

#projection = random_projection.GaussianRandomProjection()

projection = random_projection.GaussianRandomProjection(eps = .5)

#projection = random_projection.SparseRandomProjection()

#projection = random_projection.SparseRandomProjection(eps = .5)

x_projected = projection.fit_transform(x)

print(x_projected.shape)

This code has output

(100, 221)

That is, we asked for ε = 1/2 in Theorem 5.2, and we reduced the dimension of the row
vectors of x from 10,000 to 221.

We can then check for agreement with Theorem 5.2. For example,

np.linalg.norm(x[0, :] - x[1, :])

outputs

40.57920880597641

and

np.linalg.norm(x_projected[0, :] - x_projected[1, :])

outputs

40.265214331165566

In particular, the ratio of the distance between the first two rows of x and the projected first
two rows of x is much smaller than the 3/2 guarantee from Theorem 5.2.

We also included a commented out code for SparseRandomProjection(), which uses a
sparse linear projection (a projection matrix with −1 and 1 entries but mostly zeros) instead
of i.i.d. Gaussians as in Theorem 5.2.

Exercise 5.4. High-dimensional geometry is much different than low-dimensional geometry,
as this exercise demonstrates.
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• Show that “most” of the mass of an n-dimensional Gaussian is concentrated on the
sphere of radius

√
n centered at the origin. That is, if X1, . . . , Xn are n i.i.d. standard

Gaussian random variables, then

lim
n→∞

P(
√

X2
1 + · · ·+X2

n ∈ (n+
√
3n, n−

√
3n) ≥ 2/3.

In fact, you should be able to compute the limit exactly.
• Generally, “most” of the mass of a high-dimensional convex body is concentrated
near the surface of the body. Let Voln denote the usual volume in Rn (so that the
volume of a unit square [0, 1]n is 1.) For example, show that, for any ε > 0,

lim
n→∞

Voln

([
− 1

2
(1− ε),

1

2
(1− ε)

]n)
= 0.

• Let Bn := {x ∈ Rn : ∥x∥ ≤ 1} be the unit ball centered at the origin. Show that

lim
n→∞

Voln(Bn) = 0.

• Let Cn = {x ∈ {[−1/2, 1/2]n : ∃ y ∈ {−1/2, 1/2}n such that ∥x− y∥ ≤ 1/2}} be the
union of balls of radius 1/2 centered at the corners of the hypercube [−1/2, 1/2]n.
Let Dn := {x ∈ Rn : ∥x∥ ≤ r} be a ball of radius r centered at the origin, where r
is chosen to be as large as possible so that Dn does not intersect the interior of Cn.
(Put another way, Dn is tangent to the balls Cn.) Find

lim
n→∞

Voln(Dn).

Before you do the computation, try to guess what the answer should be.

6. Pandas

6.1. Series, DataFrames.

6.1.1. Series. In Pandas, a Series is a length n array of objects, together with a length n
array of objects called an index. By default, the index is set to 0, 1, . . . , n− 1. For example,
the command obj = pd.Series([6, 7, 5, -9]) produces the following output

0 6

1 7

2 5

3 -9

dtype: int64

The command obj.array returns [6, 7, 5, -9] and the command obj.index returns
RangeIndex(start = 0, stop = 4, step = 1) . The Series array can be called using
standard syntax, so that obj[1] outputs 7 and obj[1:3] outputs

1 7

2 5

dtype: int64

Part of the flexibility of Pandas is allowing indices other than ordered integers. For
example, the command

obj = pd.Series([6, 7, 5, -9], index = ["d", "c", "a", "b"])

produces the following output
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d 6

c 7

a 5

b -9

dtype: int64

Similar to before, the Series array elements can be queried, so that obj["c"] outputs 7 and
obj[["c", "a"]] outputs

c 7

a 5

dtype: int64

Applying functions to the Series will maintain the index of the Series. For example,
obj - 3 outputs

d 3

c 4

a 2

b -12

dtype: int64

Also, the index can be reassigned:

obj.index= ["x", "y", "z", "w"]

outputs
x 3

y 4

z 2

w -12

dtype: int64

Recalling Section 1.2, a dictionary of the following form

sdata = {"Ohio": 35000, "Texas": 71000, "Oregon": 16000, "Utah": 5000}

can be converted to a Series with the command obj = pd.Series(sdata), which outputs
Ohio 35000

Texas 71000

Oregon 16000

Utah 5000

dtype: int64

A Series can then be converted back to a dictionary: obj.to_dict() outputs

{'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}

The index of the Series from sdata can be rearranged in the following way.
states = ["California", "Ohio", "Oregon", "Texas"]

obj2 = pd.Series(sdata, index = states)

which outputs
California NaN

Ohio 35000.0

Oregon 16000.0

Texas 71000.0

dtype: float64
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Since sdata has no index value for “California”, the Series value was set to NaN. We can
check for NaN values using the commands pd.isna(obj2) or obj2.isna(), which output

California True

Ohio False

Oregon False

Texas False

dtype: bool

Similarly, pd.notna(obj2) and obj2.notna() are the negation of the Series above. (We
can create a NaN value using e.g. np.nan.)
Arithmetic operations can be applied to Series, in a way that respects the indices. For

example, obj + obj2 outputs
California NaN

Ohio 70000.0

Oregon 32000.0

Texas 142000.0

Utah NaN

Both the Series itself and its index can be assigned names. For example
obj2.name = "population"

obj2.index.name = "state"

results in obj2 having the form
state

California NaN

Ohio 35000.0

Oregon 16000.0

Texas 71000.0

Name: population, dtype: float64

6.1.2. DataFrame. A DataFrame is a dictionary of Series, where all of the Series have the
same index. A DataFrame can be visualized as a matrix, where each column has a name,
and each row corresponds to an index value. You might think of a DataFrame as similar to
an Excel spreadsheet. For example,

data = {

"state": ["Ohio", "Ohio", "Ohio", "Nevada", "Nevada", "Nevada"],

"year": [2000, 2001, 2002, 2001, 2002, 2003],

"pop": [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]

}

frame = pd.DataFrame(data)

outputs
state year pop

0 Ohio 2000 1.5

1 Ohio 2001 1.7

2 Ohio 2002 3.6

3 Nevada 2001 2.4

4 Nevada 2002 2.9

5 Nevada 2003 3.2
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Specifying a sequence of columns can reorder those columns:

frame2 = pd.DataFrame(data, columns=["year", "state", "pop"])

outputs
year state pop

0 2000 Ohio 1.5

1 2001 Ohio 1.7

2 2002 Ohio 3.6

3 2001 Nevada 2.4

4 2002 Nevada 2.9

5 2003 Nevada 3.2

The command frame2["state"] and frame2.state both display the “state” column of
the above DataFrame, as a Series:

0 Ohio

1 Ohio

2 Ohio

3 Nevada

4 Nevada

5 Nevada

Name: state, dtype: object

However, a command of the latter form frame2.(...) will not output a Series contained in
frame2 if a built-in DataFrame function conflicts with the column name of the DataFrame,
or if the column name contains whitespace or special characters besides underscore.

Rows of a DataFrame can also be displayed as Series. For example, frame2.loc[3] and
frame2.iloc[3] both output

year 2001

state Nevada

pop 2.4

Name: 3, dtype: object

Columns of a DataFrame can be assigned values, e.g. frame2["pop"] = 3 results in
frame2 taking the form

year state pop

0 2000 Ohio 3

1 2001 Ohio 3

2 2002 Ohio 3

3 2001 Nevada 3

4 2002 Nevada 3

5 2003 Nevada 3

Then frame2["pop"] = np.arange(6) results in frame2 taking the form
year state pop

0 2000 Ohio 0

1 2001 Ohio 1

2 2002 Ohio 2

3 2001 Nevada 3

4 2002 Nevada 4

5 2003 Nevada 5
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(An error would result from the assignment frame2["pop"] = np.arange(5) .) The as-
signment frame2["temp"] = 3 + np.arange(6) creates a new column on the right side:

year state pop temp

0 2000 Ohio 0 3

1 2001 Ohio 1 4

2 2002 Ohio 2 5

3 2001 Nevada 3 6

4 2002 Nevada 4 7

5 2003 Nevada 5 8

Assigning a column to be equal to a Series will fill in values according to the index, leaving
unassigned values as NaN. So,

frame2["temp"] = pd.Series([5, 7, 8] , index = [3, 2, 5])

results in
year state pop temp

0 2000 Ohio 0 NaN

1 2001 Ohio 1 NaN

2 2002 Ohio 2 6

3 2001 Nevada 3 5

4 2002 Nevada 4 NaN

5 2003 Nevada 5 8

The “temp” column can be deleted with the command

del frame2["temp"]

As with NumPy arrays, changing a subset of values from a DataFrame will also change
the DataFrame itself. For example

y = frame2["state"]

y[2] = "Hawaii"

will change the corresponding value of frame2, even though we only changed the entry of
y . (For this reason, Jupyter gave me a warning when I did these commands.) Again
by analogy with NumPy, a DataFrame can be transposed with the command frame2.T .
However, transposing the DataFrame will discard the data types of the columns, unless they
all have the same data type.

We can also create a DataFrame using a dictionary of dictionaries:
populations = {

"Ohio": {2000: 1.5, 2001: 1.7, 2002: 3.6},

"Nevada": {2001: 2.4, 2002: 2.9}

}

frame3 = pd.DataFrame(populations)

outputs
Ohio Nevada

2000 1.5 NaN

2001 1.7 2.4

2002 3.6 2.9

Note that the indices of the “Ohio” and “Nevada” Series were combined. We can also
specify the indices we want the DataFrame to have as follows.
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pd.DataFrame(populations, index = [2000, 2001, 2003])

outputs
Ohio Nevada

2000 1.5 NaN

2001 1.7 2.4

2003 NaN NaN

WARNING. Accessing individual entries of a DataFrame has the opposite ordering con-
vention of NumPy arrays. That is

frame2["state"][2]

outputs “Ohio”, whereas frame2[2]["state"], which mimics NumPy syntax, will produce
an error. However, frame2.T["state"][2] will output “Ohio”.

A DataFrame’s index has a name attribute, and a DataFrame’s columns have a (single)
name attribute.

frame3.index.name = "year"

frame3.columns.name = "state"

outputs
state Ohio Nevada

year

2000 1.5 NaN

2001 1.7 2.4

2002 3.6 2.9

However, the DataFrame itself does not have a name attribute.
A DataFrame can be cast as a NumPy array with the command

frame3.to_numpy()

The index of a Series or DataFrame can be accessed as

ind = frame3.index

with output

Index([2000, 2001, 2002], dtype = 'int64', name = 'year')

An Index object cannot be changed with the equality symbol, but it can be changed with
methods such as append, union, and so on. For example,

ind.append(pd.Index(["2007"]))

outputs

Index([2000, 2001, 2002, '2007'], dtype = 'object')

6.2. Reindexing, Deletion. It is often useful to rearrange the index of a Series or DataFrame
via the reindex function, as follows. Recall that

obj = pd.Series([6, 7, 5, -9], index = ["d", "c", "a", "b"])

produces the following output
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d 6

c 7

a 5

b -9

dtype: int64

Then

obj2 = obj.reindex(["a", "b", "c", "d", "e"])

produces the following output

a 5.0

b -9.0

c 7.0

d 6.0

e NaN

dtype: float64

Note that obj itself is unchanged from the obj.reindex command.
If an Index consists of a strictly increasing sequence of integers, then the reindex option

method = "ffill" can fill in missing Series entries by copying preceding entries, in the
following way.

obj3 = pd.Series(["blue", "red", "green"], index = [0, 2, 4])

obj4 = obj3.reindex(np.arange(6), method = "ffill")

produces the following output for obj4

0 blue

1 blue

2 red

3 red

4 green

5 green

dtype: object

The options method = "bfill" and method = "nearest" similarly fill in missing data.
If the Index does not consist of a strictly increasing sequence of integers, then the reindex

command will round and delete some index entries to a new integer valued Index.
The Index or the columns of a DataFrame can be reindexed. Recall that

data = {

"state": ["Ohio", "Ohio", "Ohio", "Nevada", "Nevada", "Nevada"],

"year": [2000, 2001, 2002, 2001, 2002, 2003],

"pop": [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]

}

frame = pd.DataFrame(data)

outputs
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state year pop

0 Ohio 2000 1.5

1 Ohio 2001 1.7

2 Ohio 2002 3.6

3 Nevada 2001 2.4

4 Nevada 2002 2.9

5 Nevada 2003 3.2

Then

frame2 = frame.reindex(index = [3, 2, 5])

outputs
state year pop

3 Nevada 2001 2.4

2 Ohio 2002 3.6

5 Nevada 2003 3.2

Note that we were able to delete rows from the DataFrame by removing those index values
from the reindex function input. Also

frame3 = frame.reindex(columns = ["pop", "state", "month"])

outputs
pop state month

0 1.5 Ohio NaN

1 1.7 Ohio NaN

2 3.6 Ohio NaN

3 2.4 Nevada NaN

4 2.9 Nevada NaN

5 3.2 Nevada NaN

The drop function can delete entries from a Series or rows/columns from a DataFrame.
For example

frame.drop(index = [0, 1, 2])

outputs
state year pop

3 Nevada 2001 2.4

4 Nevada 2002 2.9

5 Nevada 2003 3.2

The command frame.drop([0, 1, 2], axis = 0) outputs the same result.
Similarly,

frame.drop(columns = ["state", "pop"])

outputs
year

0 2000

1 2001

2 2002

3 2001

4 2002

5 2003
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The command frame.drop(["state", "pop"], axis = 1) outputs the same result.
A column of the DataFrame can be set as the index. For example

frame2.set_index("year")

outputs
state pop

year

2000 Ohio 1.5

2001 Ohio 1.7

2002 Ohio 3.6

2001 Nevada 2.4

2002 Nevada 2.9

2003 Nevada 3.2

This and other functions can make permanent changes to the DataFrame with the added
argument inplace = True, e.g.

frame2.set_index("year", inplace = True)

We could even make a multi-index (i.e. an index with more than one argument) with the
command

frame3 = pd.DataFrame(data, columns=["year", "state", "pop"])

frame3.set_index(["year", "state"], inplace = True)

which outputs
pop

year state

2000 Ohio 1.5

2001 Ohio 1.7

2002 Ohio 3.6

2001 Nevada 2.4

2002 Nevada 2.9

2003 Nevada 3.2

Then

frame3.loc[2002, "Ohio"]

outputs
pop 3.6

Name: (2002, Ohio), dtype: float64

and

frame3.iloc[3]

outputs
pop 2.4

Name: (2001, Nevada), dtype: float64

As with Numpy arrays, changes to a sub-object of a DataFrame will be inherited by the
original DataFrame. For example,

y = frame2["state"]

y[4] = "Nvidia"

frame2

outputs
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year state pop

0 2000 Ohio 1.5

1 2001 Ohio 1.7

2 2002 Ohio 3.6

3 2001 Nevada 2.4

4 2002 Nvidia 2.9

5 2003 Nevada 3.2

A DataFrame can be converted to a Numpy array with the commands frame2.values or
frame2.to_numpy. The former command deletes the column names and index.
Analogous functions can be applied to Series:

obj3 = pd.Series(["blue", "red", "green"], index = [0, 2, 4])

obj4 = obj3.drop([0, 2])

produces the following output for obj4
4 green

dtype: object

Remark 6.1. A newly developed Python package Polars is often faster to use than Pandas,
though Polars has no indices, i.e. it is similar to using Pandas where every index is of the
form 0, 1, 2, . . .. Some syntax in Polars is similar to Pandas, though other syntax is quite
different. Also, in Polars a DataFrame is immutable, unlike Pandas where a DataFrame is
mutable.

Exercise 6.2. This exercise deals with sunspot data from the following files (the same data
appears in different formats)

txt file csv file
These files are taken from http://www.sidc.be/silso/datafiles#total
To work with this data, e.g. with pandas in Python you can use the command

df = pd.read_csv('SN_d_tot_V2.0.csv')

to import the .csv file.
The format of the data is as follows.

• Columns 1-3: Gregorian calendar date (Year, Month, then Day)
• Column 4: Date in fraction of year
• Column 5: Daily total number of sunspots observed on the sun. A value of -1 indicates
that no number is available for that day (missing value).

• Column 6: Daily standard deviation of the input sunspot numbers from individual
stations.

• Column 7: Number of observations used to compute the daily value.
• Column 8: Definitive/provisional indicator. A blank indicates that the value is de-
finitive. A ’*’ symbol indicates that the value is still provisional and is subject to a
possible revision (Usually the last 3 to 6 months)

It is known that the number of sunspots on the sun follows an approximately 11-year
sinusoidal pattern. So, if we plot the number of sunspots over several years, the distance
between the highest observed numbers of sunspots should be around 11 years.

Let Ut be the number of sunspots at time t, where t is measured in years. We model Ut as

Ut = mt + a cos(2πθt) + b sin(2πωt)) + Yt, ∀ t ∈ R,

81

https://www.sidc.be/SILSO/DATA/SN_d_tot_V2.0.txt
https://www.sidc.be/SILSO/INFO/sndtotcsv.php
http://www.sidc.be/silso/datafiles#total


where a, b, θ, ω ∈ R are unknown (deterministic) parameters, mt is an unknown deterministic
function of t that is assumed to be a “slowly varying” function of t, and {Yt}t∈R are i.i.d.
mean zero random variables. The quantity mt is called the trend and the quantity st :=
a cos(2πθt) + b sin(2πωt)) is called the seasonal component of the time series {Ut}t∈R.

Since the 11-year sinusoidal pattern is known, we assume for now that θ = ω = 1/11.
Note that∑
s=t,t+1/365,t+2/365,...,t+11

cos(2πθs) ≈ 0,
∑

s=t,t+1/365,t+2/365,...,t+11

cos(2πθs) ≈ 0, ∀ t ∈ R.

So, if mt is slowly varying in the sense that mt ≈ 1
11·365.25

∑
s=t−5.5,t−5.5+1/365,t+2/365,...,t+5.5ms,

an unbiased estimator for mt is

Mt :=
1

11 · 365.25
∑

s=t−5.5,t−5.5+1/365,t+2/365,...,t+5.5

Us.

Mt defined in this way is called a moving average.
• Since −1 denotes a missing data value, we should first consider how to fill in missing

data values. Let’s first use the ffill option of reindex to fill in these missing values. (Since
ffill works best when the index consists of increasing integers, you should either convert
the first three column entries of a row to a single integer, or you could take the fourth column
entry and multiply it by 1000 to get an integer.)

• Plot Mt versus t. Do you observe any fluctuations in Mt or does it seem to be roughly
constant? If so, what is this constant?

Once we have the estimate Mt, we can then use the approximation

Ut −Mt ≈ a cos(2πθt) + b sin(2πωt)) + Yt, ∀ t ∈ R,
and then try to estimate a, b. A general way to estimate st := a cos(2πθt) + b sin(2πωt)) is
to use a (smaller) moving average such as

St :=
1

11

∑
s=t−5/365,t−4/365,...,t+5/365

[Us −Ms].

Note that St is unbiased.
• Plot St versus t. Does it look like a sinusoidal curve? Note that St removed the trend

from the time series.
Another way to estimate st is to estimate the constants a and b directly. By the double

angle formula, note that∑
s=t,t+1/365,t+2/365,...,t+11

cos(2πθs) sin(2πθs) =
∑

s=t,t+1/365,t+2/365,...,t+11

1

2
sin(4πθs) ≈ 0.

Also,

1

365.25

∑
s=t,t+1/365,t+2/365,...,t+11

cos2(2πs/11) ≈
∫ 11

0

cos2(2πx/11)dx ≈ 11/2.

So, an unbiased estimator for a is

At :=
2

11 · 365.25
∑

s=t,t+1/365,t+2/365,...,t+11

(Us −Ms) cos(2πθs), ∀ t ∈ R.
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Similarly, an unbiased estimator for b is

Bt :=
2

11 · 365.25
∑

s=t,t+1/365,t+2/365,...,t+11

(Us −Ms) sin(2πθs), ∀ t ∈ R.

• Plot At versus t. Plot Bt versus t. Are they close to being constant in t?
• Plot Ut− [Mt+At cos(2πt/11)+Bt sin(2πt/11))] versus t. This is the time series with the

trend and seasonal components removed. Does this plot “resemble” a stationary process?
• Our modeling assumptions used a period of 11 for the seasonal component of the time

series. Does the data reflect this assumption? For example, would it be more accurate to
have θ = ω = 1/(10.9) in our modeling assumption?

6.3. Selection, Filtering. It is preferred to select entries of Series and DataFrames using
the .loc or .iloc functions as follows.

obj = pd.Series([6, 7, 5, -9], index = ["d", "c", "a", "b"])

obj2 = pd.Series([6, 7, 5, -9], index = [2, 3, 4, 1])

Then

obj.iloc[[1, 2]]

produces the following output
c 7

a 5

dtype: int64

The command obj.loc[["c", "a"]] produces the same output. Similarly,

obj2.iloc[[1, 2]]

produces the following output
3 7

4 5

dtype: int64

The command obj.loc[[3, 4]] produces the same output. Note that the syntex here does
not use parentheses, unlike other functions in Python.

Here iloc outputs entries of the Series as if it were a Numpy array (i.e. with an index
of the form 0, 1, 2, . . .), and loc outputs the entries of the Series according to the queried
Index values. Furthermore, obj.iloc[-1] outputs −9, i.e. we can use negative indices as
in Numpy arrays.

The functions loc and iloc are preferred over simpler index calls since obj and obj2

look like similar lists of numbers, so one might hope that obj[[1, 2]] and obj2[[1, 2]]

produce similar outputs. However, this does not occur, since the latter command will call
the Index values associated to 1 and 2 in obj2, whereas the former command produces the
first and second items in the Series obj.

obj2[[1, 2]]

produces the following output
1 -9

2 6

dtype: int64

while
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obj[[1, 2]]

produces the output
c 7

a 5

dtype: int64

In fact, the last command will be deprecated in future version of Pandas.
Warning. Pandas allows slicing with labels, but the right endpoint is inclusive rather

than exclusive.

obj.loc["c": "a"]

produces the following output
c 7

a 5

dtype: int64

Assignments for parts of the Series can be made in the following way.
obj.loc["c": "a"] = 0

obj

produces the following output
d 6

c 0

a 0

b -9

dtype: int64

For DataFrames, it is again preferred to use the loc and iloc functions to query entries.
Recall that

foods = {

"apple": {"calories": 130, "sodium_mg": 2, "protein_g": .5},

"pear": {"calories": 100, "sodium_mg": 2, "protein_g": .6}

}

frame = pd.DataFrame(foods)

outputs
apple pear

calories 130.0 100.0

sodium_mg 2.0 2.0

protein_g 0.5 0.6

Warning. Recall that accessing DataFrame entries has the opposite ordering of Numpy.
That is frame["apple"]["calories"] outputs 130.0, while the transposed command
frame.T["calories"]["apple"] also outputs 130.0. The latter ordering (row followed by
column) matches Numpy’s ordering for accessing array entries. Both loc and iloc follow
the Numpy ordering.

frame.loc["calories"]

outputs
apple 130.0

pear 100.0

Name: calories, dtype: float64
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In this case, frame.iloc[0] has the same output, i.e. a Series whose index is the columns
of frame.

frame.loc[["protein_g", "calories"]]

outputs
apple pear

protein_g 0.5 0.6

calories 130.0 100.0

Multiple rows or columns can be selected in the following ways.

frame.loc[["protein_g", "calories"], "apple"]

outputs
protein_g 0.5

calories 130.0

Name: apple, dtype: float64

And

frame.iloc[[1, 2], [0, 1]]

outputs
apple pear

sodium_mg 2.0 2.0

protein_g 0.5 0.6

Series and DataFrames can be added. If either an Index or column entry does not appear
in both summands, the corresponding output entry will be NaN. Built-in commands such
as add have options such as fill_value = 0, which will replace the outputted NaN entries
with 0.

Exercise 6.3. This exercise will use the following code.

data = {

"state": ["Ohio", "Ohio", "Ohio", "Nevada", "Nevada", "Nevada"],

"year": [2000, 2001, 2002, 2001, 2002, 2003],

"pop": [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]

}

frame = pd.DataFrame(data)

populations = {

"year": {0: 2000, 1: 2002, 3: 2004, 4: 2006},

"pop": {0: 4, 2: 6, 3: 8, 4: 10}

}

frame2 = pd.DataFrame(populations)

ser = pd.Series([3, 6, 8, 9])

def f1(x):

return x**2 +1

• Using the add function, add frame and frame2 together (the syntax is df.add(df2)),
and fill in any resulting NaN values to zeros.
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• Apply the function f1 to frame. (The syntax is frame.map(f1) .)
• For both NBA and WNBA players, answer the following question: Who has the
highest 2pt + 3pt percentage (among those listed on both leaderboards) in a single
season? (The percentage for a single player can be used across two different seasons.)
To answer this question, you can find data from the following sites:

WNBA Leaders
NBA Leaders

6.4. Case Study: MovieLens Database. In this section we will study the Movie Lens
1M Small Dataset, available at

https://grouplens.org/datasets/movielens/

This dataset contains three separate files: users.dat, ratings.dat and movies.dat. The
Readme file gives the following description of the dataset.

These files contain 1,000,209 anonymous ratings of approximately 3,900

movies made by 6,040 MovieLens users who joined MovieLens in 2000.

All ratings are contained in the file "ratings.dat" and are

in the following format:

UserID::MovieID::Rating::Timestamp

UserIDs range between 1 and 6040

MovieIDs range between 1 and 3952

Ratings are made on a 5-star scale (whole-star ratings only)

Timestamp is represented in seconds since the epoch as returned by time(2)

Each user has at least 20 ratings

USERS FILE DESCRIPTION

User information is in the file "users.dat" and is in the following format:

UserID::Gender::Age::Occupation::Zip-code

All demographic information is provided voluntarily by the users and is

not checked for accuracy. Only users who have provided some

demographic information are included in this data set.

Gender is denoted by a "M" for male and "F" for female

Age is chosen from the following ranges:

1: "Under 18"

18: "18-24"

25: "25-34"

35: "35-44"

45: "45-49"

50: "50-55"
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56: "56+"

Occupation is chosen from the following choices:

0: "other" or not specified

1: "academic/educator"

2: "artist"

3: "clerical/admin"

4: "college/grad student"

5: "customer service"

6: "doctor/health care"

7: "executive/managerial"

8: "farmer"

9: "homemaker"

10: "K-12 student"

11: "lawyer"

12: "programmer"

13: "retired"

14: "sales/marketing"

15: "scientist"

16: "self-employed"

17: "technician/engineer"

18: "tradesman/craftsman"

19: "unemployed"

20: "writer"

MOVIES FILE DESCRIPTION

Movie information is in the file "movies.dat"

and is in the following format:

MovieID::Title::Genres

Titles are identical to titles provided by the

IMDB (including year of release)

Genres are pipe-separated and are selected from the following genres:

Action

Adventure

Animation

Children's

Comedy

Crime

Documentary

Drama

Fantasy
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Film-Noir

Horror

Musical

Mystery

Romance

Sci-Fi

Thriller

War

Western

Some MovieIDs do not correspond to a movie due to accidental

duplicate entries and/or test entries

Movies are mostly entered by hand, so errors and inconsistencies may exist

We first load the three data files. Instead of our usual utf-8 encoding, we switched to
latin-1 to avoid an exception.

unames = ["user_id", "gender", "age", "occupation", "zip"]

# users format: UserID::Gender::Age::Occupation::Zip-code

users = pd.read_table(

"users.dat",

sep = "::",

header = None,

names = unames,

engine = "python",

encoding = "latin-1"

)

rnames = ["user_id", "movie_id", "rating", "timestamp"]

# ratings format: UserID::MovieID::Rating::Timestamp

ratings = pd.read_table(

"ratings.dat",

sep="::",

header = None,

names = rnames,

engine = "python",

encoding = "latin-1"

)

mnames = ["movie_id", "title", "genres"]

# movies format: MovieID::Title::Genres

movies = pd.read_table(

"movies.dat",

sep="::",

header = None,

names = mnames,

engine = "python",

88



encoding = "latin-1"

)

Then users.head() outputs

user_id gender age occupation zip

0 1 F 1 10 48067

1 2 M 56 16 70072

2 3 M 25 15 55117

3 4 M 45 7 02460

4 5 M 25 20 55455

and

ratings.head()

outputs

user_id movie_id rating timestamp

0 1 1193 5 978300760

1 1 661 3 978302109

2 1 914 3 978301968

3 1 3408 4 978300275

4 1 2355 5 978824291

and

movies.head()

outputs

movie_id title genres

0 1 Toy Story (1995) Animation|Children's|Comedy

1 2 Jumanji (1995) Adventure|Children's|Fantasy

2 3 Grumpier Old Men (1995) Comedy|Romance

3 4 Waiting to Exhale (1995) Comedy|Drama

4 5 Father of the Bride Part II (1995) Comedy

For convenience, we will merge everything into one table with the command

data = pd.merge(pd.merge(ratings, users), movies)

(Rearranging the order of ratings,users,movies would also rearrange the columns of
data.) Pandas automatically merges the columns in the way you would want to merge
them. (Note: This merge command works since we always merge two dataframes with at
least one overlapping column name.)

user_id movie_id rating timestamp gender age occupation zip title genres

0 1 1193 5 978300760 F 1 10 48067 One Flew Over the Cuckoo's Nest (1975) Drama

1 2 1193 5 978298413 M 56 16 70072 One Flew Over the Cuckoo's Nest (1975) Drama

2 12 1193 4 978220179 M 25 12 32793 One Flew Over the Cuckoo's Nest (1975) Drama

3 15 1193 4 978199279 M 25 7 22903 One Flew Over the Cuckoo's Nest (1975) Drama

4 17 1193 5 978158471 M 50 1 95350 One Flew Over the Cuckoo's Nest (1975) Drama

5 18 1193 4 978156168 F 18 3 95825 One Flew Over the Cuckoo's Nest (1975) Drama

6 19 1193 5 982730936 M 1 10 48073 One Flew Over the Cuckoo's Nest (1975) Drama

7 24 1193 5 978136709 F 25 7 10023 One Flew Over the Cuckoo's Nest (1975) Drama

8 28 1193 3 978125194 F 25 1 14607 One Flew Over the Cuckoo's Nest (1975) Drama
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9 33 1193 5 978557765 M 45 3 55421 One Flew Over the Cuckoo's Nest (1975) Drama

Also data.iloc[0] outputs

user_id 1

movie_id 1193

rating 5

timestamp 978300760

gender F

age 1

occupation 10

zip 48067

title One Flew Over the Cuckoo's Nest (1975)

genres Drama

Name: 0, dtype: object

Our first question is:

Question 6.4. What are the top rated movies, for those whose user specified gender is F
or M?

To answer this question, we first compute the mean ratings of each title:

mean_ratings = data.pivot_table(

"rating",

index = "title",

columns = "gender",

aggfunc = "mean"

)

Here mean_ratings.head() outputs

gender F M

title

$1,000,000 Duck (1971) 3.375000 2.761905

'Night Mother (1986) 3.388889 3.352941

'Til There Was You (1997) 2.675676 2.733333

'burbs, The (1989) 2.793478 2.962085

...And Justice for All (1979) 3.828571 3.689024

We can then sort mean_ratings according to the values in the F column. (Since we set
ascending to be false, the list will be in descending order.)

top_f_ratings = mean_ratings.sort_values("F", ascending=False)

top_f_ratings.head()

which outputs

gender F M

title

Clean Slate (Coup de Torchon) (1981) 5.0 3.857143

Ballad of Narayama, The (Narayama Bushiko) (1958) 5.0 3.428571

Raw Deal (1948) 5.0 3.307692

Bittersweet Motel (2000) 5.0 NaN

Skipped Parts (2000) 5.0 4.000000
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Is it the case that these obscure movies are the most highly rated by the F users? That
seems doubtful. What has happened is that a few F users rated these movies a 5.0. To
eliminate this effect, let’s filter out movie titles with less than 100 ratings.

ratings_by_title = data.groupby("title").size()

ratings_by_title.head()

which outputs

title

$1,000,000 Duck (1971) 37

'Night Mother (1986) 70

'Til There Was You (1997) 52

'burbs, The (1989) 303

...And Justice for All (1979) 199

dtype: int64

We then create a list of those titles with at least 100 ratings, and then input that into the
mean_ratings DataFrame (whose index consists of movie titles)

active_titles = ratings_by_title.index[ratings_by_title >= 100]

mean_ratings_active = mean_ratings.loc[active_titles]

mean_ratings_active.head()

which outputs

gender F M

title

'burbs, The (1989) 2.793478 2.962085

...And Justice for All (1979) 3.828571 3.689024

10 Things I Hate About You (1999) 3.646552 3.311966

101 Dalmatians (1961) 3.791444 3.500000

101 Dalmatians (1996) 3.240000 2.911215

As before, we can then sort by F ratings.

top_f_ratings = mean_ratings_active.sort_values("F", ascending = False)

top_f_ratings.head()

which outputs

gender F M

title

Close Shave, A (1995) 4.644444 4.473795

Wrong Trousers, The (1993) 4.588235 4.478261

General, The (1927) 4.575758 4.329480

Sunset Blvd. (a.k.a. Sunset Boulevard) (1950) 4.572650 4.464589

Wallace & Gromit: The Best of Aardman Animation (1996) 4.563107 4.385075

We can similarly sort the M user ratings:

top_m_ratings = mean_ratings_active.sort_values("M", ascending = False)

top_m_ratings.head()

which outputs

gender F M

title
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Godfather, The (1972) 4.314700 4.583333

Seven Samurai (The Magnificent Seven) (Shin...) (1954) 4.481132 4.576628

Shawshank Redemption, The (1994) 4.539075 4.560625

Raiders of the Lost Ark (1981) 4.332168 4.520597

Usual Suspects, The (1995) 4.513317 4.518248

What do we observe? With the top F ratings, it looks like a lot of Children’s movies are
highly rated. Why is that? Maybe a lot of child users are putting in reviews and skewing
the ratings. To test that hypothesis, let’s filter out the children users (i.e. those whose age
is 1 in the DataFrame data.)

data_adults = data[data["age"] > 1]

ratings_by_title_adults = data_adults.groupby("title").size()

active_titles_adults = \

ratings_by_title_adults.index[ratings_by_title_adults >= 100]

mean_ratings_active_adults = mean_ratings.loc[active_titles_adults]

top_f_adult_ratings = \

mean_ratings_active_adults.sort_values("F", ascending = False)

top_f_adult_ratings.head()

which outputs

gender F M

title

Close Shave, A (1995) 4.644444 4.473795

Wrong Trousers, The (1993) 4.588235 4.478261

General, The (1927) 4.575758 4.329480

Sunset Blvd. (a.k.a. Sunset Boulevard) (1950) 4.572650 4.464589

Wallace & Gromit: The Best of Aardman Animation (1996) 4.563107 4.385075

With the same movies appearing as before even after we removed the child accounts, it
seems we can reasonably conclude that the F accounts are watching movies with a child.

We now move on to a separate question.

Question 6.5. What movies have the largest disagreement by user reported gender?

To answer this question, let’s first check for rating disagreement by gender

mean_ratings_active["diff"] = mean_ratings_active["F"] \

- mean_ratings_active["M"]

sorted_by_diff = mean_ratings_active.sort_values("diff")

sorted_by_diff.head()

which has output

gender F M diff

title

Friday the 13th Part V: A New Beginning (1985) 1.272727 2.165049 -0.892321

Friday the 13th Part VI: Jason Lives (1986) 1.500000 2.291667 -0.791667

Lifeforce (1985) 2.250000 2.994152 -0.744152

Marked for Death (1990) 2.100000 2.837607 -0.737607

Quest for Fire (1981) 2.578947 3.309677 -0.730730

and
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sorted_by_diff.tail()

has output

gender F M diff

title

Home Alone 3 (1997) 2.486486 1.683761 0.802726

Air Bud (1997) 3.057143 2.233766 0.823377

Dirty Dancing (1987) 3.790378 2.959596 0.830782

Cutthroat Island (1995) 3.200000 2.341270 0.858730

Pet Sematary II (1992) 2.833333 1.858696 0.974638

It seems like some children’s movies are appearing again, so let’s filter out the child
accounts like before

mean_ratings_active_adults["diff"] = mean_ratings_active_adults["F"] \

- mean_ratings_active_adults["M"]

sorted_by_diff_adults = mean_ratings_active_adults.sort_values("diff")

sorted_by_diff_adults.head()

which has output

gender F M diff

title

Friday the 13th Part V: A New Beginning (1985) 1.272727 2.165049 -0.892321

Friday the 13th Part VI: Jason Lives (1986) 1.500000 2.291667 -0.791667

Lifeforce (1985) 2.250000 2.994152 -0.744152

Marked for Death (1990) 2.100000 2.837607 -0.737607

Quest for Fire (1981) 2.578947 3.309677 -0.730730

and

sorted_by_diff_adults[::-1].head()

has output

gender F M diff

title

Pet Sematary II (1992) 2.833333 1.858696 0.974638

Cutthroat Island (1995) 3.200000 2.341270 0.858730

Dirty Dancing (1987) 3.790378 2.959596 0.830782

Home Alone 3 (1997) 2.486486 1.683761 0.802726

To Wong Foo, Thanks for Everything! ... (1995) 3.486842 2.795276 0.691567

The last table seemed a bit surprising. Perhaps we should also filter out movies with less
than 50 F users, since it could be that a few F users who enjoy scary movies are skewing
the results. Before doing that, let’s look at movies with the smallest difference in F versus
M ratings.

np.abs(sorted_by_diff_adults).sort_values("diff").head()

This outputs

gender F M diff

title

Celebration, The (Festen) (1998) 4.307692 4.307692 0.000000

Fled (1996) 2.571429 2.571429 0.000000
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Living Out Loud (1998) 3.223529 3.223404 0.000125

Tender Mercies (1983) 3.905405 3.905263 0.000142

Winnie the Pooh and the Blustery Day (1968) 3.986301 3.986486 0.000185

Now let us filter out movies with less than 50 F users.

ratings_by_title_f = \

data_adults[data_adults["gender"] == "F"].groupby("title").size()

active_titles_f = ratings_by_title_f.index[ratings_by_title_f >= 50]

mean_ratings_trim_f = mean_ratings.loc[active_titles_f]

top_f_trim_ratings = \

mean_ratings_trim_f.sort_values("F", ascending = False)

top_f_trim_ratings.head()

mean_ratings_trim_f["diff"] = mean_ratings_trim_f["F"] \

- mean_ratings_trim_f["M"]

sorted_by_diff_f = mean_ratings_trim_f.sort_values("diff")

sorted_by_diff_f.tail()

This outputs

gender F M diff

title

Jane Eyre (1996) 3.839286 3.192308 0.646978

Orlando (1993) 3.862745 3.190476 0.672269

Jumpin' Jack Flash (1986) 3.254717 2.578358 0.676359

To Wong Foo, Thanks for Everything! ... (1995) 3.486842 2.795276 0.691567

Dirty Dancing (1987) 3.790378 2.959596 0.830782

Here the scary movies were removed, confirming our suspicion that a few F users were
rating them highly.

Question 6.6. We observed the maximum difference between F and M mean user ratings
is about 1.

Can this observation be explained by randomness?

That is, if users are ranking movies in an entirely random way, would we make this same
observation? The following simulation seems to suggest that random ratings could replicate
this observation. However, this does not imply that viewers are making random ratings.

In the following simulation, we consider 100 F users who rate 4000 movies, and 100 M
users who rate the same 4000 movies. We find the maximum difference of mean F versus
mean M rating is around .7, which agrees with our observed maximum difference above.

f_ratings_sim = np.ceil(5 * np.random.rand(100, 4000))

m_ratings_sim = np.ceil(5 * np.random.rand(100, 4000))

f_mean_sim = np.mean(f_ratings_sim, axis = 0)

m_mean_sim = np.mean(m_ratings_sim, axis = 0)

diff_sim = f_mean_sim - m_mean_sim

np.max(diff_sim)

Question 6.7. Which movies are most divisive?

That is, which movies have the largest standard deviation in their ratings? To answer this
question, we check the standard deviation of the ratings of each title.
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rating_std_by_title = data.groupby("title")["rating"].std()

rating_std_by_title_active = rating_std_by_title.loc[active_titles]

We display the largest standard deviation

rating_std_by_title_active.sort_values(ascending = False)[:10]

title

Plan 9 from Outer Space (1958) 1.455998

Beloved (1998) 1.372813

Godzilla 2000 (Gojira ni-sen mireniamu) (1999) 1.364700

Texas Chainsaw Massacre, The (1974) 1.332448

Dumb & Dumber (1994) 1.321333

Crash (1996) 1.319636

Blair Witch Project, The (1999) 1.316368

Natural Born Killers (1994) 1.307198

Down to You (2000) 1.305310

Cemetery Man (Dellamorte Dellamore) (1994) 1.300647

Name: rating, dtype: float64

rating_std_by_title_active.sort_values(ascending = True)[:10]

title

Close Shave, A (1995) 0.667143

Rear Window (1954) 0.688946

Great Escape, The (1963) 0.692585

Shawshank Redemption, The (1994) 0.700443

Wrong Trousers, The (1993) 0.708666

Central Station (Central do Brasil) (1998) 0.709393

Never Cry Wolf (1983) 0.721782

Soldier's Story, A (1984) 0.725206

Raiders of the Lost Ark (1981) 0.725647

Seven Days in May (1964) 0.729639

Name: rating, dtype: float64

Question 6.8. Can we predict the user specified gender just from their movie ratings?

Observe that

np.sum(users["gender"] == "M") / len(users)

outputs .717 . . ., so the percentage of correct predictions should ideally be higher than this
number.

Here is an attempt to answer Question 6.8. For each user, we check the titles they rate
and compare the user rating to the average F rating of that title. We then do the same
comparison for the average M rating. We then classify the user as M or F according to their
deviation from the average M or F rating. Actually, since we compare these two averages,
we are just comparing the mean F rating versus the mean M rating of each title the user
has rated. That is, our algorithm only uses the titles rated, without taking into account the
individual user ratings.

track_sum = 0

from tqdm import tqdm
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for i in tqdm(range(len(users))):

current_gender = users["gender"][i]

current_id = i + 1

current_data = data[data["user_id"] == current_id].set_index("title")

#current_sorted = current_data.reindex(index = sorted_by_diff.index)

current_nan = current_data.isna()

current_data = current_data[~current_data.isna()]

current_data.dropna(inplace = True)

#current_data now has all ratings for user i, indexed by title

f_score = (current_data["rating"] - mean_ratings["F"][current_data.index]) ** 2

m_score = (current_data["rating"] - mean_ratings["M"][current_data.index]) ** 2

f_avg = np.mean(f_score)

m_avg = np.mean(m_score)

if f_avg < m_avg:

# then predict F

gender_predict = "F"

else:

gender_predict = "M"

if current_gender == gender_predict:

# then prediction was correct

track_sum += 1

print("Percentage prediction correct:", track_sum / len(users))

The output is 75.24. . .%.

Exercise 6.9. Try to modify the above code to predict more than 72.7% of user specified
gender of the users from the Movie Lens 1M data. Alternatively, if you want, try to use
some other classification algorithm we have discussed in order to get a better prediction
percentage, just using the user ratings.

Question 6.10. Can we predict a user’s movie rating for a movie they have not yet rated?

In this dataset, each user does not rate every movie. We would like to predict what movies
a user will like, using their viewing data. Let A be the m×n matrix, where m is the number
of users, n is the number of movie titles, and Aij ∈ {1, 2, 3, 4, 5} is equal to the rating of
user i for movie title j. In this dataset, we have m = 6040 and n = 3952 and A has about
1, 000, 000 known entries E ⊆ {(i, j) : 1 ≤ i ≤ 6040, 1 ≤ j ≤ 3952}. That is, the dataset
contains about one million movie ratings which leaves more than 20 million entries of A
unknown (unobserved).

rows = data["user_id"]

cols = data["movie_id"]

entries = data["rating"]

A = np.empty([6040, 3952], dtype = "uint8")

A[rows.values - 1, cols.values - 1] = entries.values

If we make no assumptions about A, then its entries can be filled in arbitrarily. However,
there are only so many different types of people with different types of movie preferences.
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That is, many of the rows of A should be identical or nearly identical. That is, we should be
able to assume that the rank of A is low, e.g. less than 100. So, one way we can try to recover
the unobserved entries of A is try to minimize the rank of a real m × n matrix B, subject
to the constraint that Bij = Aij for all (i, j) ∈ E. Equivalently, we could try to minimize
the number of nonzero singular values of B, subject to the constraint that Bij = Aij for all
(i, j) ∈ E.

Unfortunately this problem is NP-hard [BK15]. So, instead of minimizing the number of
nonzero singular values of B, we can try to minimize the sum of the singular values of B,
subject to the constraint that Bij = Aij for all (i, j) ∈ E. This problem is a convex opti-
mization problem, but it can be fairly slow and does not parallelize, so it can be impractical
for a matrix of large size (with 20 million entries).

So, an alternative approach is to fix an r ≥ 1 and to find an m× r real matrix U and an
n× r real matrix V that minimizes∑

(i,j)∈E

(Aij − (UV T )ij)
2.

Since UV T has rank at most r, the matrix UV T will be a low rank approximation to the
matrix A. Also, the problem is phrased in this way since, if U is fixed, then we can minimize
over V , and if V is fixed we can minimizer over U . That is, we can alternate between solving
two least squares minimization problems. To speed things up further, we can minimize over
each row of U at a time, then over each row of V at a time, as in the following code.

from numpy.linalg import solve

def matrix_completion_als(A, mask, rank=5, iterations=100, reg_param=0.01):

num_users, num_items = A.shape

U = np.random.normal(scale=1./rank, size=(num_users, rank))

V = np.random.normal(scale=1./rank, size=(num_items, rank))

# Alternating Least Squares (ALS)

for iteration in range(iterations):

# Update U, keeping V fixed

for i in range(num_users):

mask_row = mask[i, :]

V_masked = V[mask_row, :]

A_masked = A[i, mask_row]

if len(A_masked) > 0:

U[i, :] = solve(

V_masked.T @ V_masked + reg_param * np.eye(rank),

V_masked.T @ A_masked

)

# Update V, keeping U fixed

for j in range(num_items):

mask_col = mask[:, j]
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U_masked = U[mask_col, :]

A_masked = A[mask_col, j]

if len(A_masked) > 0:

V[j, :] = solve(

U_masked.T @ U_masked + reg_param * np.eye(rank),

U_masked.T @ A_masked

)

# Optionally, print out the loss to monitor convergence

loss = np.sum((mask * (A - U @ V.T))**2)

print(f"Iteration {iteration+1}/{iterations}, Loss: {loss}")

# Return the completed matrix

return U @ V.T

This function can be called as

completed_matrix = matrix_completion_als(

A,

A != 0,

rank = 10,

iterations = 50,

reg_param = 0.1

)

However, one downside of this approach is that (UV T )ij might not be equal to Aij when
(i, j) ∈ E. Still, at least we have some prediction for the missing movie ratings. For example

A[:5, :5]

has output

array([[5, 0, 0, 0, 0],

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0]], dtype=uint8)

which consists mostly of empty ratings. But

completed_matrix[:5, :5]

has output

array([[4.17517743, 3.50608825, 4.40508423, 3.40020978, 4.69459213],

[4.47761245, 3.35353216, 3.04344264, 3.3516488 , 3.5498769 ],

[3.44207249, 3.2142867 , 2.95733293, 2.90528044, 2.57136808],

[4.28084915, 2.02099364, 1.17336766, 2.13082553, 1.84848784],

[3.36399502, 2.06767066, 1.6148004 , 1.51961442, 1.17258333]])

Observe that the output UV T has entries that do not agree with A, non-integer entries
(and it can even have negative entries). To see why it is unlikely for UV T
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7. Web APIs and Data Cleaning

7.1. Zillow Sales Data. In this section, we will use the requests package to explore some
datasets from the internet. You can install this package from the command line with the
command

pip install requests

Here is an example of how to use the requests package.

import requests

url = "https://api.github.com/repos/pandas-dev/pandas/issues"

resp = requests.get(url)

# check for HTML errors

resp.raise_for_status()

# should output <Response [200]> to indicate success

resp

# convert to a list of dictionaries

data = resp.json()

For example, data[0] will be a dictionary object, with abbreviated form

{'url': 'https://api.github.com/repos/pandas-dev/pandas/issues/59291',

'repository_url': 'https://api.github.com/repos/pandas-dev/pandas',

...

'id': 2420993845,

'node_id': 'PR_kwDOAA0YD851_iH2',

'number': 59291,

'title': 'DOC: Fix sentence fragment in string methods',

...

'performed_via_github_app': None,

'state_reason': None}

If we just wanted to focus on a few of the items in the dictionary, we could pass it to a
DataFrame with e.g.

issues = pd.DataFrame(data, columns=["number", "title","labels", "state"])

For another example, I would like to analyze some zillow sales data. This data is available
under “sales” at the website

https://www.zillow.com/research/data/

After downloading the file, we can pass the .csv file to a dataframe with

data = pd.read_csv('Metro_sales_count_now_uc_sfrcondo_month.csv')

Here is an abbreviated example of this data, which gives the number of home sales during
each month in different metro areas in the USA (though the first row is just all sales in the
USA).
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RegionID SizeRank RegionName RegionType StateName 2008-02-29 2008-03-31...

0 102001 0 United States country NaN 204850.0 237683.0 ...

1 394913 1 New York, NY msa NY 8585.0 8965.0 ...

2 753899 2 Los Angeles, CA msa CA 4159.0 5052.0 ...

3 394463 3 Chicago, IL msa IL 5882.0 7411.0 ...

4 394514 4 Dallas, TX msa TX 5001.0 5664.0 ...

... ... ...

I would like to just examine some trends relating the different metro areas. I will first
remove the first row and first few columns, then delete any columns with NaN values, and
convert to a Numpy array.

sales_cut = data.iloc[1:, 5:]

sales = sales_cut.dropna(axis = 1).values

I am curious if we can classify these metro areas into similar classes. Since some metro
areas are naturally larger than others, before applying k-means clustering, I will normalize
each row of the sales array so they are all vectors of the same length.

import matplotlib.pyplot as plt

row_length = np.linalg.norm(sales, axis = 1)

sales_normed = (sales.T/ row_length).T

nrow, ncol = sales_normed.shape

U, D_vector, V = np.linalg.svd(sales_normed)

# number of principal components

q = 2

D_truncated = np.zeros([nrow, q])

D_truncated[:q, :q] = np.diag(D_vector[:q])

pca_data = U @ D_truncated

fig, ax = plt.subplots()

ax.scatter(pca_data[:, 0], pca_data[:, 1])

for i in np.arange(nrow):

ax.annotate(sales_values[i+1,2],

xy = (pca_data[i, 0]+.002, pca_data[i, 1]), size = 4)

ax.set_xlabel('1st component')

ax.set_ylabel('2nd component')

plt.savefig('zillow_sales.pdf')

plt.show()

For some reason, Little Rock has much different home sale behavior than many other
places. To try to find an explanation, I will repeat the above PCA plot for the differences
in number of sales in consecutive months, rather than the number of sales themselves.

sales_change = sales[:, 0:-1] - sales[:, 1:np.shape(sales)[1]]

Repeating the same code for sales_change in place of sales we get the plot below.
Once again Little Rock is a bit of an outlier, but I could not find a good explanation for

why its behavior is different than other metropolitan areas. To try to figure out what is
going on, let’s check for correlations in the prices with each other. Since Little Rock is an
outlier, we expect that it will have a relatively lower correlation with other metropolitan
areas.
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Figure 4. Plot of PCA output in two dimensions. Zillow Monthly Sales Data,
2008–2024, Normalized

0.65 0.70 0.75 0.80 0.85 0.90 0.95
1st component

0.4

0.2

0.0

0.2

0.4

2n
d 

co
m

po
ne

nt

New York, NY

Los Angeles, CA

Chicago, IL

Dallas, TX
Houston, TX

Washington, DC

Philadelphia, PA

Miami, FL

Atlanta, GA

Boston, MA

Phoenix, AZ

San Francisco, CA

Riverside, CA

Detroit, MI

Seattle, WA

Minneapolis, MN

San Diego, CA

Tampa, FL

Denver, CO

Baltimore, MD
St. Louis, MO

Orlando, FL

Charlotte, NC
San Antonio, TX

Portland, OR

Sacramento, CA

Pittsburgh, PA
Cincinnati, OH

Austin, TX

Las Vegas, NV

Kansas City, MO

Columbus, OH

Indianapolis, IN

Cleveland, OH

San Jose, CA

Nashville, TNVirginia Beach, VA

Providence, RI

Jacksonville, FL

Milwaukee, WI

Oklahoma City, OK
Raleigh, NC

Memphis, TN

Richmond, VALouisville, KY

New Orleans, LA
Salt Lake City, UT

Hartford, CT

Buffalo, NY

Birmingham, AL

Rochester, NY

Grand Rapids, MI

Tucson, AZ

Urban Honolulu, HI
Tulsa, OKFresno, CA

Worcester, MA

Omaha, NE

Bridgeport, CT

Greenville, SC

Albuquerque, NM
Bakersfield, CA

Albany, NY

Knoxville, TN

Baton Rouge, LA

McAllen, TX

New Haven, CT

El Paso, TX

Allentown, PA

Oxnard, CA

Columbia, SC

North Port, FL

Charleston, SC

Greensboro, NC

Stockton, CA

Cape Coral, FL

Boise City, ID

Colorado Springs, CO

Little Rock, AR

Lakeland, FL

Akron, OH

Des Moines, IA

Springfield, MA

Ogden, UT

Madison, WI

Winston, NC

Deltona, FL

Syracuse, NY

Provo, UT

Toledo, OH
Wichita, KS

Durham, NC

Fort Collins, CO

Figure 5. Plot of PCA output in two dimensions. Zillow Monthly Sales Data,
2008–2024, Changes between months, Normalized

data_trim = pd.DataFrame(

{data.loc[i]["RegionName"] : data.loc[i]["2008-02-29":]

for i in range(94)}
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)

corr_df = data_trim.corr()

print(corr_df)

When we print the correlations, and then sum up each column, we see there are two cities
with particular low column sums. Most column sums are around 60 or 70, but two of them
are quite small, i.e. less than 30.

print(print(np.sum(corr_df.to_numpy(), axis=0)))

print(z[np.sum(corr_df, axis = 0) < 30])

These cities are Stockton, CA and Little Rock, AR. So, it seems that the number of
housing sales of Little Rock, AR is typically uncorrelated with other metropolitan areas. To
see if there is any regional explanation, let’s check the correlation of California metropolican
areas.

ca_index = ["CA" in x for x in corr_df.index]

corr_df[ca_index].T[ca_index]

outputs

Los Angeles, CA San Francisco, CA Riverside, CA San Diego, CA Sacramento, CA

San Jose, CA Fresno, CA Bakersfield, CA Oxnard, CA Stockton, CA

Los Angeles, CA 1.000 0.877 0.876 0.967 0.941 0.915 0.894 0.854 0.954 0.601

San Francisco, CA 0.877 1.000 0.817 0.833 0.859 0.933 0.724 0.740 0.822 0.732

Riverside, CA 0.876 0.817 1.000 0.862 0.870 0.836 0.849 0.906 0.848 0.823

San Diego, CA 0.967 0.833 0.862 1.000 0.950 0.889 0.897 0.850 0.955 0.577

Sacramento, CA 0.941 0.859 0.870 0.950 1.000 0.884 0.898 0.867 0.950 0.677

San Jose, CA 0.915 0.933 0.836 0.889 0.884 1.000 0.799 0.808 0.859 0.644

Fresno, CA 0.894 0.724 0.849 0.897 0.898 0.799 1.000 0.887 0.887 0.578

Bakersfield, CA 0.854 0.740 0.906 0.850 0.867 0.808 0.887 1.000 0.859 0.676

Oxnard, CA 0.954 0.822 0.848 0.955 0.950 0.859 0.887 0.859 1.000 0.596

Stockton, CA 0.601 0.732 0.823 0.577 0.677 0.644 0.578 0.676 0.596 1.000

It seems that Stockton, CA has a slightly lower correlation to other California metropolitan
areas, though the lack of regional effect is more pronounced for Little Rock, as we see below.

ar_index = ["AR" in x or "OK" in x or "MO" in x or "LA" in x

for x in corr_df.index]

corr_df[ar_index].T[ar_index]

outputs

St. Louis, MO Kansas City, MO Oklahoma City, OK New Orleans, LA

Tulsa, OK Baton Rouge, LA Little Rock, AR

St. Louis, MO 1.000 0.951 0.947 0.893 0.960 0.918 0.222

Kansas City, MO 0.951 1.000 0.881 0.798 0.906 0.884 0.275

Oklahoma City, OK 0.947 0.881 1.000 0.906 0.954 0.885 0.302

New Orleans, LA 0.893 0.798 0.906 1.000 0.897 0.906 0.258

Tulsa, OK 0.960 0.906 0.954 0.897 1.000 0.910 0.228

Baton Rouge, LA 0.918 0.884 0.885 0.906 0.910 1.000 0.199

Little Rock, AR 0.222 0.275 0.302 0.258 0.228 0.199 1.000

As we see, Little Rock has a distinctly lower correlation with its regional neighbors.
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I was just curious how the other correlation numbers look, so I sorted then with e.g.

print(np.sort(corr_df["Stockton, CA"]))

A few of these entries actually have negative correlation. To see which cities, we use

neg_corr = [x for i,x in enumerate(corr_df.index)

if corr_df["Stockton, CA"][x]<0]

print(neg_corr)

whose output is

['Jacksonville, FL', 'Birmingham, AL', 'McAllen, TX', 'El Paso, TX',

'Little Rock, AR', 'Lakeland, FL', 'Deltona, FL']

This observation agrees with conventional wisdom that there is currently a net flow from
California to Texas and Florida.

It turns out the most correlated with Stockton, CA is Riverside, CA with a .823 correlation,
and the most correlated with Little Rock, AR is Birmingham, AL with a .671 correlation.
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7.2. Google Finance Data. In the following example, we are using Google Finance to
find some current stock prices for some technology stocks. The requests package is used to
query the domain
https://www.google.com/finance for the stock data, for each of four stocks (Meta, Mi-
crosoft, Google, and Nvidia). After reading the text output of the URL query, we find that
we can extract the price data whenever the current year (2024) appears, followed by at most
100 other characters, and then finally the string 2,2,4. For example, here is part of the web
page output:

[[2024,7,3,9,34,null,null,[-14400]],[508.02,-1.4800000000000182,

-0.002904808635917602,2,2,4],20991],

The stock price is 508.02, the date and time for this price is July 3, 2024 at 9:34. We will
not use the other parts of this string.

In order to find all of the prices that appear, we use the command

extracted = re.findall(r"\[2024([a-z0-9,.\-\[\]]{0,100}),2,2,4\]", data)

Inside the findall command, the letter r denotes a raw string, and then the string search
command follows. We first look for the string [2024 (since the bracket is a special character,
we need to add a slash to search for it in the findall function). After finding [2024, we then
nest inside parentheses the part of the string we want to output. Inside these parentheses,
we have the command [a-z0-9,.\-\[\]]{0,100}. The [a-z0-9,.\-\[\]] means we are
looking for any alphanumeric lower case character, or any of the characters ,.-[] (In the
latter two cases we again have to add a slash to search for those special characters). Then,
the {0,100} command denotes we can look for at most 100 of those characters specified by
the [a-z0-9,.\-\[\]] command. Finally, the string ,2,2,4 is the end of the part where
the stock price data appears.

Part of the extracted list of strings is printed below:

',7,3,9,34,null,null,[-14400]],[508.02,-1.4800000000000182,

-0.002904808635917602'

Since we only care about the price (508.02) and the day/time of the stock price (July 3
at 9:34), we will run through each string element of the list extracted to delete the other
parts of this string, and also split it into two different lists (one for the price, another for the
time). This deletion procedure uses the functions clean_string and clean date.

Finally, for some reason the different stocks have different numbers of prices. So, for
convenience, I just throw out all stock price entries that are longer than the shortest stock
price list.

import requests

import re

stocks = ["META", "MSFT", "GOOG", "NVDA"]

total_data = []

data_len = []

def clean_string(s):

if "[" in s:

index = s.find("[")
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s=s[index+1:]

if "," in s:

index = s.find(",")

return s[0:index]

return s

def clean_date(s):

if "n" in s:

index = s.find("n")

s=s[:index]

s=s+"0"

return s

for j in range(len(stocks)):

url = "https://www.google.com/finance/quote/" + stocks[j] + ":NASDAQ?hl=en"

resp = requests.get(url)

data = resp.text

#print(data)

extracted = re.findall(r"\[2024([a-z0-9,.\-\[\]]{0,100}),2,2,4\]", data)

time_stamps = []

stock_prices = []

for i in range(len(extracted)):

if "." in extracted[i] and len(extracted[i])>5:

time_stamps.append(clean_date(extracted[i][1:11]))

stock_prices.append(clean_string(extracted[i][31:38]))

total_data.append(time_stamps)

total_data.append(stock_prices)

data_len.append(len(time_stamps))

print(total_data)

We could then plot all four stock prices in one plot as follows.

import matplotlib.pyplot as plt

# convert date string such as "7,19,9,32" to 7 + (19-1)/31 + (9-1)/(24*31) + (32-1)/(24*60*31)

def process_date(x):

if x[-2] == ",":

x = x[:-1] + "0" + x[-1]

comma_index = [i for i, char in enumerate(x) if char == ","]

for j in range(len(comma_index) - 1):

if comma_index[j+1] - comma_index[j] == 2:

# then add an extra 0 after comma_index[j]

x = x[:(1+comma_index[j])] + "0" + x[(comma_index[j+1] - 1):]
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# so far, we replaced 7,19,9,32 with 7,19,09,32

comma_index = [i for i, char in enumerate(x) if char == ","]

integer_part = x[:comma_index[0]]

#integer_part = integer_part.replace(",","")

day = x[1 + comma_index[0]:comma_index[1]]

hour = x[(1 + comma_index[1]):comma_index[2]]

minute = x[(1 + comma_index[2]):]

minute = minute.replace(",","")

#divide day by number of days in that month

if day in ['4', '6', '9', '11']:

num_days = 30

elif day == '2':

num_days = 28

else:

num_days = 31

day = (int(day) - 1) / num_days

hour = (int(hour) - 1) / (24 * num_days)

minute = (int(minute) - 1) / (60 * 24 * num_days)

decimal_part = day + hour + minute

return float(integer_part) + decimal_part

def process_date_list(x):

out=[]

for i in range(len(x)):

out.append(process_date(x[i]))

return out

fig, ax = plt.subplots()

colors = ["red", "blue", "green", "cyan"]

for k in range(len(stocks)):

ax.scatter(

process_date_list(total_data[2*k - 2]),

[float(i) for i in total_data[2*k - 1]],

c = colors[k],

s=1

)

ax.set_xlabel('time (m as integer, d/h/s as fraction)')

ax.set_ylabel('price (dollars per share)')

ax.tick_params(reset = True)
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ax.legend(stocks)

plt.savefig('stock_prices.pdf')

plt.show()
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Figure 6. Some stock prices from Google Finance

It seems like we are missing some data though.

Exercise 7.1. Modify the above code to fill in the data values that appear to be missing
from the plot.

Let’s pass the stock data to a DataFrame and calculate the correlation of each stock price
with each other one using the corr() method.

df = pd.DataFrame(

{stocks[i] : dict(zip(total_data[2*i -2],

total_data[2*i -1])) for i in range(4)}

)

print(df)

print(df.corr())

META MSFT GOOG NVDA

8,16,9,30, 121.82 NaN NaN 163.4

8,16,9,32, 121.64 532.9 419.83 164.11

8,16,9,33, 122.16 532.48 419.90 164.12

8,16,9,34, 122.36 532.6 419.73 163.98

8,16,9,35, 122.68 533.49 420.05 163.96

... ... ... ... ...

8,16,19,33 NaN NaN NaN 164.6

8,16,19,39 NaN NaN NaN 164.6
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8,16,19,47 NaN NaN NaN 164.7

8,16,19,48 NaN NaN NaN 164.7

8,16,19,54 NaN NaN NaN 164.7

[479 rows x 4 columns]

META MSFT GOOG NVDA

META 1.000000 -0.060123 0.013079 0.623733

MSFT -0.060123 1.000000 0.288277 0.092158

GOOG 0.013079 0.288277 1.000000 -0.406910

NVDA 0.623733 0.092158 -0.406910 1.000000

Due to an oddity in the data, the nonempty values of the stock prices have almost empty
overlap, resulting in some near zero correlations.

7.3. eBay Sales Price Data. In the following example, we are using eBay to find some
recent sales of a USC Trojans Jersey. The requests package is used to query the domain
https://www.ebay.com for the sales data. After reading the text output of the URL query,
we find that we can extract the price data from three different prefixes, according to how the
sales price is formatted on the screen (which denotes what type of auction occurred). These
prefixes are: class=POSITIVE>, POSITIVE ITALIC">, and STRIKETHROUGH POSITIVE">. In
each of these cases, a dollar sign occurs and then the sales price is listed, with two decimal
places. For example, here is part of the web page output:

<span class=POSITIVE>$24.80</span>

The sales price here is 24.80. The sold data occurs in a different string, with the prefix
POSITIVE"><span>, as follows:

signal POSITIVE"><span>Sold Jul 4, 2024</span>

In order to find all of the prices that appear, we search for the three possible prefixes we
listed above. Our search string put into the re.findall command is the following:

search_string = (

r'class=POSITIVE>([\w$.,</]{10})'

r'|POSITIVE ITALIC">([\w$.,</]{10})'

r'|STRIKETHROUGH POSITIVE">([\w$.,</]{10})'

)

The outer parenthesis here enable a multiline string command (we need to use three r

characters to concatenate a single raw string over multiple lines.) The two vertical bars
correspond to logical “or” commands, so that we search for three different things. For the
first string prefix, the command inside parentheses is [\w$.,</]{10}. This command asks
for ten alphanumeric characters (\w represents any letter or number) or characters among
$,.</] . As we can see from the above example, these characters do appear after the stated
prefix. All instances of the search_string are then found via the following command:

extracted_prices = re.findall(search_string, data)

Similarly, the sale date is found via the command

extracted_dates = re.findall(r'POSITIVE"><span>Sold([\w .</]{7})', data)

Part of the extracted_prices list of tuples of strings is printed below:

('', '', '$900.00</s')
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Since we ask for three different string matches, the output of re.findall is a 3-tuple of
strings. The function clean_price removes the extraneous characters from this 3-tuple. We
also delete the empty parts of the tuple.

Part of the extraced_dates list of strings is printed below

' Jul 4'

The function clean_date removes the extra spaces from this string.

import requests

import re

import numpy as np

def clean_price(s):

index1 = s.find("$")

index2 = s.find(".")

return s[index1+1:index2+3]

def clean_date(s):

return s[2:]

url = """https://www.ebay.com/sch/i.html?_nkw=usc+trojans+jersey

&_sacat=0&LH_Complete=1&LH_Sold=1"""

resp = requests.get(url)

data = resp.text

search_string=(

r'class=POSITIVE>([\w$.,</]{10})'

r'|POSITIVE ITALIC">([\w$.,</]{10})'

r'|STRIKETHROUGH POSITIVE">([\w$.,</]{10})'

)

extracted_prices = re.findall(search_string, data)

extracted_dates = re.findall(r'POSITIVE"><span>Sold([\w .</]{7})', data)

if len(extracted_prices) != len(extracted_dates):

print("Error: Prices and dates have different lengths! Fixing...")

min_length = np.min([len(extracted_prices), len(extracted_dates)])

extracted_prices = extracted_prices[:min_length]

extracted_dates = extracted_dates[:min_length]

time_stamps = []

stock_prices = []

total_data=[]

for i in range(len(extracted_prices)):

time_stamps.append(clean_date(extracted_dates[i]))

for j in range(3):

if len(extracted_prices[i][j])>0:

price_index = j
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stock_prices.append(clean_price(extracted_prices[i][price_index]))

total_data.append(time_stamps)

total_data.append(stock_prices)

print(total_data)

8. Regression

In statistics and machine learning, we often use data to make predictions. In Section
4, we classified data into a discrete set of categories. For example, we classified flower
measurements into three different species, and we classified newsgroups postings into six
different categories in Exercise 4.14. These examples are called classification tasks, since
the labels we give to datapoints come from a discrete set. In contrast, regression tasks
assign datapoints a label from a continuous set. For example, we might predict someone’s
adult height given their height at age two.

So far, we have focused mostly on classification tasks. In the next Section 9, we will
improve on an approach to handwriting classification from Exercise 4.17.

In this section, we will provide a few examples of regression.
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8.1. Linear Regression. We have covered linear regression and least squares estimation in
previous classes, so let’s start with an example. We are going to plot the average price of
electricity per kilowatt-hour in Los Angeles-Long Beach-Anaheim, CA, as provided at the
following website, where we can download a .csv file.

https://fred.stlouisfed.org/series/APUS49A72610
We will use the LinearRegression function to find the best fit line to this data.

import numpy as np

import pandas as pd

import time as time

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

df = pd.read_csv("electric.csv", encoding="utf-8")

df = df.rename(columns={"DATE": "date", "APUS49A72610": "rate"})

# clean a missing entry

df[df.values[:, 1] == '.'] = ['1985-08-01', '0.083']

# convert date to an integer value

for i in range(len(df)):

year = df.iloc[i, 0][0:4]

month = df.iloc[i, 0][5:7]

month_decimal = (int(month) - 1) / 12

month_decimal = ((month_decimal * 100) // 1) / 100

month_str = str(month_decimal)

df.iloc[i, 0] = year + month_str[1:]

# reshape is required for one-dimensional data

regr = LinearRegression()

regr.fit(

df.values[:, 0].astype(float).reshape(-1, 1),

df.values[:, 1].astype(float)

)

print(regr.coef_[0], regr.intercept_)

print("Slope: ", regr.coef_[0], "Intercept: ", regr.intercept_)

# Plot outputs

plt.plot(

df.values[:, 0].astype(float),

df.values[:, 1].astype(float),

color="red"

)

plt.plot(

df.values[:, 0].astype(float),
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regr.coef_ * df.values[:, 0].astype(float) + regr.intercept_,

color="blue", linewidth=3

)

plt.xlabel('Date, as an integer')

plt.ylabel('Electric rate (dollars per kilowatt hour)')

plt.savefig('electric.pdf')

plt.show()

Slope: 0.004084495925694919 Intercept: -8.026650343894014
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Figure 7. Average Price of Electricity per Kilowatt-Hour in Los Angeles-
Long Beach-Anaheim, CA (CBSA), together with best linear fit

Since we found a slope of about 4 × 10−3, this means the electric rate is going up at by
approximately 4 cents every ten years.

Exercise 8.1. The electricity prices we analyzed behaved a bit differently over the last 7
years. Perform a linear regression just on data from 2017 to the present. What slope do you
get?

Our electricity prices did not reflect inflation. Perform the same linear regression anal-
ysis (for the full dataset, and for the past 7 years) by adjusting for inflation. (This part
of the exercise is intentionally open-ended. To get some usable inflation numbers, see e.g.
https://fred.stlouisfed.org/series/FPCPITOTLZGUSA . For example, if electricity rates in-
creased by three percent in one year when inflation is three percent for that whole year, then
the inflation adjusted electricity rate would be constant over that year.)
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8.1.1. Multiple Linear Regression.

import pandas as pd

import numpy as np

from sklearn.datasets import fetch_california_housing

import matplotlib.pyplot as plt

from pandas.plotting import scatter_matrix

from sklearn.metrics import r2_score

from sklearn.linear_model import LinearRegression

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

housing = fetch_california_housing(as_frame=True)

housing = housing.frame

housing.head()

MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude MedHouseVal

0 8.3252 41.0 6.984127 1.023810 322.0 2.555556 37.88 -122.23 4.526

1 8.3014 21.0 6.238137 0.971880 2401.0 2.109842 37.86 -122.22 3.585

2 7.2574 52.0 8.288136 1.073446 496.0 2.802260 37.85 -122.24 3.521

3 5.6431 52.0 5.817352 1.073059 558.0 2.547945 37.85 -122.25 3.413

4 3.8462 52.0 6.281853 1.081081 565.0 2.181467 37.85 -122.25 3.422

california_housing = fetch_california_housing(as_frame=True)

print(california_housing.DESCR)

.. _california_housing_dataset:

California Housing dataset

--------------------------

**Data Set Characteristics:**

:Number of Instances: 20640

:Number of Attributes: 8 numeric, predictive attributes and the target

:Attribute Information:

- MedInc median income in block group

- HouseAge median house age in block group

- AveRooms average number of rooms per household

- AveBedrms average number of bedrooms per household

- Population block group population

- AveOccup average number of household members

- Latitude block group latitude

- Longitude block group longitude

:Missing Attribute Values: None
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This dataset was obtained from the StatLib repository.

https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html

The target variable is the median house value for California districts,

expressed in hundreds of thousands of dollars ($100,000).

This dataset was derived from the 1990 U.S. census, using one row per census

block group. A block group is the smallest geographical unit for which the U.S.

Census Bureau publishes sample data (a block group typically has a population

of 600 to 3,000 people).

A household is a group of people residing within a home. Since the average

number of rooms and bedrooms in this dataset are provided per household, these

columns may take surprisingly large values for block groups with few households

and many empty houses, such as vacation resorts.

It can be downloaded/loaded using the

:func:`sklearn.datasets.fetch_california_housing` function.

.. rubric:: References

- Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,

Statistics and Probability Letters, 33 (1997) 291-297

housing.hist(bins=50, figsize=(12,8))

plt.savefig('cahousing.pdf')

plt.show()

housing.plot(

kind = "scatter",

x = "Longitude",

y = "Latitude",

c = "MedHouseVal",

cmap = "jet",

colorbar = True,

legend = True,

sharex = False,

figsize = (10,7),

s = housing['Population']/100,

label = "population",

alpha = 0.7

)

plt.savefig('cahousing2.png')

plt.show()

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import RidgeCV
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from sklearn.pipeline import make_pipeline

from sklearn.model_selection import cross_validate

alphas = np.logspace(-3, 1, num=30)

model = make_pipeline(StandardScaler(), RidgeCV(alphas=alphas))
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cv_results = cross_validate(

model,

california_housing.data,

california_housing.target,

return_estimator=True,

n_jobs=2,

)

coefs = pd.DataFrame(

[est[-1].coef_ for est in cv_results["estimator"]],

columns=california_housing.feature_names,

)

color = {"whiskers": "black", "medians": "black", "caps": "black"}

coefs.plot.box(vert=False, color=color)

plt.axvline(x=0, ymin=-1, ymax=1, color="black", linestyle="--")

_ = plt.title("Coefficients of Ridge models\n via cross-validation")

plt.savefig('cahousing3.pdf')
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As expected, the largest coefficients occur for longitude, latitude and median income, i.e.
these are the most significant factors for determining the price of a house.

8.2. Logistic Regression. In our next example, we will use logistic regression to classify
emails as spam or not spam (ham). We will first introduce logistic regression.

Denote the logistic function as

h(x) :=
1

1 + e−x
, ∀x ∈ R.

Note that limx→∞ h(x) = 1 and limx→−∞ h(x) = 0.
Let X1, . . . , Xm be i.i.d. real-valued random variables. Let g : R → {0, 1} be an unknown

function, and let Yi := g(Xi) for all 1 ≤ i ≤ m. For example, X1, . . . , Xm could be the
blood pressures of m people, and g(Xi) = 1 if person i ∈ {1, . . . ,m} has had a heart attack,
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whereas g(Xi) = 0 if person i has not had a heart attack. In this way, g classifies the data has
having or not having a certain trait. For another example, Xi could be some characteristic
of the ith received email, g(Xi) = 1 if email i ∈ {1, . . . ,m} is spam, whereas g(Xi) = 0 if
email i is not spam.

By our assumptions, Y1, . . . , Ym are i.i.d. Bernoulli random variables with some unknown
probability 0 ≤ p ≤ 1 such that p = P(Y1 = 1). Since the logistic function smoothly
transitions from value 0 to value 1, we make the heuristic assumption that there are some
unknown parameters a, b ∈ R such that

p ≈ h(ax+ b) ≈ g(x).

The likelihood function is then

ℓ(a, b) :=
m∏
i=1

pyi(1− p)1−yi =
m∏
i=1

[h(axi + b)]yi [1− h(axi + b)]1−yi ,

∀x1, . . . , xn ∈ R, ∀ y1, . . . , ym ∈ {0, 1}.
From Exercise 8.2, the log-likelihood function has at most one global maximum. So, if the

MLE exists, it is unique.

Exercise 8.2. Let

h(x) :=
1

1 + e−x
, ∀x ∈ R.

Fix x ∈ R and y ∈ [0, 1]. Define t : R2 → R by

t(a, b) := log
(
[h(ax+ b)]y[1− h(ax+ b)]1−y

)
, ∀ a, b ∈ R.

Show that t is concave. Conclude that t has at most one global maximum.

Definition 8.3. A single variable Logistic Regression finds the values of a, b ∈ R that
maximize the likelihood function ℓ(a, b). Then, given a new datapoint x, its probability of
exhibiting the predicted trait (such as having a heart attack) is

h(ax+ b).

Recall that 0 < h < 1, so we can interpret h(ax + b) as a probability. We can round this
quantity to the nearest integer to perform a classification as well. That is, if h(ax+b) > 1/2,
we predict that x exhibits the trait, and if h(ax+b) ≤ 1/2, we predict that x does not exhibit
the trait.

When x(1), . . . , x(m) ∈ Rq, we can similarly define a multivariable logistic regression that
finds values a ∈ Rq and b ∈ R that maximizes the likelihood

m∏
i=1

[h(⟨a, x(i)⟩+ b)]yi [1− h(⟨a, x(i)⟩+ b)]1−yi .

Then, given a new datapoint x ∈ Rq, its probability of exhibiting the predicted trait is

h(⟨a, x⟩+ b).

As before, we can round this quantity to the nearest integer to perform a classification.
Let’s now apply logistic regression to classify emails as spam or ham. We already performed

text classification in Exercise 4.14, so we can reuse some of that code.
The dataset we will use appears at the following link.
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https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset

import numpy as np

import pandas as pd

import time as time

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.linear_model import LogisticRegression

from sklearn import metrics

df = pd.read_csv("spam.csv", encoding="latin-1")

df = df.drop(["Unnamed: 2", "Unnamed: 3", "Unnamed: 4"], axis=1)

df = df.rename(columns={"v1": "label", "v2": "text"})

# Preprocess text data

df["text"] = df["text"].str.lower()

dataset_train = df.iloc[0:4000, 1]

dataset_test = df.iloc[4000:, 1]

combined_data = df.iloc[:, 1]

labels_train = df.iloc[0:4000, 0]

labels_test = df.iloc[4000:, 0]

vectorizer = TfidfVectorizer(

max_df = 0.5,

min_df = 10,

stop_words = "english",

)

t0 = time.time()

# we use a vectorizer on the entire dataset, otherwise

# the functions below will output errors

vector_data = vectorizer.fit_transform(combined_data)

print("Vectorized All Data in Time: %0.3f" % (time.time() - t0))

vector_data_train = vector_data[:len(dataset_train)]

vector_data_test = vector_data[len(dataset_train):]

t0 = time.time()

clf = LogisticRegression()

clf = clf.fit(vector_data_train, labels_train)

print("Logistic Fit in Time: %0.3f" % (time.time() - t0))

t0 = time.time()

pred = clf.predict(vector_data_test)
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print("Prediction done in %0.3fs" % (time.time() - t0))

prediction_error = np.sum(pred != labels_test) / len(labels_test)

print("prediction error: %0.3f" % prediction_error)

We achieved a prediction error of .031 in less than 1/4 seconds.

Classification report for classifier:

precision recall f1-score support

ham 0.9692 0.9963 0.9826 1360

spam 0.9713 0.7972 0.8756 212

accuracy 0.9695 1572

macro avg 0.9703 0.8967 0.9291 1572

weighted avg 0.9695 0.9695 0.9682 1572

[[1355 5]

[ 43 169]]

The function predict automatically converts the regression to classification by rounding
the predicted probability to the nearest integer. That is, the following bit of code is equivalent
to the last bit of code we used.

pred = clf.predict_proba(vector_data_test)

y_pred=[]

for i in range(len(pred)):

if pred[i,0]>.5:

y_pred.append('ham')

else:

y_pred.append('spam')

prediction_error = np.sum(y_pred != labels_test) / len(labels_test)

print("prediction error: %0.3f" % prediction_error)

If we change the cutoff value .5 to another number we get slightly better results. For
example, with a value of .8, I got a classification error of .019.

For the sake of comparison, let’s use a support vector classifier as we did in Exercise 4.14.

from scipy.stats import loguniform

from sklearn.model_selection import RandomizedSearchCV

from sklearn.svm import SVC

t0 = time.time()

param_grid = {

"C": loguniform(1e3, 1e5),

"gamma": loguniform(1e-4, 1e-1),

}

clf = RandomizedSearchCV(

SVC(kernel = "rbf", class_weight = "balanced"), param_grid, n_iter=10

)
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clf = clf.fit(vector_data_train, labels_train)

print("SVC Search Fit in Time: %0.3f" % (time.time() - t0))

t0 = time.time()

y_pred = clf.predict(vector_data_test)

print("Prediction done in %0.3fs" % (time.time() - t0))

prediction_error = np.sum(y_pred != labels_test) / len(labels_test)

print("prediction error: %0.3f" % prediction_error)

SVC Search Fit in Time: 14.756

Prediction done in 0.102s

prediction error: 0.023

This classifier uses a brute force search, hence the much slower run time, with a comparable
prediction error.

9. Deep Learning, keras

9.1. Handwriting Recognition and the MNIST Dataset. Recall that in Exercise 4.17
we used support vector machines to classify handwritten digits, and we achieved about a 98%
successful classification rate on the MNIST dataset. It turns out even better classification is
possible with deep learning, which is a classical triumph in the field.

To make sure you have the right packages installed, run the following commands.

pip install --upgrade keras

pip install --upgrade tensorflow

Below, we will try to classify images from the MNIST dataset using neural networks. We
will first define a neural network.
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Figure 8. Four example images from the MNIST dataset
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Definition 9.1 (Feedforward Neural Network). A feedforward neural network with
k layers and activation function h : R → R is a function f defined as follows. Let n0, . . . , nk−1

be positive integers. For each 1 ≤ i ≤ k − 1, assume that

fi : Rni−1 → Rni ,

fk : Rnk−1 → R.
Assume also that for all 1 ≤ i ≤ k, there exists w(ij) ∈ Rni−1 , tij ∈ R such that the jth

component of fi satisfies

fi,j(x) = h(⟨w(ij), x⟩ − tij), ∀x ∈ Rni−1 .

Then f is defined to be a function of the form

f := fk ◦ fk−1 ◦ · · · ◦ f1.
We refer to max0≤i≤k−1 ni as the width of the neural network. We also refer to k as the
depth or number of layers of the neural network.

Note that if h is itself a linear function, then f is also a linear function. So, it is most
sensible to choose a nonlinear activation function h.

Common examples of activation functions include:

• h(s) = sign(s) or (1 + sign(s))/2, ∀ s ∈ R (Boolean activation function).
• h(s) = max(s, 0), ∀ s ∈ R (Rectified Linear Unit) (ReLU).
• h(s) = (1 + e−2s)−1, ∀ s ∈ R (Sigmoid/Logistic Function)

• h(s) = tanh(s) = es−e−s

es+e−s , ∀ s ∈ R.
• h(s) = s

1+e−s , ∀ s ∈ R. (SiLU)
In the last case, note that (1/2)[1 + tanh(s)] is equal to the sigmoid function.
Below are some other definitions we will need to understand the neural networks below.

Let β > 0. For any x ∈ Rn, define the softmax function p = p(β) : Rn → Rn by

pi(x) :=
eβxi∑n
j=1 e

βxj
, ∀x ∈ Rn, ∀ 1 ≤ i ≤ n.

Observe that
∑n

i=1 pi = 1, so we can interpret pi as an estimated probability that vector x is
in class i. In the example below, the softmax function uses n = 10 since there are ten digits
(classes) to classify.

Let (a1, . . . , an), (b1, . . . , bn) be two nonnegative sequences of real numbers with
∑n

i=1 ai =∑n
i=1 bi = 1 and bi > 0 for all 1 ≤ i ≤ n. The categorial cross entropy of these sequences

is −
∑n

i=1 ai log bi. In the example below, n = 10, aj = 1 when an image is labelled as digit
j and ai = 0 for all i ̸= j with 0 ≤ i ≤ 9, and bi is the currently estimated probability that
the image is classified as digit i. (So −

∑n
i=1 ai log bi = − log bj in this case.) Finally, the

quantity
∑n

i=1 ai log bi is averaged over all (60,000) images in the dataset to output the cross
entropy. (More specifically, the loss function )

The Adam optimization method [KB15] (adaptive momentum estimation) is a variant of
gradient descent that has been observed to perform much better in practice than gradient
descent.

The batch size is the number of data points that are used when optimizing the loss
function in a single epoch. Different epochs will load different sets of data points into the
loss function.
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In the code below, neural network weights are initialized to normal (standard gaussian)
random variables (pseudorandom). The first argument in the model.add(Dense(...)) com-
mand is the output dimension of that neural network layer. So, in this example, the output
dimension matches the input dimension (they are both the number of pixels of a single image:
784).

The codes below were adapted from https://machinelearningmastery.com/ .

# Two Layer Neural Network for MNIST dataset

from tensorflow.keras.datasets import mnist

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Input

from tensorflow.keras.utils import to_categorical

# load data

(data_train, labels_train), (data_test, labels_test) = mnist.load_data()

# flatten each 28 by 28 image to a length 784 vector

data_train = data_train.reshape((data_train.shape[0], -1)).astype('float32')

data_test = data_test.reshape((data_test.shape[0], -1)).astype('float32')

# convert integer 0-255 grayscale values to real numbers between 0 and 1

data_train = data_train / 255

data_test = data_test / 255

# convert labels to binary vectors, as required by the cross entropy loss

labels_train = to_categorical(labels_train)

labels_test = to_categorical(labels_test)

num_classes = labels_test.shape[1]

num_pixels = data_train.shape[1]

# define neural network model

def neural_model():

# create model, starting with the first input layer

model = Sequential()

model.add(Input(shape = (num_pixels,)))

model.add(

Dense(

num_pixels,

kernel_initializer = 'normal',

activation = 'relu'

)

)

model.add(

Dense(

num_classes,

kernel_initializer = 'normal',

activation='softmax'

)

)
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# Compile model

model.compile(

loss='categorical_crossentropy',

optimizer = 'adam',

metrics = ['accuracy']

)

return model

# build the model

model = neural_model()

# Fit the model. verbose = 2 prints epoch progress

model.fit(

data_train, labels_train, validation_data = (data_test, labels_test),

epochs = 10,

batch_size = 200

)

# Final evaluation of the model

scores = model.evaluate(data_test, labels_test, verbose = 0)

print("Two Layer Network Error: %.2f%%" % (100-scores[1]*100))

# Print a summary of the neural network

model.summary()

The final error I got was 2%, which matches the SVM performance we found in Exercise
4.17. (I ran the above code with only one layer instead of two, and I got a much worse error
of 7.37%, though the code ran quite quickly.)

from sklearn import metrics

pred = np.argmax(model.predict(data_test), axis=-1)

(_, _), (_, labels_test) = mnist.load_data()

print(

f"Classification report for classifier:\n"

f"{metrics.classification_report(labels_test, pred, digits = 4)}\n"

f"{metrics.confusion_matrix(labels_test, pred)}\n"

)

which outputs

Classification report for classifier:

precision recall f1-score support

0 0.9918 0.9827 0.9872 980

1 0.9947 0.9850 0.9898 1135

2 0.9759 0.9816 0.9787 1032

3 0.9870 0.9752 0.9811 1010

4 0.9867 0.9807 0.9837 982

5 0.9788 0.9832 0.9810 892

6 0.9804 0.9927 0.9865 958

7 0.9797 0.9844 0.9820 1028
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8 0.9754 0.9784 0.9769 974

9 0.9715 0.9792 0.9753 1009

accuracy 0.9823 10000

macro avg 0.9822 0.9823 0.9822 10000

weighted avg 0.9823 0.9823 0.9823 10000

[[ 963 0 1 0 1 4 3 1 3 4]

[ 0 1118 4 1 0 1 3 1 7 0]

[ 2 1 1013 1 1 0 2 6 5 1]

[ 0 0 3 985 0 6 0 6 0 10]

[ 1 0 4 1 963 0 5 2 0 6]

[ 2 0 0 5 0 877 3 1 3 1]

[ 0 2 1 1 1 2 951 0 0 0]

[ 0 1 9 0 0 0 0 1012 3 3]

[ 2 0 3 2 3 3 2 2 953 4]

[ 1 2 0 2 7 3 1 2 3 988]]

The last matrix C (known as a confusion matrix) is defined so that entry Cij is the number
of observations known to be in class i and predicted to be in class j (in this case 0 ≤ i, j ≤ 9.)
So, e.g. C3,9 = 10 means there are ten examples of digit 3 that were (mistakenly) classified
as digit 9.

We can view some mis-classified images with the following code.

import matplotlib.pyplot as plt

import numpy as np

def plot_mislabels(label_0, label_1, data_test,

labels_test, pred, num_images = 4):

# plots num_images instances of an image in

# class label_0, that has been classified as label_1

mis_class = np.intersect1d(

np.where(labels_test == label_0),

np.where(pred == label_1)

)

plt.title('Examples of a ' + str(label_0)

+ ' that is classified as ' + str(label_1))

plt.xticks([])

plt.yticks([])

for i in range(num_images):

plt.subplot(2, 2, i + 1)

plt.imshow(data_test[mis_class[i]], cmap = plt.get_cmap('gray'))

plt.xticks([])

plt.yticks([])

plt.savefig('mis_class_1.pdf')

plt.show()
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(data_train, labels_train), (data_test, labels_test) = mnist.load_data()

plot_mislabels(3, 9, data_test, labels_test, pred)

Examples of a 3 that is classified as 9

One disadvantage of neural networks is they have give no obvious explanation for how they
work. To try to understand which pixels of an image play a role in their classification, we
can go through each pixel of each image in the test set, to see if the predicted digit changes
when each pixel is changed to either a 0 or 1 value. (Recall that each image pixel consists
of a grayscale value in [0, 1].)

from tqdm import tqdm

heatmap = np.zeros(num_pixels)

#small_shift = 1/10

for i in tqdm(range(num_pixels)):

test_copy1 = data_test.copy()

test_copy2 = data_test.copy()

test_copy1[:, i] = 1

test_copy2[:, i] = 0

pred1 = np.argmax(model.predict(test_copy1, verbose = 0), axis=-1)

pred2 = np.argmax(model.predict(test_copy2, verbose = 0), axis=-1)

heatmap[i] = np.mean(np.logical_or(pred != pred1, pred != pred2))

heatmap = heatmap.reshape([28, 28])

plt.imshow(heatmap, cmap = "jet")

plt.title(

'''Pixels where changing their value
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to 1 or 0 changes the prediction'''

)

plt.colorbar(

label = '''Fraction of images in training set

where the prediction was changed'''

)

plt.xticks([])

plt.yticks([])

plt.savefig('heatmap0.pdf')

plt.show()
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Figure 9. Heatmap for the network with two layers.

In the above neural network approach, we treat each image a vector, i.e. we don’t really
use any information about pixels that are adjacent to each other (in a straightforward way).
In contrast, our approach below will be designed to use information about adjacent pixels.
More specifically, we will use a convolutional neural network. That is, we will take averages
of blocks of pixel values when designing the neural network.

Recall that you have seen convolution before, when finding the distribution of the sum of
two independent random variables. Let X, Y be independent integer-valued random vari-
ables. Let t ∈ Z. Then

P(X + Y = t) =
∑
j∈Z

P(X = j)P(Y = t− j),

which is the convolution (on the integers) of the PMFs of X and Y . Similarly, if X, Y are
independent continuous random variables with PDFs fX and fY respectively, then the PDF
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fX+Y of X + Y is the convolution of fX and fY .

fX+Y (t) = (fX ∗ fY )(t) =
∫
R
fX(x)fY (t− x)dx, ∀ t ∈ R.

We can understand convolution on the integers or on the real line as taking an average of
one function using another function. Likewise, the discrete two-dimensional convolution we
use below can be understood as a two-dimensional average of pixel values. The first argument
of the two-dimensional convolutional layer Conv2D(...) is the output dimension, which is
set to be 32. That is, after the convolutional layer is applied, we take 32 different copies of
its output with 32 different weights. The second argument is the size of the “convolution
window.” In the code below, the layer takes a weighted average of several 5 by 5 blocks
of the 784 pixel image. Since the original image is 28 by 28 and the average is taken over
all possible 5 by 5 squares in the image, the output of the convolutional layer are 24 by 24
images (noting that 28− 5+ 1 = 24, i.e. there are 24 ways to put a 5 by 5 square in a 28 by
28 grid.) The next max-pooling layer takes the maximum value over four values in a grid of
disjoint 2 by 2 blocks. Next, the dropout layer randomly sets to zero each of its inputs with
given probability (which in this case is .2). The dropout layer is meant to protect against
overfitting.

As mentioned above, a convolutional layer directly uses information about pixels that
are near each other in the image, whereas our previous neural network approach did not
explicitly use this information. Moreover, our implementation of a convolutional layer is
somewhat translation invariant, which should aid in detecting features that do not depend
on their exact position in the image.

# Simple CNN (convolutional neural network) for the MNIST Dataset

from tensorflow.keras.datasets import mnist

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Input, Dense, Dropout, Flatten

from tensorflow.keras.layers import Conv2D, MaxPooling2D

from tensorflow.keras.utils import to_categorical

# load data

(data_train, labels_train), (data_test, labels_test) = mnist.load_data()

# reshape to be [samples][width][height][channels]

data_train = data_train.reshape((data_train.shape[0], 28, 28, 1)).astype('float32')

data_test = data_test.reshape((data_test.shape[0], 28, 28, 1)).astype('float32')

# convert integer 0-255 grayscale values to real numbers between 0 and 1

data_train = data_train / 255

data_test = data_test / 255

# convert labels to binary vectors, as required by the cross entropy loss

labels_train = to_categorical(labels_train)

labels_test = to_categorical(labels_test)

num_classes = labels_test.shape[1]

# define a simple CNN (convolutional neural network) model

def cnn_model():

# create model

model = Sequential()

model.add(Input(shape = (28, 28, 1)))
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model.add(

Conv2D(

32,

(5, 5),

activation = 'relu')

)

model.add(MaxPooling2D())

model.add(Dropout(0.2))

model.add(Flatten())

model.add(Dense(128, activation = 'relu'))

model.add(Dense(num_classes, activation = 'softmax'))

# Compile model

model.compile(

loss = 'categorical_crossentropy',

optimizer = 'adam',

metrics = ['accuracy']

)

return model

# build the model

model = cnn_model()

# Fit the model

model.fit(

data_train, labels_train, validation_data = (data_test, labels_test),

epochs = 10,

batch_size = 200

)

# Final evaluation of the model

scores = model.evaluate(data_test, labels_test, verbose = 0)

print("CNN Error: %.2f%%" % (100-scores[1]*100))

# Print a summary of the neural network

model.summary()

Here is the output of the program:
CNN Error: 1.11%

Layer (type) Output Shape Number of Parameters

conv2d (Conv2D) (None, 24, 24, 32) 832
max pooling 2d (MaxPooling2D) (None, 12, 12, 32) 0
dropout (Dropout) (None, 12, 12, 32) 0
flatten (Flatten) (None, 4608) 0
dense (Dense) (None, 128) 589,952
dense 1 (Dense) (None, 10) 1,290

Total params: 1,776,224 (6.78 MB)
Trainable params: 592,074 (2.26 MB)
Non-trainable params: 0 (0.00 B)
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Optimizer params: 1,184,150 (4.52 MB)
As we can see, we improved upon the classification error of our earlier approaches.

Classification report for classifier:

precision recall f1-score support

0 0.9928 0.9847 0.9887 980

1 0.9956 0.9877 0.9916 1135

2 0.9930 0.9641 0.9784 1032

3 0.9737 0.9891 0.9813 1010

4 0.9919 0.9919 0.9919 982

5 1.0000 0.9159 0.9561 892

6 0.9916 0.9802 0.9858 958

7 0.9950 0.9728 0.9838 1028

8 0.8565 0.9990 0.9223 974

9 0.9889 0.9673 0.9780 1009

accuracy 0.9759 10000

macro avg 0.9779 0.9753 0.9758 10000

weighted avg 0.9782 0.9759 0.9763 10000

[[ 965 0 0 0 0 0 3 1 11 0]

[ 0 1121 1 2 0 0 1 0 10 0]

[ 1 0 995 0 1 0 0 3 32 0]

[ 0 0 2 999 0 0 0 0 9 0]

[ 0 0 0 0 974 0 0 0 3 5]

[ 2 0 0 19 0 817 4 0 49 1]

[ 2 1 0 0 1 0 939 0 15 0]

[ 0 2 4 3 1 0 0 1000 13 5]

[ 1 0 0 0 0 0 0 0 973 0]

[ 1 2 0 3 5 0 0 1 21 976]]

We can use our function from before to output some mis-classified images.

(_, _), (data_test, labels_test) = mnist.load_data()

plot_mislabels(7, 2, data_test, labels_test, pred)

Once again, we can plot a heatmap to try to visualize how the network classifies the
images.

from tqdm import tqdm

heatmap = np.zeros(num_pixels)

#small_shift = 1/10

for i in tqdm(range(num_pixels)):

test_copy1 = data_test.copy()

test_copy2 = data_test.copy()

test_copy1[:, i // 28, i % 28] = 1

test_copy2[:, i // 28, i % 28] = 0
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Examples of a 7 that is classified as 2

pred1 = np.argmax(model.predict(test_copy1, verbose = 0), axis=-1)

pred2 = np.argmax(model.predict(test_copy2, verbose = 0), axis=-1)

heatmap[i] = np.mean(np.logical_or(pred != pred1, pred != pred2))

heatmap = heatmap.reshape([28, 28])

plt.imshow(heatmap, cmap = "jet")

plt.title(

'''Pixels where changing their value

to 1 or 0 changes the prediction'''

)

plt.colorbar(

label = '''Fraction of images in training set

where the prediction was changed'''

)

plt.xticks([])

plt.yticks([])

plt.savefig('heatmap0.pdf')

plt.show()

In this final example, we will add another convolutional layer to the network.

# Larger CNN for the MNIST Dataset

from tensorflow.keras.datasets import mnist

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Input, Dense, Dropout, Flatten

from tensorflow.keras.layers import Conv2D, MaxPooling2D
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Figure 10. Heatmap for the network with one convolutional layer.

from tensorflow.keras.utils import to_categorical

# load data

(data_train, labels_train), (data_test, labels_test) = mnist.load_data()

# reshape to be [samples][width][height][channels]

data_train = data_train.reshape((data_train.shape[0], 28, 28, 1)).astype('float32')

data_test = data_test.reshape((data_test.shape[0], 28, 28, 1)).astype('float32')

# convert integer 0-255 grayscale values to real numbers between 0 and 1

data_train = data_train / 255

data_test = data_test / 255

# convert labels to binary vectors, as required by the cross entropy loss

labels_train = to_categorical(labels_train)

labels_test = to_categorical(labels_test)

num_classes = labels_test.shape[1]

# define the larger model

def larger_model():

# create model

model = Sequential()

model.add(Input(shape = (28, 28, 1)))

model.add(

Conv2D(

30,

(5, 5),
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activation = 'relu'

)

)

model.add(MaxPooling2D())

model.add(

Conv2D(

15,

(3, 3),

activation = 'relu'

)

)

model.add(MaxPooling2D())

model.add(Dropout(0.2))

model.add(Flatten())

model.add(Dense(128, activation = 'relu'))

model.add(Dense(50, activation = 'relu'))

model.add(Dense(num_classes, activation = 'softmax'))

# Compile model

model.compile(

loss = 'categorical_crossentropy',

optimizer = 'adam',

metrics = ['accuracy']

)

return model

# build the model

model = larger_model()

# Fit the model

model.fit(

data_train, labels_train, validation_data = (data_test, labels_test),

epochs = 10,

batch_size = 200

)

# Final evaluation of the model

scores = model.evaluate(data_test, labels_test, verbose = 0)

print("Large CNN Error: %.2f%%" % (100-scores[1]*100))

# Print a summary of the neural network

model.summary()

Large CNN Error: 0.77%
Total params: 179,801 (702.35 KB)
Trainable params: 59,933 (234.11 KB)
Non-trainable params: 0 (0.00 B)
Optimizer params: 119,868 (468.24 KB)
Running our above code for a classification report outputs:

Classification report for classifier:

precision recall f1-score support
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Layer (type) Output Shape Number of Parameters

conv2d (Conv2D) (None, 24, 24, 30) 780
max pooling 2d (MaxPooling2D) (None, 12, 12, 30) 0
conv2d 1 (Conv2D) (None, 10, 10, 15) 4,065
max pooling2d 1 (MaxPooling2D) (None, 5, 5, 15) 0
dropout (Dropout) (None, 5, 5, 15) 0
flatten (Flatten) (None, 375) 0
dense (Dense) (None, 128) 48,128
dense 1 (Dense) (None, 50) 6,450
dense 2 (Dense) (None, 10) 510

0 0.9829 0.9980 0.9904 980

1 0.9973 0.9903 0.9938 1135

2 0.9885 0.9981 0.9932 1032

3 0.9891 0.9921 0.9906 1010

4 0.9969 0.9878 0.9923 982

5 0.9921 0.9888 0.9905 892

6 0.9865 0.9937 0.9901 958

7 0.9903 0.9903 0.9903 1028

8 0.9846 0.9877 0.9862 974

9 0.9939 0.9762 0.9850 1009

accuracy 0.9903 10000

macro avg 0.9902 0.9903 0.9902 10000

weighted avg 0.9903 0.9903 0.9903 10000

[[ 978 0 0 0 0 0 1 1 0 0]

[ 4 1124 2 1 0 1 2 0 1 0]

[ 0 0 1030 0 0 0 0 1 1 0]

[ 1 0 1 1002 0 3 0 1 2 0]

[ 0 0 0 0 970 0 5 0 3 4]

[ 1 0 0 5 0 882 2 1 1 0]

[ 3 1 0 0 1 1 952 0 0 0]

[ 1 0 7 0 0 0 0 1018 1 1]

[ 6 0 1 0 0 0 3 1 962 1]

[ 1 2 1 5 2 2 0 5 6 985]]

We can use our function from before to output some mis-classified images.

(_, _), (data_test, labels_test) = mnist.load_data()

plot_mislabels(7, 2, data_test, labels_test, pred)

And we can again plot a heatmap for influential pixels.
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Examples of a 9 that is classified as 3

Pixels where changing their value 
    to 1 or 0 changes the prediction
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Figure 11. Heatmap for the network with two convolutional layers.

Exercise 9.2. Adjust the parameters such as batch size for the deep learning approaches to
classifying digits in the MNIST dataset. Are you able to significantly improve the percentage
of correct classifications above 99.3% ?
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Exercise 9.3. Use a convolutional neural network to classify the CIFAR 10 and CIFAR 100
datasets found here:

https://www.cs.toronto.edu/∼kriz/cifar.html
https://keras.io/api/datasets/cifar10/
https://keras.io/api/datasets/cifar100/
What error rate can you obtain? For CIFAR-10, I would consider an error rate below 20%

to be quite good.

For a simpler approach, I also used a single layer network (which would be almost identical
to logistic regression), and it obtained a 7% error rate.

There are many pretrained neural networks for image classification, such as ResNet50.
Below, we apply ResNet50 to image classification with the MNIST dataset, for illustrative
purposes. However, the performance is quite slow and not so good, perhaps partly because
ResNet50 is designed for much larger images than those from the MNIST dataset.

# ResNet50 PreTrained Network for Image Classification

import keras

from keras.applications.resnet50 import ResNet50

from keras.applications.resnet50 import preprocess_input, decode_predictions

from tensorflow.keras.datasets import mnist

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Input, Resizing

from tensorflow.keras.utils import to_categorical

import tensorflow as tf

import numpy as np

# load data

(data_train, labels_train), (data_test, labels_test) = mnist.load_data()

# expand new axis, channel axis

data_train = np.expand_dims(data_train, axis=-1)

data_test = np.expand_dims(data_test, axis=-1)

# need 3 channel (instead of 1)

data_train = np.repeat(data_train, 3, axis=-1)

data_test = np.repeat(data_test, 3, axis=-1)

# it's always better to normalize

data_train = data_train.astype('float32') / 255

data_test = data_test.astype('float32') / 255

# resize the input shape , i.e. old shape: 28, new shape: 32

data_train = tf.image.resize(data_train, [32,32]) # if we want to resize

data_test = tf.image.resize(data_test, [32,32]) # if we want to resize

# convert labels to binary vectors, as required by the cross entropy loss

labels_train = to_categorical(labels_train)

labels_test = to_categorical(labels_test)

num_classes = labels_test.shape[1]

# define neural network model
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def neural_model():

# create model, starting with the first input layer

model = Sequential()

model.add(

ResNet50(

include_top = False,

pooling = "avg",

input_shape=(32, 32, 3)

)

)

model.add(

Dense(

num_classes,

kernel_initializer = 'normal',

activation = 'softmax'

)

)

# Say not to train third layer (ResNet) model as it is already trained

model.layers[0].trainable = False

# Compile model

model.compile(

loss='categorical_crossentropy',

optimizer = 'adam',

metrics = ['accuracy']

)

return model

# build the model

model = neural_model()

# Fit the model.

model.fit(

data_train, labels_train, validation_data = (data_test, labels_test),

epochs = 10,

batch_size = 200

)

# Final evaluation of the model

scores = model.evaluate(data_test, labels_test, verbose = 0)

print("ResNet50 Error: %.2f%%" % (100-scores[1]*100))

# Print a summary of the neural network

model.summary()

ResNet50 Error: 7.72%

9.2. Facial Recognition.

import numpy as np

from sklearn.datasets import fetch_lfw_people
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from sklearn import metrics

lfw_people = fetch_lfw_people(min_faces_per_person = 70, resize = 0.4)

test_size = 200

# lfw_people.images is a 3-dimensional array, consisting of n_samples of images,

# where each image has width w and height h, in pixels. the greyscale value of each

# image is a real number between 0 and 1

n_samples, height, width = lfw_people.images.shape

train_images = lfw_people.images[test_size:1 + n_samples, :, :]

test_images = lfw_people.images[0:test_size, :, :]

# the label to predict is the ID of the person

y = lfw_people.target

target_names = lfw_people.target_names

num_classes = target_names.shape[0]

labels_train = y[test_size:1 + n_samples]

labels_test = y[0:test_size]

# put the image data into a 2-dimensional array, where each row of the matrix

# corresponds to a distinct image

data_train = train_images.reshape(train_images.shape[0], -1)

data_test = test_images.reshape(test_images.shape[0], -1)

num_pixels = data_train.shape[1]

labels_train = to_categorical(labels_train)

labels_test = to_categorical(labels_test)

def neural_model():

model = Sequential()

model.add(Input(shape = (num_pixels,)))

model.add(

Dense(

num_pixels,

kernel_initializer = 'normal',

activation = 'relu'

)

)

model.add(

Dense(

num_classes,

kernel_initializer = 'normal',

activation = 'softmax'

)

)

model.compile(
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loss = 'categorical_crossentropy',

optimizer = 'adam',

metrics = ['accuracy']

)

return model

model = neural_model()

model.fit(

data_train,

labels_train_cat,

validation_data = (data_test, labels_test),

epochs = 20,

batch_size = 50

)

scores = model.evaluate(data_test, labels_test, verbose = 0)

print("Two Layer Network Error: %.2f%%" % (100-scores[1]*100))

model.summary()

pred = np.argmax(model.predict(data_test), axis=-1)

labels_test = np.where(labels_test == 1)[1]

labels_train = np.where(labels_train == 1)[1]

print(

f"Classification report for classifier:\n"

f"{metrics.classification_report(labels_test, pred, digits = 4)}\n"

f"{metrics.confusion_matrix(labels_test, pred)}\n"

)

This has output

Two Layer Network Error: 21.50%

Model: "sequential_12"

Layer (type) Output Shape Param #
dense 25 (Dense) (None, 1850) 3,424,350
dense 26 (Dense) (None, 7) 12,957

Total params: 10,311,923 (39.34 MB)

Trainable params: 3,437,307 (13.11 MB)

Non-trainable params: 0 (0.00 B)

Optimizer params: 6,874,616 (26.22 MB)

Classification report for classifier:

precision recall f1-score support

0 0.6500 0.8125 0.7222 16

1 0.9259 0.6579 0.7692 38

2 1.0000 0.6500 0.7879 20

138



3 0.8313 0.9200 0.8734 75

4 0.5926 0.8889 0.7111 18

5 1.0000 0.4545 0.6250 11

6 0.6400 0.7273 0.6809 22

accuracy 0.7850 200

macro avg 0.8057 0.7302 0.7385 200

weighted avg 0.8184 0.7850 0.7835 200

[[13 0 0 1 1 0 1]

[ 4 25 0 4 1 0 4]

[ 2 1 13 3 1 0 0]

[ 0 1 0 69 3 0 2]

[ 0 0 0 1 16 0 1]

[ 0 0 0 1 4 5 1]

[ 1 0 0 4 1 0 16]]

As before, we can plot some images that were not classified well.

import matplotlib.pyplot as plt

import numpy as np

label_0 = 6

label_1 = 3

lfw_people = fetch_lfw_people(min_faces_per_person = 70, resize = 0.4)

data_test = lfw_people.images[0:test_size, :, :]

labels_train = y[test_size:1 + n_samples]

labels_test = y[0:test_size]

mis_class = np.intersect1d(

np.where(labels_test == label_0),

np.where(pred == label_1)

)

plt.title('Examples of a ' + str(label_0) + ': ' + str(target_names[label_0])

+' that is classified as ' + str(label_1) + ': ' + str(target_names[label_1])

)

plt.xticks([])

plt.yticks([])

for i in range(4):

plt.subplot(2, 2, i + 1)

plt.imshow(data_test[mis_class[i]], cmap=plt.get_cmap('gray'))

plt.xticks([])

plt.yticks([])

plt.savefig('face_examples0.pdf')

plt.show()
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Examples of a 6: Tony Blair that is classified as 3: George W Bush

We can see these example images are not centered, so it is reasonable that our classifier
did not perform well for these images.

We can again plot a heatmap.

from tqdm import tqdm

num_pixels = height * width

heatmap = np.zeros(num_pixels)

data_train = train_images.reshape(train_images.shape[0], -1)

data_test = test_images.reshape(test_images.shape[0], -1)

#small_shift = 1/10

for i in tqdm(range(num_pixels)):

test_copy1 = data_test.copy()

test_copy2 = data_test.copy()

test_copy1[:, i] = 1

test_copy2[:, i] = 0

pred1 = np.argmax(model.predict(test_copy1, verbose = 0), axis=-1)

pred2 = np.argmax(model.predict(test_copy2, verbose = 0), axis=-1)

heatmap[i] = np.mean(np.logical_or(pred != pred1, pred != pred2))

heatmap = heatmap.reshape([height, width])

plt.imshow(heatmap, cmap = "jet")

plt.title(

'''Pixels where changing their value

to 1 or 0 changes the prediction'''

)

140



plt.colorbar(

label = '''Fraction of images in training set

where the prediction was changed'''

)

plt.xticks([])

plt.yticks([])

plt.savefig('heatmap0.pdf')

plt.show()
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Finally, we apply a neural network with two convolutional layers

import numpy as np

from sklearn.datasets import fetch_lfw_people

from sklearn import metrics

lfw_people = fetch_lfw_people(min_faces_per_person = 70, resize = 0.4)

test_size = 200

# lfw_people.images is a 3-dimensional array, consisting of n_samples of images,

# where each image has width w and height h, in pixels. the greyscale value of each

# image is a real number between 0 and 1

n_samples, height, width = lfw_people.images.shape

data_train = lfw_people.images[test_size:1+n_samples, :, :]

data_test = lfw_people.images[0:test_size, :, :]

# the label to predict is the ID of the person
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y = lfw_people.target

target_names = lfw_people.target_names

num_classes = target_names.shape[0]

labels_train = y[test_size:1 + n_samples]

labels_test = y[0:test_size]

num_pixels = data_train.shape[1]

# Larger CNN for the MNIST Dataset

from tensorflow.keras.datasets import mnist

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Input, Dense, Dropout, Flatten, Conv2D, MaxPooling2D

from tensorflow.keras.utils import to_categorical

# reshape to be [samples][width][height][channels]

data_train = data_train.reshape((data_train.shape[0], height, width, 1)).astype('float32')

data_test = data_test.reshape((data_test.shape[0], height, width, 1)).astype('float32')

# convert labels to binary vectors, as required by the cross entropy loss

labels_train = to_categorical(labels_train)

labels_test = to_categorical(labels_test)

num_classes = labels_test.shape[1]

# define the larger model

def larger_model():

# create model

model = Sequential()

model.add(Input(shape = (height, width, 1)))

model.add(

Conv2D(

30,

(5, 5),

activation = 'relu'

)

)

model.add(MaxPooling2D())

model.add(

Conv2D(

15,

(3, 3),

activation = 'relu'

)

)

model.add(MaxPooling2D())

model.add(Dropout(0.2))

model.add(Flatten())

# added another dense layer compared to previous approach

model.add(Dense(128, activation = 'relu'))
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model.add(Dense(50, activation = 'relu'))

model.add(Dense(num_classes, activation = 'softmax'))

# Compile model

model.compile(

loss = 'categorical_crossentropy',

optimizer = 'adam',

metrics = ['accuracy']

)

return model

# build the model

model = larger_model()

# Fit the model

model.fit(

data_train, labels_train, validation_data = (data_test, labels_test),

epochs = 20,

batch_size = 50

)

# Final evaluation of the model

scores = model.evaluate(data_test, labels_test, verbose = 0)

print("Large CNN Error: %.2f%%" % (100-scores[1]*100))

# Print a summary of the neural network

model.summary()

Large CNN Error: 16.00%

Layer (type) Output Shape Param #
conv2d 6 (Conv2D) (None, 46, 33, 30) 780
max pooling2d 6 (MaxPooling2D) (None, 23, 16, 30) 0
conv2d 7 (Conv2D) (None, 21, 14, 15) 4,065
max pooling2d 7 (MaxPooling2D) (None, 10, 7, 15) 0
dropout 4 (Dropout) (None, 10, 7, 15) 0
flatten 4 (Flatten) (None, 1050) 0
dense 27 (Dense) (None, 128) 134,528
dense 28 (Dense) (None, 50) 6,450
dense 29 (Dense) (None, 7) 357

Total params: 438,542 (1.67 MB)

Trainable params: 146,180 (571.02 KB)

Non-trainable params: 0 (0.00 B)

Optimizer params: 292,362 (1.12 MB)

pred = np.argmax(model.predict(data_test), axis=-1)

lfw_people = fetch_lfw_people(min_faces_per_person = 70, resize = 0.4)

labels_test = y[0:test_size]

print(
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f"Classification report for classifier:\n"

f"{metrics.classification_report(labels_test, pred, digits = 4)}\n"

f"{metrics.confusion_matrix(labels_test, pred)}\n"

)

Classification report for classifier:

precision recall f1-score support

0 1.0000 0.5625 0.7200 16

1 0.8684 0.8684 0.8684 38

2 0.7391 0.8500 0.7907 20

3 0.9231 0.9600 0.9412 75

4 0.6875 0.6111 0.6471 18

5 0.7273 0.7273 0.7273 11

6 0.8400 0.9545 0.8936 22

accuracy 0.8550 200

macro avg 0.8265 0.7906 0.7983 200

weighted avg 0.8593 0.8550 0.8511 200

[[ 9 0 2 0 3 0 2]

[ 0 33 2 1 1 1 0]

[ 0 2 17 1 0 0 0]

[ 0 0 1 72 1 1 0]

[ 0 3 1 2 11 0 1]

[ 0 0 0 2 0 8 1]

[ 0 0 0 0 0 1 21]]

import matplotlib.pyplot as plt

import numpy as np

label_0 = 5

label_1 = 3

lfw_people = fetch_lfw_people(min_faces_per_person = 70, resize = 0.4)

data_test = lfw_people.images[0:test_size, :, :]

mis_class = np.intersect1d(np.where(labels_test == label_0), np.where(pred == label_1))

print(mis_class)

plt.title('Examples of a ' + str(label_0) + ': ' + str(target_names[label_0])

+' that is classified as ' + str(label_1) + ': ' + str(target_names[label_1])

)

plt.xticks([])

plt.yticks([])

for i in range(4):

plt.subplot(2, 2, i + 1)
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plt.imshow(data_test[mis_class[i]], cmap=plt.get_cmap('gray'))

plt.xticks([])

plt.yticks([])

plt.savefig('face_examples2.pdf')

plt.show()

Examples of a 5: Hugo Chavez that is classified as 3: George W Bush

from tqdm import tqdm

num_pixels = height * width

heatmap = np.zeros(num_pixels)

for i in tqdm(range(num_pixels)):

test_copy1 = data_test.copy()

test_copy2 = data_test.copy()

test_copy1[:, i // height, i % width] = 1

test_copy2[:, i // height, i % width] = 0

pred1 = np.argmax(model.predict(test_copy1, verbose = 0), axis=-1)

pred2 = np.argmax(model.predict(test_copy2, verbose = 0), axis=-1)

heatmap[i] = np.mean(np.logical_or(pred != pred1, pred != pred2))

heatmap = heatmap.reshape([height, width])

plt.imshow(heatmap, cmap = "jet")

plt.title(

'''Pixels where changing their value

to 1 or 0 changes the prediction'''

)

plt.colorbar(
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label = '''Fraction of images in training set

where the prediction was changed'''

)

plt.xticks([])

plt.yticks([])

plt.savefig('heatmap0.pdf')

plt.show()

Pixels where changing their value 
    to 1 or 0 changes the prediction
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9.3. Document Classification. We will now recycle some of our above code to classify
documents using a two-layer neural network. Recall that our best previous error was around
45%. In the following approach, we can achieve around 17% with six epochs.

import numpy as np

import itertools

import math

import time as time

t0 = time.time()

from sklearn.datasets import fetch_20newsgroups

from sklearn.cluster import KMeans

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

categories = [

"comp.graphics",

"misc.forsale",
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"rec.sport.baseball",

"sci.space",

"talk.politics.misc",

"talk.religion.misc",

]

# import data, remove extraneous bits of text

dataset_train = fetch_20newsgroups(

remove = ("headers", "footers", "quotes"),

subset = "train",

categories = categories,

shuffle = True,

random_state = 42,

)

dataset_test = fetch_20newsgroups(

remove = ("headers", "footers", "quotes"),

subset = "test",

categories = categories,

shuffle = True,

random_state = 42,

)

vectorizer = TfidfVectorizer(

max_df = 0.5,

min_df = 10,

stop_words = "english",

)

combined_data = dataset_train.data + dataset_test.data

labels_train = dataset_train.target

t0 = time.time()

# we use a vectorizer on the entire dataset, otherwise

# the functions below will output errors

vector_data = vectorizer.fit_transform(combined_data)

print("Vectorized All Data in Time: %0.3f" % (time.time() - t0))

vector_data_train = vector_data[:len(dataset_train.data)]

vector_data_test = vector_data[len(dataset_train.data):]

num_classes = 6

labels_train = dataset_train.target

labels_test = dataset_test.target

#format data for the categorical cross entropy

labels_train = to_categorical(labels_train)

labels_test = to_categorical(labels_test)
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def neural_model():

model = Sequential()

model.add(Input(shape = (vector_data.shape[1],)))

model.add(

Dense(

vector_data.shape[1],

kernel_initializer = 'normal',

activation = 'relu'

)

)

model.add(

Dense(

num_classes,

kernel_initializer = 'normal',

activation = 'softmax'

)

)

model.compile(

loss = 'categorical_crossentropy',

optimizer = 'adam',

metrics = ['accuracy']

)

return model

model = neural_model()

model.fit(

vector_data_train,

labels_train,

validation_data = (vector_data_test, labels_test),

epochs = 6,

batch_size = 50

)

scores = model.evaluate(vector_data_test, labels_test, verbose = 0)

print("Two Layer Network Error: %.2f%%" % (100-scores[1]*100))

model.summary()

Two Layer Network Error: 17.64%

Layer (type) Output Shape Param #
dense 44 (Dense) (None, 6089) 37,082,010
dense 45 (Dense) (None, 6) 36,540

pred = np.argmax(model.predict(vector_data_test), axis=-1)

labels_test = np.where(labels_test == 1)[1]
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print(

f"Classification report for classifier:\n"

f"{metrics.classification_report(labels_test, pred, digits = 4)}\n"

f"{metrics.confusion_matrix(labels_test, pred)}\n"

)

Classification report for classifier:

precision recall f1-score support

0 0.8903 0.8766 0.8834 389

1 0.9138 0.8974 0.9056 390

2 0.8054 0.9068 0.8531 397

3 0.8015 0.8299 0.8155 394

4 0.7482 0.6613 0.7021 310

5 0.7288 0.6853 0.7064 251

accuracy 0.8236 2131

macro avg 0.8147 0.8096 0.8110 2131

weighted avg 0.8227 0.8236 0.8220 2131

[[341 14 14 19 1 0]

[ 11 350 12 12 4 1]

[ 4 7 360 9 14 3]

[ 15 5 25 327 22 0]

[ 3 4 18 20 205 60]

[ 9 3 18 21 28 172]]

10. Large Language Models

A Large Language Model (LLM) combines many of the tools we have used in previous
sections, with a new ingredient: a transformer. ChatGPT even includes this term in its name
(generative pre-trained transformer.) As in Exercise 4.14, an LLM first converts text input
into a set of vectors using a tokenizer (similar to what we called a vectorizer in Exercise
4.14). The LLM then feeds these vectors into several transformer layers. We will describe a
transformer further below in Definition 10.1, but it is basically a variant of a neural network
layer. The LLM then passes its input through a more traditional neural network. The LLM
responds to a prompt by predicting a response to that prompt. An LLM trains on a large
volume of questions and answers.

Let β > 0. For any x ∈ Rn, define the softmax function p = p(β) : Rn → Rn by

pi(x) :=
eβxi∑n
j=1 e

βxj
, ∀x ∈ Rn, ∀ 1 ≤ i ≤ n.

Observe that
∑n

i=1 pi = 1 and limβ→∞ pi(x) = 1 when xi = max1≤j≤n xj > xk for all k ̸= i.
The quantity 1/β is called the temperature of the softmax function.
Below, we consider a function f : Rm×n → Rm×n, i.e. f is a function from m × n real

matrices to m× n real matrices. We denote the ith row of and m× n matrix M as M (i), for
each 1 ≤ i ≤ m.
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Definition 10.1 (Transformer). Let A1, . . . , Ak, B1, . . . , Bk be n × n real matrices. A
multi-head attention layer or transformer with k attention heads is a function
f : Rm×n → Rm×n defined by

[f(Y )](i) :=
k∑

j=1

p([Y AjY
T ](i))Y Bj, ∀Y ∈ Rm×n.

The function f is called a transformer since it “transforms” length m sequences of n-
dimensional vectors (called “tokens”). The matrices A1, . . . , Ak are called attention ma-
trices, and the matrices B1, . . . , Bk are thought of as projection matrices, though they will
in general not be actual projections matrices. Each of the k terms in the sum in Definition
10.1 is called an attention head.

A transformer is sometimes defined under the more restrictive assumption that the atten-
tion and projection matrices can be written as

Aj = CjD
T
j , Bj =

(
0 · · · 0 B̃j 0 · · · 0

)
B, ∀ 1 ≤ j ≤ k,

where B̃j, Cj, Dj are n by n/k real matrices (assuming n is a multiple of k) and B is a real
n× n matrix.

In practice, each row of the matrix Y corresponds to a text string. The intuition for
Definition 10.1 is that, once a model is trained, matrices A1, . . . , Ak will be chosen in a way
to emphasize or de-emphasize different parts of a text string in a way that extracts the
important parts of the text string.

In its most basic form, a transformer is used by composing with a neural network.

If f̃ : Rm×n → R is a neural network, then the function

f̃ ◦ f
is what is trained to create a large language model. For a more practical example, let’s
consider the open source LLama-3 LLM [TLI+23] with 6.7 billion parameters, which has the
32 layer structure

g32 ◦ g31 ◦ · · · ◦ g1,
where

gi = (f1 ◦ r, f2 ◦ r, f3 ◦ r, f̃ ◦ r), ∀ 1 ≤ i ≤ 32,

fj is a transformer with n = m = 212 for each 1 ≤ j ≤ 3, f̃ is a single layer (vector-valued)
neural network of width d := ⌊(8/3) · 212⌋ with SiLU activation function

h(s) =
s

1 + e−s
, ∀ s ∈ R,

(more specifically, f̃(Y ) = W2[h(W1Y )⊙ (W3Y )] where W1 is d×m, W2 is m× d, and W3 is
d×m, where h is applied to each element of the matrix W1Y and ⊙ represents elementwise
multiplication, i.e. (A⊙B)ij = AijBij when A,B are matrices of the same size), and the jth

component of ri satisfies

ri,j(Y ) =
Yij√

1
n

∑n
k=1 Y

2
ik

, ∀Y ∈ Rm×n.

(The actual structure is a bit different from this but hopefully this is sufficient detail.)
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Exercise 10.2. Fill in any missing details of the 6.7 billion parameter Llama-3 definition,
by examining the code at

https://github.com/meta-llama/llama3/blob/main/llama/model.py.

With 6.7 billion 16 bit parameters, it takes around 14 gigabytes to store the weights from
this model.

Another version of this LLM has 70 billion parameters. If these parameters each have 16
bits, it takes around 140 gigabytes to store these weights.

10.1. Transformers for Text Classification.

import tensorflow as tf

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

from tensorflow.keras.utils import to_categorical

from tensorflow.keras.models import Sequential, Model

from tensorflow.keras import layers

from tensorflow.keras.layers import Embedding, Layer, Dense, Dropout, MultiHeadAttention

from tensorflow.keras.layers import LayerNormalization, Input, GlobalAveragePooling1D

from tensorflow.keras.layers import LSTM, Bidirectional

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau

from sklearn.model_selection import train_test_split

import numpy as np

import pandas as pd

import itertools

import math

from sklearn.datasets import fetch_20newsgroups

categories = [

"comp.graphics",

"misc.forsale",

"rec.sport.baseball",

"sci.space",

"talk.politics.misc",

"talk.religion.misc",

]

dataset_train = fetch_20newsgroups(

remove = ("headers", "footers", "quotes"),

subset = "train",

categories = categories,

shuffle = True,

random_state = 42,

)

dataset_test = fetch_20newsgroups(

remove = ("headers", "footers", "quotes"),

subset = "test",
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categories = categories,

shuffle = True,

random_state = 42,

)

labels_train = dataset_train.target

labels_test = dataset_test.target

#format data for the categorical cross entropy

labels_train = to_categorical(labels_train)

labels_test = to_categorical(labels_test)

padding_type = 'post'

trunc_type = 'post'

tokenizer = Tokenizer()

tokenizer.fit_on_texts(dataset_train.data)

vocab_size = len(tokenizer.word_index) + 1

print("Vocab Size: ",vocab_size)

I got an output of 34575 for Vocab Size.

# truncates each token sequence to a maximum of maxlen tokens

# without this restriction, i got out of memory (oom) errors

maxlen = 500

train_sequences = tokenizer.texts_to_sequences(dataset_train.data)

X_train = pad_sequences(

train_sequences,

maxlen = maxlen,

padding = padding_type,

truncating = trunc_type

)

test_sequences = tokenizer.texts_to_sequences(dataset_test.data)

X_test = pad_sequences(

test_sequences,

maxlen = maxlen,

padding = padding_type,

truncating = trunc_type

)

width, maxlen = X_train.shape

# transformer implementation from sklearn documentation

class TransformerEncoder(layers.Layer):

def __init__(self, embed_dim, heads, neurons):

super(TransformerEncoder, self).__init__()

self.att = layers.MultiHeadAttention(num_heads=heads, key_dim=embed_dim)

self.ffn = Sequential(

[layers.Dense(neurons, activation="relu"), layers.Dense(embed_dim),]

)
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self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)

self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)

self.dropout1 = layers.Dropout(0.5)

self.dropout2 = layers.Dropout(0.5)

def call(self, inputs, training):

attn_output = self.att(inputs, inputs)

attn_output = self.dropout1(attn_output, training=training)

out1 = self.layernorm1(inputs + attn_output)

ffn_output = self.ffn(out1)

ffn_output = self.dropout2(ffn_output, training=training)

return self.layernorm2(out1 + ffn_output)

class TokenAndPositionEmbedding(layers.Layer):

def __init__(self, maxlen, vocab_size, embed_dim):

super(TokenAndPositionEmbedding, self).__init__()

self.token_emb = layers.Embedding(input_dim=vocab_size, output_dim=embed_dim)

self.pos_emb = layers.Embedding(input_dim=maxlen, output_dim=embed_dim)

def call(self, x):

maxlen = tf.shape(x)[-1]

positions = tf.range(start=0, limit=maxlen, delta=1)

positions = self.pos_emb(positions)

x = self.token_emb(x)

return x + positions

# output dimension of the transformer

embed_dim = 100

# number of attention heads of the transformer

heads = 3

# dimension of intermediate layer in transformer

neurons = 50

inputs = layers.Input(shape=(maxlen,))

embedding_layer = TokenAndPositionEmbedding(maxlen, vocab_size, embed_dim)

x = embedding_layer(inputs)

transformer_block = TransformerEncoder(embed_dim, heads, neurons)

x = transformer_block(x, training = True)

x = layers.GlobalAveragePooling1D()(x)

x = Dropout(0.35)(x)

outputs = layers.Dense(6, activation="sigmoid")(x)

model = Model(inputs=inputs, outputs=outputs)

model.compile(optimizer=tf.keras.optimizers.Adam(0.0003), loss='binary_crossentropy', metrics=['accuracy'])

model.summary()

This command has output
Total params: 3,851,206 (14.69 MB)
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Layer (type) Output Shape Param #
input layer (InputLayer) (None, 500) 0
token and position embedding (Toke-
nAndPositionEmbedding)

(None, 500, 100) 3,507,500

transformer encoder (TransformerEn-
coder)

(None, 500, 100) 343,100

global average pooling1d (GlobalAver-
agePooling1D)

(None, 100) 0

dropout 3 (Dropout) (None, 100) 0
dense 2 (Dense) (None, 6) 606

Table 1. Model Summary

Trainable params: 3,851,206 (14.69 MB)
Non-trainable params: 0 (0.00 B)

earlystopping = EarlyStopping(

monitor = 'loss',

min_delta = 0.001,

patience = 1,

verbose = 1

)

learning_rate_reduction = ReduceLROnPlateau(

monitor = 'loss',

patience = 3,

verbose = 1,

factor = 0.2,

min_lr = 0.00000001

)

history = model.fit(X_train,

labels_train,

epochs = 10,

batch_size = 50,

callbacks = [earlystopping]

)

from sklearn import metrics

y_pred = np.argmax(model.predict(X_test), axis=-1)

print(

f"Classification report for classifier:\n"

f"{metrics.classification_report(dataset_test.target, y_pred, digits = 4)}\n"

f"{metrics.confusion_matrix(dataset_test.target, y_pred)}\n"

)
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Classification report for classifier:

precision recall f1-score support

0 0.8984 0.8638 0.8807 389

1 0.9028 0.9051 0.9040 390

2 0.9312 0.8866 0.9084 397

3 0.7300 0.8782 0.7972 394

4 0.7952 0.6387 0.7084 310

5 0.6868 0.7251 0.7054 251

accuracy 0.8292 2131

macro avg 0.8241 0.8163 0.8174 2131

weighted avg 0.8342 0.8292 0.8290 2131

[[336 14 6 27 2 4]

[ 8 353 4 20 2 3]

[ 4 7 352 23 5 6]

[ 17 6 6 346 15 4]

[ 3 7 5 31 198 66]

[ 6 4 5 27 27 182]]

Exercise 10.3. The fetch 20 newsgroups dataset has many line breaks and other special
characters in each data string. Both our transformer and two-layer neural network ap-
proaches seemed unable to get an error percentage below 17%. Try to clean the dataset
(by removing these special characters) and thereby try to improve the performance of both
the transformer and two-layer neural network approaches. You can also change other (hy-
per)parameters to try to improve the classification percentage.
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11. Appendix: Notation

Let n,m be a positive integers. Let A,B be sets contained in a universal set Ω.

N = {1, 2, . . .} denotes the set of natural numbers

Z = {. . . ,−2,−1, 0, 1, 2, . . .} denotes the set of integers

Q = {a/b : a, b,∈ Z, b ̸= 0} denotes the set of rational numbers

R denotes the set of real numbers

C = {a+ b
√
−1: a, b ∈ R} denotes the set of complex numbers

∈ means “is an element of.” For example, 2 ∈ R is read as “2 is an element of R.”
∀ means “for all”

∃ means “there exists”

Rn = {(x1, x2, . . . , xn) : xi ∈ R ∀ 1 ≤ i ≤ n}
f : A → B means f is a function with domain A and range B. For example,

f : R2 → R means that f is a function with domain R2 and range R
∅ denotes the empty set

A ⊆ B means ∀ a ∈ A, we have a ∈ B, so A is contained in B

A∖B := {a ∈ A : a /∈ B}
Ac := Ω∖ A, the complement of A in Ω

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B

A∆B := (A∖B) ∪ (B ∖ A)

P denotes a probability law on Ω

Let n ≥ m ≥ 0 be integers. We define(
n

m

)
:=

n!

(n−m)!m!
=

n(n− 1) · · · (n−m+ 1)

m(m− 1) · · · (2)(1)
.

Let a1, . . . , an be real numbers. Let n be a positive integer.

n∑
i=1

ai = a1 + a2 + · · ·+ an−1 + an.

n∏
i=1

ai = a1 · a2 · · · an−1 · an.

min(a1, a2) denotes the minimum of a1 and a2.

max(a1, a2) denotes the maximum of a1 and a2.

The min of a set of nonnegative real numbers is the smallest element of that set. We also
define min(∅) := ∞.
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Let A ⊆ R.

supA denotes the supremum of A, i.e. the least upper bound of A.

inf A denotes the infimum of A, i.e. the greatest lower bound of A.

1A : Ω → {0, 1}, denotes the indicator function of A, so that

1A(ω) =

{
1 , if ω ∈ A

0 , otherwise.

Let g, h : R → R. Let t ∈ R.

(g ∗ h)(t) =
∫ ∞

−∞
g(x)h(t− x)dx denotes the convolution of g and h at t ∈ R

We let In denote the n× n identity matrix.

References

[Aar11] Scott Aaronson, A linear-optical proof that the permanent is #p-hard, Electronic Colloquium
on Computational Complexity (ECCC) 18 (2011), 43.

[ACKS15] Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop, The hard-
ness of approximation of euclidean k-means, Preprint, arXiv:1502.03316, 2015.

[ANFSW0] Sara. Ahmadian, Ashkan. Norouzi-Fard, Ola. Svensson, and Justin. Ward, Better guarantees for
$k$-means and euclidean $k$-median by primal-dual algorithms, SIAM Journal on Computing
0 (0), no. 0, FOCS17–97–FOCS17–156.

[BK15] Amey Bhangale and Swastik Kopparty, The complexity of computing the minimum rank of a
sign pattern matrix, CoRR abs/1503.04486 (2015).

[CAEMN22] Vincent Cohen-Addad, Hossein Esfandiari, Vahab Mirrokni, and Shyam Narayanan, Improved
approximations for euclidean k-means and k-median, via nested quasi-independent sets, Pro-
ceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing (New York,
NY, USA), STOC 2022, Association for Computing Machinery, 2022, p. 1621–1628.

[CAS19] Vincent Cohen-Addad and Karthik Srikanta, Inapproximability of Clustering in Lp-metrics,
FOCS’19 - 60th Annual IEEE Symposium on Foundations of Computer Science (Baltimore,
United States), November 2019.

[CEM+15] Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu,
Dimensionality reduction for k-means clustering and low rank approximation, Proceedings of
the Forty-seventh Annual ACM Symposium on Theory of Computing (New York, NY, USA),
STOC ’15, ACM, 2015, pp. 163–172.

[Che09] Ke Chen, On coresets for k-median and k-means clustering in metric and euclidean spaces and
their applications, SIAM Journal on Computing 39 (2009), no. 3, 923–947.

[FMS07] Dan Feldman, Morteza Monemizadeh, and Christian Sohler, A ptas for k-means clustering
based on weak coresets, Proceedings of the Twenty-third Annual Symposium on Computational
Geometry (New York, NY, USA), SCG ’07, ACM, 2007, pp. 11–18.

[Gal14] François Le Gall, Powers of tensors and fast matrix multiplication, Preprint, arXiv:1401.7714.
ISAAC 2014., 2014.

[GOR+21] Fabrizio Grandoni, Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Rakesh Venkat,
A refined approximation for Euclidean k-means, preprint, arXiv:2107.07358, 2021.

[GVL13] G.H. Golub and C.F. Van Loan, Matrix computations, Johns Hopkins Studies in the Mathe-
matical Sciences, Johns Hopkins University Press, 2013.

157

http://arxiv.org/abs/1502.03316
https://arxiv.org/abs/1401.7714
https://arxiv.org/abs/2107.07358


[HPM04] Sariel Har-Peled and Soham Mazumdar, On coresets for k-means and k-median clustering,
Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing (New York,
NY, USA), STOC ’04, ACM, 2004, pp. 291–300.

[JSV04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda, A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries, J. ACM 51 (2004), no. 4, 671–697.

[KB15] Diederik Kingma and Jimmy Ba, Adam: A method for stochastic optimization, International
Conference on Learning Representations (ICLR) (San Diega, CA, USA), 2015.

[KMN+04] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman,
and Angela Y. Wu, A local search approximation algorithm for k-means clustering, Comput.
Geom. 28 (2004), no. 2-3, 89–112. MR 2062789 (2005a:68210)
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