Math 446, Fall 2024, USC		Instructor:	Steven Heilman
Name:	USC ID:	Date:	
Signature:	Discussion Section:		
(By signing here, I certify that I have	e taken this test while refr	aining from	cheating.)

Exam 1

This exam contains 8 pages (including this cover page) and 5 problems. Enter all requested information on the top of this page.

You may *not* use your books, notes, or any calculator on this exam.

You are required to show your work on each problem on this exam. The following rules apply:

- You have 50 minutes to complete the exam, starting at the beginning of class.
- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit.
- If you need more space, use the back of the pages; clearly indicate when you have done this. Scratch paper appears at the end of the document.

Do not write in the table to the right. Good luck!^a

Problem	Points	Score	
1	8		
2	10		
3	10		
4	10		
5	10		
Total:	48		

 $[^]a\mathrm{October}$ 2, 2024, © 2024 Steven Heilman, All Rights Reserved.

- 1. Label the following statements as TRUE or FALSE. If the statement is true, **EXPLAIN YOUR REASONING**. If the statement is false, **PROVIDE A COUNTEREX-AMPLE OR EXPLAIN YOUR REASONING**.
 - (a) (2 points) Python raises an exception (i.e. gives an error) when given the command {[1, 2], 3}

[this was discussed in class]

(b) (2 points) If we enter the following command into the Python ((2 < 4) and (4 < 3)) or not(2 < 7)

Python outputs True.

TRUE FALSE (circle one)

[this was a repeated homework question]

(c) (2 points) Python's implementation of k-means clustering is deterministic. That is, if I use a dataset and ask Python to perform k-means clustering on that dataset, the output of the KMeans function from sklearn.cluster will be the same, regardless of how many different times I ask for an output, and regardless of any random seed that is provided to Python.

[this was repeated from the practice exam]

(d) (2 points) Python always finds the exact minimum of the k-means clustering objective function

$$\sum_{i=1}^{k} \sum_{j \in S_i} \left\| w^{(j)} - \frac{1}{|S_i|} \sum_{\ell \in S_i} w^{(\ell)} \right\|_2^2, \quad (*)$$

That is, if k, m, q are positive integers with $k \leq m$, and if $w^{(1)}, \ldots, w^{(m)} \in \mathbf{R}^q$, then Python's KMeans function (from sklearn) is able to find a partition S_1, \ldots, S_k of $\{1, \ldots, m\}$ minimizing the quantity (*) over all partitions S_1, \ldots, S_k of $\{1, \ldots, m\}$. (As usual, we define |S| to be the number of elements of $S \subseteq \{1, \ldots, m\}$, and we define $||w||_2^2 := \sum_{i=1}^q w_i^2$ for any $w = (w_1, \ldots, w_q) \in \mathbf{R}^q$. Also, in case $S_i = \emptyset$, we define $\frac{1}{|S_i|} \sum_{\ell \in S_i} w^{(\ell)}$ to be zero.)

[this was a discussed in class]

2. (10 points) Give an example showing that the singular value decomposition is not unique. That is, find positive integers m, n, p and find a real $m \times n$ matrix $A, m \times m$ orthogonal matrices $U, \widetilde{U}, n \times n$ orthogonal matrices V, \widetilde{V} and $p \times p$ diagonal matrices D, \widetilde{D} (with $p \leq \min(m, n)$ and with nonzero diagonal entries) such that

$$A = U \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} V = \widetilde{U} \begin{pmatrix} \widetilde{D} & 0 \\ 0 & 0 \end{pmatrix} \widetilde{V},$$

and such that either: $U \neq \widetilde{U}$, or $V \neq \widetilde{V}$, or $D \neq \widetilde{D}$.

(Recall that an orthogonal $n \times n$ matrix U satisfies $U^T U = U U^T = I$, where I denotes the $n \times n$ identity matrix.)

(Recall also that $\begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$ is an $m \times n$ matrix, i.e. it is D with zero entries added to its

right and bottom sides if necessary in order to make $\begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$ an $m \times n$ matrix.)

[this was repeated and modified from the practice exam]

3. (10 points)

• Describe the output of the following Python program.

```
x = 1
for i in range(2000):
    x = 2 * x
    print(x)
```

Describe in detail what the program does, and how many iterations the for loop performs.

• Describe the output of the following Python program.

```
x = 1.0
for i in range(2000):
    x = 2 * x
    print(x)
```

Describe in detail what the program does, and how many iterations the for loop performs.

[this was a modified homework question]

4. (10 points) Write a program in Python that estimates the integral

$$\int_3^7 (1+e^x)dx.$$

by averaging 1000 i.i.d. uniform random variables in the interval [3, 7].

Hint: you can use the following Numpy built-in functions: np.mean, np.exp. Also np.random.rand(1000) outputs 1000 i.i.d. uniform random variables in [0,1].

(You can and should assume we already ran the command import numpy as np.) [this was a repeated and modified homework question]

5. (10 points) Suppose we have a Pandas DataFrame named df with the following entries

	<pre>product_name</pre>	units_sold	unit_price	sale_date	region
<pre>product_id</pre>					
4	widget_a	150	2.5	2023-01-10	east
3	widget_b	200	3.0	2023-01-12	east
2	widget_c	250	1.5	2023-01-14	west
1	widget_d	300	4.0	2023-01-10	south
0	widget_e	100	5.0	2023-01-15	east

That is, the index of df is named product_id, so the command df.index returns Index([4, 3, 2, 1, 0], dtype='int64', name='product_id')

Answer the following questions.

- What is the output of df.loc[1]?
- What is the output of df.iloc[1]?
- What is the output of df[2]["units_sold"]?
- Write a single line of Python code that returns a DataFrame containing only the rows of df where sales occurred in the east region.
- Write a single line of Python code to compute the total sales for each row of df (i.e. compute units_sold multiplied by unit_price) and create a new column of df called total_sales that contains the total sales of each row of df.

[this was mostly discussed in class]

(Scratch paper)