
Data Science with Python 446 Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due September 12, 4PM PST, to be uploaded as a single PDF document to brightspace. It is
acceptable to instead upload a Jupyter Notebook, assuming you write in complete sentences
where appropriate, and format your responses to be easily readable (i.e. if you only submit
one big block of code with nothing written about what you did, then many points will be
deducted from your score).

Homework 2

Exercise 1. Suppose we want to solve the linear system of equations

17x1 + 5x2 = 22,

1.7x1 + .5x2 = 2.2.

Note that (x1, x2) = (1, 1) is a solution to this system of equations.

Python can numerically solve this system with the following program

A = np.array([ [ 17, 5], [1.7, .5] ])

b = np.array([22, 2.2])

x = np.linalg.solve(A, b)

• What is the solution x that is output from the program?
• Is the output of the program an actual solution of the original system of equations?
• What is the determinant of A? What does Python output from the command
np.linalg.det(A)?

Warning: for a 2× 2 matrix A and a scalar t > 0, we have det(tA) = t2det(A). So, the value
of a determinant does not necessarily say anything about how well we can solve a linear
system of equations of the form Ax = b.

Exercise 2. The sin function, like other special functions such as cos, exp, log, etc., cannot
be computed exactly on a computer. A common way to compute these special functions is
via power series. Recall that sin has the following power series that is absolutely convergent
for all x ∈ R:

sin(x) =
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
.

With this power series in mind, run the following program when x = π/2, 11π/2, 21π/2 and
31π/2. (Before you run the program, set x to a specific value.)

s = 0

t = x
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n = 1

while s + t != s:

s = s + t

t = -(x**2) * t / ((n + 1) * (n + 2))

n = n + 2

print(s)

When the program terminates, the value of s is the computed value of sin(x). For each value
of x stated above, answer the following:

• What is the absolute error of the computation of sin(x)?
• How many terms of the power series were used in the computation of sin(x)?
• What is the largest term in the power series expansion of sin(x)? (Hint: consider
using the numpy.max command)

Exercise 3. This exercise examines an unstable recurrence computation.

Consider the following recursion with x0 := 1 and x1 := 1/3.

xn+1 =
13

3
xn −

4

3
xn−1, ∀n ≥ 1.

• Verify that the recurrence is solved by xn := (1/3)n for all n ≥ 0.
• Using Python, solve for x40. For example, use

x = np.array([1, 1/3])

for i in range(2,41):

x = np.append(x, (13/3)*x[i-1] - (4/3)*x[i-2])

print(x[40])

Is the answer what you expected to get? (Hint: examine a logarithmically scaled
plot in the y-axis, using matplotlib.pyplot.semilogy.)

• With a different initial condition, the above recurrence can have other solutions. To
find them, rewrite the recurrence as(

13/3 −4/3
1 0

)(
xn

xn−1

)
=

(
xn+1

xn

)
, ∀n ≥ 1.

Then note that the eigenvalues of the matrix A :=

(
13/3 −4/3
1 0

)
are 1/3 and 4, so

iterating the recurrence shows that(
13/3 −4/3
1 0

)n(
x1

x0

)
=

(
xn+1

xn

)
, ∀n ≥ 0.

Since A has two distinct eigenvalues, it is diagonalizable, so if

(
x2

x1

)
is written as a

linear combination a1v1 + a2v2 of the corresponding eigenvectors v1, v2 ∈ R2 of A,
the recurrence becomes

a1(1/3)
n0v1 + a24

nv2 =

(
xn+1

xn

)
, ∀n ≥ 0.
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• Show that in the case x1 = 1 and x2 = 1/3, we have a2 = 0. However, small
numerical errors that occur in the computation of the recurrence correspond to a2
being computed to be nonzero. Explain how this relates to the logarithmic plot you
examined above.

Exercise 4 (Numerical Integration). Consider the function

f(t) := t3 + 1.

In this case, we can easily compute ∫ 1

0

f(t)dt =
5

4
.

Sometimes, especially in computer graphics applications, integrals are too complicated to
compute directly, so we instead use randomness to estimate the integral. That is, we pick
n random points in [0, 1], and average the values of f at these points, as in the following
program.

n = 10**5

t = np.random.rand(n)

f = t**3 +1

np.mean(f)

Using this program with n = 105, 106, 107 and 108, report the estimated values for the integral
of f , along with their relative errors.

Now, compute the exact value of
∫ 5

3
log xdx, and modify the above program to give estimates

for the value of this integral and report relative errors, using a number of points n where
n = 105, 106, 107 and 108.

Exercise 5. In this exercise, we will compare the run time of built-in vectorized functions
versus a naive for loop

• Compare the time it takes to compute a dot product using numpy’s np.dot func-
tion, versus using a for loop. More specifically, use x=np.random.randn(10**k) and
y=np.random.randn(10**k) for k = 3, 4, 5, 6, 7, and compute the dot product of x
and y

• Compare the time it takes to compute a matrix product using numpy’s np.dot func-
tion, versus using a for loop. More specifically, use A=np.random.randn(10**k, 10**k)

and B=np.random.rand(10**k, 10**k) for k = 1, 2, 3, 4, and compute the matrix
product AB using A @ B, versus a for loop.

Exercise 6. The links below contain .csv files, each with 1000 (pseudo) random samples
from a Gaussian distribution with variance one and unknown mean µ ∈ R

gaussian data

gaussian data v2

Recall that a basic question in parametric statistics is to estimate the unknown mean µ.
From statistics class, we know that a good estimator for the mean will be the sample mean

https://www.stevenheilman.org/~heilman/teach/gaussian_data.csv
https://www.stevenheilman.org/~heilman/teach/gaussian_datav2.csv
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(since e.g. it is the MLE for the mean). Using the following commands, we can import the
first .csv file into a Numpy array, and then take the sample mean to estimate µ.

x = np.genfromtxt("gaussian_data.csv", delimiter=",")

np.mean(x)

The output is −.00968. I used µ = 0 to generate these samples, so the mean estimate
is pretty close to reality. However, the second file is exactly the same as the first, but I
intentionally created two outliers to skew the final result. The output of the above program
for the second file is 11371.66, which is quite far from the true value µ = 0. With this
example in mind, we ask: what is a good estimate of the unknown mean µ that is robust to
noise (or robust to outliers)? There are many possible good answers, and one such answer
is the median. The following program

x = np.genfromtxt("gaussian_datav2.csv", delimiter=",")

np.median(x)

has output −.03.

Can you think of a better way to remove the outliers and estimate the unknown mean? (This
question is intentionally open ended.)


