
Data Science with Python 446 Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due October 10, 4PM PST, to be uploaded as a single PDF or Jupyter notebook to
brightspace.

Homework 4

Exercise 1 (Finding Topics from Text). In this exercise, we are going to examine a subset
of the fetch_20newsgroups dataset from sklearn. This dataset has about 18000 newsgroup
posts on 20 topics. This dataset was assembled in 1995 by Ken Lang. (A newsgroup is an
online forum that preceded the world wide web.) For simplicity, we will just look at a subset
of the dataset covering 6 different topics, as specified below in categories.

import numpy as np

from sklearn.datasets import fetch_20newsgroups

categories = [

"comp.graphics",

"misc.forsale",

"rec.sport.baseball",

"sci.space",

"talk.politics.misc",

"talk.religion.misc",

]

# import data, remove extraneous bits of text

dataset = fetch_20newsgroups(

remove = ("headers", "footers", "quotes"),

subset = "all",

categories = categories,

shuffle = True,

random_state = 42,

)

labels = dataset.target

unique_labels, category_sizes = np.unique(labels, return_counts=True)

true_k = unique_labels.shape[0]

print(f"{len(dataset.data)} documents - {true_k} categories")

To get an idea of what the dataset looks like, let’s run the command
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for i in range(3):

print(dataset.data[i],'\n', dataset.target[i])

which prints the first three entries of the dataset, together with their target values.

Olympus Stylus, 35mm, pocket sized, red-eye reduction, timer, fully automatic.

Time & date stamp, carrying case. Smallest camera in its class.

Rated #2 in Consumer Reports. Excellent condition and only 4 months old.

Worth $169.95. Purchased for $130. Selling for $100.
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As will I, and the Ultimate Lurker.
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I know this has been asked a million time, but..

What was the ftp site carrying 30-40 .ZIPs of full POV "source" files,

including JACK.ZIP and KETTLE.ZIP? I've once been there but

unfortunately lost the address.

I'm in a little hurry with it, so please e-mail me at

jtheinon@kruuna.helsinki.fi. Thanks..
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That is, the first block of text is in category 1 (miscellaneous for sale items), the next block
of text is in category 2 (recreational sports, baseball), and the last block of text is in category
0 (computer graphics). We can view the number of documents in each category with the
command print(category_sizes).

In this exercise, we will try to classify the documents correctly. To begin, we will use an
“unsupervised” approach, i.e. we will just look at the documents themselves and pretend
that we do not know the topic labels. The goal will be to correctly separate the documents
into six different categories.

As a first step, we will convert each text document into a sequence of vectors. More specifi-
cally, each word in a document will be mapped to a vector. This task can be done with the
CountVectorizer function.

import time as time

from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer(

max_df = 0.5,

min_df = 5,

stop_words = "english",

)

# eliminate words appearing in more than 50% of documents

# or appearing in less than 5 of the documents
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t0 = time.time()

vector_data = vectorizer.fit_transform(dataset.data)

print(f"vectorization done in {time.time() - t0:.3f} s")

print(f"n_samples: {X.shape[0]}, n_features: {X.shape[1]}")

With the data vectorized, we can now try to sort the data into six categories using e.g.
k-means clustering.

k = 6

km = KMeans(n_clusters = k).fit(vector_data)

predicted_labels = km.labels_

centers = km.cluster_centers_

Write a program that can check the classification error from this procedure. That is, check
how many of the documents are put into the correct group. (For any given permutation of
the predicted labels, check the number of labels that agree with the original labels, then take
the minimum over all such permutations of the labels 0, 1, 2, 3, 4, 5.) I got a classification
error of around 80%, i.e. only around 20% of the documents are grouped together correctly.
This is barely better than a random sorting of around 1− 1/6 ≈ .833. So, we didn’t do very
well. Do you get any better performance by changing the parameters .5 and 5? I did not. I
thought that some topics might mention certain words exclusively, i.e. maybe some words in
the space postings might only appear in the space postings (e.g. “moon” ), so if we change
.5 to .3, you might expect better performance. However, I did not notice significantly better
performance.

Repeat the above procedure using TfidfVectorizer instead of CountVectorizer. The
vectorizer TfidfVectorizer will weight the word by its text frequency (the number of times
the word appears in one of the newsgroup postings) multiplied by its inverse document
frequency (which is typically 1 + log(1/x) where x the number of newsgroup postings where
this word appears). In this way, TfidfVectorzer will decrease the effect of commonly
encountered words such as “a”, “an”, “the” and so on. It might seem that the .5 or .3 cutoff
we used for CountVectorizer would have a similar effect. So let’s see how TfidVectorizer

does. I got a classification error of around 45% which is a lot better than before.

Now let’s try to “preprocess” the vectorized data matrix using e.g. NMF, and then apply
k-means clustering, to see if we can improve our classification.

from sklearn.decomposition import NMF

model = NMF(n_components = 6, init = 'random', random_state = 0)

W = model.fit_transform(vector_data)

H = model.components_

After applying k-means clustering to W , did you notice any better performance compared
to the previous approach?



4

As a final approach, let’s take a “supervised learning” perspective, i.e. we will use an
algorithm whose input is labelled data (newsgroup postings with their specified categories),
and then using that information we will try to predict the categories of a new batch of
newsgroup postings. More specifically, we will use a support vector machine with a kernel
(a few more details will be provided on this approach in another exercise).

How does the run time and performance of this approach compare to the previous ap-
proaches?

from scipy.stats import loguniform

from sklearn.model_selection import RandomizedSearchCV

from sklearn.svm import SVC

dataset_train = fetch_20newsgroups(

remove = ("headers", "footers", "quotes"),

subset = "train",

categories = categories,

shuffle = True,

random_state = 42,

)

dataset_test = fetch_20newsgroups(

remove = ("headers", "footers", "quotes"),

subset = "test",

categories = categories,

shuffle = True,

random_state = 42,

)

combined_data = dataset_train.data + dataset_test.data

labels_train = dataset_train.target

vectorizer = TfidfVectorizer(

max_df = 0.5,

min_df = 10,

stop_words = "english",

)

t0 = time.time()

# we use a vectorizer on the entire dataset, otherwise

# the functions below will output errors

vector_data = vectorizer.fit_transform(combined_data)

print("Vectorized All Data in Time: %0.3f" % (time.time() - t0))

vector_data_train = vector_data[:len(dataset_train.data)]

vector_data_test = vector_data[len(dataset_train.data):]
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t0 = time.time()

param_grid = {

"C": loguniform(1e3, 1e5),

"gamma": loguniform(1e-4, 1e-1),

}

clf = RandomizedSearchCV(

SVC(kernel = "rbf", class_weight = "balanced"), param_grid, n_iter=10

)

clf = clf.fit(vector_data_train, labels_train)

print("SVC Search Fit in Time: %0.3f" % (time.time() - t0))

t0 = time.time()

y_pred = clf.predict(vector_data_test)

true_labels = dataset_test.target

print("Prediction done in %0.3fs" % (time.time() - t0))

prediction_error = np.sum(y_pred != true_labels) / len(true_labels)

print("prediction error: %0.3f" % prediction_error)

Exercise 2 (Eigenfaces). The goal of facial recognition is to identify the name of someone
when given a picture of their face. Suppose we know that our image data set has k distinct
faces in it. One way to perform facial recognition is to perform a singular value decomposition
on a large amount of facial images. That is, each row of the data matrix corresponds to
a facial image, and we apply SVD to the data matrix A. Each facial image must be the
same size image (same pixel width and same pixel height). We then write the SVD of A as

A = U

(
D 0
0 0

)
V . Then, for any image vector (i.e. for any row vector x representing an

image), the dimension reduced image is (recalling the Definition of spectral embedding)

xV ∗
(
Iq
0

)
.

One way to assign a name to this image x is to apply k-means clustering to the dimension
reduced data

U

(
D 0
0 0

)(
Iq
0

)
,

and then check which cluster center the vector xV ∗
(
Iq
0

)
is closest to. Suppose y is such

a cluster center. We then assign a name to x as the most frequently observed name in
the cluster associated to y. In this exercise, you will do this procedure on the lfw_people

dataset in the sklearn package. This data set consists of several different grayscale facial
images of famous people; we will only use data from people with at least 70 images in the
data set, which amounts to 7 different world leaders from the early 2000s. Below is some
code to get you started.

import numpy as np

from sklearn.datasets import fetch_lfw_people
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lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

# lfw_people.images is a 3-dimensional array, consisting of n_samples of

# images, where each image has width w and height h, in pixels. the

# grayscale value of each image is a real number between 0 and 1

n_samples, h, w = lfw_people.images.shape

train_images = lfw_people.images[200:1+n_samples, :, :]

test_images = lfw_people.images[0:200, :, :]

# the label to predict is the ID of the person

y = lfw_people.target

target_names = lfw_people.target_names

n_classes = target_names.shape[0]

# put the image data into a 2-dimensional array, where each row of

# the matrix corresponds to a distinct image

train_data = train_images.reshape(train_images.shape[0], -1)

test_data = test_images.reshape(test_images.shape[0], -1)

In this code, we have separated the images into 200 test images, and the remaining set of
training images. We will perform PCA on the training set of images in order to try to predict
the names of the images in the testing set. (Even though we know the identities of the first
200 facial images, we will temporarily assume we do not know their identities.)

To complete this exercise, we do not necessarily need to examine the images, but if you want
to see one of them you could use the following code

# plot a few images

import matplotlib.pyplot as plt

plt.imshow(lfw_people.images[0].reshape((h, w)), cmap=plt.cm.gray)

• Perform PCA on the training data (train_data), with q = 10 principal components.
(Later on we will consider different parameters q). (Do not use any built in PCA
functions. Just do the PCA yourself.)

• As suggested above, perform k-means clustering on the PCA training data with k = 7.
Then, predict the label of the first 200 images (test_data) using the procedure we
described above (assigning the cluster center label that is closest to the image vector).
Print out the fraction of correctly classified test images. (I got around 40% on the
original data and around 23% on the PCA data, which is just okay, but at least
it is better than random assignment, which would get about 14%.) Also report the
amount of time it took to perform this entire task, using e.g. the following commands:

from time import time

t0 = time()

... [insert code here] ...

print("classification done in %0.3fs" % (time() - t0))
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(Hint: it might be helpful to use the following Numpy functions; unique with
return_counts = True, and where)

• Repeat the previous step with the original training data (train_data), rather than
the PCA dimension reduced data. (I got the same fraction of correct classification,
with about ten times the run time.)

• Using the PCA dimension reduced data (pca_train_data and pca_test_data), use
the code below to try to get a better percentage of correctly classified images. Do
this step for q = 10 and again for q = 50. Did your results improve for q = 50?

from scipy.stats import loguniform

from sklearn.model_selection import RandomizedSearchCV

from sklearn.svm import SVC

t0 = time()

param_grid = {

"C": loguniform(1e3, 1e5),

"gamma": loguniform(1e-4, 1e-1),

}

clf = RandomizedSearchCV(

SVC(kernel = "rbf", class_weight = "balanced"), param_grid, n_iter=10

)

clf = clf.fit(pca_train_data, y[200:1+n_samples])

print("done in %0.3fs" % (time() - t0))

print("Best estimator found by grid search:")

print(clf.best_estimator_)

print("Predicting people's names on the test set")

t0 = time()

y_pred = clf.predict(pca_test_data)

print("done in %0.3fs" % (time() - t0))

number_correct = np.sum(y_pred == true_test_labels)

print("fraction of correct classifications: %0.3f" % (number_correct/200))

print("classification done in %0.3fs" % (time() - t0))

• (Optional) Repeat the above where you replace the training data matrix with the
mean-subtracted training data matrix. Do your results improve?

• (Optional) Use randomized SVD instead of SVD and compare your results.
• (Optional) For the SVC option kernel, try inputs other than rbf, and see if your
results improve.

Exercise 3 (Classifying Hand Written Digits). In a previous exercise, we tried to
classify handwritten digits from the sklearn built-in digits dataset, using k-means clustering.
However, that approach was not very successful. In this exercise taken from the sklearn
documentation, we will instead use a support vector machine (SVM)

import matplotlib.pyplot as plt
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from sklearn import datasets, metrics, svm

from sklearn.model_selection import train_test_split

Let’s first plot a few of the images to see what they look like. Each image is an 8 by 8
grayscale bitmap, i.e. at 8× 8 matrix whose entries have values in {0, 1, . . . , 16}.

digits = datasets.load_digits()

_, axes = plt.subplots(nrows = 1, ncols = 4, figsize = (10, 3))

for ax, image, label in zip(axes, digits.images, digits.target):

ax.set_axis_off()

ax.imshow(image, cmap = plt.cm.gray_r, interpolation = "nearest")

ax.set_title("Training: %i" % label)

As in a previous exercise

# flatten the images

n_samples = len(digits.images)

data = digits.images.reshape((n_samples, -1))

# Create a classifier: a support vector classifier

clf = svm.SVC(gamma = 0.001)

# Split data into 50% train and 50% test subsets

data_train, data_test, labels_train, labels_test = train_test_split(

data, digits.target, test_size = 0.5, shuffle = False

)

For each image vector x ∈ R64, the SVC function by default first embeds that vector x into

ϕ(x), where ϕ : R64 → Rn for n large, where ϕ satisfies ⟨ϕ(x), ϕ(y)⟩ = e−γ||x−y||2 for all
vectors x, y ∈ R64, where γ = .001. (Optional Exericse: show that such a ϕ exists.) Then,
for the set of embedded image vectors ϕ(x), SVC uses a support vector machine to classify
the data in the training set. More specifically, for each pair (i, j) of digits 0 ≤ i < j ≤ 9, SVC
chooses a single support vector machine on the training set. (Actually it is impractical to
use the embedding ϕ directly. Instead, the SVM is rewritten just in terms of inner products

of the form ⟨ϕ(x), ϕ(y)⟩ = e−γ||x−y||2 . The latter function is called a kernel. In this way,
we only need to consider the kernel itself, i.e. we do not explicitly need to consider the
embedding ϕ.)

The support vector machine (SVM) is a linear classifier that classifier defined in the
following way. Let x(1), . . . , x(k) ∈ Rn and let y1, . . . , yk ∈ {−1, 1} be given. Assume that
there exists w ∈ Rn such that

sign(⟨w, x(i)⟩) = yi, ∀ 1 ≤ i ≤ k.

That is, assume there is a hyperplane perpendicular to w that can classify the vectors
x(1), . . . , x(k) into two groups (one labelled with +1, the other labelled with −1.) (Even
without this assumption, an SVM can be defined, but suppose for now that this assumption
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holds.) The problem is to find the vector w. (We only know that w exists, but we would like
an algorithm that finds the vector w.) One way to do this is to use the perceptron algorithm,
but that algorithm can only work when the two groups of vectors can be separated by a
hyperplane. The SVM is an alternative way to find a vector w that can try to separate the
two groups of vectors with a hyperplane, even when no separating hyperplane exists.

The SVM w is defined as follows. Let λ > 0 and suppose we want to find the w ∈ Rn and
z1, . . . , zk ∈ R minimizing

λ ||w||2 + 1

k

k∑
i=1

zi.

subject to the linear constraints

yi⟨w, x(i)⟩ ≥ 1− zi, zi ≥ 0, ∀ 1 ≤ i ≤ k.

This is a quadratic minimization problem subject to linear constraints, so there are estab-
lished optimization methods for this task.

To explain what is going on here, consider the quantity

θ := min
{
||w|| : ∀ 1 ≤ i ≤ k, yi⟨w, x(i)⟩ ≥ 1

}
= min

{
||w|| : ∀ 1 ≤ i ≤ k, yi

〈 w

||w||
, x(i)

〉
≥ 1

||w||

}
.

The quantity yi⟨ w
||w|| , x

(i)⟩ is the distance of vector x(i) from the hyperplane perpendicular

to w. So, the vector w minimizing the quantity θ corresponds to the hyperplane through
the origin that has the largest uniform distance to the vectors x(1), . . . , x(k). Put another
way, the margin 1/θ measures how wide a symmetric “slab” through the origin can be that
separates the vectors x(1), . . . , x(k) into their two classes.

# Learn the digits on the train subset

clf.fit(data_train, labels_train)

# Predict the value of the digit on the test subset

predicted = clf.predict(data_test)

_, axes = plt.subplots(nrows = 1, ncols = 4, figsize = (10, 3))

for ax, image, prediction in zip(axes, data_test, predicted):

ax.set_axis_off()

image = image.reshape(8, 8)

ax.imshow(image, cmap = plt.cm.gray_r, interpolation = "nearest")

ax.set_title(f"Prediction: {prediction}")

print(

f"Classification report for classifier {clf}:\n"

f"{metrics.classification_report(labels_test, predicted)}\n"

)
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First, run the above code. What classification error do you get? Also, if you remove the
command gamma=0.001, does the classification error improve?

Your task in this exercise is to do adapt the above code to the MNIST dataset. It should
be possible to get around 98% correct classification on the test set. (Hint: just use linear
SVC, i.e. don’t use any kernel method. The above code uses a Gaussian RBF kernel for
SVC, since the argument gamma = 0.001 is used. However, you will probably find that the
Gaussian RBF kernel is just too slow when dealing with the 60,000 images in the MNIST
dataset.) For MNIST, restrict the training set to the first k · 1000 samples for k = 1, 2, 3, 4, 5
with both linear SVC and Gaussian RBF SVC with γ = .001. How does the computation
time grow with k?

Note: in case you have trouble accessing the MNIST dataset, you could also get it from the
commands

from tensorflow.keras.datasets import mnist

(data_train, labels_train), (data_test, labels_test) = mnist.load_data()

having first run the commands

pip install--upgrade keras

pip install--upgrade tensorflow

http://yann.lecun.com/exdb/mnist/

