
Data Science with Python 446 Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due October 17, 4PM PST, to be uploaded as a single PDF document to brightspace.

Homework 5

Exercise 1. This exercise deals with sunspot data from the following files (the same data
appears in different formats)

txt file csv file

These files are taken from http://www.sidc.be/silso/datafiles#total

To work with this data, e.g. with pandas in Python you can use the command

df = pd.read_csv('SN_d_tot_V2.0.csv')

to import the .csv file.

The format of the data is as follows.

• Columns 1-3: Gregorian calendar date (Year, Month, then Day)
• Column 4: Date in fraction of year
• Column 5: Daily total number of sunspots observed on the sun. A value of -1 indicates
that no number is available for that day (missing value).

• Column 6: Daily standard deviation of the input sunspot numbers from individual
stations.

• Column 7: Number of observations used to compute the daily value.
• Column 8: Definitive/provisional indicator. A blank indicates that the value is de-
finitive. A ’*’ symbol indicates that the value is still provisional and is subject to a
possible revision (Usually the last 3 to 6 months)

It is known that the number of sunspots on the sun follows an approximately 11-year sinu-
soidal pattern. So, if we plot the number of sunspots over several years, the distance between
the highest observed numbers of sunspots should be around 11 years.

Let Ut be the number of sunspots at time t, where t is measured in years. We model Ut as

Ut = mt + a cos(2πθt) + b sin(2πωt)) + Yt, ∀ t ∈ R,

where a, b, θ, ω ∈ R are unknown (deterministic) parameters, mt is an unknown deterministic
function of t that is assumed to be a “slowly varying” function of t, and {Yt}t∈R are i.i.d.
mean zero random variables. The quantity mt is called the trend and the quantity st :=
a cos(2πθt) + b sin(2πωt)) is called the seasonal component of the time series {Ut}t∈R.

https://www.sidc.be/SILSO/DATA/SN_d_tot_V2.0.txt
https://www.sidc.be/SILSO/INFO/sndtotcsv.php
http://www.sidc.be/silso/datafiles#total
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Since the 11-year sinusoidal pattern is known, we assume for now that θ = ω = 1/11. Note
that ∑
s=t,t+1/365,t+2/365,...,t+11

cos(2πθs) ≈ 0,
∑

s=t,t+1/365,t+2/365,...,t+11

cos(2πθs) ≈ 0, ∀ t ∈ R.

So, if mt is slowly varying in the sense that mt ≈ 1
11·365.25

∑
s=t−5.5,t−5.5+1/365,t+2/365,...,t+5.5ms,

an unbiased estimator for mt is

Mt :=
1

11 · 365.25
∑

s=t−5.5,t−5.5+1/365,t+2/365,...,t+5.5

Us.

Mt defined in this way is called a moving average.

• Since −1 denotes a missing data value, we should first consider how to fill in missing data
values. Let’s first use the ffill option of reindex to fill in these missing values. (Since
ffill works best when the index consists of increasing integers, you should either convert
the first three column entries of a row to a single integer, or you could take the fourth column
entry and multiply it by 1000 to get an integer.)

• Plot Mt versus t. Do you observe any fluctuations in Mt or does it seem to be roughly
constant? If so, what is this constant?

Once we have the estimate Mt, we can then use the approximation

Ut −Mt ≈ a cos(2πθt) + b sin(2πωt)) + Yt, ∀ t ∈ R,

and then try to estimate a, b. A general way to estimate st := a cos(2πθt) + b sin(2πωt)) is
to use a (smaller) moving average such as

St :=
1

11

∑
s=t−5/365,t−4/365,...,t+5/365

[Us −Ms].

Note that St is unbiased.

• Plot St versus t. Does it look like a sinusoidal curve? Note that St removed the trend from
the time series.

Another way to estimate st is to estimate the constants a and b directly. By the double angle
formula, note that∑

s=t,t+1/365,t+2/365,...,t+11

cos(2πθs) sin(2πθs) =
∑

s=t,t+1/365,t+2/365,...,t+11

1

2
sin(4πθs) ≈ 0.

Also,

1

365.25

∑
s=t,t+1/365,t+2/365,...,t+11

cos2(2πs/11) ≈
∫ 11

0

cos2(2πx/11)dx ≈ 11/2.

So, an unbiased estimator for a is

At :=
2

11 · 365.25
∑

s=t,t+1/365,t+2/365,...,t+11

(Us −Ms) cos(2πθs), ∀ t ∈ R.
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Similarly, an unbiased estimator for b is

Bt :=
2

11 · 365.25
∑

s=t,t+1/365,t+2/365,...,t+11

(Us −Ms) sin(2πθs), ∀ t ∈ R.

• Plot At versus t. Plot Bt versus t. Are they close to being constant in t?

• Plot Ut − [Mt +At cos(2πt/11)+Bt sin(2πt/11))] versus t. This is the time series with the
trend and seasonal components removed. Does this plot look like random fluctuations?

• Our modeling assumptions used a period of 11 for the seasonal component of the time
series. Does the data reflect this assumption? For example, would it be more accurate to
have θ = ω = 1/(10.9) in our modeling assumption?

Exercise 2. This exercise will use the following code.

data = {

"state": ["Ohio", "Ohio", "Ohio", "Nevada", "Nevada", "Nevada"],

"year": [2000, 2001, 2002, 2001, 2002, 2003],

"pop": [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]

}

frame = pd.DataFrame(data)

populations = {

"year": {0: 2000, 1: 2002, 3: 2004, 4: 2006},

"pop": {0: 4, 2: 6, 3: 8, 4: 10}

}

frame2 = pd.DataFrame(populations)

ser = pd.Series([3, 6, 8, 9])

def f1(x):

return x**2 + 1

• Using the add function, add frame and frame2 together (e.g. use df.add(df2)), and
fill in any resulting NaN values to zeros.

• Apply the function f1 to frame. (The syntax is frame.map(f1) .)
• For both NBA and WNBA players, answer the following question: Let x denote a
player’s highest single season 2 point field goal percentage. Let y denote a player’s
highest single season 3 point field goal percentage. Who has the highest value of
x+y (among those listed on both leaderboards)? (The percentage for a single player
can be used across two different seasons.) To answer this question, you can find data
from the following sites:

WNBA Leaders
NBA Leaders

Exercise 3. In class, we examined the MovieLens 1M Dataset available at

https://www.basketball-reference.com/wnba/leaders/
https://www.basketball-reference.com/leaders/
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https://grouplens.org/datasets/movielens/

We then loaded the files with

unames = ["user_id", "gender", "age", "occupation", "zip"]

# users format: UserID::Gender::Age::Occupation::Zip-code

users = pd.read_table(

"users.dat",

sep = "::",

header = None,

names = unames,

engine = "python",

encoding = "latin-1"

)

rnames = ["user_id", "movie_id", "rating", "timestamp"]

# ratings format: UserID::MovieID::Rating::Timestamp

ratings = pd.read_table(

"ratings.dat",

sep="::",

header = None,

names = rnames,

engine = "python",

encoding = "latin-1"

)

mnames = ["movie_id", "title", "genres"]

# movies format: MovieID::Title::Genres

movies = pd.read_table(

"movies.dat",

sep="::",

header = None,

names = mnames,

engine = "python",

encoding = "latin-1"

)

data = pd.merge(pd.merge(ratings, users), movies)

One main motivating question was: can we predict the user-specified gender using only their
movie ratings. We used the following code to answer this question:

track_sum = 0

from tqdm import tqdm

for i in tqdm(range(len(users))):

current_gender = users["gender"][i]

https://grouplens.org/datasets/movielens/
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current_id = i + 1

current_data = data[data["user_id"] == current_id].set_index("title")

#current_sorted = current_data.reindex(index = sorted_by_diff.index)

current_nan = current_data.isna()

current_data = current_data[~current_data.isna()]

current_data.dropna(inplace = True)

#current_data now has all ratings for user i, indexed by title

f_score = (current_data["rating"] - mean_ratings["F"][current_data.index]) ** 2

m_score = (current_data["rating"] - mean_ratings["M"][current_data.index]) ** 2

f_avg = np.mean(f_score)

m_avg = np.mean(m_score)

if f_avg < m_avg:

# then predict F

gender_predict = "F"

else:

gender_predict = "M"

if current_gender == gender_predict:

# then prediction was correct

track_sum += 1

print("Percentage prediction correct:", track_sum / len(users))

The output is approximately 75.24. . .%.

Your task is to improve on this performance. Find a way to modify the above program to
get a higher percentage of correct predictions.

If you want you can use an entirely different program or classification procedure, but that
should not be necessary to get a higher percentage correct.

(Optional: Repeat the above for a larger MovieLens dataset such as the 10M or 20M
datasets.)

Exercise 4. In class, we described a procedure (known as Alternating Least Squares or
ALS) for filling in missing movie ratings in the MovieLens 1M dataset. However, we did not
discuss how well this procedure works. Using the MovieLens 1M dataframe data defined in
the previous exercise, recall that we created a matrix of ratings using the commands

rows = data["user_id"]

cols = data["movie_id"]

entries = data["rating"]

rating_matrix = np.empty([6040, 3952], dtype = "uint8")

rating_matrix[rows.values - 1, cols.values - 1] = entries.values

rating_matrix = rating_matrix

To test how well ALS performs, set the first ten rows of rating_matrix equal to zero,
perform ALS on the resulting matrix, and see how closely you can recover the first ten rows
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of the original rating matrix. Check the average difference between the original ratings
and recovered ratings. Try a few different choices of the parameters rank, iterations and
reg_param to try to improve the performance.

(Optional: Repeat the above for a larger MovieLens dataset such as the 10M or 20M
datasets.)


