
MATH 458, NUMERICAL METHODS, FALL 2022

STEVEN HEILMAN

Contents

1. Matlab and the NCM Toolbox 2
1.1. Introduction 2
2. Floating Point Number System 5
2.1. Floating Point Arithmetic and Loss of Significance 8
2.2. Simulation of Random Variables 13
2.3. Additional Comments 14
3. Solving One Variable Equations 15
3.1. Introduction 15
3.2. Newton’s Method 16
4. Numerical Linear Algebra 20
4.1. Review of Linear Algebra 20
4.2. Row Operations 24
4.3. Multiplying Matrices 27
4.4. Gaussian Elimination, LU Factorization, Ax=b 28
4.5. QR Decomposition 33
4.6. Matrix Norms as a Measure of Error 36
4.7. Eigenvalues and the Power Method 38
4.8. Eigenvalues and the QR Algorithm 40
4.9. Least Squares 42
4.10. Singular Value Decomposition (SVD) 44
4.11. Additional Comments 46
5. Interpolation 46
5.1. Polynomial Interpolation 46
5.2. Hermite Interpolation 51
5.3. Spline Interpolation 53
6. Numerical Implementation of Calculus 53
6.1. Numerical Partial Differentiation 53
6.2. Numerical Integration 53
6.3. Gaussian Quadrature 60
7. Numerical Solution of ODEs 65
7.1. Introduction 65
7.2. Runge-Kutta Methods 71
7.3. Multistep Methods 77
7.4. Boundary-Value Problems 81

Date: December 10, 2022 c© 2022 Steven Heilman, All Rights Reserved.

1

7.5. Shooting Methods 82
7.6. Finite Difference Methods 82
7.7. Collocation 84
8. Appendix: Notation 85
References 86

1. Matlab and the NCM Toolbox

Matlab is freely available as a download for USC students. You should download and
install this software on your personal computer. Instructions for downloading and installing
this software can be found here: https://software.usc.edu/matlab/ . If you have not done
so already, you should create a Mathworks account, associated to your USC email address
(https://www.mathworks.com/login). Once you have installed Matlab, you should then
install the NCM package, available at the bottom of this page:
https://www.mathworks.com/moler/chapters.html.

Once the NCM package is installed, you can access some of its features by just typing
ncmgui in the Matlab command line, and then pressing Enter.

1.1. Introduction. As an introduction to Matlab, let’s begin with some basic syntax.
Arithmetic operations such as 1+4 or 5-2.5 produce their expected outputs. Multiplication
uses the asterisk symbol, so that 3*6 evaluates to 18. Also 6/3 evaluates to 2. Exponents
use the ^ symbol, so 2^3 evaluates to 8. The irrational number π is built into Matlab, so
that typing pi and pressing enter results in

3.1416.

To see more decimal places of π, type format long, press enter, then type pi again to get

3.141592653589793.

To revert back to a display of only four decimal places, type format short.
To see fifty decimal places of π, the command vpa(pi,50) returns

3.1415926535897932384626433832795028841971693993751.

Here vpa refers to variable precision arithmetic, to be discussed later. For more information
on a command such as pi, type help pi and press enter.

Variables are defined using the equals sign1. For example, x=2 assigns the value 2 to the
variable x. With this assignment, 3*x produces the output 6. Vectors can also be assigned
to variable names: x=[2,3] or x=[2 3] assigns the row vector (2, 3) to the variable name
x. Similarly, x=[2;3] assigns the column vector

(
2
3

)
to the variable name x. The first entry2

of a vector x can be accessed with the command x(1). The apostrophe symbol performs a
transpose operation. For example, if x is a row vector, then x' will be a column vector. A
2× 3 matrix can be created with the command [3 1 2 ; 5 3 6].

Matlab syntax streamlines vector and matrix operations. For example, 2*[3,4] evaluates
to [6,8]. Component-wise operations can also be done by adding a period symbol as a

1Matlab allows you to assign a number value to a variable x, and then assign a vector value to x, and
then assign a number value to x. Other programming languages do not allow variables to change types.

2Other programming languages might denote the first entry of a vector as its zeroth entry.

2

https://software.usc.edu/matlab/
https://www.mathworks.com/login
https://www.mathworks.com/moler/chapters.html

prefix to a multiplication or division operation (no such prefix should be used for addition
or subtraction). For example:

• [2,3]+[4,5] evaluates to [6,8].
• [6,8]./[2,4] evaluates to [3,2].
• [6,8].*[2,4] evaluates to [12,32].

The last command should not be confused with the dot product of two vectors, such as
[6,8]*[2;4], which evaluates to 6 · 2 + 8 · 4 = 12 + 32 = 44.

One of the first topics in this course will be finding the zeros of single variable functions.
For example, the polynomial

f(x) = x2 − x− 1, ∀x ∈ R

is quadratic with two real zeros. (From the quadratic formula, f as zeros at 1±
√

1+4
2

= 1±
√

5
2

.)
Functions are dealt with in Matlab in a few different ways. We can treat f as an anonymous
function with the command

f = @(x) x.^2 -x-1

Then f(1) returns −1 and f(2) returns 1. Here we used the vectorized multiplication syntax
.^ in defining f since the plotting function

ezplot(f)

requires that f accept vector inputs. Grid lines can be added to the plot with the grid on

command. The axes can be defined by e.g. axis([-2 2 -1.5 0]) The zeros of f can be
approximated numerically with the command fzero(f,1). This command searches for a
zero of f near 1.

We can also manually choose x-inputs while plotting the function f . For example, if we
set x=linspace(0,1,1000), then x is a row vector of length 1000 consisting of 1000 equally
spaced points between 0 and 1, inclusive. A nearly identical command x=0:.001:1 results
in a row vector of points starting at 0, increasing by .001 at each index, and ending at 1
(producing a row vector of length 1001.) In either case, we can then plot the values of the
function f on these x-inputs with the command

plot(x,f(x))

With the vector x already defined, we can also plot the function f more directly, without
assigning a variable name to the function. For example, we can plot f on the interval [0, 1]
with the following command:

plot(x,x.^2 -x-1),

A function can also be entered using the symbolic toolbox. (To clear any previous variable
assignments, use the clear all command, and to close all previous plots, use the close all

command.) To instantiate a symbolic variable x, use the command syms x. Then

f = x.^2 -x-1

defines f as a function of the symbol x. This function can be plotted as before using
ezplot(f). However, we can also apply some symbolic operations to f , such as diff(f),
resulting in

2*x-1,

which is a symbolic differentiation of the function f .

3

Adding a semicolon ; to the end of a command suppresses its output. For example, 5+6;
will compute 5 + 6 but then produce no output.

Built-in functions include: sin, cos, tan, log, exp. For-loops use the following syn-
tax:

for i=1:10

i

end

This will print the integers from 1 to 10 in increasing order. While-loops use the following
syntax:

i=1

while i<10

i=i+1

end

Single conditionals use the following syntax:

if x<10

x

else

x+1

end

Multiple conditionals use the following syntax:

if x<10

x

elseif 10<=x<12

x+1

elseif 12<=x<13

x+2

else

x+3

end

Exercise 1.1. In Matlab, do the following:

• Perform the following operation, and report the result:(
2 3
4 5

)(
1 2
3 4

)
+ 4

(
1 2
1 2

)
.

• Plot the function f(x) = x3 + ex for x values in the interval [0, 3].
• Describe the output of the following program.

x=1

while x~=0

x=x/2

end

Exercise 1.2. In Matlab, the logical value 0 represents a false statement, and the logical
value 1 represents a true statement. For example, 3<5 evaluates to a logical 1, and 5<3

evaluates to a logical 0.

4

Matlab’s logical operations include: & for logical and, | for logical or, ~ for logical negation.
Matlab’s relational operations include: < for less than, <= for less than or equal to, == for
equality, ~= for not equality.

• Compute the following expression by hand, and in Matlab:

((2<3) & (4<2)) | ~(4<8).

• Describe the output of the following program.

x=1

while (x<5) & ~(x<-5)

x=x+rand

end

• Logical operations also apply to vectors (where 1 denotes true, and 0 denotes false).
Compute the following expression by hand, and in Matlab:

([0 1 0] & [1 1 0]) | [0 0 1].

2. Floating Point Number System

Definition 2.1. The most common number system used on computers is the double pre-
cision floating point system. This number system includes any number of the form

±(1.a1a2 · · · a52) · 2b11···b1−1023 = ±
(

1 +
52∑
i=1

2−iai

)
· 2

∑10
j=0 2jbj+1−1023,

where a1, . . . , a52, b1, . . . , b11 ∈ {0, 1} are binary digits, and b1, . . . , b11 are not all 0 and
they are not all 1. Numbers of this form are called normal numbers. The 52-bit binary
number .a1 · · · a52 is called the mantissa, and the 11-bit exponent b11 · · · b1 − 1023 is called
the exponent of the floating point number. One bit is need to store the sign (+ or −) for
a total of 52 + 11 + 1 = 64 bits.

In Matlab, the binary representation of (−1)c · (1.a1a2 · · · a52) · 2b11···b1−1023 with c ∈ {0, 1}
is ordered as

cb11b10 · · · b1a1a2a3 · · · a52.

Below, we will discuss how the command format hex can show the binary representation of
a number in Matlab.

The case b1 = · · · = b11 = 0 has a special meaning, corresponding to subnormal num-
bers. In this case, the corresponding number is

±(0.a1a2 · · · a52) · 21−1023 = ±(0.a1a2 · · · a52) · 2−1022.

(The case a1 = · · · = a52 = 0 with a positive sign corresponds to 0, and with a negative sign
it corresponds to −0. The floating point representations of 0 and −0 are technically different,
despite them being formally equal.) The case b1 · · · b11 = 1 has a special meaning, denoting
±∞ if ai = 0 for all 1 ≤ i ≤ 52, or NaN (Not a Number) if ai 6= 0 for some 1 ≤ i ≤ 52.

Remark 2.2. A normal number has a unique representation as a double precision floating
point number.

5

Here the term “double” signifies that 64 is twice as large as 32. A less precise 32-bit
number system, single precision floating point arithmetic, uses a 23 bit mantissa and an 8
bit exponent.

The largest exponent of a double precision floating point number is the binary digit with
11 ones (minus 1), minus 1023, i.e.

−1023− 1 +
11∑
i=1

2i−1 = −1024 + 211 − 1 = −1024 + 2048− 1 = 1023.

The smallest exponent of a double precision floating point normal number is the number 1,
minus 1023, i.e. −1022.

So, the largest double precision floating point number is

1.1 · · · 1 · 21023 ≈ 1.8× 10308.

This number in Matlab is output from the realmax command. We can already see some
arithmetic issues with this number. For example, realmax+1 will be equal to realmax.
Why? (We will discuss this issue more in Section 2.1.) (To see this try the commands
realmax==realmax+1 or realmax-(realmax+1).) Also, since realmax<2^1024, perhaps it
is sensible that 2^1024 evaluates to Inf in Matlab (Here Inf denotes ∞.)

The smallest positive double precision floating point number corresponds to a52 = 1, and
ai = 0 for all 1 ≤ i ≤ 51. In this case,

0.0 · · · 01 · 2−1022 = 2−52 · 2−1022 = 2−1074 ≈ 4.941× 10−324.

Since this is the smallest positive real number, we might worry about e.g. dividing it by 2.
Indeed, 2^{-1074}/2 evaluates to zero, as does 2^{-1075}.

The smallest positive double precision floating point normal number is

1 · 21−1023 = 2−1022 ≈ 2.225× 10−308.

This number is output from the realmin command.
As we have seen from a few examples, arithmetic on computers results in rounding errors.

Adding small integers to realmax results in a rounding error. And dividing 2−1074 by two
evaluates to zero, another rounding error. The rounding error for additions close to 1 can
be approximated by eps, known as machine epsilon. Machine epsilon is defined to be the
distance from 1 to the next largest double precision floating point number, which is

2−52 ≈ 2.22× 10−16.

Consequently, (1+2^(-53))-1 evaluates to 0. (We will discuss this issue more in Section
2.1.) Note also that the smallest positive subnormal number is realmin*eps.

By default, Matlab displays the decimal representation of a float point number, rather than
its binary representation. The decimal representation can be viewed with the command
format long. However, these decimal representations are perhaps a bit deceiving. For
example, 1/10 has an exact, infinite decimal representation as

1

10
= .0001100110011001 . . . =

1

24
+

1

25
+

0

26
+

0

27
+

1

28
+

1

29
+

0

210
+

0

211
+

1

212
+ · · · .

Rewriting this in base 16, we have

1

10
= .0001100110011001 . . . =

1

24

(
1 +

9

16
+

9

162
+

9

163
+ · · ·

)
.

6

Since these series are infinite, we cannot write 1/10 exactly as a double precision floating
point number. We can only write 1/10 approximately as such a number. It turns out that
the closest such number is

2−4
(

1 +
9

16
+

9

162
+

9

163
+ · · ·+ 9

1612
+

10

1613

)
.

(Note that 52 binary digits corresponds to 52/4 = 13 digits in base 16.) Matlab displays the
binary representation of any double precision floating point number with the format hex

command. Consecutive groups of four binary digits are rewritten as base sixteeen (hexa-
decimal) digits. In the hexadecimal representation of a number, the letters a,b,c,d,e,f

correspond to 10, 11, 12, 13, 14, 15. The hexadecimal representation of 1/10 is then

3fb999999999999a

The first three hexadecimal digits 3fb represent the three-digit number 11+15·16+3·(162) =
1019. That is, these three digits represent the exponent of the number 1/10, since

1019− 1023 = −4.

As anticipated, the remaining thirteen digits 999999999999a represent the mantissa of the
hexadecimal representation of 1/10 described above.

This rounding error can propagate through other operations. For example, .3/.1 does
not evaluate to 3, since the numerator is slightly smaller than .3 and the denominator is
slightly larger than .1. In order to see that .3/.1, we can either evaluate .3/.1 <3 or
check the hexadecimal representation of .3/.1 in Matlab. Here are some examples of exact
hexadecimal representations of numbers:

Real Number Matlab Command Hexadecimal Representation
2−1074 realmin*eps 0000000000000001

2−1022 realmin 0010000000000000

2−52 eps 3cb0000000000000

−2−52 -eps bcb0000000000000

(2− 2−52) · 21023 realmax 7fefffffffffffff

−(2− 2−52) · 21023 -realmax ffefffffffffffff

0 0 0000000000000000

0 −0 8000000000000000

To explain the hexadecimal representation of realmax, note that the first three digits 7fe

represent an exponent of 7 · 162 + 15 · 16 + 14 = 2046 and 2046 − 1023 = 1023. Similarly,
in the hexadecimal representation of eps, the first three digits 3cb represent an exponent of
3 · 162 + 12 · 16 + 11 = 971 and 971− 1023 = 52.

The floatgui command in the Matlab NCM package is a plot of all positive numbers in
a floating point number system where the mantissa uses t bits of storage, and the exponent
is bounded between emin and emax.

Exercise 2.3. Let F be the set of all positive double precision floating point numbers
(except for NaNs and Infs), that have the exponent 7fe (in their hexadecimal representation
in Matlab). (For example, after entering the command format hex in Matlab, we can
see that the number realmax is in F , since its hexadecimal representation in Matlab is
7fefffffffffffff)

• How many elements are in F? That is, what is the cardinality |F| of F .

7

• What fraction of elements of F are in the interval [21023, 21024)?
• What fraction of elements of F are in the interval [21023, 3

2
21023)?

• Using e.g. Matlab’s rand function, write a program that estimates the fraction of
x ∈ F that satisfy the Matlab expression x * (1/x)==1. (It would take a pretty
long time to check how many elements of F satisfy this equation, so you should not
do that.)

Warning: Matlab’s rand function tries to find a uniformly random chosen number in the
interval (0, 1) and then round it to the nearest floating point number. This operation
is different than choosing a floating point number uniformly over all (positive) floating
point numbers with a fixed exponent. (This is the point of the second and third items
of this exercise, and the point of the floatgui program.) For this reason, your answer
to the last part of the question should be much different from the output of the program:
x=rand(1,1000); sum(x.*(1./x)==1)/1000 .

2.1. Floating Point Arithmetic and Loss of Significance.

Definition 2.4 (Floating Point Addition). Let x, y be positive normal numbers, as
defined in Definition 2.1. Then the addition of x and y is defined as follows.

• Represent each of x and y as binary numbers of the form

x = (1.a1a2 · · · a52) · 2ex , y = (1.ã1ã2 · · · ã52) · 2ey .
(Here ex, ey are integers and a1, . . . , a52, ã1, . . . , ã52 ∈ {0, 1}.)
• Write both x and y using the same exponent. For example, if ex ≥ ey, we write

x = (1.a1a2 · · · a52) · 2ex , y = (.0 · · · 01ã1ã2 · · · ã52) · 2ex .
• Add the digits x and y componentwise with carrying rules. (Since the numbers have

the same exponent, you can use the addition and carry rules you learned in grade
school.) We then get

x+ y = (1.c1 · · · ck) · 2ex ,
for some positive integer k ≥ 52. (In the case ex = ey, we might need to change the
exponent in this step to write x+ y itself as a floating point number.)
• In the case k > 52, round the result from the previous step to a floating point number

such as
(1.c1 · · · c52) · 2ex .

(Truncating to 52 decimal places corresponds to “rounding down.”) (Matlab will
round to the nearest floating point number, and it will round towards zero in case of
a tie. For example 1+eps/2 returns 1, 1+eps/1.9 is equal to 1+eps, and -1-(eps/2)

returns −1.)

(According to the above definition, we might need to take k very large in order to perform
addition. However, Matlab only requires k ≤ 55 bits to store y during the addition step.)

Example 2.5. Suppose for simplicity we have a floating point arithmetic system in base
ten with three digits stored in the mantissa, and we want to add

x = 1.312× 103, y = 1.929× 102.

We first write
x = 1.312× 103, y = .1929× 103.

8

Adding componentwise leads to

x+ y = 1.5049× 103.

Since the arithmetic system only stores three digits, the final computed value of x+ y is the
rounded answer

1.505× 103.

In certain implementations, extra unnecessary bits might be discarded in the computation
described in Definition 2.4, e.g. adding x = 250 and y = 2−50 näıvely might require about
100 bits of storage for y when we write both x and y using the same exponent, but such
storage is not really needed since the addition of x and y is just x. (In this case, adding y
to x does not change the digits of x at all.)

Remark 2.6. Floating point subtraction is defined in a similar way to addition. Multiplica-
tion and division are even simpler, since Step 2 of Definition 2.4 is not needed. For example,
to multiply, just multiply the mantissas and add the exponents.

Proposition 2.7. Let x, y be positive normal numbers, as defined in Definition 2.1. Assume
that x + y < 21024. Let fl(x + y) denote the double precision floating point representation of
x+ y. Then there exists δ ∈ R with |δ| ≤ 2−52 such that

fl(x+ y) = (x+ y)(1 + δ).

Proof. This follows from the last part of Definition 2.4. �

Definition 2.8. Let x be a real number, and let x∗ ∈ R be a computed value of x (such as
fl(x)). We define the absolute error of x∗ to be

|x− x∗| .
If x 6= 0, we define the relative error of x∗ to be

|x− x∗|
|x|

So, Proposition 2.7 says that the relative error of the computation fl(x + y) relative to
x+ y is

|fl(x+ y)− (x+ y)|
x+ y

≤ 2−52,

whenever x, y > 0 are normal double precision floating number numbers with x+ y < 21024.
Iterating Proposition 2.7 k times gives

Proposition 2.9. Let x1, . . . , xk be positive normal numbers, as defined in Definition 2.1.

Assume that
∑k

i=1 xi < 21024. Then the relative error of fl
(∑k

i=1 xi

)
relative to

∑k
i=1 xi is

at most
(1 + 2−52)k−1 − 1 ≈ (k − 1)2−52.

To justify the approximation, note that the binomial theorem implies that

(1 + 2−52)k−1 =
k−1∑
j=0

(
k − 1

j

)
(2−52)j = 1 + (k − 1)2−52 + (1/2)(k − 1)(k − 2)(2−52)2 + · · ·

If k is small (say k < 220), then the term (1/2)(k − 1)(k − 2)(2−52)2 is much smaller than
(k − 1)2−52. The same comment applies for the remaining terms in the sum.

9

Exercise 2.10. Do the following plot in Matlab.

x = 0.988:.0001:1.012;

y = x.^7-7*x.^6+21*x.^5-35*x.^4+35*x.^3-21*x.^2+7*x-1;

plot(x,y)

This is the function y(x) = (x−1)7 for x ∈ [.988, 1.012]. Does the plot look like a polynomial?
Explain why or why not.

Exercise 2.11. Suppose we want to solve the linear system of equations

17x1 + 5x2 = 22,

1.7x1 + .5x2 = 2.2.

Note that (x1, x2) = (1, 1) is a solution to this system of equations.
Matlab can numerically solve this system with the following program

A = [17 5; 1.7 0.5];

b = [22; 2.2];

x = A\b

• What is the solution x that is output from the program?
• Is the output of the program an actual solution of the original system of equations?
• What is the determinant of A? What does Matlab output from the command det(A)?

Warning: for a 2× 2 matrix A and a scalar t > 0, we have det(tA) = t2det(A). So, the value
of a determinant does not necessarily say anything about how well we can solve a linear
system of equations of the form Ax = b.

Exercise 2.12. The sin function, like other special functions such as cos, exp, log, etc.,
cannot be computed exactly on a computer. A common way to compute these special
functions is via power series. Recall that sin has the following power series that is absolutely
convergent for all x ∈ R:

sin(x) =
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
.

With this power series in mind, run the following program when x = π/2, 11π/2, 21π/2 and
31π/2. (Before you run the program, set x to a specific value.)

s = 0;

t = x;

n = 1;

while s+t ~= s;

s = s + t;

t =-x.^2/((n+1)*(n+2)).*t;

n = n + 2;

end

When the program terminates, the value of s is the computed value of sin(x). For each value
of x stated above, answer the following:

• What is the absolute error of the computation of sin(x)?
• How many terms of the power series were used in the computation of sin(x)?
• What is the largest term in the power series expansion of sin(x)? (Hint: consider

using the max command)

10

2.1.1. Subtraction and Loss of Significance. Analogues of Propositions 2.7 and 2.9 hold for
multiplication and division. For example

Proposition 2.13. Let x, y be positive normal numbers, as defined in Definition 2.1. Let �
denote multiplication or division. Assume that 2−1022 < x � y < 21024. Let fl(x� y) denote
the double precision floating point representation of x � y. Then there exists δ ∈ R with
|δ| ≤ 2−52 such that

fl(x� y) = (x� y)(1 + δ).

Unfortunately Proposition 2.9 can not hold for a succession of addition and subtraction.
To see why, suppose for simplicity we have a floating point arithmetic system in base ten
with three digits stored in the mantissa, and we want to subtract

x = 1.234× 100, and y = 1.233× 100.

When we perform the subtraction x− y, we get

0.001× 100

The final answer must be a floating point number, so the output of the program is

1.000× 10−3.

Since x and y shared the most significant digits in their mantissas, the subtraction x−y had
only one significant digit. Then the returned value of x− y has zero significant digits in the
mantissa. Since significant digits were lost in the mantissa, this issue is known as a loss of
significance.

For this single subtraction, no error has actually occurred, since x− y = 10−3. However,
combining other operations with subtractions can cause substantial errors. For example, the
expression

(1 + 2−53)− 1

returns the value 0 in Matlab, when it should be equal to 2−53. The absolute error of 2−53 is
quite small, but the relative error is not even defined. Even more alarming, the expression

253((1 + 2−53)− 1)

returns the value 1 in Matlab, when it should be equal to 0. That is, there is an absolute
error of 1. This observation leads to the following heuristic.

Heuristic for Floating Point Arithmetic: Subtractions are dangerous, but addition,
multiplication and division are generally safe (concerning relative errors).

The relative safety of addition, multiplication and division follows from the analogues of
Propositions 2.7 and 2.9. The danger of using subtraction can be formalized in the following
statement.

Proposition 2.14. Let x and y be positive normal double precision floating point numbers
with x > y. (Since x > y, 1− y/x > 0.) Let p, q be nonnegative integers such that

2−q ≤ 1− y

x
≤ 2−p.

Let d be the number of zeros at the end of the mantissa in the computation of x − y. (We
could say d is the number of significant binary digits that are lost in computing x− y.) Then

p ≤ d ≤ q.

11

Proof. Let 1 ≤ s, t < 2 and let m,n be integers such that

x = s2m, y = t2n.

Write y = t2n−m2m so that x − y = (s − t2n−m)2m. Since x > y, s − t2n−m > 0, so that
s− t2n−m is a mantissa representation of x− y. This mantissa satisfies

s− t2n−m = s
(

1− t2n

s2m

)
= s
(

1− y

x

)
.

Since 1 ≤ s < 2, our assumption implies that

2−q ≤ s− t2n−m < 2 · 2−p.

That is, the mantissa’s binary representation starts with at least p zeros, and at most q
zeros. �

Example 2.15. Near zero, the function

f(x) =
√
x2 + 1− 1

exhibits some loss of significance errors, as the following plot shows.

x = linspace(-10^(-7),10^(-7),1000);

plot(x,sqrt(x.^2 +1) -1,'r',x,(x.^2)./(sqrt(x.^2 +1)+1),'b');

legend('original function','rewritten function')

However, by multiplying and dividing by
√
x2 + 1 + 1, we can rewrite f as

f(x) =
x2

√
x2 + 1 + 1

, ∀x ∈ R,

which avoids the loss of significance of the previous formula.

Exercise 2.16. Suppose we want to compute the quantity

x− sin(x)

for any real x ∈ R. For x near zero, there will be a loss of significance error, so we should
perhaps try to find a better way to compute this quantity.

• Find the loss of significance (i.e. the number of zero bits at the end of the binary
mantissa) when x − sin(x) is computed directly in double precision floating point
arithmetic in Matlab, when x = 2−25.
• Find the loss of significance (i.e. the number of zero bits at the end of the mantissa)

when x− sin(x) is computed as

x3

3!
− x5

5!
,

when x = 2−25. (Your answer can be off by one or two from the true value.)
• Estimate the relative error when x− sin(x) is computed as

x3

3!
− x5

5!
,

when x = 2−25. (Your answer does not have to exactly correct. It is okay to be
approximately correct.)

12

Exercise 2.17. This exercise examines an unstable recurrence computation.
Consider the following recursion with x1 := 1 and x2 := 1/3.

xn+1 =
13

3
xn −

4

3
xn−1, ∀n ≥ 2.

• Verify that the recurrence is solved by xn := (1/3)n−1 for all n ≥ 1.
• Using Matlab, solve for x40. For example, use

x(1)=1; x(2)=1/3;

for i=3:40

x(i)=(13/3)*x(i-1) - (4/3)*x(i-2);

end

x(40)

Is the answer what you expected to get? (Hint: examine a logarithmically scaled
plot in the y-axis, using semilogy(abs(x)).)
• With a different initial condition, the above recurrence can have other solutions. To

find them, rewrite the recurrence as(
13/3 −4/3

1 0

)(
xn
xn−1

)
=

(
xn+1

xn

)
, ∀n ≥ 2.

Then note that the eigenvalues of the matrix A :=

(
13/3 −4/3

1 0

)
are 1/3 and 4, so

iterating the recurrence shows that(
13/3 −4/3

1 0

)n−1(
x2

x1

)
=

(
xn+1

xn

)
, ∀n ≥ 1.

Since A has two distinct eigenvalues, it is diagonalizable, so if

(
x2

x1

)
is written as a

linear combination a1v1 +a2v2 of the corresponding eigenvectors v1, v2 ∈ R2 of A, the
recurrence becomes

a1(1/3)n−1v1 + a24n−1v2 =

(
xn+1

xn

)
, ∀n ≥ 1.

• Show that in the case x1 = 1 and x2 = 1/3, we have a2 = 0. However, small
numerical errors that occur in the computation of the recurrence correspond to a2

being computed to be nonzero. Explain how this relates to the logarithmic plot
semilogy(abs(x)) you examined above.

2.2. Simulation of Random Variables.

Remark 2.18. A Monte Carlo simulation simulates a large number samples from some
random quantity. For example, the command rand(1,1000) generates a row vector that
simulates 1000 numbers that are equally likely to take any value in (0, 1). And the command
round(rand(1,1000)) represents a row vector of 1000 fair coin flips, since each entry of the
vector should have probability 1/2 of taking the value 0 or 1.

In a Monte Carlo simulation, one often sums the results of n samples and then divides by
n. For example, the Law of Large Numbers says that, for a large number (such as 10000),
mean(round(rand(1,10000))) should be close to 1/2. That is, roughly half of 10000 coin

13

flips will be heads, and roughly half of these flips will be tails. (Though actually it is unlikely
that exactly 5000 of the coin flips will be heads.)

Exercise 2.19 (Numerical Integration). Consider the function

f(t) := t3 + 1.

In this case, we can easily compute ∫ 1

0

f(t)dt =
5

4
.

Sometimes, especially in computer graphics applications, integrals are too complicated to
compute directly, so we instead use randomness to estimate the integral. That is, we pick
n random points in [0, 1], and average the values of f at these points, as in the following
program.

n=10^5;

f= @(t) t.^3 +1;

mean(f(rand(1,n)))

Using this program with n = 105, 106, 107 and 108, report the estimated values for the integral
of f , along with their relative errors.

Now, compute the exact value of
∫ 5

3
log xdx, and modify the above program to give esti-

mates for the value of this integral and report relative errors, using a number of points n
where n = 105, 106, 107 and 108.

Remark 2.20. When Matlab or other computer programs generate “random numbers” using
e.g. rand or randn, these numbers are not actually random or independent. These numbers
are pseudorandom. That is, functions such as rand output numbers in a deterministic
way, but these numbers behave as if they were random. All “random” numbers generated
by computers are actually pseudorandom, and this includes slot machines at casinos, video
games, etc. So, when using Monte Carlo simulation as we did above, we should be careful
about interpreting our results, since it is generally impossible to take random samples on a
computer.

And, theoretically, if you knew enough about the random number generator that a slot
machine is using, you could predict its output.

2.3. Additional Comments. Classical numerical analysis often bounds the numerical er-
rors of a numerical algorithm, e.g. that estimates the integral of a function.

Modern numerical analysis also examines the behavior of algorithms that work well with
noisy data (i.e. algorithms that work well in the average case, rather than the worst case).
Sometimes we can even guarantee the performance of an algorithm when it is given adver-
sarial data (i.e. some inputs to the algorithm can be chosen arbitrarily).

For more details on the use of “guard bits” and “sticky bits” in implementation of e.g.
addition in Matlab, see Numerical Computing with IEEE Floating Point Arithmetic, Michael
Overton

14

https://linux.ime.usp.br/~andreluizas/old_stuff/Floating_point.pdf
https://linux.ime.usp.br/~andreluizas/old_stuff/Floating_point.pdf

3. Solving One Variable Equations

3.1. Introduction. Suppose we want to find the zero of a continuous function f : [a, b]→ R
If f(a) and f(b) have different signs, the Intermediate Value Theorem guarantees that f has
a zero in the interval [a, b]. Then a zero can be found by a divide and conquer strategy.

Algorithm 3.1 (Divide and Conquer Zero Finding).
Input: a, b ∈ R, a < b, f : [a, b] → R a continuous function (e.g. specified as a function

in Matlab) where f(a) and f(b) have different signs, and a tolerance level δ > 0.
Output: a floating point value x ∈ R that is close to y ∈ R with f(y) = 0.
Initialize a0 := a, b0 := b, γ := b− a, n := 0.
While γ > δ, do the following.

Let c := (an + bn)/2.

If sign(c) = sign(an) (then f changes sign on the right half of the current interval, so the
next interval is the right half of the previous interval).

Define an+1 := c, bn+1 := bn.
Else (then f changes sign on the left half of the current interval, so the next interval is

the left half of the previous interval).
Define bn+1 := c, an+1 := an.

End
Increase the value of n by 1.
Divide the value of γ by 2.

When the while loop terminates, define x := an+1.

Proposition 3.2. Let a, b > 0. Let f : [a, b] → R be a continuous function such that f(a)
and f(b) have different signs. After n ≤ 52 iterations, Algorithm 3.1 outputs x ∈ R such
that

|x− y| ≤ 2−n(1 + 2−52)2n |a− b| ,
where y ∈ [a, b] is a zero of f that is guaranteed to exist by the Intermediate Value Theorem.

Proof. At the nth iteration of Algorithm 3.1, we have an interval [an, bn] such that the signs
of f(an) and f(bn) are not the same. So, each interval [an, bn] contains a zero y. So, if
x := an, then

|x− y| ≤ |bn − an| ≤ 2−n |b− a| .
The last inequality follows by induction on n and |bn − an| ≤ (1/2) |bn−1 − an−1|, for all
n ≥ 1, which follows by the definition of Algorithm 3.1. Finally, each iteration of the
algorithm involves one addition and one division of positive numbers, hence the (1 + 2−52)2n

term from Proposition 2.7. �

Proposition 3.2 says that n iterations of Algorithm 3.1 results in about n bits of accuracy
in the mantissa of a zero of a continuous function f . Put another way, the accuracy of the
zero-finding Algorithm 3.1 (as measured by a number of bits) is linear in the number of
iterations of the algorithm. A natural question is: can we do better? For example, is it
possible to have about n2 bits of accuracy in the mantissa of the zero of f , after n iterations
of an algorithm? Perhaps surprisingly, the answer is yes.

15

3.2. Newton’s Method.

Example 3.3 (The Babylonian Square Root Algorithm). Suppose we want to find
the closest double precision floating point number to

√
2. The function f(x) := x2 − 2 has

a zero at x =
√

2, so we could use Algorithm 3.1 with a = 1/2, b = 3/2 to approximate
√

2
with around 52 iterations. However, this is not what computers and calculators do, since
there is a much faster way to approximate

√
2.

The following recursively defined sequence gets closer and closer to the square root of 2.
Define a1 = 1, and for any integer n ≥ 2,

an =
1

2

(
an−1 +

2

an−1

)
.

We use the following Matlab program to compute the recurrence:

x=1;

for i=1:7

x=(1/2)*(x+2/x)

end

The corresponding output is the following:

a1 1
a2 1.5
a3 1.416666666666667
a4 1.414215686274510
a5 1.414213562374690
a6 1.414213562373095
a7 1.414213562373095
a8 1.414213562373095

The algorithm only required five iterations to find a 52 binary digit approximation to
√

2.
Indeed, it can be shown that an gets arbitrarily close to

√
2 as n tends to infinity. We will

make this statement more precise below.

If we instead defined an = 1
2

(
an−1 + M

an−1

)
, then this sequence will get closer and closer to

√
M , where M ≥ 0. This phenomenon can be explained by Newton’s Method. We have

an = an−1 −
1

2
an−1 +

M

2an−1

= an−1 −
(a2
n−1 −M)

2an−1

= an−1 −
f(an−1)

f ′(an−1)
,

where f(x) = x2−M . This iterative scheme searches for a zero of the function f . Given the
x-value an−1, the linear approximation of f at an−1 is f ′(an−1)(x− an−1) + f(an−1). And we
define an as the x-intercept (i.e. zero) of this line. That is, we define an so that

0 = f ′(an−1)(an − an−1) + f(an−1).

Solving this equation for an gives the above equality.

an = an−1 −
f(an−1)

f ′(an−1)
.

16

Remark 3.4. The Babylonian square root algorithm is typically used by computers when
you ask for the square root of a number. That is, the computer will compute something like
a10 for a given number M , and then return a10 as the square root of the number M .

Exercise 3.5. Using the Divide and Conquer Algorithm to approximate the value of
√

3
with the function f(x) := x2 − 3 by starting your search on the interval [1, 2]. Report how
many iterations the algorithm takes until it no longer makes any progress (i.e. once the
algorithm can no longer create a smaller interval to search for a zero of f .)

Then, use the Babylonian square root algorithm to approximate the value of
√

3, starting
with a1 = 1. Report how many iterations the algorithm takes until it no longer makes any
progress (i.e. once the sequence generated by the algorithm becomes constant.)

Algorithm 3.6. Newton’s Method, a general way to find the roots of a differentiable
function f : R→ R.

(1) Choose any point x1 ∈ R.
(2) Compute the tangent line of f at x1: y(x) = f ′(x1)(x− x1) + f(x1).
(3) Find x2 such that y(x2) = 0. This is the intersection of the tangent line y(x) with

the x-axis. Note that x2 satisfies

x2 = x1 −
f(x1)

f ′(x1)
.

(4) Return to step (2), but replace x1 with x2. More generally, at the nth iteration of the
algorithm, compute the tangent line of f at xn in step (2), and then find an xn+1 in
step (3) which is a zero of the tangent line. So, in general we iterate the following
equation.

xn+1 = xn −
f(xn)

f ′(xn)
.

Newton’s Method requires some assumptions to converge to an actual zero of a function.
As we will see in the exercises below, there are some relatively simple examples where
Newton’s Method produces large errors.

Theorem 3.7. Let f : R→ R be a function with two continuous derivatives, with f ′(y) > 0
and f ′′(y) > 0 for all y ∈ R (so that f is strictly increasing and strictly convex). Assume ∃
x ∈ R with f(x) = 0. Starting from any point x1 ∈ R, the sequence x1, x2, . . . , generated by
Newton’s Method will converge to x. (Also x is the only zero of f .)

Proof. (Since f ′ > 0, we can freely divide by f ′ below.) For any k ≥ 1, define ek := xk − x.
Then

ek+1 = xk+1 − x = xk − x−
f(xk)

f ′(xk)
= ek −

f(xk)

f ′(xk)
=
ekf

′(xk)− f(xk)

f ′(xk)
. (∗)

Since f has two continuous derivatives, Taylor’s Theorem applies at xk, and there exists
ξk ∈ R such that

0 = f(x) = f(xk − ek) = f(xk)− ekf ′(xk) + (1/2)e2
kf
′′(ξk).

Plugging this into (∗), we get

ek+1 =
1

2

f ′′(ξk)

f ′(xk)
e2
k.

17

In particular, ek+1 ≥ 0 for all k ≥ 1, so that xk ≥ x for all k ≥ 2. Since f is strictly increasing
f(xk) ≥ f(x) = 0 for all k ≥ 2. Then (∗) implies that ek+1 ≤ ek for all k ≥ 1. So, the
sequence e2, e3, . . . is decreasing and nonnegative, and the sequence x2, x3, . . . is decreasing
and bounded below by x. Therefore y := limk→∞ xk exists. Define

φ(t) := t− (f ′(t))−1f(t), ∀ t ∈ R.
Since φ is a composition of continuous functions, φ is continuous. Also, by definition of φ,
we have φ(xk) = xk+1. We therefore have

φ(y) = lim
k→∞

φ(xk) = lim
k→∞

xk+1 = y.

Since φ(y) = y, we have f(y)/f ′(y) = 0. Since f ′ 6= 0, we conclude that f(y) = 0.
Finally, f is strictly increasing, so x is the only zero of f , and we conclude that x = y. �

Exercise 3.8. Let f(x) := x2 − 2 for all x ∈ R. Let x1 > 0. Let x1, x2, . . . be the sequence
generated by Newton’s method for f , started at x1. Prove that x1, x2, . . . converges to

√
2.

Theorem 3.9. Let f : R→ R be a function satisfying f(0) = 0, f ′(0) 6= 0, and such that f
has two continuous derivatives in some interval of the form [−r, r] with r > 0. Let K > 1
and suppose that

K−1 ≤ |f ′(x)| ≤ K, |f ′′(x)| ≤ K, ∀x ∈ [−r, r]. (1)

Assume that |x1| ≤ 1
8
K−4 max(r3, r−3).

Then the sequence x1, x2, . . . from Newton’s Method converges to 0.

Proof. Step 1. We will first show that if xk, xk−1 ∈ [−r, r] for some k ≥ 2,

|xk+1 − xk| ≤
K2

2
|xk − xk−1|2 .

Since f has two continuous derivatives, Taylor’s Theorem applies at xk−1. Let xk−1 + y ∈
[−r, r]. Then there exists ξ ∈ [−r, r] such that

f(xk−1 + y) = f(xk−1) + yf ′(xk−1) + (1/2)y2f ′′(ξ). (∗)
So, using the definition of xk, and using (∗) and xk ∈ [−r, r],

xk+1 − xk = − f(xk)

f ′(xk)
= −

f
(
xk−1 − f(xk−1)

f ′(xk−1)

)
f ′(xk)

(∗)
= −

f(xk−1)− f(xk−1)

f ′(xk−1)
f ′(xk−1) + (1/2)

(
− f(xk−1)

f ′(xk−1)

)2

f ′′(ξ)

f ′(xk)

= − f ′′(ξ)

2f ′(xk)

(
f(xk−1)

f ′(xk−1)

)2

= − f ′′(ξ)

2f ′(xk)
(xk − xk−1)2 .

Note also that f ′ 6= 0 on [−r, r] by (1), so we can freely divide by f ′, since xk, xk−1 ∈ [−r, r].
Now, using the above equality and our derivative bounds,

|xk+1 − xk| ≤
1

2
sup

ξ∈[−r,r],y∈[−r,r]
|f ′′(ξ)| |f ′(y)|−1 |xk − xk−1|2

(1)

≤ K2

2
|xk − xk−1|2 .

Step 2. We now show that |x2 − x1| ≤ K2 |x1|.

18

As in Step 1, f is twice differentiable, so we apply a single term Taylor’s expansion at
x = 0. Let x ∈ [−r, r]. Then ∃ ξ ∈ [−r, r] such that f(x) = xf ′(ξ). Therefore, with x = x1,

|x2 − x1| =
∣∣∣∣ f(x1)

f ′(x1)

∣∣∣∣ =

∣∣∣∣x1
f ′(ξ)

f ′(x1)

∣∣∣∣ (1)

≤ K2 |x1| .

For simplicity, we now consider r = 1.
Step 3 Let ε > 0. If x1 ∈ [−εK−4, εK−4], then Step 2 implies that |x2 − x1| ≤ K−2ε

and |x2| ≤ 2ε. So, if ε < 1/8, then |x1| ≤ 1/2, |x2| ≤ 3/4, and Step 1 implies that
|x3 − x2| ≤ (1/2)K−2ε2. So, if ε < 1/8, then |x3 − x2| ≤ 1/8, so |x3| ≤ 7/8.

We will prove by induction on k ≥ 3 that |xk−1| ≤ (1−2−k) and |xk − xk−1| ≤ 2−k+2ε2k−2
K−2

if ε < 1/8. The case k = 3 is already proven so we prove the inductive step when k ≥ 3. By
the inductive assumption, and 2k−2 ≥ k

|xk − xk−1| ≤ 2−k+28−2k−2 ≤ 2−k+28−k ≤ 2−k−1.

|xk| ≤ (1− 2−k) + 2−k−1 = (1− 2−k−1).

So, Step 1 implies, with −2k + 4 ≤ −k + 1,

|xk+1 − xk| ≤ (1/2)2−2k+4ε2k−1

K−2 ≤ (1/2)2−k+1ε2k−1

K−2 ≤ 2−k+1ε2k−1

K−2.

We have therefore completed the inductive step. We conclude in particular that

|xk − xk−1| ≤ 2−k+2(1/8)2k−2

K−2 ≤ 2−kK−2. (∗)
Step 4. It follows from Step 3 that the sequence x1, x2, . . . is Cauchy, since for any

1 < m < n, we have

|xn − xm| =

∣∣∣∣∣
n∑

k=m+1

(xk − xk−1)

∣∣∣∣∣ ≤
n∑

k=m+1

|xk − xk−1|
(∗)
≤ K−2

∞∑
k=m+1

2−k = K−22−m.

Denote x as the limit of the sequence x1, x2, Define

φ(x) := x− (f ′(x))−1f(x), ∀x ∈ [−r, r].
Since K−1 ≤ |f ′(y)| ≤ K for all y ∈ [−r, r], f ′(y) 6= 0 for all y ∈ [−r, r]. So, φ(x) and

φ(xk) are defined for all k ≥ 1. Moreover, φ is a composition of continuous functions, so it
is continuous. Also, by definition of φ, we have φ(xk) = xk+1. We therefore have

φ(x) = lim
k→∞

φ(xk) = lim
k→∞

xk+1 = x.

Since φ(x) = x, we have f(x)/f ′(x) = 0. Since f ′ 6= 0 on [−r, r], we conclude that f(x) = 0.
Since f is continuously differentiable on [−r, r] and K−1 ≤ |f ′(y)| ≤ K for all y ∈ [−r, r],

the Intermediate Value Theorem implies that f is equal to zero on [−r, r] only at the point
y = 0. We therefore conclude that x = 0.

Step 5. We have shown that if r = 1 and if |x1| ≤ K−4/8, then x1, x2, . . . ∈ [−r, r]
converges to x = 0, where f(0) = 0. It remains to remove the assumption that r = 1.

For the more general case that r 6= 1, define F (x) := f(rx), and note that F ′(x) = rf ′(xr)
and F ′′(x) = r2f ′′(xr). So the assumed derivative bounds on f imply that

K−1r ≤ |F ′(x)| ≤ Kr, |f ′′(x)| ≤ Kr2, ∀x ∈ [−1, 1].

So, defining J := max(Kr2, K/r2), we have

J−1 ≤ |F ′(x)| ≤ J, |f ′′(x)| ≤ J, ∀x ∈ [−1, 1].

19

We will show that Newton’s Method for f started at x1 ∈ [−r, r] is somehow equivalent to
starting Newton’s method for F at y1 := x1/r. Also, Newton’s Method applied to F on
[−1, 1] says

yk+1 = yk −
F (yk)

F ′(yk)
= yk −

f(ryk)

rf ′(ryk)
=

1

r

(
ryk −

f(ryk)

f ′(ryk)

)
.

That is, for all k ≥ 1,

ryk+1 = ryk −
f(ryk)

f ′(ryk)
.

So, Newton’s method applied to F results in the sequence y1, y2, . . ., and this is equivalent
to applying Newton’s method for f , resulting in the sequence ry1, ry2,

Lastly, the assumption that |y1| ≤ J−4

8
translates to |x1| ≤ r J

−4

8
= (r/8)K−4 max(r2, r−2).

�

Exercise 3.10. Consider the function

f(x) := sign(x)
√
|x|, ∀x ∈ R.

This function has only one zero at x = 0.
Either by hand or a computer, use Newton’s method to try to find a zero, using an initial

guess such as 1, 1/2 or 1/4.
What happens? Describe the output of Newton’s Method. Does the sequence of iterates

x0, x1, . . . converge to 0? Explain why or why not. (Does the convergence theorem 3.9
apply?)

Exercise 3.11. Consider the function

f(x) := x1/3, ∀x ∈ R.
This function has only one zero at x = 0.

Using a computer, use Newton’s method to try to find a zero, using an initial guess such
as 1, 1/2 or 1/4.

What happens? Describe the output of Newton’s Method. Does the sequence of iterates
x0, x1, . . . converge to 0? Explain why or why not. (Does the convergence theorem 3.9
apply?)

Exercise 3.12. Consider the function

f(x) := x2 + 1/100, ∀x ∈ R.
This function has no zeros, but it is nearly zero at x = 0. For instructive purposes, we can
still apply Newton’s Method to see what happens.

Using a computer, use Newton’s method to try to find a zero of f , using an initial guess
of 1/10.

What happens? Describe the output of Newton’s Method. Explain what has happened.

4. Numerical Linear Algebra

4.1. Review of Linear Algebra.

Definition 4.1 (Linear combination). Let V be a vector space over a field F. Let
u1, . . . , un ∈ V and let α1, . . . , αn ∈ F. Then

∑n
i=1 αiui is called a linear combination

of the vector elements u1, . . . , un.

20

Definition 4.2 (Linear dependence). Let V be a vector space over a field F. Let S be
a subset of V . We say that S is linearly dependent if there exists a finite set of vectors
u1, . . . , un ∈ S and there exist α1, . . . , αn ∈ F which are not all zero such that

∑n
i=1 αiui = 0.

Definition 4.3 (Linear independence). Let V be a vector space over a field F. Let S be
a subset of V . We say that S is linearly independent if S is not linearly dependent.

Example 4.4. The set S = {(1, 0), (0, 1)} is linearly independent in R2. The set S ∪ (1, 1)
is linearly dependent in R2, since (1, 0) + (0, 1)− (1, 1) = 0.

Definition 4.5 (Span). Let V be a vector space over a field F. Let S ⊆ V be a finite
or infinite set. Then the span of S, denoted by span(S), is the set of all finite linear
combinations of vectors in S. That is,

span(S) =

{
n∑
i=1

αiui : n ∈ N, αi ∈ F, ui ∈ S, ∀ i ∈ {1, . . . , n}

}
.

Remark 4.6. We define span(∅) := {0}.

Theorem 4.7 (Span as a Subspace). Let V be a vector space over a field F. Let S ⊆ V .
Then span(S) is a subspace of V such that S ⊆ span(S). Also, any subspace of V that
contains S must also contain span(S).

Definition 4.8 (Normed Linear Space). Let F denote either R or C. Let V be a vector
space over F. A normed linear space is a vector space V equipped with a norm. A norm
is a function V → R, denoted by ‖·‖, which satisfies the following properties.

(a) For all v ∈ V , for all α ∈ F, ‖αv‖ = |α| ‖v‖. (Homogeneity)
(b) For all v ∈ V with v 6= 0, ‖v‖ is a positive real number; ‖v‖ > 0. And v = 0 if and

only if ‖v‖ = 0. (Positive definiteness)
(c) For all v, w ∈ V , ‖v + w‖ ≤ ‖v‖+ ‖w‖. (Triangle Inequality)

Definition 4.9 (Complex Conjugate). Let i :=
√
−1. Let x, y ∈ R, and let z = x+iy ∈ C.

Define z := x− iy. Define |z| :=
√
x2 + y2. Note that |z|2 = zz.

Definition 4.10 (Inner Product). Let F denote either R or C. Let V be a vector space
over F. An inner product space is a vector space V equipped with an inner product.
An inner product is a function V × V → F, denoted by 〈·, ·〉, which satisfies the following
properties.

(a) For all v, v′, w ∈ V , 〈v + v′, w〉 = 〈v, w〉+ 〈v′, w〉. (Linearity in the first argument).
(b) For all v, w ∈ V , for all α ∈ F, 〈αv, w〉 = α〈v, w〉. (Homogeneity in the first argument)
(c) For all v ∈ V , if v 6= 0, then 〈v, v〉 is a positive real number; 〈v, v〉 > 0. (Positivity)

(d) For all v, w ∈ V , 〈v, w〉 = 〈w, v〉. (Conjugate symmetry)

Exercise 4.11. Using the above properties, show the following things.

(e) For all v, v′, w ∈ V , 〈w, v+ v′〉 = 〈w, v〉+ 〈w, v′〉. (Linearity in the second argument)
(f) For all v, w ∈ V , for all α ∈ F, 〈v, αw〉 = α〈v, w〉.
(g) For all v ∈ V , 〈v, 0〉 = 〈0, v〉 = 0.
(h) 〈v, v〉 = 0 if and only if v = 0.

Remark 4.12. If F = R, then property (d) says that 〈v, w〉 = 〈w, v〉.

21

Lemma 4.13. Let 〈, 〉 be an inner product on a vector space V . Then the function ‖·‖ : V →
R defined by ‖v‖ :=

√
〈v, v〉 is a norm on V .

Definition 4.14 (Orthogonal Vectors). Let V be an inner product space, and let v, w ∈
V . We say that v, w are orthogonal if 〈v, w〉 = 0.

Definition 4.15 (Orthogonal Set, Orthonormal Set). Let V be an inner product space
and let (v1, . . . , vn) be a collection of vectors in V . The set of vectors (v1, . . . , vn) is said to
be orthogonal if 〈vi, vj〉 = 0 for all i, j ∈ {1, . . . , n} with i 6= j. If additionally 〈vi, vi〉 = 1
for all i ∈ {1, . . . , n}, the set of vectors (v1, . . . , vn) is called orthonormal.

Corollary 4.16. Let V be an inner product space, and let v1, . . . , vn ∈ V be an orthonormal
set of vectors. Then ∥∥∥∥∥

n∑
i=1

αivi

∥∥∥∥∥
2

=
n∑
i=1

|αi|2 .

Corollary 4.17. Any set of orthonormal vectors is linearly independent.

Definition 4.18 (Orthonormal Basis). Let V be an inner product space. An orthonor-
mal basis of V is a collection (v1, . . . , vn) of orthonormal vectors that is also a basis for
V .

Corollary 4.19. Let V be an n-dimensional inner product space. Let (v1, . . . , vn) be an
orthonormal set in V . Then (v1, . . . , vn) is an orthonormal basis of V .

Theorem 4.20. Let V be an inner product space. Let (v1, . . . , vn) be an orthonormal basis
of V . Then, for any v ∈ V , we have

v =
n∑
i=1

〈v, vi〉vi.

Definition 4.21 (Unit Vector). Let V be a normed linear space, and let v ∈ V . If ‖v‖ = 1,
we say that v is a unit vector.

Remark 4.22. Let v 6= 0. Then v/ ‖v‖ is a unit vector.

Theorem 4.23 (Gram-Schmidt Orthogonalization). Let v1, . . . , vn be a linearly inde-
pendent set of vectors in an inner product space V . Then we can create an orthogonal set of
vectors in V as follows. Define

w1 := v1.

w2 := v2 −
〈
v2,

w1

‖w1‖

〉
w1

‖w1‖
.

w3 := v3 −
〈
v3,

w1

‖w1‖

〉
w1

‖w1‖
−
〈
v3,

w2

‖w2‖

〉
w2

‖w2‖
.

And so on. In general, for k ∈ {2, . . . , n}, define

wk := vk −
k−1∑
j=1

〈
vk,

wj
‖wj‖

〉
wj
‖wj‖

.

22

Then for each k ∈ {1, . . . , n}, (w1, . . . , wk) is an orthogonal set of nonzero vectors in V .
Also, span(w1, . . . , wk) = span(v1, . . . , vk) for each k ∈ {1, . . . , n}. Finally, note that the
set (w1/ ‖w1‖ , . . . , wn/ ‖wn‖) is an orthonormal set of vectors in V with the same span as
v1, . . . , vn.

Definition 4.24 (Transpose). Let A be an m × n matrix with entries Aij, 1 ≤ i ≤ m,
1 ≤ j ≤ n. Then the transpose AT of A is defined to be the n × m matrix with entries
(AT)ij := Aji, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Exercise 4.25. Let A be an m×n matrix. Let B be an `×m matrix. Show that (BA)T =
ATBT .

Remark 4.26. If A is an n× n invertible matrix, then ITn = (AA−1)T = (A−1)TAT , so AT

is also invertible.

Definition 4.27 (Adjoint of a Matrix). Let A be an m × n matrix with Ajk ∈ C,
1 ≤ j ≤ m, 1 ≤ k ≤ n. The adjoint of A, denoted by A∗, is an n ×m matrix with entries
(A∗)jk := Akj, 1 ≤ j ≤ n, 1 ≤ k ≤ m.

Definition 4.28 (Normal Matrix). Let A be an n × n matrix with values in C. We say
that A is normal if AA∗ = A∗A.

Definition 4.29 (Self-Adjoint Matrix). Let F denote R or C. A square matrix A with
elements in F is said to be self-adjoint if A = A∗. The term Hermitian is a synonym of
self-adjoint.

Definition 4.30 (Unitary Matrix/ Orthogonal Matrix). Let A be an n × n matrix
with elements in C. We say that A is unitary if AA∗ = A∗A = I. In the case that A has
real entries and AAT = ATA = I, we say that A is orthogonal.

Definition 4.31. A matrix A is said to be diagonalizable if there exists an invertible matrix
Q and a diagonal matrix D such that A = QDQ−1. That is, a matrix A is diagonalizable if
and only if it is similar to a diagonal matrix.

Definition 4.32 (Eigenvector and Eigenvalue). Let V be a vector space over a field
F. Let T : V → V be a linear transformation. An eigenvector of T is a nonzero vector
v ∈ V such that, there exists λ ∈ F with T (v) = λv. The scalar λ is then referred to as the
eigenvalue of the eigenvector v.

Theorem 4.33 (The Spectral Theorem for Normal Matrices). Let F denote either R
or C. Let A be an n × n matrix with entries in F. Then there exists an orthonormal basis
of Fn consisting of eigenvectors of A. In particular, A is diagonalizable with A = QDQ−1,
where the columns of Q are eigenvectors of A and QQ∗ = Q∗Q = I.

Theorem 4.34 (The Spectral Theorem for Self-Adjoint Matrices). Let F denote
either R or C. Let A be an n×n matrix with entries in F. Then there exists an orthonormal
basis of F n consisting of eigenvectors of A. In particular, A is diagonalizable with A =
QDQ−1, where the columns of Q are eigenvectors of A and QQ∗ = Q∗Q = I. Moreover, all
eigenvalues of A are real, i.e. D has real entries.

Theorem 4.35 (The Spectral Theorem for Unitary Matrices). Let F denote either
R or C. Let A be an n×n matrix with entries in F. Then there exists an orthonormal basis

23

of F n consisting of eigenvectors of A. In particular, A is diagonalizable with A = QDQ−1,
where the columns of Q are eigenvectors of A. Moreover, all eigenvalues of T have absolute
value 1.

We will discuss algorithms for Spectral Theorems in Section 4.7.

4.2. Row Operations. We begin our discussion of row operations on matrices with some
examples.

Example 4.36 (Type 1: Interchange two Rows). For example, we can swap the first
and third rows of the matrix 1 2

3 5
0 8


to get 0 8

3 5
1 2

 .

Define

E :=

0 0 1
0 1 0
1 0 0

 .

Note that

E

1 2
3 5
0 8

 =

0 0 1
0 1 0
1 0 0

1 2
3 5
0 8

 =

0 8
3 5
1 2

 .

Remark 4.37. E as defined above is invertible. In fact, E = E−1. In general, if E is the
n× n matrix that swaps two rows of an n× n matrix A, then EA is A with those two rows
swapped. So EEA = A for all n× n matrices A, so EE = In, i.e. E is invertible.

Example 4.38 (Type 2: Multiply a row by a nonzero scalar). For example, let’s
multiply the second row of the following matrix by 2.1 2

3 5
0 8

 .

We then get 1 2
6 10
0 8

 .

Define

E :=

1 0 0
0 2 0
0 0 1

 .

Note that

E

1 2
3 5
0 8

 =

1 0 0
0 2 0
0 0 1

1 2
3 5
0 8

 =

1 2
6 10
0 8


24

Remark 4.39. E as defined above has inverse1 0 0
0 1/2 0
0 0 1

 .

In general, suppose E corresponds to multiplying the ith row of a given matrix by α ∈ F,
α 6= 0. Then E is a matrix with ones on the diagonal, except for the ith entry on the diagonal,
which is α. And all other entries of E are zero. Then, we see that E−1 exists and is a matrix
with ones on the diagonal, except for the ith entry on the diagonal, which is α−1. And all
other entries of E−1 are zero. In particular, E is invertible.

Example 4.40 (Adding one row to another). Let’s add two copies of the first row of
the following matrix to the third row. 1 2

3 5
0 8

 .

We then get 1 2
3 5
2 12

 .

Define

E :=

1 0 0
0 1 0
2 0 1

 .

Note that

E

1 2
3 5
0 8

 =

1 0 0
0 1 0
2 0 1

1 2
3 5
0 8

 =

1 2
3 5
2 12

 .

Remark 4.41. E as defined above has inverse 1 0 0
0 1 0
−2 0 1

 .

That is, adding 2 copies of row one to row three is inverted by adding −2 copies of row one
to row three. In a similar way, a general row addition operator is seen to be invertible.

Remark 4.42 (Summary of Row Operations). The three row operations (Type 1, Type
2, and Type 3) are all invertible.

Remark 4.43 (Solving Systems of Linear Equations). Let A be an m× n matrix, let
x ∈ Rn be a variable vector, and let b ∈ Rm be a known vector. Consider the system of
linear equations

Ax = b.

Let E be any elementary row operation. Since E is invertible, finding a solution x to the
system Ax = b is equivalent to finding the solution x to the system EAx = Eb. By applying
many elementary row operations, you have seen in a previous course how to solve the system
Ax = b. That is, you continue to apply elementary row operations E1, . . . , Ek such that

25

E1 · · ·EkA in row-echelon form, and you then solve E1 · · ·EkAx = E1 · · ·Ekb. A matrix
B is in row-echelon form if each row is either zero, or its left-most nonzero entry is 1, with
zeros below the 1.

Remark 4.44 (Inverting a Matrix). Let A be an invertible n × n matrix. You learned
in a previous course an algorithm for inverting A using elementary row operations. Below,
we will prove that this algorithm works.

Remark 4.45 (Column Operations). In the above discussion, we could have also used
column operations instead of row operations. Column operations would then correspond to
multiplying the matrices E on the right side, rather than the left side. The invertibility of
column operations would therefore still hold.

Definition 4.46 (Rank). The rank of a matrix A is equal to the dimension of the space
spanned by the columns of A.

Proposition 4.47. Let A be a real n× n matrix. Then A is invertible if and only if A has
rank n.

Lemma 4.48. Let A be a matrix in row-echelon form. Then the rank of A is equal to the
number of nonzero rows of A.

Theorem 4.49. Let A be an m × n matrix of rank r. Then, there exist a finite number of
elementary row and column operations which, when applied to A, produce the matrix(

Ir×r 0r×(n−r)
0(m−r)×r 0(m−r)×(n−r)

)
.

Proof. We first use row reduction to put A into row-echelon form. So, after this row reduc-
tion, the first r rows of A have some zeros, and then a 1 with zeros below this 1. And the
remaining m − r rows are all zero. (In case r = 0, then we are done, so we may assume
that r > 0.) Now, the first row of A has some zeros, then a 1 with zeros below this 1. So,
by adding copies of the column that contains the entry 1 to each column to the right, the
remaining entries of the first row can be made to be zero. And we still keep our matrix in
row-echelon form. Now, the second row of A has some zeros, then a 1 with zeros above and
below this 1. So, by adding copies of the column that contains this entry 1 to each column
to the right, the remaining entries of the second row can be made to be zero. And once
again, our matrix is still in row-echelon form. We then continue this procedure. The first r
rows then each have exactly one entry of 1, and all remaining entries in the matrix are zero.
By swapping columns as needed, A is then put into the required form, as desired. �

Corollary 4.50 (A Factorization Theorem). Let A be an m×n matrix of rank r. Then,
there exists an m×m matrix B and an n×n matrix C such that B is the product of a finite
number of elementary row operations, C is the product of a finite number of elementary
column operations, and such that

A = B

(
Ir×r 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
C.

Lemma 4.51. Let A be an m× n matrix. Let B be an m×m invertible matrix, and let C
be an n× n invertible matrix. Then

rank(A) = rank(BA) = rank(AC) = rank(BAC).

26

Lemma 4.52. Let A be an m× n matrix with rank r. Then AT also has rank r.

Lemma 4.53. Let A be an n×n matrix. Then A is invertible if and only if it is the product
of elementary row and column operations.

Remark 4.54. Suppose A is an invertible matrix, and we have elementary row operations
E1, . . . , Ej such that

E1 · · ·EjA = In.

Multiplying both sides by A−1 on the right,

E1 · · ·EjIn = A−1.

So, to compute A−1 from A, it suffices to find row operations that turn A into the identity.
And we then apply these operations to In to give A−1. This is the algorithm for computing
the inverse A−1 that you learned in a previous class.

4.3. Multiplying Matrices.

Example 4.55 (Multiplying Matrices). The näıve way to multiply two real n × n ma-
trices requires approximately na arithmetic operations where a = 3. (The output matrix
has n2 entries, and each entry requires at most 2n arithmetic operations, so a total of
2n · n2 operations could be needed.) However, there seems to be some redundancy in all of
these operations, so one might hope to improve the number of required operations. In fact,
a < 2.3728639 also possible [Gal14] (building upon Coppersmith-Winograd, Stothers, and
Williams.) I do not think the algorithm with such a value of a has been implemented in
practice, since the implied constants in its analysis are quite large, and apparently the algo-
rithm does not parallelize. On the other hand, Strassen’s algorithm has been implemented,
and it has a = log 7/ log 2 ≈ 2.807.

Example 4.56 (Computing Determinants). Let n > 0 be an integer. Suppose we want
to compute the determinant of a real n× n matrix A with entries Aij, i, j ∈ {1, . . . , n}. An
inefficient but straightforward way to do this is to directly use a definition of the determinant.
Let Sn denote the set of all permutations on n elements. For any σ ∈ Sn, let sign(σ) := (−1)j,
where σ can be written as a composition of j transpositions (Exercise: this quantity is well-
defined). (A transposition σ ∈ Sn satisfies σ(i) = i for at least n− 2 elements of {1, . . . , n}.)
Then

det(A) =
∑
σ∈Sn

sign(σ)
n∏
i=1

Aiσ(i).

This sum has |Sn| = n! terms. So, if we use this formula to directly compute the determinant
of A, in the worst case we will need to perform at least (n + 1) · n! arithmetic operations.
This is quite inefficient. We know a better algorithm from linear algebra class. We first
perform row operations on A to make it upper triangular. Suppose B is an n×n real matrix
such that BA represents one single row operation on A (i.e. adding a multiple of one row
to another row, or swapping the positions of two rows). Then there are real n× n matrices
B1, . . . , Bm such that

B1 · · ·BmA (∗)
is an upper triangular matrix. The matrices B1, . . . , Bm can be chosen to first eliminate the
left-most column of A under the diagonal, then the second left-most column entries under

27

the diagonal, and so on. That is, we can choose m ≤ n(n − 1)/2, and each row operation
involves at most 3n arithmetic operations. So, the multiplication of (∗) uses at most

3mn ≤ 2n3

arithmetic operations. The determinant of the upper diagonal matrix (∗) is then the product
of its diagonal elements, and

det(B1 · · ·BmA) = det(B1) · · · det(Bm) det(A).

That is,

det(A) =
det(B1 · · ·BmA)

det(B1) · · · det(Bm)
.

So, det(A) can be computed with at most 2n3 +m+n ≤ 4n3 = O(n3) arithmetic operations.
Can we do any better?

It turns out that this is possible. Indeed, if it is possible to multiply two n × n real
matrices with O(na) arithmetic operations for some a > 0, then it is possible to compute
the determinant of an n× n matrix with O(na) arithmetic operations.

Remark 4.57. Interestingly, computing the permanent of a matrix

per(A) =
∑
σ∈Sn

n∏
i=1

Aiσ(i)

is #P-complete, so we expect this quantity cannot be computed using a polynomial number
(in n, e.g. n3) of arithmetic operations on a computer, even though we can do this for
the determinant. However, for any ε > 0, there is a (1 + ε) polynomial time randomized
approximation algorithm for computing the permanent of a matrix with nonnegative entries
[JSV04]. That is, for any ε > 0, and 0 < δ < 1 there is a randomized algorithm such that
the following holds. For any n × n matrix A of nonnegative real numbers, the algorithm
runs in time that is polynomial in 1/ε, n, and log(1/δ), and with probability at least 1 − δ
the algorithm outputs a real number p such that

p ≤ per(A) ≤ (1 + ε)p.

On the other hand, for any constant c, the problem of approximating the permanent of an
arbitrary matrix A is #P-hard [Aar11].

4.4. Gaussian Elimination, LU Factorization, Ax=b.

Theorem 4.58 (Gaussian Elimination/ LU Factorization). Let F denote R or C. Let
A be an n× n matrix with values in F. Then there exist n× n matrices P,L, U such that

PA = LU,

where L is lower triangular with ones on its diagonal and values in F, U is upper triangular
with values in F, and P is a permutation matrix (i.e. P is the identity matrix with its rows
permuted). Moreover, P,L, U can be computed with at most 5n3 arithmetic operations.

Remark 4.59. Even in the case n = 1, we can see the LU factorization is not unique.

28

Proof. We first apply a permutation matrix P1 to A such that the top left entry of P1A has
largest absolute value in its first column. In the case that the first column of A is zero, let
L1 be the identity. Otherwise, let L1 denote the (lower triangular) row operation matrix
such that L1P1A has zeros below the top left entry. We now iterate this procedure. Apply a
permutation matrix P2 to L1P1A that fixes the first row, and such that the second diagonal
entry has largest absolute value among the lowest n− 1 entries in the second column. When
all entries below and including the diagonal are zero in the second column, let L2 be the
identity. Otherwise, let L2 denote the (lower triangular) row operation matrix (that fixes the
first row) such that L2P2L1P1A has zeros below the diagonal. We continue this procedure.
We arrive at an upper triangular matrix U such that

Ln−1Pn−1 · · ·L1P1A = U.

For each 1 ≤ k ≤ n − 1, define L′k := Pn−1 · · ·Pk+1LkPk+1 · · ·Pn−1. Note that L′1, . . . , L
′
n−1

are lower triangular. To see this, we first write

Pk+1LkPk+1 = Pk+1(Lk − I + I)Pk+1 = Pk+1(Lk − I)Pk+1 + I.

Now, Lk − I is nonzero only in its kth column below the kth row, and Pk+1 only permutes
rows below the kth row. So, Pk+1(Lk − I) also is only nonzero in its kth column below the
kth row. Then multiplying on the right by Pk+1 permutes the columns to the right of the kth

column (i.e. it has no effect); in block form we have

Lk =

Ik−1 0 0
0 1 0
0 vk In−k

 , Pk+1 =

(
Ik 0
0 ∗

)
.

Therefore,

Pk+1(Lk − I)Pk+1 =

(
Ik 0
0 ∗

)0k−1 0 0
0 0 0
0 vk 0n−k

(Ik 0
0 ∗

)

=

0k−1 0 0
0 0 0
0 v′k 0n−k

(Ik 0
0 ∗

)
=

0k−1 0 0
0 0 0
0 v′k 0n−k

 .

We conclude Pk+1LkPk+1 is lower triangular. By a similar argument, Pk+2Pk+1LkPk+1Pk+2

is lower triangular. Iterating this argument, we conclude that L′1, . . . , L
′
n−1 are all lower

triangular.
By definition of L′1, . . . , L

′
n−1, we have

U = Ln−1Pn−1 · · ·L1P1A = L′n−1 · · ·L′1Pn−1 · · ·P1A.

Finally, define L′ := L′n−1 · · ·L′1, and define P := Pn−1 · · ·P1. We have

U = L′PA.

So, let L := (L′1)−1 · · · (L′n−1)−1, so that LL′ = I, and

LU = LL′PA = PA.

(Alternatively, once we have the expression for L′, we could just solve directly for its inverse,
which is straightforward since L′ is lower triangular, and then define L := (L′)−1 directly.)

29

Each iteration requires at most n2 arithmetic operations, and there are n−1 such iterations,
so completing the computation requires at most n3 arithmetic operations. �

In the NCM package, the LU factorization is demonstrated with the command lugui,
with partial pivoting.

Exercise 4.60. Write your own program in Matlab that finds the LU decomposition of
a given n × n real matrix (without using any matrix decomposition programs in Matlab).
Then apply your program to the matrix

A =


0 1 1 0 2
2 3 0 0 0
4 5 1 0 2
−6 0 1 2 0
3 0 4 0 −1

 .

Exercise 4.61. Suppose A is an n× n matrix of the form

A =



1 0 0 · · · 0 1
−1 1 0 · · · 0 1
−1 −1 1 · · · 0 1
...

...
...

. . .
...

...
−1 −1 −1 · · · 1 1
−1 −1 −1 · · · −1 1


Find an LU decomposition of A. Hint: use

L =



1 0 0 · · · 0 0
−1 1 0 · · · 0 0
−1 −1 1 · · · 0 0
...

...
...

. . .
...

...
−1 −1 −1 · · · 1 0
−1 −1 −1 · · · −1 1

 .

What U do you get? Explain why, when n is large, this LU decomposition would lead to a
large loss of significance.

Exercise 4.62. Suppose A is an n × n real matrix with rank n. Let L1, L2 be real n × n
lower triangular matrices, and let U1, U2 be real n× n upper triangular matrices. Suppose

A = L1U1 = L2U2.

Show that there exists a real n × n diagonal matrix D with nonzero diagonal entries such
that

L1 = L2D, U1 = D−1U2.

In this sense, the LU factorization of A is unique, up to multiplication by D.

Exercise 4.63. Let L be a complex n × n lower triangular matrix with nonzero diagonal
entries. Describe an algorithm that computes L−1 with at most 5n3 arithmetic operations.

30

Then, write a program in Matlab that finds L−1 for such an n × n matrix (without using
any built-in matrix inversion things in Matlab), and apply your program when L is

L =


1 0 0 0 0
2 3 0 0 0
4 5 6 0 0
−6 0 1 2 0
1 0 4 0 3

 .

Finally, verify that your computed version of L−1 satisfies LL−1 = L−1L = I (at least
approximately).

(Hint: L−1 is also lower triangular. Starting with the top row of L−1 and working your
way down, what entries must L−1 have? Try starting from the diagonal entries and then
moving to the left, one entry at a time.)

(Hint: it might be helpful to access portions of a row of a matrix L in Matlab. For example,
if 1 ≤ j < i ≤ n are integers, the command L(i, j+1: i) is the ith row of L starting from
entry j + 1 and ending at enetry i. And L(j+1 : i, j) is the jth column of L, starting at
entry j + 1 and ending at entry i.)

Exercise 4.64 (Matrix Inversion). There are a few standard algorithms that invert an
invertible matrix. One such algorithm uses the LU decomposition. Suppose A is an invertible
matrix. Using the LU decomposition, show that PA = LU , with L,U invertible, L lower
triangular, U upper triangular, and P a permutation matrix, so that A = P TLU . Then,
with Exercise 4.63, describe an algorithm for computing A−1 as U−1L−1P that uses at most
20n3 arithmetic operations.

As we mentioned in Remark 4.43, the linear system Ax = b can be solved (if a solution
exists) by performing elementary row operations on A. These elementary row operations
are encoded in the LU decomposition, so the LU decomposition can solve a linear system of
equations.

Theorem 4.65 (Solving Systems of Linear Equations). Let A be a complex n × n
matrix. Let b ∈ Cn. Consider the equation

Ax = b

where x ∈ Cn is unknown. Let PA = LU be the LU decomposition of A that we found
(together with an algorithm) in Theorem 4.58. If a solution x′ ∈ Cn exists to the equation
Ax′ = b, then some x ∈ Cn satisfying Ax = b can be found by solving the following two
triangular systems, whose solutions exist

• First solve for y ∈ Cn in the equation Ly = Pb,
• Then solve for x ∈ Cn in the equation Ux = y, and output x,

Remark 4.66. Solving linear triangular systems is easy. Note LUx = PAx = Pb.

Proof. First, note that L is lower triangular with ones on its diagonal, so a solution y exists
to Ly = Pb (i.e. L is invertible). Since P is invertible, x ∈ Cn satisfies PAx = Pb if and only
if Ax = b. Since Ly = Pb, and PA = LU , we have PAx = LUx = Ly. Since L is invertible,
we have Ux = y. That is, Ax = b is solvable for x if and only if Ux = y is solvable for x. We
assumed that some x′ ∈ Cn solves Ax′ = b, so we deduce this same x′ solves Ux′ = y. �

31

Remark 4.67. Recall that if A is a real n× n matrix with rank n, and if b ∈ Rn, then the
equation Ax = b can always be solved for some unique x ∈ Rn. More generally, if A perhaps
does not have full rank, then Ax = b can be solved only if b is in the span of the columns of
A. In this case, the solution x might not be unique. For this reason, solving for Ux = y in
Theorem 4.65 might result in a non-unique solution x to Ax = b.

Exercise 4.68. Let

A =


0 1 1 0 2
2 3 0 0 0
4 5 1 0 2
−6 0 1 2 0
3 0 4 0 −1

 .

Using the LU decomposition of A, solve the equation

Ax = b,

using Matlab code (without using any built-in linear algebra solvers) where b = (2, 4, 3, 1, 5)T .
(Note that solving a linear system such as Ly = b when L is lower triangular should be
relatively straightforward, by e.g. first solving for y1, then y2, and so on.)

Definition 4.69. A self-adjoint n × n matrix A is said to be positive semidefinite if all
eigenvalues of A are nonnegative. If additionally all eigenvalues of A are positive, A is called
positive definite.

Theorem 4.70. Let A be an n× n self-adjoint matrix with values in C. Then the following
are equivalent.

(i) All eigenvalues of A are nonnegative.
(ii) There exists an n× n matrix B with values in C such that A = B∗B.

(iii) For any x ∈ Cn r {0}, we have x∗Ax ≥ 0.

Moreover, strict equality holds in (i) and (iii) if and only if all eigenvalues of A are positive.

Proof. We will show that (i) implies (ii), (ii) implies (iii), and (iii) implies (i), thereby
obtaining the equivalence of all three conditions. In all cases, since A is self-adjoint, the
Spectral Theorem 4.34 says A = QDQ∗ with D an n × n diagonal matrix with real entries
and Q is unitary n × n. If (i) holds, D has nonnegative entries, A = Q

√
D
√
DQ∗ =

(Q
√
D)(Q

√
D)∗, so (ii) holds with B := (Q

√
D)∗. If (ii) holds and x ∈ Cn r {0}, then

x∗Ax = x∗B∗Bx = (Bx)∗Bx = ‖Bx‖2 ≥ 0, so (iii) holds. If (iii) holds and if v ∈ Cn r {0}
is an eigenvector of A with eigenvalue λ ∈ R, then λ ‖v‖2 = λv∗v = v∗Av ≥ 0. We conclude
that λ ≥ 0 since v 6= 0 implies ‖v‖ 6= 0 so that (i) holds. �

Corollary 4.71. Let F denote R or C. Let A be a self-adjoint positive definite n×n matrix
with elements in F. Then there exist n× n matrices L,U with elements in F such that

A = LU,

where L is lower triangular, U is upper triangular. Moreover, L and U can be computed with
at most 5n3 arithmetic operations.

Proof. We repeat the proof of Theorem 4.58. Observe first that the top left entry of A must
be positive by Theorem 4.70(iii), so we can take P1 = I. Similarly, every other Pk can be
taken to be the identity matrix. We prove this by contradiction. Suppose for example that

32

at step k of the proof of Theorem 4.58, we find that all entries in the kth column of the
matrix below and including the kth entry are all zero. If this occurs, then the top left k × k
minor of Lk · · ·L1A has a zero row in its kth row. So the vector x ∈ Rn with a 1 in the kth

entry and a zero in its other entries satisfies

0 < xTLk · · ·L1AL
T
1 · · ·LTk x = xT

(
Ak ∗
0 0

)
LT1 · · ·LTk x

= xT
(

0 ∗
0 0

)
LT1 · · ·LTk x = xT

(
0 ∗
0 0

)
x = 0.

The first inequality used Theorem 4.70. The penultimate equality used that LT1 · · ·LTk is
upper triangular. The last equality used the definition of x. With this contradiction, we
conclude we can choose P = I in Theorem 4.58.

�

Exercise 4.72. Write a computer program on your own that finds the LU factorization of
the matrix

A =


6 0 −4 0
0 7 0 −1
−4 0 6 0
0 −1 0 7

 .

4.5. QR Decomposition. Due to examples of LU factorizations such as Exercise 4.61, the
LU decomposition (or equivalently, Gaussian elimination) might not be the best method for
solving linear systems of equations. There is another matrix factorization, the QR decom-
position, which sometimes behaves better for solving linear systems of equations. The QR
decomposition also has other applications not directly related to solving linear systems.

We will construction the QR decomposition iteratively with the following lemma. The
idea of the QR decomposition is that, rather than using row operations to force a column
of a matrix to have many zeros, we will apply a (complex) rotation to the matrix to force a
column to have many zeros.

Lemma 4.73. Let e1 = (1, 0, . . . , 0)T . Let w ∈ Cn. Then there exists v ∈ Cn with ‖v‖ = 1
and there exists α ∈ C such that

(I − 2vv∗)w = αe1.

Moreover, I−2vv∗ is a unitary matrix, and we can choose α := −‖w‖ e
√
−1 θ where θ ∈ [0, 2π)

satisfies w1 = |w1| e
√
−1 θ, i.e. θ is the angle w1 makes with the positive real axis.

Proof. First, note that the matrix I − 2vv∗ is unitary since (I − 2vv∗)v = v − 2v ‖v‖2 = −v
and for any x perpendicular to v, we have v∗x = 0 so (I − 2vv∗)x = x, i.e. there is an
orthonormal basis of Cn that diagonalizes I − 2vv∗ with all eigenvalues 1 or −1.

If w = 0, choose α = 0, so below, assume w 6= 0. Now, we will choose α so that
vv∗w = 1

2
(w− αe1). Also, we will choose v := w−αe1

‖w−αe1‖ (we will choose α so the denominator

is nonzero). Then

vv∗w =
(w − αe1)(w − αe1)∗

‖w − αe1‖2 w = (w − αe1)
‖w‖2 − αw1

‖w‖2 − αw1 − w1α + |α|2
.

33

We want to choose α so this quantity is 1
2
(w − αe1), i.e. we choose α so that

2
(
‖w‖2 − αw1

)
= ‖w‖2 − αw1 − w1α + |α|2 . (∗∗)

That is, we choose α so that

‖w‖2 = −αw1 + w1α + |α|2 = 2Im(w1α) + |α|2 .
We can then choose α ∈ C so that the imaginary part of w1α is zero, and such that |α| = ‖w‖.
For example, if w1 = reiθ where i =

√
−1, r > 0 and θ ∈ [0, 2π), then we can choose

α := −‖w‖ eiθ,
so that (∗∗) holds and αw1 = −r ‖w‖. We now verify (recalling w 6= 0) that

‖w − αe1‖2 = 2(‖w‖2 − αw1) = 2(‖w‖2 + ‖w‖ r) > 0,

so that we have not divided by zero in the definition of α, so that (∗) holds as required. �

Theorem 4.74 (QR Factorization). Let F denote R or C. Let A be an m×n matrix with
values in F, with m ≥ n. Then there exists an m ×m unitary matrix Q (with values in F)
and an m× n upper triangular matrix R (with values in F) such that

A = QR.

Moreover, Q is obtained by applying n−1 unitary matrices to the columns of A, and at most
8n2m arithmetic operations are required to compute the matrices Q and R.

Proof. Let w be the first column of A. We would like to apply a rotation (i.e. a unitary
matrix) to A that rotates w into a vector with all entries zero except for the first entry. The
unitary matrix will be I − 2vv∗ for some v ∈ Cm with ‖v‖ = 1. This is possible by Lemma
4.73. We then have a unitary matrix U1 = I − 2vv∗ such that

U1A =

(
a1 ∗
0 A2

)
,

where A2 is an (m−1)× (n−1) matrix. We can then iterate this procedure, finding a vector
v2 ∈ Cm−1 such that I − 2v2v

∗
2 and such that (I − 2v2v

∗
2)A2 has zeros below the first entry

of its first column. Define then

U2 :=

(
1 0
0 I − 2v2v

∗
2

)
.

Then U2U1A is upper triangular with zeros below its first two diagonal entries. After iterating
this procedure n − 1 times, we have found m ×m unitary matrices U1, . . . , Un−1 such that
R := Un−1 · · ·U1A is upper triangular. Define Q := U∗1 · · ·U∗n−1, so that A = QR.

Since (I−2vv∗)w = w−2v(v∗w) = w−v(2)(v∗w), computing (I−2vv∗)w requires at most
4m arithmetic operations, so that (I − 2vv∗)A requires at most 4nm operations. Iterating
n−1 times, we require at most 4n2m operations to compute R. Since (I−2vv∗)∗ = I−2vv∗,
each of the unitary matrices U1, . . . , Un−1 is also self-adjoint, so Q = U1 · · ·Un−1, and doing
that multiplication also requires at most 4n2m operations, for a total of at most 8n2m
operations. �

The above algorithm using Lemma 4.73 is preferred in practice. The QR decomposition
can also be constructed via the Gram-Schmidt orthogonalization. However, the subtractions
in the Gram-Schmidt procedure lead to loss of significance errors and instability.

34

Proof. Denote the columns of A as A1, . . . , An, and denote the output of Theorem 4.23 as
Q1, . . . , Qn. Let Q denote the matrix with columns Q1, . . . , Qn. Define rij := 〈Aj, Qi〉. Since
Q1, . . . , Qn are an orthonormal basis of Cn, we have by Theorem 4.20, for each 1 ≤ j ≤ n,

Aj =
n∑
i=1

〈Aj, Qi〉Qi =
n∑
i=1

rijQi.

That is, akj =
∑n

i=1 qkirij for all 1 ≤ j ≤ m, 1 ≤ k ≤ n. That is, A = QR.
By the definition of the Gram-Schmidt procedure rii > 0 for all 1 ≤ i ≤ n. Also, by

definition of the Gram-Schmidt Orthogonalization, if 1 ≤ j < i ≤ n, then Qi is orthogonal
to Aj, so that rij = 〈Qi, Aj〉 = 0. That is, R is upper triangular.

Lastly, note that the kth step of the Gram-Schmidt procedure uses at most 5km arithmetic
operations, so n total steps results in at most n(n + 1)(5/2)m arithmetic operations, with
one final normalization step using at most 2nm operations, for a total of at most 5n2m
operations. �

Lemma 4.75. Let A be a complex n×n matrix with rank n. Then there is a unique way to
write a QR decomposition A = QR where R has nonnegative diagonal entries.

Proof. Suppose A = QR = Q0R0. Since A has rank n, R is invertible. Then Q∗0Q = R0R
−1.

The matrix on the left is unitary and the matrix on the right is upper triangular with
nonnegative diagonal entries. So, we must have R0R

−1 = I, so that R0 = R and similarly
Q = Q0. �

Theorem 4.70(ii) says that a self-adjoint positive definite matrix can be written as A =
B∗B, and this factorization is useful for many applications. However, Theorem 4.70(ii) was
not constructive. Below, we describe an algorithm for finding this decomposition.

Theorem 4.76 (Cholesky Decomposition). Let F denote R or C. Let A be an n×n self-
adjoint positive definite matrix with values in F. Then there exists an n×n upper triangular
matrix B with elements in F such that

A = B∗B.

Moreover, B =
√

(U∗)−1LU where A = LU is an LU decomposition of A (from Corollary
4.71), so that B can be computed from Corollary 4.71 and Exercise 4.63 below. Lastly, the
Cholesky decomposition A = B∗B is unique up to multiplication of B by a diagonal matrix
with entries with absolute value 1.

Proof. From Corollary 4.71, we can write A = LU where L is lower triangular, and U is
upper triangular. Since A is self-adjoint, we have

LU = A = A∗ = U∗L∗.

Since A is positive definite, U,L are invertible (otherwise 0 < det(A) = det(L) det(U) = 0).
So,

(U∗)−1L = L∗U−1.

The matrix on the left is lower triangular and the matrix on the right is upper triangular.
Therefore, both of these matrices must be diagonal. That is, there is a diagonal matrix D
such that D = (U∗)−1L, i.e. L = U∗D. Then

A = LU = U∗DU. (‡)

35

Then D = (U∗)−1AU−1 = (U−1)∗AU−1. From Theorem 4.70, for any x ∈ Fn r {0},

x∗Dx = (U−1x)∗AU−1x > 0.

So, D is diagonal with positive values. Defining
√
D as the diagonal matrix with entries the

square roots of the entries of D, (‡) becomes

A = U∗
√
D
√
DU = (

√
DU)∗

√
DU.

We then define B :=
√
DU . Since B =

√
(U∗)−1LU , Corollary 4.71 and Exercise 4.63

complete the algorithm for computing B.
To see the uniqueness of the Cholesky decomposition, write A = B∗B = C∗C with C,B

lower triangular. Then (CB−1)∗CB−1 = I, so that CB−1 is a lower triangular, unitary
matrix, i.e. CB−1 = D where D is a diagonal matrix with entries with absolute value 1, so
that C = DB. �

4.6. Matrix Norms as a Measure of Error. Norms are used in numerical analysis to
bound the errors in matrix computations.

An n ×m matrix can be treated as a vector of length nm, so that a set of matrices can
be equipped with a vector norm.

However, there are also other natural norms on the set of matrices, e.g. ones related to
eigenvalues or singular values of the matrix, which we describe further below.

Definition 4.77 (Singular Values). Let A be an m × n complex matrix. Then the sin-
gular values of A are the square roots of the eigenvalues of A∗A. (Theorem 4.70 says the
eigenvalues of A∗A are nonnegative.)

Definition 4.78 (Vector `p Norms). Let 1 ≤ p <∞. Let x ∈ Cn. Define the `p norm of
x to be

‖x‖p :=
(n∑
i=1

|xi|p
)1/p

.

Also define the `∞ norm of x to be

‖x‖∞ := max
1≤i≤n

|xi| .

Proposition 4.79. The `p norm is a norm for any 1 ≤ p ≤ ∞, i.e. the definition of a norm
from Definition 4.8 holds.

Proof. We will show the triangle inequality holds. The case p = ∞ follows from the scalar
triangle inequality, so assume 1 ≤ p <∞. Let x, y ∈ Cn. We need to show that ‖x+ y‖p ≤
‖x‖p + ‖y‖p. By scaling, we may assume ‖x‖p = 1 − t, ‖y‖p = t, for some t ∈ (0, 1) (zeros

and infinities being trivial). Define v := x/(1− t), w := y/t. Then by convexity of s 7→ |s|p
on R,

|(1− t)vi + twi|p ≤ (1− t) |vi|p + t |wi|p , ∀ 1 ≤ i ≤ n

Summing over 1 ≤ i ≤ n, we get

‖x+ y‖pp ≤ (1− t) ‖v‖pp + t ‖w‖pp = (1− t) + t = 1.

So, ‖x+ y‖p ≤ 1 = ‖x‖p + ‖y‖p. �

36

Definition 4.80 (Standard Inner Product). Let x, y ∈ Cn. Define the standard inner
product of x and y by

〈x, y〉 :=
n∑
i=1

xiyi.

One can check that the standard inner product is an inner product, i.e. Definition 4.10
holds in this case.

Theorem 4.81 (Hölder’s Inequality). Let 1 ≤ p ≤ ∞, and let q be dual to p (so 1/p +
1/q = 1). Let x, y ∈ Cn. Then

|〈x, y〉| ≤ ‖x‖p ‖y‖q .
The case p = q = 2 recovers the Cauchy-Schwarz inequality:

|〈x, y〉| ≤ ‖x‖2 ‖y‖2 .

Proof. By scaling, we may assume ‖x‖p = ‖y‖q = 1 (zeros and infinities being trivial). Also,
the case p = 1, q = ∞ follows from the triangle inequality, so we assume 1 < p < ∞. From
concavity of the log function, we have

|xiyi| = (|xi|p)1/p(|yi|q)1/q ≤ 1

p
|xi|p +

1

q
|yi|q , ∀ 1 ≤ i ≤ n.

Summing over 1 ≤ i ≤ n, we get |〈x, y〉| ≤ 1
p

+ 1
q

= 1 = ‖x‖p ‖y‖q. �

Corollary 4.82 (Duality for `p Norms). Let 1 ≤ p ≤ ∞, and let q be dual to p (so
1/p+ 1/q = 1). Let y ∈ Cn. Then

‖y‖p = sup
x∈Rn : ‖x‖q≤1

|〈x, y〉| .

Proof. Hölder’s inequality, Theorem 4.81, implies that supx∈Rn : ‖x‖q≤1 |〈x, y〉| ≤ ‖y‖p. To get

the other corresponding inequality, consider x ∈ Cn defined by xi := ‖y‖−(p−1)
p yi |yi|p−2 1yi 6=0

for all 1 ≤ i ≤ n. Since 1/p+ 1/q = 1, p+ q = pq, and q(p− 1) = p, so

‖x‖qq = ‖y‖−q(p−1)
p

n∑
i=1

|yi|q(p−1) = ‖y‖−pp
n∑
i=1

|yi|p = ‖y‖p−pp = 1.

〈x, y〉 = ‖y‖−(p−1)
p

n∑
i=1

|yi|p = ‖y‖p .

Therefore, supx∈Rn : ‖x‖q≤1 |〈x, y〉| ≥ ‖y‖p. �

A natural class of matrix norms is defined in analogy with Corollary 4.82.

Definition 4.83. Let A be an m× n complex matrix. Let 1 ≤ p, q ≤ ∞. Define the p→ q
norm of A to be

‖A‖p→q := sup
x∈Cn : ‖x‖p≤1

‖Ax‖q .

Proposition 4.84. The p→ q norm is a norm for any 1 ≤ p, q ≤ ∞, i.e. the definition of
a norm from Definition 4.8 holds.

37

Proof. We will show the triangle inequality holds. Let A,B be m × n complex matrices.
Fix x ∈ Cn with ‖x‖p ≤ 1. From the triangle inequality for the `q norm, ‖(A+B)x‖q ≤
‖Ax‖q+‖Bx‖q. Taking the supremum over x on both sides, we get ‖A+B‖p→q ≤ ‖A‖p→q+

‖B‖p→q. �

The supremum definition makes these norms difficult to compute directly. Still, in certain
cases, Corollary 4.82 can give simpler expressions for these norms.

Exercise 4.85. Let A be an m× n complex matrix. Show the following

• ‖A‖1→1 = max1≤j≤n
∑m

i=1 |aij|.
• ‖A‖∞→∞ = max1≤i≤n

∑m
j=1 |aij|.

• ‖A‖2
2→2 is equal to the largest eigenvalue of AA∗ (or of A∗A). That is, ‖A‖2→2 is the

largest singular value of A.
• For any 1 ≤ p, q ≤ ∞, ‖AB‖p→q ≤ ‖A‖p→q ‖B‖p→q.

Theorem 4.86 ([GVL13, Theorem 3.3.1]). Let ‖·‖ denote any matrix norm. Let A be an
n × n complex matrix. Assume that A has an LU factorization of the form A = LU , and
the diagonal entries of L and U are all positive. Assume

• All operations use normal floating point numbers.
• For any floating point numbers x, y used in the algorithm, for any operation � among

addition, subtraction, multiplication, and division, we have

fl(x� y) = x�fl y.

Here �fl denotes the floating point implementation of an operation such as addition.
• For any floating point numbers x, y used in the algorithm, for any operation � among

addition, subtraction, multiplication, and division, there exists δ ∈ R with |δ| ≤ ε such
that

x�fl y = (x� y)(1 + δ).

Then the algorithm in Theorem 4.58 outputs a factorization L̃, Ũ such that

‖A− L̃Ũ‖ ≤ 3(1− (1 + 2−52)n)
(
‖A‖+ ‖L‖ ‖U‖

)
.

Recall from Exercise 4.61 that ‖L‖ or ‖U‖ can be exponentially large in n, in which case
this theorem has limited significance.

4.7. Eigenvalues and the Power Method.

Exercise 4.87 (The Power Method). This exercise gives an algorithm for finding the
eigenvectors and eigenvalues of a symmetric matrix. In modern statistics, this is often a
useful thing to do. The Power Method described below is not the best algorithm for this
task, but it is perhaps the easiest to describe and analyze.

Let A be an n×n real symmetric matrix. Let λ1 ≥ · · · ≥ λn be the (unknown) eigenvalues
of A, and let v1, . . . , vn ∈ Rn be the corresponding (unknown) eigenvectors of A such that
‖vi‖ = 1 and such that Avi = λivi for all 1 ≤ i ≤ n.

Given A, our first goal is to find v1 and λ1. For simplicity, assume that 1/2 < λ1 < 1, and
0 ≤ λn ≤ · · · ≤ λ2 < 1/4. Suppose we have found a vector v ∈ Rn such that ‖v‖ = 1 and
|〈v, v1〉| > 1/n. (An exercise more suitable for a probability class shows that a randomly

38

chosen v satisfies this property, with probability at least 1/2.) Let k be a positive integer.
Show that

Akv

approximates v1 well as k becomes large. More specifically, show that for all k ≥ 1,∥∥Akv − 〈v, v1〉λk1v1

∥∥2 ≤ n− 1

16k
.

(Hint: use the spectral theorem for symmetric matrices.)
Since |〈v, v1〉|λk1 > 2−k/n, this inequality implies that Akv is approximately an eigenvector

of A with eigenvalue λ1. That is, by the triangle inequality,∥∥A(Akv)− λ1(Akv)
∥∥ ≤ ∥∥Ak+1v − 〈v, v1〉λk+1

1 v1

∥∥+ λ1

∥∥〈v, v1〉λk1v1 − Akv
∥∥ ≤ 2

√
n− 1

4k
.

Moreover, by the reverse triangle inequality,∥∥Akv∥∥ =
∥∥Akv − 〈v, v1〉λk1v1 + 〈v, v1〉λk1v1

∥∥ ≥ 1

n
2−k −

√
n− 1

4k
.

In conclusion, if we take k to be large (say k > 10 log n), and if we define z := Akv, then
z is approximately an eigenvector of A, that is∥∥∥∥A Akv

‖Akv‖
− λ1

Akv

‖Akv‖

∥∥∥∥ ≤ 4n3/22−k ≤ 4n−4.

And to approximately find the first eigenvalue λ1, we simply compute

zTAz

zT z
.

That is, we have approximately found the first eigenvector and eigenvalue of A.
Remarks. To find the second eigenvector and eigenvalue, we can repeat the above proce-

dure, where we start by choosing v such that 〈v, v1〉 = 0, ‖v‖ = 1 and |〈v, v2〉| > 1/(10
√
n).

To find the third eigenvector and eigenvalue, we can repeat the above procedure, where we
start by choosing v such that 〈v, v1〉 = 〈v, v2〉 = 0, ‖v‖ = 1 and |〈v, v3〉| > 1/(10

√
n). And

so on.
Google’s PageRank algorithm uses the power method to rank websites very rapidly. In

particular, they let n be the number of websites on the internet (so that n is roughly 109).
They then define an n× n matrix C where Cij = 1 if there is a hyperlink between websites
i and j, and Cij = 0 otherwise. Then, they let B be an n × n matrix such that Bij is 1
divided by the number of 1’s in the ith row of C, if Cij = 1, and Bij = 0 otherwise. Finally,
they define

A = (.85)B + (.15)D/n

where D is an n× n matrix all of whose entries are 1.
The power method finds the eigenvector v1 of A, and the size of the ith entry of v1 is

proportional to the “rank” of website i.

39

Exercise 4.88. Consider the following symmetric real matrix

A =


5 1 −2 3 1
1 3 6 0 0
−2 6 0 1 1
3 0 1 1 2
1 0 1 2 3

 .

Using the power method (i.e. by examining large powers of A in Matlab), find the largest
eigenvalue λ ∈ R of A and a corresponding eigenvector v ∈ R5 with ‖v‖2 = 1.

Note that (A − λvvT)v = Av − λv = 0, and if w is any other eigenvector of A, then
(A − λvvT)w = Aw. Using this observation, apply the power method to A − λvvT to find
the second largest eigenvalue of A.

Finally, compare your results with the built-in Matlab function eigs.

4.8. Eigenvalues and the QR Algorithm. The power method just described can find the
first few eigenvalues and eigenvectors of a self-adjoint matrix relatively quickly. However,
finding all eigenvalues and eigenvectors with this method can be costly. Thankfully, there is
an efficient way to find all eigenvalues and eigenvectors of a matrix simultaneously, using a
cleverly chosen sequence of QR decompositions.

Algorithm 4.89 (QR Algorithm for Eigenvalues). Input: A symmetric n × n real
matrix A (or a self-adjoint complex matrix A), a number of iterations k.
Output: An n× n matrix D′ whose diagonal entries approximate the eigenvalues of A.

Define A0 := A. For each 1 ≤ j ≤ k, do the following.

• Write Aj−1 in its QR Factorization as Aj−1 =: QjRj (using the algorithm from
Theorem 4.74, which uses either Householder reflections (i.e. Lemma 4.73) or Gram-
Schmidt orthogonalization).
• Define Aj := RjQj.

Output D′ := Ak.

Theorem 4.90. Let A be a real symmetric n × n positive definite matrix with distinct
eigenvalues λ1 > · · · > λn > 0. (From the spectral theorem 4.34, write A = QDQ−1 where
Q is an orthogonal matrix.) Assume that D is ordered so that Dii = λi for all 1 ≤ i ≤ n.
Assume that QT has an LU decomposition QT = LU where the diagonal entries of U are
positive.

Then as k → ∞, the sequence of matrices A1, A2, . . . in Algorithm 4.89 converges to D,
and Q1 · · ·Qk converges to Q.

Proof. Note that A = A0 = Q1R1 and

A2 = Q1R1Q1R1 = Q1A1R1 = Q1Q2R2R1.

More generally, we can prove by induction on k that

Ak = Q1 · · ·QkRk · · ·R1. (‡)

Since A = QDQ−1, Ak = QDkQ−1, so recalling QT = LU , so L = QTU−1,

QDkLD−k = QDkQTU−1D−k = AkU−1D−k
(‡)
= Q1 · · ·QkRk · · ·R1U

−1D−k. (∗∗)

40

Recall that the diagonal entries of L are all 1. For any 1 ≤ i, j ≤ n, note that

(DkLD−k)ij =


1 , if i = j

Lij

(
λi
λj

)k
, if i > j

0 , otherwise.

Since λi < λj when i > j, DkLD−k converges to the identity matrix as k → ∞. So,
QDkLD−k converges to Q as k → ∞, and (∗∗) implies that Q1 · · ·QkRk · · ·R1U

−1D−k

converges to Q as k →∞. The matrix Q itself has a unique QR factorization as Q = Q · I
with nonnegative diagonal entries on the second term (by Lemma 4.75). So, as k → ∞,
Q1 · · ·Qk converges to Q (the diagonal entries of D and D−1 are positive). Multiplying
both sides by Q−1

k , Q1 · · ·Qk−1 converges to QQ−1
k as k → ∞ as well. So, as k → ∞, Qk

converges to I. From Algorithm 4.89, Ak = QkRk. It also follows by induction that Ak
is symmetric and similar to A = A0 (we know A = A0 is symmetric, and Algorithm 4.89
says Ak = RkQk = QT

kQkRkQk = QT
kAk−1Qk.) Since Ak = QkRk, Ak is symmetric, and

Qk converges to I as k → ∞, it follows that Ak converges to a diagonal matrix as k → ∞.
Since Ak is similar to A, as k → ∞, Ak converges to a diagonal matrix whose elements are
the eigenvalues of A. Since Ak = (Q1 · · ·Qk)

TA(Q1 · · ·Qk) and Q1 · · ·Qk converges to Q as
k →∞, we must have Ak converging to D as k →∞, since A = QDQT , i.e. QTAQ = D.

�

Remark 4.91. This argument shows that Ak converges exponentially fast to a diagonal
matrix whose elements are the eigenvalues of A, in theory.

Exercise 4.92. Consider the following symmetric real matrix

A =


5 1 −2 3 1
1 3 6 0 0
−2 6 0 1 1
3 0 1 1 2
1 0 1 2 3

 .

Using the QR algorithm, find all eigenvalues and eigenvectors of A.
Finally, compare your results with the built-in Matlab function eigs.

In order to decrease the computation time in the QR algorithm, the matrix A can be
pre-processed into a similar tridiagonal matrix. This step can be done by a modification of
the QR factorization. If A is a symmetric real n × n matrix, and w ∈ Rn−1 is the lowest
n− 1 entries of the first column of A, then Lemma 4.73 says we can find v ∈ Cn−1 such that
the (n− 1)× (n− 1) unitary matrix I − 2vv∗ satisfies (I − 2vv∗)w = αe1. So, if

Q :=

(
1 0
0 I − 2vv∗

)
,

then QA has a first column with zeros below its first two entries. But then QAQT also has
a first column with zeros below its first two entries, since multiplying on the right by QT

has no effect on those zero entries. Since A is symmetric, QAQT then must have zeros in its

41

first row after its first two entries. In summary, QAQT has the form

QAQT =


∗ ∗ 0 · · · 0
∗ ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
...

...
...

. . .
...

0 ∗ ∗ · · · ∗


We can then iterate this procedure, letting w be the lowest n−2 entries of the second column
of QAQT . After n− 1 iterations, we obtain a tridiagonal matrix QAQT . The NCM package
command eigsvdgui illustrates this procedure.

4.9. Least Squares. In Theorem 4.65, we used the LU decomposition of a square matrix
A to solve the equation Ax = b, if a solution x exists. If A does not have full rank, then a
solution to the equation Ax = b might not exist. In such a case, we still might want to find
a vector x that “most closely” solves the equation Ax = b. More precisely, we want to find
a vector x that minimizes the quantity ‖Ax− b‖2, or equivalently, ‖Ax− b‖2

2.

Definition 4.93 (Least Squares Problem). Let A be an m× n real matrix. Let b ∈ Rm.
The least squares problem asks for a vector x ∈ Rn minimizing

‖Ax− b‖2
2 .

Example 4.94. Suppose we have data points (a1, b1), . . . , (am, bm) ∈ R2 and we would like
to find the “best fit” line to the data. More specifically, we would like to find x0, x1 ∈ R
such that the linear function

f(t) := x0 + x1t, ∀ t ∈ R

minimizes the sum of squared differences

m∑
i=1

[f(ai)− bi]2 =
m∑
i=1

[x0 + x1ai − bi]2.

We can rewrite this sum of squares in matrix form as

‖Ax− b‖2

where x =
(
x0
x1

)
, b = (b1, . . . , bm)T , and

A =


1 a1

1 a2
...

...
1 am

 .

So, finding the “best fit” line is a special case of the least squares minimization problem.
More generally, let k ≥ 1 be an integer, and suppose we would like to we would like to

find the “best fit” degree k polynomial to the data, i.e. we would like to find x0, . . . , xk ∈ R
such that the polynomial

f(t) := x0 + x1t+ · · ·+ xkt
k, ∀ t ∈ R

42

minimizes the sum of squared differences
m∑
i=1

[f(ai)− bi]2 =
m∑
i=1

[x0 + x1ai + · · ·+ xka
k
i − bi]2.

We can rewrite this sum of squares in matrix form as

‖Ax− b‖2

where x = (x0, . . . , xk)
T , b = (b1, . . . , bm)T , and A is a Vandermonde matrix

A =


1 a1 a2

1 · · · ak1
1 a2 a2

2 · · · ak2
...

...
...

. . .
...

1 am a2
m · · · akm

 .

As before, finding the “best fit” degree k polynomial is a special case of the least squares
minimization problem.

Lemma 4.95. Let A be an m× n real matrix. Let b ∈ Rm.
The vector x ∈ Rn minimizes ‖Ax− b‖ if and only if ATAx = AT b.

Proof. Let t ∈ R and consider the function f : R→ R defined by

f(t) := ‖A(x+ ty)− b‖2
2 = ‖Ax− b+ tAy‖2

2 = ‖Ax− b‖2
2 + 2tyTAT (Ax− b) + t2 ‖Ay‖2

2 .

This function is quadratic in t, and a minimum occurs at t = 0 if and only if yTAT (Ax−b) = 0
for all y ∈ Rn, i.e. when AT (Ax− b) = 0. �

Exercise 4.96. Let A be an m× n real matrix with m ≥ n. Show that A has rank n if and
only if ATA is positive definite.

(Hint: ATA is always positive semidefinite.)

Lemma 4.95 and Exercise 4.96 together imply the following.

Proposition 4.97. Let A be an m × n real matrix with m ≥ n. Suppose A has rank n.
Then there is a unique solution of the least squares problem given by

x = (ATA)−1AT b.

In this case, the matrix (ATA)−1AT is called the pseudoinverse of A. (When A is a
non-square matrix, it will not have an inverse, but (ATA)−1ATA = I.)

Explicitly inverting a matrix is generally not advisable. For this reason, when m,n are
large, it is not a good idea to use Proposition 4.97 and its explicit formula for the xminimizing
the least squares problem. We can instead minimize a full rank least squares problem using
the two methods described below.

Theorem 4.98 (Least Squares via Cholesky Decomposition). Let A be an m×n real
matrix with m ≥ n. Suppose A has rank n. The unique solution of the least squares problem
can be found in the following way

• Find the Cholesky decomposition L∗L of A∗A, where L is an n× n lower triangular
real matrix (using the algorithm from Theorem 4.76, which uses an LU factorization
of A∗A.)
• Solve the equation L∗y = A∗b for y ∈ Rn.

43

• Solve the equation Lx = y for x ∈ Rn.

Proof. From Lemma 4.95 and Proposition 4.97, there is a unique solution x ∈ Rn to the
equation A∗Ax = A∗b. By assumption, we have L∗Lx = A∗b. Since A∗A is positive definite
by Exercise 4.96, L is invertible, so there is a unique solution y to the equation L∗y = A∗b.
Similarly, there is a unique solution x′ to Lx′ = y. Once these equations are solved, we have
A∗b = L∗y = L∗Lx′. That is, x = x′. �

Theorem 4.99 (Least Squares via QR Decomposition). Let A be an m×n real matrix
with m ≥ n. Suppose A has rank n. The unique solution of the least squares problem can be
found in the following way

• Find the QR decomposition QR of A, (using the algorithm from Theorem 4.74, which
uses either Householder reflections (i.e. Lemma 4.73) or Gram-Schmidt orthogonal-
ization.)
• Solve the equation Rx = Q∗b for x ∈ Rn.

Proof. From Lemma 4.95 and Proposition 4.97, there is a unique solution x ∈ Rn to the
equation A∗Ax = A∗b. Since A∗A = R∗Q∗QR = R∗R, we can rewrite the first equation as
R∗Rx = R∗Q∗b. Since R is n × n and upper triangular, and A has rank n, R is invertible,
so we can rewrite the equation as Rx = Q∗b. �

Exercise 4.100. Suppose we have data points (0, 1), (1, 3), (2, 3), (3, 5), (4, 2) ∈ R2 denoted
as {(ai, bi)}5

i=1. Find the line that best fits the data. That is, find the line f : R → R
that minimizes the sum of squared differences

∑5
j=1 |f(ai)− bi|2. Use either a Cholesky

decomposition or a QR decomposition, with your own method written in Matlab (i.e. don’t
use any built-in Matlab matrix decomposition functions).

Then, find the best fit degree two polynomial, and the best fit degree three polynomial to
these data points.

4.10. Singular Value Decomposition (SVD). Recall the definition of singular values in
Definition 4.77.

Remark 4.101. If m = n, if A is self-adjoint, and if λ ∈ R is an eigenvalue of A with
eigenvector v ∈ Cn, then A∗Av = A2v = λ2v, so that |λ| is a singular value of A.

The Spectral Theorem 4.33 4.34 says that a square matrix A can be written as A = QDQ−1

under some assumptions. In general, not every matrix can be written in this way. However,
a different decomposition, known as the singular value decomposition, can be applied to any
matrix.

Theorem 4.102 (Singular Value Decomposition (SVD)). Let F denote R or C. Let A
be an m× n matrix with values in F with m ≤ n. Then there exists a p× p diagonal matrix
D with positive entries (p ≤ m), an m ×m unitary matrix U , an n × n unitary matrix V ,
each with elements in F such that

A = U

(
D 0
0 0

)
V.

Moreover, AA∗ = U

(
D2 0
0 0

)
U∗ and V =

(
(D−1, 0)U∗A

···

)
where D has no zero entries. (And

U,D can be obtained from the QR Algorithm 4.89 applied to AA∗.) (In the case p = m we
have A = U(D, 0)V , AA∗ = UD2U∗, etc.)

44

Proof. Theorem 4.70 implies that AA∗ and A∗A are self-adjoint positive semidefinite. The
Spectral Theorem 4.34 implies that unitary m × m U and diagonal p × p D with positive
entries exists such that p ≤ m and

AA∗ = U

(
D2 0
0 0

)
U∗. (‡)

We can apply the QR Algorithm 4.89 and Theorem 4.90 to AA∗ to compute U,D in the

factorization AA∗ = U

(
D2 0
0 0

)
U∗ (at least when all entries of D are positive and distinct).

Recall D is diagonal with positive entries so D−1 exists. Define Z := (D−1, 0)U∗A. Then

ZZ∗ = (D−1, 0)U∗AA∗U

(
D−1

0

)
= (D−1, 0)

(
D2 0
0 0

)(
D−1

0

)
= D−1D2D−1 = I.

By its definition, Z is an m× n matrix with m orthogonal rows. Since m ≤ n, we can add
extra rows to Z as necessary to obtain an n× n matrix V with orthogonal rows.

Finally, observe that

U

(
D 0
0 0

)
V = U

(
D 0
0 0

)(
Z

· · ·

)
= U

(
D 0
0 0

)(
(D−1, 0)U∗A

· · ·

)
= U

(
D
0

)
(D−1, 0)U∗A

= U

(
I 0
0 0

)
U∗A = U

(
I −

(
0 0
0 I

))
U∗A = A− U

(
0 0
0 I

)
U∗A = A.

In the last line we used U

(
0 0
0 I

)
U∗A = 0, which follows since

U

(
0 0
0 I

)
U∗AA∗

(‡)
= U

(
0 0
0 I

)(
D2 0
0 0

)
U∗ = U0U∗ = 0. (∗∗)

Therefore,

U

(
0 0
0 I

)
U∗A

[
U

(
0 0
0 I

)
U∗A

]∗
=
[
U

(
0 0
0 I

)
U∗AA∗

]
(· · ·) (∗∗)

= 0,

so that U

(
0 0
0 I

)
U∗A = 0. We have therefore shown the existence of the SVD. Lastly, in

order to conclude that V is a unitary matrix, we have used Lemma 4.103 below. �

Lemma 4.103. Let C be an n× n complex matrix such that CC∗ = I. Then C∗C = I.

Proof. By assumption, we have C∗CC∗C = C∗C, i.e. (C∗C)2 = C∗C. Since C∗C is a
self-adjoint positive semidefinite matrix, the spectral theorem 4.34 implies that there is a
unitary n × n matrix U and a diagonal matrix D with nonnegative diagonal entries such
that C∗C = UDU∗. Since (C∗C)2 = C∗C, we have

UD2U∗ = UDU∗.

That is, D2 = D. Since D is diagonal with nonnegative diagonal entries, we conclude that
D = I, so that C∗C = UIU∗ = UU∗ = I. �

Exercise 4.104.

45

• Give an example of a real 2 × 2 matrix A with a non-unique singular value decom-
position. That is, find a diagonal 2 × 2 matrix D, unitary 2 × 2 matrices U1 6= U2,
unitary 2× 2 matrices V1 6= V2 such that

A = U1DV1 = U2DV2.

• Give an example of a real 2 × 3 matrix A with a non-unique singular value decom-
position. That is, find a diagonal 2 × 2 matrix D, unitary 2 × 2 matrices U1 6= U2,
unitary 3× 3 matrices V1 6= V2 such that

A = U1(D, 0)V1 = U2(D, 0)V2.

4.11. Additional Comments. We noted in Theorem 4.86 a performance guarantee of the
LU factorization. Yet this guarantee can be quite bad in the worst case, due to the example
from Exercise 4.61. On the other hand, there are various known average-case guarantees for
the LU factorization, such as: https://arxiv.org/abs/2206.01726

We remarked above that the matrix p→ q norms can be difficult to compute exactly for
certain p, q. For more precise computational hardness statements, see e.g.
https://arxiv.org/abs/1802.07425 and https://epubs.siam.org/doi/10.1137/S0097539704441629.

For very large matrices, SVD decompositions are difficult to compute efficiently, due to the
need to multiply large matrices to compute the SVD. To alleviate this issue, we can try to
reduce the dimension of the matrices while preserving their structure. For more on this topic
see e.g. https://arxiv.org/abs/0909.4061 or https://en.wikipedia.org/wiki/Johnson Linden-
strauss lemma

The LU and QR decomposition solve linear systems of equations relatively quickly, though
one could try to decrease their computation times even more. For more on this topic, see
e.g. https://arxiv.org/abs/2007.10254.

5. Interpolation

5.1. Polynomial Interpolation. In Example 4.94, we found the best fit polynomial of fixed
degree to data points. This polynomial might not take any particular prescribed values; it
instead minimizes a sum of squared errors. For some applications, it is desirable to have
a polynomial that exactly takes certain prescribed values. Such a polynomial is called an
interpolating polynomial. Under certain assumptions, this polynomial will be unique.

Theorem 5.1. Let a0, . . . , an be distinct real numbers and let b0, . . . , bn ∈ R. Then there
exists a unique polynomial pn : R→ R of degree at most n such that

pn(ai) = bi, ∀ 0 ≤ i ≤ n.

Moreover, the coefficients of pn can be found by solving a linear system of n+ 1 equations in
n+ 1 unknowns.

Proof. We first show uniqueness. Suppose pn and qn are both polynomials satisfying the
above conditions. Then pn − qn is a polynomial of degree at most n that vanishes at n + 1
points. The Fundamental Theorem of Algebra, Theorem 5.2, then implies that pn − qn = 0,
so pn = qn, proving uniqueness.

We now show existence. For each 0 ≤ j ≤ n, denote

fj(x) :=
∏

i∈{0,...,n} : i 6=j

x− ai
aj − ai

, ∀x ∈ R.

46

https://arxiv.org/abs/2206.01726
https://arxiv.org/abs/1802.07425
https://epubs.siam.org/doi/10.1137/S0097539704441629
https://arxiv.org/abs/0909.4061
https://en.wikipedia.org/wiki/Johnson\begingroup \let \relax \relax \endgroup [Pleaseinsert\PrerenderUnicode{–}intopreamble]Lindenstrauss_lemma
https://en.wikipedia.org/wiki/Johnson\begingroup \let \relax \relax \endgroup [Pleaseinsert\PrerenderUnicode{–}intopreamble]Lindenstrauss_lemma
https://arxiv.org/abs/2007.10254

Note that fj(ai) = 0 for all 0 ≤ i ≤ n with i 6= j and fj(aj) = 1. So, the polynomial

pn(x) :=
n∑
j=0

bjfj(x), ∀x ∈ R

satisfies pn(ai) = bi for all 0 ≤ i ≤ n. Since each fj has degree at most n, pn has degree at
most n. Finally, the requirement pn(ai) = bi ∀ 0 ≤ i ≤ n for pn(t) = x0 + x1t + · · · + xnt

n

can be written as Ax = b where

A =


1 a0 a2

0 · · · an0
1 a1 a2

1 · · · an1
...

...
... · · · ...

1 an a2
n · · · ann

 , x =

x0
...
xn

 , b =

b0
...
bn

 .

�

Since A is an (n+ 1)× (n+ 1) matrix, to show that Ax = b has a unique solution a priori,
it suffices to show that A has rank n + 1, i.e. that det(A) 6= 0. This follows from Exercise
5.3 below.

Theorem 5.2 (Fundamental Theorem of Algebra). Let p : R → R be a polynomial of
degree n ≥ 1. Then there exist α, z1, . . . , zn ∈ C such that

p(z) = α
n∏
i=1

(z − zi), ∀ z ∈ C.

Exercise 5.3. Let a0, . . . , an ∈ R. Show that

det


1 a0 a2

0 · · · an0
1 a1 a2

1 · · · an1
...

...
... · · · ...

1 an a2
n · · · ann

 =
∏

1≤i<j≤n

(aj − ai).

(Hint: Denote the columns of this matrix as A0, . . . , An. Perform elementary column oper-
ations in the following order (which do not change the value of the determinant, since they
correspond to multiplying by determinant 1 matrices). First, replace An with An − a0An−1.
Then, replace An−1 with An−1 − a0An−2, and so on. The first show of the resulting matrix
should be 1 followed by zeros.)

Remark 5.4 (Lagrange Form of Interpolating Polynomial). Theorem 5.1 says that
n + 1 points in the plane with distinct x-values can be interpolated in a unique way by a
degree n polynomial. In the proof of Theorem 5.1, we showed that we can find pn by solving
a linear system, or by expressing pn as a sum of more basic functions. The latter procedure
is called the Lagrange form of the interpolating polynomial. Let a0, . . . , an be distinct real
numbers. For each 0 ≤ j ≤ n, denote

fj(x) :=
∏

i∈{0,...,n} : i 6=j

x− ai
aj − ai

, ∀x ∈ R.

47

Note that fj(ai) = 0 for all 0 ≤ i ≤ n with i 6= j and fj(aj) = 1. So, the polynomial

pn(x) :=
n∑
j=0

bjfj(x), ∀x ∈ R

satisfies pn(ai) = bi for all 0 ≤ i ≤ n. Since pn has degree at most n, Theorem 5.1 says pn is
the only polynomial with these properties.

Remark 5.5 (Newton Form of Interpolating Polynomial). Let a0, . . . , an be distinct
real numbers. For each 0 ≤ j ≤ n, denote

gj(x) :=

j−1∏
i=0

(x− ai), ∀x ∈ R.

Within the set of degree n polynomials, the polynomials g0, . . . , gn are linearly independent,
so there exist constants c0, . . . , cn ∈ R such that the degree n interpolating polynomial pn
satisfies

pn(x) =
n∑
j=0

cjgj(x), ∀x ∈ R.

These constants can be found recursively. For example, since we assume pn(ai) = bi for all
0 ≤ i ≤ n, we have

b0 = pn(a0) =
n∑
j=0

cjgj(a0) = c0 · 1.

b1 = pn(a1) =
n∑
j=0

cjgj(a1) = c0 · 1 + c1(a1 − a0).

b2 = pn(a2) =
n∑
j=0

cjgj(a2) = c0 · 1 + c1(a2 − a0) + c2(a2 − a0)(a2 − a1).

and so on. In general, we find that c0 = b0 and for all 1 ≤ j ≤ n.

cj =
bj −

∑j−1
k=0 ck

∏k−1
i=0 (aj − ai)∏j−1

i=0 (aj − ai)
.

Theorem 5.6 (Mean Value Theorem). Let a < b and let f : [a, b]→ R be a differentiable
function. Then there exists c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c).

In particular, if f(a) = f(b), then f ′(c) = 0.

If an interpolating polynomial pn agrees with the values of a function f at n + 1 distinct
points, then we can also bound the error between f and pn for any other point x.

Theorem 5.7 (Polynomial Interpolation Error). Let a < b. Let f be n + 1 times con-
tinuously differentiable in [a, b]. Let pn be a polynomial of degree at most n that interpolates

48

f at n+ 1 distinct points a0, . . . , an ∈ [a, b] (i.e. f(ai) = pn(ai) ∀ 0 ≤ i ≤ n). Then, for any
x ∈ [a, b], there exists yx ∈ (a, b) such that

f(x)− pn(x) =
1

(n+ 1)!
f (n+1)(yx) ·

n∏
i=0

(x− ai).

Proof. Fix x ∈ [a, b]. If x = ai for some 0 ≤ i ≤ n, then both sides of the equality are zero,
and the conclusion holds. So, assume x 6= ai for all 0 ≤ i ≤ n. Define

q(x) :=
n∏
i=0

(x− ai), g := f − pn − αq, (‡)

where α ∈ R is chosen so that g(x) = 0 (recalling that x is fixed), i.e. α = (f(x)−pn(x))/q(x).
By its definition, g is n+1 times continuously differentiable and g vanishes at n+2 distinct

points x, a0, . . . , an. From the Mean Value Theorem 5.6, g′ has at least n + 1 distinct zeros
in (a, b). Again from the Mean Value Theorem 5.6, g′′ has at least n distinct zeros in (a, b).
And so on. We conclude that g(n+1) has at least one zero in (a, b), which we denote as yx.

Since pn is a polynomial of degree at most n, p
(n+1)
n = 0. Also, q(n+1) = (n+ 1)!, so

0 = g(n+1)(yx)
(‡)
= f (n+1)(yx)− α(n+ 1)!.

Solving for α and substituting into (‡) completes the proof. �

In a typical situation in polynomial interpolation, we will have some bound on a higher
derivative of f . In the error bound in Theorem 5.7, we are then free to choose the points
a0, . . . , an that minimize the quantity

n∏
i=0

(x− ai) = xn+1 − xn(a0 + · · ·+ an) + · · · .

Notice that the coefficient of the highest degree part of this polynomial is 1. That is, this
polynomial is monic.

It turns out that the degree n+ 1 monic polynomial that minimizes

max
−1≤x≤1

|p(x)|

among all degree n + 1 monic polynomials p is a well-studied polynomial of the following
form.

Definition 5.8 (Chebyshev Polynomial). For any integer n ≥ 0, define a function
Tn : [−1, 1]→ R by

Tn(x) := cos(n cos−1(x)), ∀x ∈ [−1, 1].

Proposition 5.9. For any n ≥ 0, Tn from Definition 5.8 is a polynomial of degree n on
[−1, 1], and these polynomials satisfy the recurrence,

Tn+1(x) = 2xTn(x)− Tn−1(x), ∀x ∈ [−1, 1], ∀n ≥ 1.

Moreover, the nth degree term of Tn is 2n−1, i.e. Tn(x) = 2n−1xn + · · · for all n ≥ 1.

49

Proof. Let θ ∈ [0, π]. From the cosine addition formula, we have

cos(n+ 1)θ = cos θ cosnθ − sin θ sinnθ,

cos(n− 1)θ = cos θ cosnθ + sin θ sinnθ.

Adding these and rearranging,

cos(n+ 1)θ = 2 cos θ cosnθ − cos(n− 1)θ. (‡)
Let x ∈ [−1, 1] and let θ := cos−1 x, so that x = cos θ. Let n ≥ 1. Using Definition 5.8, we
rewrite (‡) as

Tn+1(x) = 2xTn(x)− Tn−1(x), ∀x ∈ [−1, 1].

Since T0(x) = 1 and T1(x) = x for all x ∈ [−1, 1] by Definition 5.8, it follows from this
recurrence that Tn is a polynomial of degree at most n. The first part of the recurrence
implies that Tn has degree equal to n, and the nth order term has a coefficient of 2n−1. �

Theorem 5.10 (Minimizing Property of Chebyshev Polynomials). Let qn : R → R
be a polynomial of degree n ≥ 1 such that qn(x) = xn + · · · , i.e. pn is a monic polynomial
(it has a coefficient 1 on its nth degree term). Then

max
−1≤x≤1

|qn(x)| ≥ 21−n.

Moreover, equality holds when qn = 21−nTn.

Proof. For any n ≥ 1 and for any 0 ≤ j ≤ n, define cj := cos(jπ/n). We note the following
two properties that follow directly from Definition 5.8: |Tn(x)| ≤ 1 for all x ∈ [−1, 1], and
Tn(cj) = (−1)j, for all 0 ≤ j ≤ n, for all n ≥ 1. Define hn := 21−nTn. Then

(i) |hn(x)| ≤ 21−n for all x ∈ [−1, 1].
(ii) hn(cj) = (−1)j21−n, for all 0 ≤ j ≤ n, for all n ≥ 1.

We now argue by contradiction. Assume that max−1≤x≤1 |qn(x)| < 21−n. Then

(−1)jqn(cj) ≤ |qn(cj)| < 21−n (ii)
= (−1)jhn(cj).

That is,

(−1)j[hn(cj)− qn(cj)] > 0, ∀ 0 ≤ j ≤ n.

Since hn− qn is a polynomial, it is continuous, so the Intermediate Value Theorem 5.11 says
that hn − qn has n zeros in [−1, 1]. However, since qn and hn are both monic with degree n,
hn − qn has degree at most n − 1. This contradicts the Fundamental Theorem of Algebra,
Theorem 5.2. We conclude that max−1≤x≤1 |qn(x)| ≥ 21−n. �

Theorem 5.11 (Intermediate Value Theorem). Let a < b and let f : [a, b] → R be a
continuous function. Then f takes every value between f(a) and f(b). In particular, if f(a)
and f(b) have opposite signs, then there exists c ∈ [a, b] such that f(c) = 0.

Remark 5.12. We showed that a degree nmonic polynomial pn satisfies max−1≤x≤1 |qn(x)| ≥
21−n, with equality when qn = 21−nTn. If we are given a < b and we want the same result
for [a, b] instead of [−1, 1], we just translate and dilate. For example, for any t ∈ R, if qn is
a monic polynomial of degree n, then

max
−1+t≤x≤1+t

|qn(x)| ≥ 21−n

50

and equality holds only when qn(x) = 21−nTn(x−t) for all x ∈ [−1+t, 1+t]. (The polynomial
21−nTn(x− t) is still monic.) And for any s > 0, if s−nqn is a monic polynomial of degree n,
then

max
−1+t

s
≤x≤ 1+t

s

|qn(x)| ≥ 21−n

and equality holds only when qn(x) = 21−nTn(s(x− t)) for all x ∈
[−1+t

s
, 1+t

s

]
. (The polyno-

mial 21−nTn(s(x− t)) is not monic, but the coefficient on its highest degree term is sn.)

Combining Theorems 5.10 (in the n+ 1 case) and 5.7 yields the following.

Theorem 5.13 (Chebyshev Node Interpolation Error). Let f be n+ 1 times continu-
ously differentiable in [−1, 1]. Let pn be a polynomial of degree at most n that interpolates f
at the n+ 1 points

aj := cos((j + 1/2)π/(n+ 1)), 0 ≤ j ≤ n.

Then, for all x ∈ [−1, 1],

|f(x)− pn(x)| ≤ 1

2n(n+ 1)!
max
|y|≤1

∣∣f (n+1)(y)
∣∣ .

Exercise 5.14. Let f(x) := e2x for all x ∈ R. Let pn be a polynomial of degree n that
interpolates f on [−1, 1] at the n + 1 roots of the Chebyshev polynomial Tn+1 on [−1, 1].
Find the smallest n such that

|f(x)− pn(x)| < 10−6, ∀x ∈ [−1, 1]

Exercise 5.15. The nodes {cos((j + 1/2)π/(n + 1))}nj=0 were shown to be optimal for
interpolation error on [−1, 1]. One might guess that choosing equally spaced points for
interpolation might lead to comparable errors, but this is not the case. Consider the function

f(x) :=
1

1 + 25x2
, ∀x ∈ [−1, 1].

Using Matlab, plot various interpolating polynomials pn of this function on [−1, 1] using
equally spaced nodes. Verify experimentally that ‖f − pn‖∞ does not go to zero as n→∞.
(In fact, these numbers go to infinity!)

Then, plot the interpolating polynomials of f on [−1, 1] using the Chebyshev nodes
{cos(jπ/n)}nj=0. Verify experimentally that limn→∞ ‖f − pn‖∞ = 0.

5.2. Hermite Interpolation. In the previous section, we described how to find a polyno-
mial with values specified at particular points. Sometimes we might also want to specify the
values of the derivatives of the polynomial.

Theorem 5.16. Let a0, . . . , an be distinct real numbers and let b0, . . . , bn, c0, . . . , cn ∈ R.
Then there exists a unique polynomial p : R→ R of degree at most 2n+ 1 such that

p(ai) = bi, p′(ai) = ci, ∀ 0 ≤ i ≤ n.

Moreover, the coefficients of p can be found by solving a linear system of 2n+ 2 equations in
2n+ 2 unknowns.

Proof. For any 0 ≤ j ≤ n, denote

fj(x) := (x− aj) ·
∏

i∈{0,...,n} : i 6=j

(x− ai
aj − ai

)2

, ∀x ∈ R.

51

gj(x) := αjfj(x) +
∏

i∈{0,...,n} : i 6=j

(x− ai
aj − ai

)2

, ∀x ∈ R.

Here fj(ai) = f ′j(ai) = 0 for all i 6= j, fj(aj) = 0 and f ′j(aj) = 1. So, we can choose αj ∈ R
such that g′j(aj) = 0 and gj(aj) = 1. Note that changing αj does not change the value of
gj(aj) (which is 1). Also, gj(ai) = g′j(ai) = 0 for all i 6= j.

The 2n+ 2 functions {f0, . . . , fn, g0, . . . , gn} are therefore linearly independent in the vec-
tor space V of polynomials of degree at most 2n + 1. Since V has dimension 2n + 2,
{f0, . . . , fn, g0, . . . , gn} is a basis for V . So, we can write the polynomial p uniquely as

p =
n∑
i=0

bi
gi(ai)

gi +
n∑
i=0

ci
f ′i(ai)

fi =
n∑
i=0

bigi +
n∑
i=0

cifi.

The constraints for pn(t) = x0 + x1t+ · · ·+ x2n+1t
2n+1 can be written as Ax = b where

A =



1 a0 a2
0 a3

0 · · · a2n+1
0

1 a1 a2
1 a3

1 · · · a2n+1
1

...
...

...
... · · · ...

1 an a2
n a3

n · · · a2n+1
n

0 1 2a0 3a2
0 · · · (2n+ 1)a2n

0

0 1 2a1 3a2
1 · · · (2n+ 1)a2n

1
...

...
...

... · · · ...
0 1 2an 3a2

n · · · (2n+ 1)a2n
n


, x =

 x0
...

x2n+1

 , b =



b0
...
bn
c0
...
cn


.

�

The proof of Theorem 5.7 can be repeated yielding the following.

Theorem 5.17 (Hermite Interpolation Error). Let a < b. Let f be 2n + 2 times
continuously differentiable in [a, b]. Let p be a polynomial of degree at most 2n+ 1 such that
f = p and f ′ = p′ at distinct points a0, . . . , an ∈ [a, b]. Then, for any x ∈ [a, b], there exists
yx ∈ (a, b) such that

f(x)− p(x) =
1

(2n+ 2)!
f (2n+2)(yx) ·

n∏
i=0

(x− ai)2.

Proof. Fix x ∈ [a, b]. If x = ai for some 0 ≤ i ≤ n, then both sides of the equality are zero,
and the conclusion holds. So, assume x 6= ai for all 0 ≤ i ≤ n. Define

q(x) :=
n∏
i=0

(x− ai)2, g := f − p− αq, (‡)

where α ∈ R is chosen so that g(x) = 0 (recalling that x is fixed), i.e. α = (f(x)−pn(x))/q(x).
By its definition, g is 2n + 1 times continuously differentiable and g vanishes at n + 2

distinct points x, a0, . . . , an. From the Mean Value Theorem 5.6, g′ has at least n+1 distinct
zeros in (a, b), and besides those zeros, g′ also vanishes at a0, . . . , an. So, g′ has at least 2n+2
distinct zeros. Again from the Mean Value Theorem 5.6, g′′ has at least 2n+ 1 distinct zeros

52

in (a, b). And so on. We conclude that g(2n+2) has at least one zero in (a, b), which we denote
as yx. Since p is a polynomial of degree 2n+ 1, p(2n+1) = 0. Also, q(2n+2) = (2n+ 2)!, so

0 = g(2n+2)(yx)
(‡)
= f (2n+2)(yx)− α(2n+ 2)!.

Solving for α and substituting into (‡) completes the proof. �

5.3. Spline Interpolation.

6. Numerical Implementation of Calculus

6.1. Numerical Partial Differentiation. If f : R→ R is differentiable at x ∈ R, then

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

So, when h is close to zero, we can use the following formula to numerically approximate
derivatives on a compute:

f ′(x) ≈ f(x+ h)− f(x)

h
. (∗)

One could also use other approximations to f ′(x) such that f(x+h)−f(x−h)
2h

.
If f ′′(x) exists, we similarly have

f ′(x) = lim
h→0

f ′(x+ h)− f ′(x)

h
.

So, when h is small, we have

f ′′(x) ≈ f ′(x+ h)− f ′(x)

h

(∗)
≈ f(x+ 2h)− f(x+ h)− [f(x+ h)− f(x)]

h2

=
f(x+ 2h)− 2f(x+ h) + f(x)

h2
.

Since f(x) ≈ f(x− h) when h is small, we have the more symmetric approximation

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2
.

One can similarly derive approximation formula for higher derivatives.
Partial derivatives can be approximated analogously.

6.2. Numerical Integration.

Example 6.1 (Trapezoidal Rule). Suppose we have N + 1 equally spaced points on
the interval [a, b]. We label these points as a = x0 < x1 < · · · < xN = b. Note that
xi − xi−1 = (b − a)/N for each 1 ≤ i ≤ N . We approximate the area under the curve
of f by a set of trapezoids. Recall that a trapezoid of with w and heights h1, h2 has area
w(h1 +h2)/2. We will particularly approximate the area under f by the trapezoids of width
xi − xi−1 and heights f(xi), f(xi−1), for each 1 ≤ i ≤ N . The total area of all of these
trapezoids is then

TN = (x1−x0)
f(x1) + f(x0)

2
+(x2−x1)

f(x2) + f(x1)

2
+ · · ·+(xN −xN−1)

f(xN) + f(xN−1)

2
.

53

Using xi − xi−1 = (b− a)/N for each 1 ≤ i ≤ N , the total area of the trapezoids is equal to

TN =
b− a
N

(f(x0)/2 + f(x1) + f(x2) + f(x3) + · · ·+ f(xN−1) + f(xN)/2) .

Remark 6.2. Another way of describing the trapezoidal rule is that we have approximated
our function f by a piecewise linear function g, and we then use the integral of g to approx-
imate the integral of f .

Remark 6.3 (Midpoint Rule). If is also possible to approximate a function f by its
Riemann sums (as in the midpoint rule). In particular, the Midpoint Rule approximates a
function f by a Riemann sum of equally spaced points, where we evaluate the function f at
the midpoint of each rectangle. That is, we approximate the integral of f by

MN =
b− a
N

(
f

(
x0 + x1

2

)
+ f

(
x1 + x2

2

)
+ · · ·+ f

(
xN−1 + xN

2

))
.

Another way of describing the Midpoint Rule is that we approximate f by a piecewise
constant function g, and we then use the integral of g to approximate the integral of f .

Lemma 6.4. Let f : [a, b]→ R. Assume that f ′′ exists and is continuous on [a, b]. Then∣∣∣∣∫ b

a

f(x)dx− (b− a)
f(a) + f(b)

2

∣∣∣∣ ≤ (b− a)3

12
max
y∈[a,b]

|f ′′(y)| .

Proof. Let s, t ∈ R. Integrate by parts twice to get∫ b

a

f(x)dx =

∫ b

a

f(x)
d

dx
(x− s)dx = f(x)(x− s)|x=b

x=a −
∫ b

a

f ′(x)(x− s)dx

= f(b)(b− s)− f(a)(a− s)−
∫ b

a

f ′(x)
d

dx
[t+ (x− s)2/2]dx

= f(b)(b− s)− f(a)(a− s)− f ′(x)[t+ (x− s)2/2]|x=b
x=a +

∫ b

a

f ′′(x)[t+ (x− s)2/2]dx

Choosing s := (a+ b)/2, we get f(b)(b− s)− f(a)(a− s) = (b− a)(f(a) + f(b))/2. We can
also choose t so that the f ′ terms sum to zero. That is, we choose t so that

t := −(b− s)2

2
= −(b− a)2

8
.

(Note that (a− s)2 = (b− s)2, so both f ′ terms are now multiplied by zero.) Rearranging,∣∣∣∣∫ b

a

f(x)dx− (b− a)
f(a) + f(b)

2

∣∣∣∣ ≤ max
y∈[a,b]

|f ′′(y)|
∫ b

a

∣∣t+ (x− s)2/2
∣∣ dx

= max
y∈[a,b]

|f ′′(y)|
∫ b

a

∣∣∣∣−(b− a)2

8
+

1

2

(
x− a+ b

2

)2
∣∣∣∣ dx.

54

The parabola inside the absolute values is nonpositive, so∣∣∣∣∫ b

a

f(x)dx− (b− a)
f(a) + f(b)

2

∣∣∣∣ ≤ max
y∈[a,b]

|f ′′(y)|
∫ b

a

(b− a)2

8
− 1

2

(
x− a+ b

2

)2

dx

= max
y∈[a,b]

|f ′′(y)|
[(b− a)3

8
− 1

6

(
x− a+ b

2

)3

|x=b
x=a

]
= max

y∈[a,b]
|f ′′(y)|

[(b− a)3

8
− 1

6
2

(b− a)3

8

]
= max

y∈[a,b]
|f ′′(y)| (b− a)3 1

8
(1− 1/3).

�

Lemma 6.5. Let f : [a, b]→ R. Assume that f ′′ exists and is continuous on [a, b]. Then∣∣∣∣∫ b

a

f(x)dx− (b− a)f((a+ b)/2)

∣∣∣∣ ≤ 1

24
max
y∈[a,b]

|f ′′(y)| (b− a)3.

Proof. From Taylor’s Theorem (or the Mean Value Theorem), for any x ∈ [a, b], there exists
yx ∈ [a, b] such that

f(x) = f((a+ b)/2) + (x− (a+ b)/2)f ′((a+ b)/2) +
1

2
(x− (a+ b)/2)2f ′′(yx).

Integrating both sides,∫ b

a

f(x)dx = (b− a)f((a+ b)/2) +
1

2

∫ b

a

(x− (a+ b)/2)2f ′′(yx)dx.

Rearranging and using
∫ b
a
(x− (a+ b)/2)2dx = (1/12)(b− a)3, we get∣∣∣∣∫ b

a

f(x)dx− (b− a)f((a+ b)/2)

∣∣∣∣ ≤ 1

2
max
y∈[a,b]

|f ′′(y)|
∫ b

a

(x− (a+ b)/2)2dx

=
(b− a)3

24
max
y∈[a,b]

|f ′′(y)| .

�

Theorem 6.6 (Error Bounds for Trapezoid and Midpoint Rules). Let f : [a, b]→ R
with a < b, a, b ∈ R. Assume that f ′′ exists and is continuous. Then∣∣∣∣∫ b

a

f(x)dx− TN
∣∣∣∣ ≤ (b− a)3

12N2
max
y∈[a,b]

|f ′′(y)| .∣∣∣∣∫ b

a

f(x)dx−MN

∣∣∣∣ ≤ (b− a)3

24N2
max
y∈[a,b]

|f ′′(y)| .

Example 6.7. Let’s compute both the trapezoid and midpoint rules for a function, and
verify that these error rates are correct. We will estimate

∫ 2

1

√
xdx with N = 6. Since b = 2

and a = 1, we have (b−a)/N = 1/6. The points x0, . . . , xN are 1, 7/6, 8/6, 9/6, 10/6, 11/6, 2.
And

T6 =
1

6

(√
1/2 +

√
7/6 +

√
4/3 +

√
3/2 +

√
5/3 +

√
11/6 +

√
2/2
)
≈ 1.218612.

55

M6 =
1

6

(√
13/12 +

√
15/12 +

√
17/12 +

√
19/12 +

√
21/12 +

√
23/12

)
≈ 1.219121.

In this case, we can compute the integral exactly:∫ 2

1

√
xdx = (2/3)(23/2 − 13/2) = (2/3)(23/2 − 1) ≈ 1.218951.

For f(x) =
√
x, we have f ′(x) = (1/2)x−1/2 and f ′′(x) = (−1/4)x−3/2, so for 1 ≤ x ≤ 2, we

have |f ′′(x)| ≤ 1/4. So, we can verify our Theorem for Error Bounds as follows

.000339 ≈
∣∣∣∣∫ 2

1

√
xdx− T6

∣∣∣∣ ≤ K(b− a)3

12N2
=

(1/4)(1)

12(36)
=

1

1728
≈ .000579.

.000170 ≈
∣∣∣∣∫ 2

1

√
xdx−M6

∣∣∣∣ ≤ K(b− a)3

24N2
=

(1/4)(1)

24(36)
=

1

3456
≈ .000289.

So, in this case, our error bound is actually not too much larger than the actual error between
the integral and its approximations.

The following problem is fairly typical when we try to evaluate an integral with a computer.
We want to approximate a certain integral, and we want to guarantee that our approximation
is a certain distance from the correct answer.

Example 6.8. Find an integer N such that TN approximates
∫ 3

0
e−x

2
dx within an absolute

error of 10−5.
We first estimate the second derivative of f(x) = e−x

2
. Then f ′(x) = (−2x)e−x

2
and

f ′′(x) = (4x2 − 2)e−x
2
. Let 0 ≤ x ≤ 3. Then |4x2 − 2| ≤ 34 and |e−x2| ≤ 1, so |f ′′(x)| ≤ 34

for 0 ≤ x ≤ 3. Using the error bound for TN , we want to find N such that

34(b− a)3

12N2
< 10−5.

Since (b− a) = 3, we want to find N such that

N >

√
34(33)(105)

12
≈ 2765.9

Therefore, choosing N = 2766 suffices.

So far, we have seen the Midpoint Rule, which approximates f by a piecewise constant
function g and then computes the integral of g as an approximation to the integral of f .
We also saw the Trapezoid Rule, which approximates f by a piecewise linear function g and
then computes the integral of g as an approximation to the integral of f . We now take this
idea one step further. With Simpson’s Rule, we approximate f by a piecewise quadratic
function g and then compute the integral of g as an approximation to the integral of f . After
some analysis (which we omit), Simpson’s rule SN for an even N has the following formula

SN =
1

3
TN/2 +

2

3
MN/2.

Substituting the formulas for TN/2 and MN/2 into this formula, we get

SN =
(b− a)

3N
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 2f(xN−2) + 4f(xN−1) + f(xN)) .

We then get the below error bound for Simpson’s Rule

56

Lemma 6.9. Let f : [a, b] → R with a < b, a, b ∈ R. Assume that f (4) exists and is
continuous. Then∣∣∣∣∫ b

a

f(x)dx− b− a
6

(
f(b) + f(a) + 4f(0)

)∣∣∣∣ ≤ (b− a)5

180 · 16
max
y∈[a,b]

∣∣f (4)(y)
∣∣ .

Proof. Assume for simplicity for now that b = −a, b > 0. Let p2 be the (unique) degree two
polynomial such that p2(0) = f(0), p2(a) = f(a), and p2(b) = f(b). Assume also for now
that f is an even function, i.e. f(x) = f(−x) for all x ∈ [a, b]. It then follows that p2 is also
even, and p′2(0) = f ′(0) = 0. Fix x ∈ (a, b) with x 6= 0. Define

g(t) := f(t)− p2(t)− αt2(t+ b)(t− b), (‡)
where α ∈ R is chosen so that g(x) = 0 (recalling that x is fixed), i.e.

α =
f(x)− p2(x)

x2(x+ b)(x− b)
. (∗∗)

By its definition, g is four times continuously differentiable and g vanishes at four distinct
points x, a, 0, b. From the Mean Value Theorem 5.6, g′ has at least three distinct zeros in
(a, b) that are nonzero. Moreover,

g′(0) = f ′(0)− p′2(0)− 0 = 0.

So, g′ has at least four zeros in (a, b). Again from the Mean Value Theorem 5.6, g′′ has at
least three distinct zeros in (a, b). And so on. We conclude that g(4) has at least one zero in

(a, b), which we denote as yx. Since p2 is a polynomial of degree 2, p
(3)
2 = 0. So,

0 = g(4)(yx)
(‡)
= f (4)(yx)− α · 4!

(∗∗)
= f (4)(yx)− 24

f(x)− p2(x)

x2(x+ b)(x− b)
.

That is,

f(x)− p2(x) =
1

24
x2(x+ b)(x− b)f (4)(yx).

Integrating, taking absolute values, and using Exercise 6.10 with h := (b− a)/2 = b = −a,∣∣∣∣∫ b

a

f(x)dx− b− a
6

(
f(b) + f(a) + 4f(0)

)∣∣∣∣ ≤ 1

24
max
y∈[a,b]

∣∣f (4)(y)
∣∣ ∫ b

a

∣∣x2(x+ b)(x− b)
∣∣ dx

=
1

24
max
y∈[a,b]

∣∣f (4)(y)
∣∣ 2 ∫ b

0

x2(x+ b)(b− x)dx.

Finally, ∫ b

0

x2(x+ b)(b− x)dx =

∫ b

0

[x2b2 − x4]dx = b5
(1

3
− 1

5

)
= b5 2

15
.

So,∣∣∣∣∫ b

a

f(x)dx− b− a
6

(
f(b) + f(a) + 4f(0)

)∣∣∣∣ ≤ 1

12

2

15
b5 max

y∈[a,b]

∣∣f (4)(y)
∣∣ =

b5

90
max
y∈[a,b]

∣∣f (4)(y)
∣∣

=
(b− a)5

90 · 25
max
y∈[a,b]

∣∣f (4)(y)
∣∣ .

This inequality holds under the assumption that f is even. For a general f , we can always
write f(x) = [f(x) + f(−x)]/2 + (f(x) − f(−x))/2, as a sum of an even function and

57

an odd function. The odd function integrates to zero and contributes zero to the sum
f(b) + f(a) + 4f(0). So, this inequality holds for all f . �

Exercise 6.10. Let h > 0. Let f : [−h, h]→ R be continuous. Let p2 be the (unique) degree
two polynomial such that

p2(h) = f(h), p2(−h) = f(−h), p2(0) = f(0).

Show that ∫ h

−h
p2(t)dt =

h

3

(
f(h) + f(−h) + 4f(0)

)
.

Theorem 6.11 (Error Bound for Simpson’s Rule). Let f : [a, b] → R with a < b,
a, b ∈ R. Assume that f (4) exists and is continuous. Then∣∣∣∣∫ b

a

f(x)dx− SN
∣∣∣∣ ≤ (b− a)5

180N4
max
y∈[a,b]

∣∣f (4)(y)
∣∣ .

Note the extra factor of 2 occurs here since SN uses 2N − 1 nodes.

Example 6.12. We continue our above example, and this time we use Simpson’s rule. We
estimate

∫ 2

1

√
xdx with N = 6. Since b = 2 and a = 1, we have (b− a)/N = 1/6. The points

x0, . . . , xN are 1, 7/6, 8/6, 9/6, 10/6, 11/6, 2. And

S6 =
1

18

(√
1 + 4

√
7/6 + 2

√
4/3 + 4

√
3/2 + 2

√
5/3 + 4

√
11/6 +

√
2
)
≈ 1.21895013.

As before, we can compute the integral exactly∫ 2

1

√
xdx = (2/3)(23/2 − 13/2) = (2/3)(23/2 − 1) ≈ 1.21895142.

For f(x) =
√
x, we have f ′(x) = (1/2)x−1/2, f ′′(x) = (−1/4)x−3/2, f ′′′(x) = (3/8)x−5/2, and

f (4)(x) = −(15/16)x−7/2. So for 1 ≤ x ≤ 2, we have
∣∣f (4)(x)

∣∣ ≤ 15/16. So, we can verify our
Theorem for Error Bounds as follows

.00000129 ≈
∣∣∣∣∫ 2

1

√
xdx− S6

∣∣∣∣ ≤ K(b− a)5

180N4
=

(15/16)(1)

180(64)
=

1

248832
≈ .00000402.

Note that in this case, Simpson’s rule is roughly 100 times more accurate than the Midpoint
or Trapezoid rules, even though we used the same number of sample points.

Exercise 6.13 (Adaptive Quadrature). The NCM package function quadtx is a simpli-
fied version of Matlab’s built-in integration function quad. (To view the code of quadtx

use the command edit quadtx. Similarly, edit quad should show you the source code for
the function quad.) For example, the command quadtx(@(x)(cos(x))^2,0,4*pi) approx-

imates
∫ 4π

0
(cos(x))2dx. More generally, the program quadtx starts by evaluating the given

function f : [a, b]→ R with two different Simpson’s rule evaluations (one using three points,
and another using five points, each equally spaced on the interval). (In the code, these two
evaluations are denoted Q1 and Q2.)

If these two different Simpson’s rule evaluations are closer than 10−6 (the default value of

tol), then the program believes it has succeeded in estimating
∫ b
a
f(x)dx. So, the program

outputs a combination of these two Simpson’s rule evaluations, which happens to be a sixth
order Newton-Cotes formula (in the code this is Q2 + (Q2 - Q1)/15).

58

If these two different Simpson’s rule evaluations are not closer than 10−6, then quadtx

repeats the above Simpson’s rule procedure on a smaller subinterval, and then iterates. This
is done via a recursive call to the function quadtxstep. Note the recursive nature of this
program, since the function quadtxstep calls itself. Also, note that varargin is used often
in quadtx. This command allows a variable number of arguments to be input to a function.

The recursive use of Simpson’s rule can be visualized with the quadgui command, after
clicking “auto.” Function evaluations are depicted as blue dots, and the total number of
function evaluations is displayed at the top of the plot.

• Run the programs quadtx(@(x)x.^3,0,1) and quadgui(@(x)x.^3,0,1). How many

function evaluations are used to estimate
∫ 1

0
x3dx? What is the absolute error of the

estimation?
• Run the programs quadgui(@(x)x.^5,0,1) and quadgui(@(x)x.^5,0,1,10^(-8)).

(Also use quadtx with the same arguments.) In each case, how many function eval-

uations are used to estimate
∫ 1

0
x5dx? What is the absolute error of the estimation?

• Run the program quadtx(@(x)(cos(x))^2,0,4*pi). How many function evalua-

tions are used to estimate
∫ 4π

0
(cos(x))2dx? What is the absolute error of the estima-

tion? Explain what happened. Does quad(@(x)(cos(x))^2,0,4*pi) produce the
same output? Explain why or why not.
• Describe a nonnegative function f : [0, 1]→ [0, 1] such that the Matlab built-in com-

mand quad has the same error as in the previous part of this problem. That is, find
f such that the command quad(@(x) f(x),0,1) outputs 1 and has absolute error
at least 1/10.

Exercise 6.14.

• Using the textbook program quadtx, try to integrate the function 1
3x−1

from x = 0
to x = 1. Do you get an error? If so, explain why the error happened.
• Find a function f : [0, 1] → [0,∞) such that limx→0+ f(x) = ∞ and with

∫ 1

0
f(x)dx

finite. Can the programs quadtx and quad evaluate your integral with good relative
accuracy?
• Find an interval [a, b] and a function f : [a, b]→ R that exceeds the maximum func-

tion evaluation count (i.e. produces the maximum function count warning) both for

quadtx and quad when trying to estimate
∫ b
a
f(x)dx.

The trapezoid rule approximates f by piecewise degree one polynomial interpolations (i.e.
piecewise linear functions). The integral of the approximating function then approximates
the integral of f .

Simpson’s rule approximates f by piecewise degree two polynomial interpolations.
One can similarly approximate f by piecewise degree three (or higher) polynomial inter-

polations. The resulting formulas are known as Newton-Coates formulas.
Alternatively, we can approximate the function f itself on n nodes by a degree n + 1

interpolating polynomial pn on the nodes a0, . . . , an. If we do that, then we obtain an error
bound from Theorem 5.7 of the form∣∣∣∣∫ b

a

f(x)dx−
∫ b

a

pn(x)dx

∣∣∣∣ ≤ 1

(n+ 1)!
max
y∈[a,b]

∣∣f (n+1)(y)
∣∣ ∫ b

a

∣∣∣∣∣
n∏
i=0

(x− ai)

∣∣∣∣∣ dx.
59

As in Theorem 5.13, we would then like to choose the nodes a0, . . . , an to minimize the

only term that depends on those nodes, i.e.
∫ b
a
|
∏n

i=0(x− ai)| dx. Such a minimization can
be found in the following Theorem.

Theorem 6.15 (Interpolation Integration Error). Let qn be a monic polynomial of
degree at most n. Then ∫ 1

−1

|qn(x)| dx ≥
∫ 1

−1

∣∣2−nUn(x)
∣∣ dx,

where Un(x) := sin((n+1) cos−1 x)
sin cos−1 x

is the nth Chebyshev polynomial of the second kind.

Note that the zeros of Un are ai := cos((i+ 1)π/(n+ 1)), 0 ≤ i ≤ n− 1.

6.3. Gaussian Quadrature. Let c, d ∈ R with c < d, and let f : [c, d]→ R be continuous.
Let w : [c, d] → R be continuous and positive. Let a0, . . . , an ∈ [c, d] be distinct. The set of
polynomials of degree at most n on [c, d] is a vector space of dimension n + 1. Then there
exist constants b0, . . . , bn such that∫ d

c

f(x)w(x)dx =
n∑
i=0

bif(ai) (∗)

for all polynomials f of degree at most n. In particular, we can choose

bi :=

∫ d

c

w(x)
∏

j∈{0,...,n} : j 6=i

x− aj
ai − aj

dx (∗∗).

As long as the nodes a0, . . . , an are distinct and f has degree at most n, the equality (∗)
always holds. It turns out we can even choose particular nodes a0, . . . , an such that (∗) holds
when f has degree at most 2n+ 1.

Proposition 6.16 (Gaussian Quadrature). Let c, d ∈ R with c < d, and let f : [c, d]→ R
be continuous. Let w : [c, d]→ R be continuous and positive. Let q be a nonzero polynomial
of degree n+ 1 that is w-orthogonal to all degree n polynomials, i.e.∫ d

c

f(x)q(x)w(x)dx = 0, if deg(f) ≤ n.

Then the zeros a0, . . . , an of q all lie in [c, d] and are distinct. Define b0, . . . , bn by (∗∗). Then
for any polynomial g of degree at most 2n+ 1,∫ d

c

g(x)w(x)dx =
n∑
i=0

big(ai).

Proof. Let g have degree at most 2n + 1. From the Euclidean division algorithm (i.e. long
division), we can write

g = qp+ r,

where p, r are polynomials of degree at most n. Then g(ai) = r(ai) for all 0 ≤ i ≤ n, so our
assumption means∫ d

c

g(x)w(x)dx =

∫ d

c

r(x)w(x)dx
(∗)
=

n∑
i=0

bir(ai) =
n∑
i=0

big(ai).

60

For the zero property, we argue by contradiction. Suppose q changes sign at most n times
in [c, d]. Denote these zeros as z1 < · · · < zm with m ≤ n. Then

∏m
i=1(x− zi) has the same

sign changes as q, so
∫ d
c
q(x)

∏m
i=1(x − zi)w(x)dx 6= 0 or q = 0. Either case contradicts the

assumption on q. �

Remark 6.17. A polynomial q with the property from Proposition 6.16 (i.e. q being w-
orthogonal to all polynomials of degree at most n) can be found by the Gram-Schmidt orthog-
onalization process, Theorem 4.23. Let V be the vector space consisting of all real polynomi-
als on [c, d]. The vectors v0, . . . , vn are defined to be the monomials x0, . . . , xn. As functions
on [c, d], these vectors are linearly independent. For any two continuous f, g : [c, d]→ R, we
then use the inner product

〈f, g〉 :=

∫ d

c

f(x)g(x)w(x)dx.

(Exercise: show this is an inner product, i.e. it satisfies Definition 4.10.) The Gram-
Schmidt process, then produces polynomials p0, . . . , pn that are an orthonormal basis of
V . In particular, for any polynomial f of degree at most n − 1, 〈pn, f〉 = 0. This is the
assumption of Proposition 6.16.

Example 6.18. For any x ∈ (−1, 1), let w(x) :=
√

1− x2. We show that the Chebyshev
polynomials of the second kind are w-orthogonal to each other. In particular, we can choose
q := Un+1 in Proposition 6.16 for this w. We have

〈Un, Um〉 =

∫ 1

−1

Un(x)Um(x)w(x)dx

= −
∫ 0

π

Un(cos(θ))Um(cos(θ)) sin(θ) sin(θ)dθ, substitutingx = cos(θ)

=

∫ π

0

sin((n+ 1)θ) sin((m+ 1)θ) sin2(θ)

sin2(θ)
dθ

=

∫ π

0

sin((n+ 1)θ) sin((m+ 1)θ)dθ = 0.

To get the last equality, let θ ∈ [0, π]. From the cosine addition formula, we have

cos(n+m)θ = cosnθ cosmθ − sinnθ sinmθ,

cos(n−m)θ = cosnθ cosmθ + sinnθ sinmθ.

Subtracting these and rearranging,

2 sinnθ sinmθ = cos(n−m)θ − cos(n+m)θ.

So n 6= m implies the integral of this quantity is zero.

Gaussian quadrature works exactly for polynomials of low degree. Perhaps surprisingly,
Gaussian quadrature also works well for arbitrary continuous functions, as we now show.

Theorem 6.19 (Gaussian Quadrature Convergence). Let c, d ∈ R with c < d, and
let f : [c, d] → R be continuous. Let w : [c, d] → R be continuous and positive. Let qn be

61

a nonzero polynomial of degree n + 1 that is w-orthogonal to all degree n polynomials. Let
a0n, . . . , ann be the zeros of qn (that all lie in [c, d] by Proposition 6.16). Define

bin :=

∫ d

c

w(x)
∏

j∈{0,...,n} : j 6=i

x− ajn
ain − ajn

dx, ∀ 0 ≤ i ≤ n.

Then

lim
n→∞

n∑
i=0

binf(ain) =

∫ d

c

f(x)w(x)dx.

Proof. Fix ε > 0. From the Weierstrass Approximation Theorem 6.20, there exists a polyno-
mial p : R→ R such that |f(x)− p(x)| < ε for all x ∈ [c, d]. Then there exists N such that
if n ≥ N , then the nth order Gaussian quadrature formula will be equal to the integral of p.
(We just need 2N ≥ deg(p) for this to happen, by Proposition 6.16.) For any such n ≥ N ,
we have by the triangle inequality∣∣∣∣∣

∫ d

c

f(x)w(x)dx−
n∑
i=0

binf(ain)

∣∣∣∣∣
=

∣∣∣∣∣
∫ d

c

f(x)w(x)dx−
n∑
i=0

binp(ain) +
n∑
i=0

binp(ain)−
n∑
i=0

binf(ain)

∣∣∣∣∣
=

∣∣∣∣∣
∫ d

c

(f(x)− p(x))w(x)dx+
n∑
i=0

binp(ain)−
n∑
i=0

binf(ain)

∣∣∣∣∣
≤
∣∣∣∣∫ d

c

(f(x)− p(x))w(x)dx

∣∣∣∣+
n∑
i=0

|bin| |p(ain)− f(aij)|

≤ ε

∫ d

c

w(x)dx+ ε
n∑
i=0

bin = 2ε

∫ d

c

w(x)dx.

Here we used bin > 0 for all 0 ≤ i ≤ n. To see this, fix 0 ≤ j ≤ n, let r(x) := q(x)/(x−ajn) =∏
i∈{0,...,n} : i 6=j(x− ain), note deg(r2) ≤ 2n, so∫ d

c

(r(x))2w(x)dx =
n∑
i=0

bin[r(ain)]2 = bjn(r(ajn))2.

We also used
∫ d
c

1 · w(x)dx =
∑n

i=0 bin.
In summary, for any ε > 0, there exists N such that, for all n ≥ N , we have∣∣∣∣∣

∫ d

c

f(x)w(x)dx−
n∑
i=0

binf(ain)

∣∣∣∣∣ ≤ 2ε

∫ d

c

w(x)dx.

The conclusion follows. �

Theorem 6.20 (Weierstrass approximation theorem). Let c, d ∈ R with c < d, and let
f : [c, d]→ R be continuous. Let ε > 0. Then there exists a polynomial p : R→ R such that

max
x∈[c,d]

|f(x)− p(x)| < ε.

62

Theorem 6.21 (Gaussian Quadrature Error Bound). Let c, d ∈ R with c < d, and let
f : [c, d]→ R be continuous. Let w : [c, d]→ R be continuous and positive. Let q be a nonzero
polynomial of degree n+ 1 that is w-orthogonal to all degree n polynomials. Let a0, . . . , an be
the zeros of q (that all lie in [c, d] by Proposition 6.16). Define

bi :=

∫ d

c

w(x)
∏

j∈{0,...,n} : j 6=i

x− aj
ai − aj

dx, ∀ 0 ≤ i ≤ n.

Then there exists y ∈ [c, d] such that∫ d

c

f(x)w(x)dx−
n∑
i=0

bif(ai) =
1

(2n+ 2)!
f (2n+2)(y)

∫ d

c

w(x)
n∏
i=0

(x− ai)2dx.

Proof. Using Hermite interpolation (Theorem 5.16), let p be a polynomial of degree at most
2n+ 1 such that p(ai) = f(ai) and p′(ai) = f ′(ai) for all 0 ≤ i ≤ n. Theorem 5.17 says: for
any x ∈ [c, d], there exists yx ∈ (c, d) such that

f(x)− p(x) =
1

(2n+ 2)!
f (2n+2)(yx) ·

n∏
i=0

(x− ai)2. (∗)

Integrating both sides, and using Proposition 6.16 (and deg(p) ≤ 2n+ 1), we get∫ d

c

f(x)w(x)dx−
n∑
i=0

bip(ai) =
1

(2n+ 2)!

∫ d

c

f (2n+2)(yx)w(x)
n∏
i=0

(x− ai)2dx.

Using the definition of p on the left, and also the mean value theorem for integrals (if g ≥ 0

is continuous, then
∫ d
c
g(x)h(x)dx = g(y)

∫ d
c
h(x)dx for some y ∈ [c, d]),∫ d

c

f(x)w(x)dx−
n∑
i=0

bif(ai) =
1

(2n+ 2)!
f (2n+2)(y)

∫ d

c

w(x)
n∏
i=0

(x− ai)2dx.

(Note that f (2n+2)(yx) is a continuous function of x by (∗).) �

Note that if we used the usual interpolating polynomial in the above proof, then the error
term in (∗) would not have a square on the right side, so the mean value theorem for integrals
would not apply in that case.

Exercise 6.22. Recall that we defined U0, U1, . . . to be the Chebyshev polynomials of the

second kind, where Un(x) := sin((n+1) cos−1 x)
sin cos−1 x

for any x ∈ (−1, 1).

• Show that U0, U1, . . . satisfy the recursion

Un+1(x) = 2xUn(x)− Un−1(x), ∀n ≥ 1, ∀x ∈ (−1, 1),

where U0(x) = 1 and U1(x) = 2x.
• Show that

d

dx
Tn(x) = nUn(x), ∀n ≥ 1, ∀x ∈ (−1, 1),

where T0, T1, . . . are the Chebyshev polynomials (of the first kind).

Exercise 6.23. For any x ∈ (−1, 1), let w(x) := 1/
√

1− x2. Let Pn be the set of polynomials
of degree at most n on [−1, 1].

63

• Show that the Chebyshev polynomials T0, . . . , Tn are a w-orthogonal basis of Pn.
• Give an explicit formula for the nodes of the Gaussian quadrature that uses n + 1

nodes and this w.

Exercise 6.24. It is known that

π =

∫ 1

−1

2

1 + x2
dx.

(You can compute this integral using (d/dx) tan−1(x) = 1/(1 + x2).)

• In Matlab, program your own trapezoid rule to estimate the integral
∫ 1

−1
2

1+x2
dx. Plot

the relative error of the integral estimate versus the number n of points used in the
trapezoid rule. Do you see any evidence of numerical errors? (You might need to
take n to be quite large, e.g. around 30, 000.)

• Use quadtx to estimate
∫ 1

−1
2

1+x2
dx. Make a table recording the integral estimates

for various tolerance values, including the estimated integral value Q, the function
evaluate count fcount, and the relative error. (For example, consider tolerances of
the form 10−k where k ∈ {1, 2, 3, . . . , 12}.) The first two rows of the table might look
like this:

tol Q fcount Relative Error

**

1e-001 3.14211764705882 9 1.671e-004

1e-002 3.14211764705882 9 1.671e-004

Does the relative error decrease as the tolerance decreases?

Exercise 6.25. This exercise investigates Matlab’s standard routine for evaluating double
integrals. We are particularly interested in computational time. Suppose we integrate the
function

f(x, y) =
√

1− (x2 + y2)

over the unit disc {(x, y) ∈ R2 : x2 + y2 ≤ 1} for decreasing tolerances with the following
program.

fprintf(' tol estimated Q relerror Computation Time (s)\n')

fprintf('***\n');

for k=1:12

tol=10^(-k); %selected tolerance

tic; %this command starts a timer

Q=dblquad(@(x,y) (sqrt(1-(x.^2+y.^2))).*(x.^2+y.^2<=1),-1,1,-1,1,tol);

comptime=toc; % 'toc' records the time elapsed since 'tic'

actual = (2/3)*pi; % actual value of the integral

relerror=abs(Q-actual)/actual;

fprintf('%8.0e %21.14f %3.2e %7.3f\n', ...

tol,Q,relerror,comptime);

end

• How does the computation time vary with the tolerance?

64

• Now, modify this program to integrate the function

g(x, y) = 1 +
√

1− (x2 + y2).

over the unit disc {(x, y) ∈ R2 : x2 + y2 ≤ 1}. How does the computation time vary
with the tolerance? If you observe long computation times, try to explain why they
have occurred.

Exercise 6.26. Estimate the integral∫ 1

0

cos(x)√
x− x2

dx.

Use whatever built in Matlab functions you want to use (more is perhaps better than less).
Do your best to justify what the correct answer is.

(Hint: consider making the substitution s = 2x− 1 and then s = cos θ.)

7. Numerical Solution of ODEs

7.1. Introduction. In linear algebra, we discuss extensively equations of the form Ax = b.
The matrix A and vector b are given, and an important issue is existence and uniqueness of
vectors x satisfying Ax = b. A priori, it is not obvious whether or not a vector x satisfies
Ax = b. Indeed, there are examples of A, b where the equation Ax = b has no solution (e.g.
if A is a square matrix with determinant zero, and b is not in the column space of A). And
there are examples of A, b where Ax = b has infinitely many solutions (e.g. if we have one
solution x, then we can add to x any vector in the null space of A). Finally, sometimes the
solution x exists and is unique (e.g. when A is invertible).

The situation for differential equations is loosely analogous. An example of an ordinary
differential equation is an equation for a real function y of the form y′(t) = f(t, y(t)) for
all t ∈ [a, b]. Here f is given and “solving” the equation amounts to finding a y satisfying
the equation. Sometimes a solution is unique, and sometimes it is not (e.g. the equation
y′(t) = 1 for all t ∈ R has multiple solutions. For any c ∈ R, the equation y(t) := t + c
satisfies y′(t) = 1. However, if we assume that y(0) is fixed to be e.g. equal to zero, then
y(t) := t is the only solution.) Sometimes a solution exists, and sometimes it does not. For
example, consider the equation

y′(t) = 1 + (y(t))2, t ∈ R.
The function y(t) = tan(t) satisfies this equation and y(0) = 0, since tan′(t) = sec2(t) and
1 + tan2(t) = sec2(t). However, this solution only exists for t ∈ (−π/2, π/2). It cannot be
extended to a continuous function on a larger interval.

Definition 7.1 (Ordinary Differential Equation, Initial Value Problem, One Vari-
able). Let a, b ∈ R with a < b. Let f : [a, b] × R → R. Let t0 ∈ [a, b] and let y0 ∈ R. An
initial value problem is the following example of an ordinary differential equation.{

dy
dt

(t) = f(t, y(t)), ∀ t ∈ [a, b]

y(t0) = y0.

Since ordinary differential equations often model physical phenomena, the existence and
uniqueness of solutions is an important issue. If a solution is not unique, then a physical
model using ODEs might not uniquely represent the physical process the ODE is modeling.

65

If a solution does not exist, then perhaps the model does not appropriately describe the
physical process.

Theorem 7.2 (Local Existence, Peano). Suppose there exists ε > 0 such that f is
continuous in the region

R := {(t, y) ∈ R2 : |t− t0| ≤ ε, |y − y0| ≤ ε}.

Let m := max(y,t)∈R |f(y, t)|. Then the initial value problem from Definition 7.1 has a solution
y in the region {t ∈ [a, b] : |t− t0| ≤ εmin(1, 1/m)}.

The assumption of Theorem 7.2 unfortunately is insufficient to prove uniqueness of a
solution y(t). For example, the initial value problem{

dy
dt

(t) = (y(t))2/3, ∀ t ∈ [0, 1]

y(0) = 0,

satisfies the hypothesis of Theorem 7.2 with f(t, y) := y2/3, t0 = y0 = 0, ε = 1, and m = 1.
But y(t) := 0 solves the problem, as does y(t) := (t/3)3, since y′(t) = (t/3)2 = (y(t))2/3.

In order to get uniqueness of the initial value problem, we need slightly stronger assump-
tions on f .

Theorem 7.3 (Short-Time Existence and Uniqueness, Picard). Suppose there exists
ε > 0 such that f and ∂f/∂y are continuous in the region

R := {(t, y) ∈ R2 : |t− t0| ≤ ε, |y − y0| ≤ ε}.

Then the initial value problem from Definition 7.1 has a unique solution y in the region
{t ∈ [a, b] : |t− t0| ≤ εmin(1, 1/m)}.

In the example y′(t) = 1 + (y(t))2, we have f(t, y) = 1 + y2, ∂f/∂y = 2y, so Theorem
7.3 applies, giving a short-time existence and uniqueness for solutions of the initial value
problem. However, as we saw above, the solution does not exist for all times t since y(t)
approaches infinity at a finite time t = π/2. If we want some condition guaranteeing long-
time existence and uniqueness, this condition must eliminate the example f(t, y) = 1 + y2.
The issue with long-time existence here is that ∂f/∂y can become quite large when y is
large. Put another way, f(t, y)−f(t, z) can be much larger than |y − z|. If we eliminate this
possibility, it turns out we can get long-time existence and uniqueness.

Theorem 7.4 (Long-Time Existence and Uniqueness, Picard). Suppose f is uni-
formly Lipschitz continuous in the y variable, i.e. there exists L > 0 such that

|f(t, y)− f(t, z)| ≤ L |y − z| , ∀ t ∈ [a, b], ∀ y, z ∈ R.

Then the initial value problem from Definition 7.1 has a unique solution y in the region
t ∈ [a, b].

Note that f(t, y) := y2/3 is not Lipschitz continuous, so Theorem 7.3 does not apply in
this case.

We will be constructing approximate solutions of differential equations. So, it is important
that a small perturbation to a solution y(t) at some fixed time t will not change the behavior
of y too much at other times. The following Theorem proves this continuity property.

66

Theorem 7.5 (Continuity of Solutions). Suppose f is uniformly Lipschitz continuous in
the y variable, i.e. there exists L > 0 such that

|f(t, y)− f(t, z)| ≤ L |y − z| , ∀ t ∈ [a, b], ∀ y, z ∈ R.

Fix t0 ∈ [a, b]. Suppose z : R×R→ R is a function such that, for any y0 ∈ R, t 7→ z(t, y0) is a
solution of the initial value problem from Definition 7.1 (i.e. with initial value z(t0, y0) = y0).
Then z is continuous.

7.1.1. Euler’s Method. Very simple looking differential equations do not have explicit solu-
tions in terms of elementary functions. So, solving differential equations numerically is fairly
important. The simplest way to “solve” a differential equation on a computer is Euler’s
method. That is, we just take the differential equation and replace any derivative by its
discrete counterpart, as in Section 6.1.

Example 7.6. Consider the initial value problem{
dy
dt

(t) = 1 + (y(t))2, ∀ t ∈ [a, b]

y(0) = 0.

As we mentioned above, the unique solution to this problem is y(t) = tan(t), valid for all
t ∈ (−π/2, π/2). If we did not know this ahead of time, we could try to solve this equation
on a computer by discretizing it as{

y(t+h)−y(t)
h

≈ 1 + (y(t))2, ∀ t ∈ [a, b]

y(0) = 0,

for some small h > 0. We can then solve for y(t) recursively. Solving for y(t + h), we have
the recursion

y(t+ h) ≈ y(t) + h(1 + (y(t))2).

For example, if we know y(0) = 0, then y(h) = y(0) + h(1 + (y(0))2), y(2h) = y(h) + h(1 +
(y(h))2), and so on. We can then plot our approximate solution in Matlab.

n=500;

a=0;

b=pi/2 - .01;

h=(b-a)/n;

y=zeros(1,n);

for i=1:n-1

y(i+1)= y(i)+ h*(1+(y(i))^2);

end

t=linspace(a,b,n);

plot(t, y, t, tan(t));

legend('approximate solution', 'exact solution');

title("Solutions of the equation y'=1+y^2 with h="+num2str(h));

Taylor’s Theorem 7.7 implies that |f(x+ h)− [f(x) + hf ′(x)]| is approximately of size h2.
We therefore say that the local truncation error of Euler’s method in the above example is
of order h2. Since we expect that the global truncation error is roughly the sum of about 1/h
local errors, we say that Euler’s method has global truncation error of h (since h2/h = h).

67

When the global truncation error is of size hn, we say the differential equation method is of
order n. That is, Euler’s method is an order one method for solving differential equations.

Using more terms in the Taylor expansion in Euler’s method would then result in smaller
local and global truncation error.

Theorem 7.7 (Taylor Series, with integral remainder). Let f : R → R have n + 1
continuous derivatives. Let t, h ∈ R. Then

f(t+ h) = f(t) +
f ′(t)

1!
h+ · · ·+ f (n)(t)

n!
hn +

1

n!

∫ t+h

t

(t+ h− s)nf (n+1)(s)ds.

Consequently,∣∣∣∣f(t+ h)−
[
f(t) +

f ′(t)

1!
h+ · · ·+ f (n)(t)

n!
hn
]∣∣∣∣ ≤ |h|n+1 max

s∈[t,t+h]

∣∣f (n+1)(s)
∣∣ .

Proof. The case n = 0 follows from the Fundamental Theorem of Calculus. We now induct
on n. Assume that the case n− 1 holds. Integrating by parts we see that

1

(n− 1)!

∫ t+h

t

(t+ h− s)n−1f (n)(s)ds

= − 1

n!
[(t+ h− s)nf (n)(s)]s=t+hs=t +

1

n!

∫ t+h

t

(t+ h− s)nf (n+1)(s)ds

=
1

n!
hnf (n)(t) +

1

n!

∫ t+h

t

(t+ h− s)nf (n+1)(s)ds

For the final, inequality, note that∣∣∣∣∫ t+h

t

(t+ h− s)nf (n+1)(s)ds

∣∣∣∣ ≤ ∫ t+h

t

|h|n
∣∣f (n+1)(s)

∣∣ ds ≤ |h|n+1 · max
s∈[t,t+h]

∣∣f (n+1)(s)
∣∣ .

�

Example 7.8. Consider the initial value problem{
dy
dt

(t) = 1 + (y(t))2, ∀ t ∈ [a, b]

y(0) = 0.

Above, we discretized this differential equation as

y(t+ h)− y(t) ≈ hy′(t).

y(t+ h) ≈ y(t) + hy′(t) = y(t) + h(1 + (y(t))2).

If we add another term in the Taylor expansion, and use y′′(t) = 2y(t)y′(t) = 2y(t)(1 +
(y(t))2), we would instead get

y(t+ h) ≈ y(t) + hy′(t) +
1

2
h2y′′(t) = y(t) + h

(
1 + (y(t))2 +

h

2
(2y(t)(1 + (y(t))2))

)
.

Adding yet another term in the Taylor expansion, and using

y′′′(t) = 2y(t)y′′(t) + 2(y′(t))2 = 4(y(t))2(1 + (y(t))2) + 2(1 + (y(t))2)2,

68

we get

y(t+ h) ≈ y(t) + hy′(t) +
1

2
h2y′′(t) +

1

6
h3y′′′(t)

= y(t) + h
(

1 + (y(t))2 +
h

2

[
2y(t)(1 + (y(t))2)

+
h

3

(
4(y(t))2(1 + (y(t))2) + 2(1 + (y(t))2)2

)])
.

We can then plot our approximate solutions in Matlab.

n=100;

a=0;

b=pi/2 - .01;

h=(b-a)/n;

x=zeros(1,n); y=x; z=x;

for i=1:n-1

x(i+1)= x(i)+ h*(1+(x(i))^2);

y(i+1)= y(i)+ h*(1+(y(i))^2 + (h/2)* 2*(y(i))*(1+(y(i))^2));

z(i+1)= z(i)+ h*(1+(z(i))^2 + (h/2)*(2*(z(i))*(1+(z(i))^2) ...

+ (h/3)*(4*(z(i))^(2) *(1+(z(i))^(2)) + 2*(1+(z(i))^(2))^(2))));

end

t=linspace(a,b,n);

plot(t, x, t, y, t, z, t, tan(t));

xerror = sum(abs(x-tan(t)))/sum(abs(tan(t)));

yerror = sum(abs(y-tan(t)))/sum(abs(tan(t)));

zerror = sum(abs(z-tan(t)))/sum(abs(tan(t)));

legend("1st order Euler, relerror "+num2str(xerror), ...

"2nd order Euler, relerror "+num2str(yerror), ...

"3rd order Euler, relerror "+num2str(zerror),'exact solution');

title("Solutions of the equation y'=1+y^2 with h="+num2str(h));

Though the local truncation error of the three term Taylor expansion should be smaller
than the two term expansion, there seems to be little difference between them.

Example 7.9. By introducing extra variables, we can numerically solve ODEs with more
than one derivative. Consider the following ODE that models the planetary motion of a
planet-moon system together with a star. Unless otherwise specified, all functions below are
functions of a real variable t.

The planet has mass µ := .012277471, the star has mass µ̂ := 1 − µ, and the moon has
negligible mass. All three bodies are moving in the same plane. (I could not find details on
the coordinates, but I think (u1, u2) are the position coordinates of the moon, the planet is
considered to be stationary at the origin, and the sun is considered to be very far away to
the extreme negative u1 direction.)

69

u′′1 = u1 + 2u′2 − µ̂
u1 + µ

d1

− µu1 − µ̂
d2

u′′2 = u2 − 2u′1 − µ̂
u2

d1

− µu2

d2

d1 = ((u1 + µ)2 + u2
2)3/2

d2 = ((u1 − µ̂)2 + u2
2)3/2,

with initial condition

u1(0) = .994, u2(0) = 0, u′1(0) = 0,

u′2(0) = −2.00158510637908252240537862224.

We can convert this differential equation into one that just uses single derivatives by
defining

y1 := u1, y2 := u2, y3 := u′1, y4 := u′2.

We can then rewrite the system as

y′1 = y3

y′2 = y4

y′3 = y1 + 2y4 − µ̂
y1 + µ

d1

− µy1 − µ̂
d2

y′4 = y2 − 2y3 − µ̂
y2

d1

− µy2

d2

d1 = ((y1 + µ)2 + y2
2)3/2

d2 = ((y1 − µ̂)2 + y2
2)3/2,

with initial condition

y1(0) = .994, y2(0) = 0, y3(0) = 0,

y4(0) = −2.00158510637908252240537862224.

The ODE can be solved in Matlab in the following way

function planetaryode

tspan = [0 30];

y0 = [.994 0 0 -2.00158510637908252240537862224];

[t,y] = ode23(@(t,y) myode(t,y), tspan, y0);

plot(y(:,1),y(:,2));

end

function dydt = myode(t,y)

mu=.012277471;

d(1) = ((y(1) + mu).^2 + (y(2)).^2).^(3/2);

d(2) = ((y(1) -(1-mu)).^2 + (y(2)).^2).^(3/2);

dydt = zeros(4,1);

dydt(1) = y(3);

70

dydt(2) = y(4);

dydt(3)= y(1)+2*y(4)- (1-mu)* (y(1)+mu)./d(1) -mu *(y(1)- (1-mu))./ d(2);

dydt(4)= y(2)-2*y(3)- (1-mu)* (y(2))./d(1) -mu *(y(2))./ d(2);

end

7.2. Runge-Kutta Methods. In the previous section, we used Taylor expansions to give
first, second, and third order Euler methods for a specific initial value problem. One downside
of the higher order Euler method is that we need to explicitly compute some derivatives of
f . Instead of computing these derivatives explicitly, we can approximate them with their
own difference quotients. This is the idea of Runge-Kutta methods.

The first order Runge-Kutta method is identical to Euler’s method. So, we begin with a
derivation of the second order Runge-Kutta method for the differential equation

yt(t) = f(t, y(t)).

Differentiation both sides and applying the chain rule, we have

ytt = ft + fyyt = ft + fyf, yttt = ftt + ftyyt + fyytt + fytyt + fyyy
2
t .

We can then write the Taylor expansion of y as

y(t+ h) = y(t) + hy′(t) +
h2

2
y′′(t) +O(h3)

= y(t) + hf +
h2

2
(ft + fyf) +O(h3)

= y(t) +
h

2
f +

h

2
(f + hft + hfyf) +O(h3).

The last term can be rewritten using a Taylor expansion of f

f(t+ h, y + hf) = f(t, y) + hft + hffy +O(h2).

Substituting this into our expression for y(t+ h), we get

y(t+ h) = y(t) +
h

2
f +

h

2
(f(t+ h, y + hf) +O(h2)) +O(h3)

= y(t) +
h

2

(
f(t, y) + f(t+ h, y + hf)

)
+O(h3).

Definition 7.10 (Second Order Runge-Kutta Method). Here t0 ∈ [a, b]. Consider the
initial value problem {

dy
dt

(t) = f(t, y(t)), ∀ t ∈ [a, b]

y(t0) = y0.

The second order Runge-Kutte Method for solving this initial value problem is an
iterative (recursive) method that proceeds as follows. First, define a step size h > 0. Let
t := t0. Then, compute the following recursion for y(t+ h), y(t+ 2h), y(t+ 3h), and so on.

y(t+ h) := y(t) +
h

2

(
f(t, y) + f(t+ h, y + hf(t, y(t)))

)
.

As suggested by its name, the second order Runge-Kutte method is a second order numer-
ical method for solving the initial value problem from Definition 7.1. There is an analogous
fourth order Runge-Kutte method, but we will not give its derivation.

71

Definition 7.11 (Fourth Order Runge-Kutta Method). Let t0 ∈ [a, b]. Consider the
initial value problem {

dy
dt

(t) = f(t, y(t)), ∀ t ∈ [a, b]

y(t0) = y0.

The fourth order Runge-Kutte Method for solving this initial value problem is an
iterative (recursive) method that proceeds as follows. First, define a step size h > 0. Let
t := t0. Then, compute the following recursion for y(t+ h), y(t+ 2h), y(t+ 3h), and so on.

a1 = hf(t, y(t))

a2 = hf(t+ h/2, y(t) + a1/2)

a3 = hf(t+ h/2, y(t) + a2/2)

a4 = hf(t+ h, y(t) + a3)

y(t+ h) := y(t) +
1

6

(
a1 + 2a2 + 2a3 + a4

)
.

Example 7.12. Consider the initial value problem{
dy
dt

(t) = 1 + (y(t))2, ∀ t ∈ [a, b]

y(0) = 0.

Let’s compare the performance of our Euler methods with the second and fourth order
Runge-Kutta methods.

n=1000;

a=0;

b=pi/2 - .01;

h=(b-a)/n;

x=zeros(1,n); y=x; z=x; r=x; k=x;

f= @(y) 1+y.^2;

for i=1:n-1

x(i+1)= x(i)+ h*(1+(x(i))^2); % 1st order Euler, then 2nd,3rd

y(i+1)= y(i)+ h*(1+(y(i))^2 + (h/2)* 2*(y(i))*(1+(y(i))^2));

z(i+1)= z(i)+ h*(1+(z(i))^2 + (h/2)*(2*(z(i))*(1+(z(i))^2) ...

+ (h/3)*(4*(z(i))^(2) *(1+(z(i))^(2)) + 2*(1+(z(i))^(2))^(2))));

r(i+1) = r(i)+ (h/2)* (f(r(i)) + f(r(i)+ h *f(r(i)))); % 2nd RK

a1= h*f(k(i));

a2= h* f(k(i)+ a1/2);

a3= h* f(k(i)+ a2/2);

a4= h* f(k(i)+a3);

k(i+1)= k(i)+(1/6)*(a1+2*a2+2*a3+a4); %4th RK

end

t=linspace(a,b,n);

plot(t, x, t, y, t, z, t, r, t, k, t, tan(t));

xerror = sum(abs(x-tan(t)))/sum(abs(tan(t)));

yerror = sum(abs(y-tan(t)))/sum(abs(tan(t)));

zerror = sum(abs(z-tan(t)))/sum(abs(tan(t)));

rerror = sum(abs(r-tan(t)))/sum(abs(tan(t)));

72

kerror = sum(abs(k-tan(t)))/sum(abs(tan(t)));

legend("1st order Euler, relerror "+num2str(xerror), ...

"2nd order Euler, relerror "+num2str(yerror), ...

"3rd order Euler, relerror "+num2str(zerror), ...

"2nd order RK, relerror "+num2str(rerror), ...

"4th order RK, relerror "+num2str(kerror), ...

'exact solution');

title("Solutions of the equation y'=1+y^2 with h="+num2str(h));

Though the local truncation error of the three term Taylor expansion should be smaller
than the two term expansion, there seems to be little difference between them.

Exercise 7.13. Consider the following initial value problem

y′(t) =
√
|t|, ∀ t ∈ [−2, 2], y(−2) = −1.

• Verify that there is a solution to this initial value problem of the form

f(t) =

{
2
√
−tt
3

+ c , if t < 0
2t3/2

3
+ c , if t ≥ 0.

Moreover, find the correct value of c.
• Using Matlab, compute a numerical solution of this initial value problem with Euler’s

method and different step sizes h, on the interval [−2, 2].
• Should you be concerned with your results from Euler’s method? For what value of
t is the absolute error the highest? Näıvely, one might measure the error of Euler’s
method, by just examining the final endpoint of the interval y(2), and comparing the
computed value with the exact value. Is this sensible in this example?

Exercise 7.14. This exercise begins by investigating some solutions of the Lorentz equations
which are defined for y : R→ R3 by

y′(t) = A(t)y(t)

y(t) =

y1(t)
y2(t)
y3(t)

 where A(t) =

 −β 0 y2(t)
0 −σ σ

−y2(t) ρ −1.


Here σ = 10, β = 8

3
, and we vary the value of ρ. (Since A depends on y2(t), the differential

equation y′ = Ay is nonlinear, leading to some interesting behavior.) Solutions of this
system display various periodicities that give the appearance of a particle orbiting around
two different points. These two points are called attractors. Since the behavior of the
solution seems rather unpredictable, the solution y is called chaotic. In our investigation,
the initial value of y is started near one of the two attractors, i.e. with η = +

√
β(ρ− 1)

there is an attractor at the point r1 = (ρ − 1, η, η) ∈ R3 and we start at the initial value
r1 + (0, 0, 3) ∈ R3.

• In varying our parameter ρ, using the program lorenzgui, check the values of ρ
which produce non-chaotic orbits. Then, we label the periodicity of the orbits with
a series of pluses and minuses, where a plus denotes a circuit around one attractor
and a minus denotes a circuit around the other attractor.

73

For example, if the solution y goes around attractor one, then attractor two, then
one, then two, etc. label this periodicity as +−.
• Run the Matlab demo function orbitode which demonstrates the use of events in

an ODE solver. This solution of this problem gives the orbit of a small body around
two larger bodies. (Think for example about a spacecraft’s orbit under the influence
of the Earth and moon’s gravity.) What roles to the variables te, ye, y, ie play in
the program?
• Mimic the program orbitode and implement an event function in the Lorenz prob-

lem. Using this event function, find the periods of the periodic orbits which occur for
different ρ values. That is, for a given ρ value, find the smallest nonzero time T such
that y(t + T) = y(t). (This equality will probably not hold exactly, so you should
probably check for the smallest nonzero time T such that |y(t+ T)− y(t)| < 10−6

for all larger t, or using some other small number other than 10−6).

Exercise 7.15. This exercise investigates the numerical solutions of the following systems
of equations which appears in mathematical ecology as a predator prey system:

dr

dt
= 2r − αrf

df

dt
= −f + αrf

where r(0) = r0, f(0) = f0, t is time, r(t) is the number of rabbits, f(t) is the number of
foxes, and α is a positive constant. This system has no known analytical solution, but it is
known that the solutions for r and f are periodic, with the same period.

Use the following code if you wish.

function [t,y]=predpreymod(alpha,rstart,fstart,tstop,tolpick)

%Volterrra-Lotka predator prey model

%alpha is parameter in the eqn

%

% the eqn is of the form

% [r';f']=A*[r;f]

%

% alpha= parameter in the differential equations

% rstart= starting population of rabbits

% fstart= starting population of foxes

% tstop= time at which to stop the calculation

% tolpick= relative tolerance chosen to give the calculator

%

% e.g. predpreymod(1,10,5,10,1.e-6)

y0=[rstart;fstart]; %initial cond

tspan=[0,tstop]; %span of time

opts=odeset('reltol',tolpick,'outputfcn',@odephas2,'events',@events);

F=@(t,y) [2*y(1)-alpha*y(2)*y(1); alpha*y(1)*y(2)-y(2)]; %defining eqn

[t,y,te,ye,ie]=ode23(F,tspan,[rstart; fstart],opts); %solve the eqn

74

%add title to phase plot created by matlab

usetitle=strcat('Original LV Phase Plane Plot alpha=',num2str(alpha), ...

'--period~',num2str(mode(diff(te))), ...

'--r_0:',num2str(rstart), ...

'--f_0:',num2str(fstart));

title(usetitle);

xlabel('Rabbit Population');

ylabel('Fox Population');

%post processing

figure;

plot(t,y(:,1),'r-',t,y(:,2),'b-');

legend('Rabbit Population','Fox Population','Location','Northwest');

xlabel('Time');

ylabel('Population');

usetitle=strcat('Original LV Pred Prey Model alpha=',num2str(alpha), ...

'--period~',num2str(mode(diff(te))), ...

'--r_0:',num2str(rstart), ...

'--f_0:',num2str(fstart));

title(usetitle);

function [value,isterminal,direction]=events(t,y)

%determine the period by tracking the min/max points of either of the

%curves

ydot=F(t,y);

value=ydot(1); %track the change in the rabbit population

isterminal=0; %do not stop at critical values

direction=1; %track local minima

end

end

• Compute some solutions for different values of r0, f0 and α. For example, once you
save the function file as predpreymod.m in the current directory, you could call this
function with the command predpreymod(1,1,1,10,10^-5)

• You might observe some periodicity behavior in these plots. To examine this behavior,
consider a particular substitution. Note that (r, f) = (1

α
, 2
α

) is a stable equilibrium
point (i.e. when r, f take these values at one time, they take these values at all future
times, since r′(t) = f ′(t) = 0 in this case). With this in mind, we adjust our functions
by this value as follows. For any t ∈ R, define

u(t) := r(t)− 1

α

v(t) := f(t)− 2

α

75

Then we have u′ = r′, v′ = f ′ and ignoring the uv terms in our equations, derive the
approximations

u′ ≈ −v, v′ ≈ 2u.

Taken together these equations yield

v′′ ≈ 2u′ ≈ −2v.

The equation v′′ = −2v is exactly the equation for a harmonic oscillator (notice if we
solve for v we necessarily solve for u). For instance, an analytic solution is

v = A cos(
√

2t+ φ)

where v has period
√

2π ≈ 4.44288. In fact, all solutions will have such a period,
and indeed, this is almost exactly the period observed for our third example above.
Therefore, these manipulations give a valid analysis of the original system, where we
observe oscillatory phenomena. Moreover, from this formal analysis, we can trust the
solutions produced by the computer, and not have to worry that they are an artifact.
• Now investigate solutions to a system which is a modification of our previous equa-

tions
dr

dt
= 2

(
1− r

R

)
− αrf

df

dt
= −f + αrf

where we are in the same situation as before except now R is a constant, and R
essentially represents the maximum allowable population of rabbits. Compare the
solutions of this equation to solutions of our previous equation under similar condi-
tions.

Exercise 7.16. We now investigate solutions to equations which describe the flight of a
projectile with wind. In this case, we model a cannonball shot from the origin in the direction
of the positive x-axis. We also treat the x-axis as the ground, so we consider the flight of
the projectile done when the projectile hits the ground. The equations are as follows

x′(t) = v cos(θ), y′(t) = v sin(θ)

θ′(t) = −g
v

cos(θ), v′(t) = −D
m
− g sin(θ), ∀ t ≥ 0,

where θ = θ(t) is the angle that the velocity vector makes with the x-axis, x(t) and y(t) are
the usual spacial coordinates, v(t) the speed and D(t) is a function of time representing the
drag with

D(t) =
cρs

2

(
(x′(t)− w(t))2 + (y′(t))2

)
where w(t) is also a function of time representing the wind, c = .2 is the drag coefficient,
ρ = 1.29 kg/m3 is the density of the air, and s = .25m2 is the projectile’s cross-sectional
area. Also, in the above equations we have v0 = 50 m/s the initial speed, m = 15 kg the
weight of the cannonball and g = 9.81m/s2 acceleration due to gravity.

• Plot a range of different initial angles for trajectories on one plot, where one plot
corresponds to one wind function. Then, report the attributes of the trajectory of
maximal distance, with its angle in degrees noted. When making these plots, consider
the following four wind functions

76

(1) w(t) = 0.
(2) w(t) = −10.
(3) w(t) = 10 if btc is even, and zero otherwise.
(4) w(t) is a Gaussian random variable with mean 0, standard deviation 10.

In Matlab, item (3) is 10*(\sim mod(floor(t),2))*(t >= 0), and item (4) is
10*randn

• In each plot, report (in the following order) information for the maximal projectile:
the function w, the initial angle of flight in degrees, the flight time, the distance of
the projectile, the impact speed (keeping in mind an initial speed of 50m/s), and the
number of steps taken by the solver in making the calculation. Choose a relative
tolerance of 1.e−6 in all of our trials so that we are able to compare the performance
of the calculations under each of the wind functions.
• Which wind function requires the most computation time?

7.3. Multistep Methods. For the initial value problem from Definition 7.1, we considered
recursive solutions on a computer. We begin with a step size h > 0 and a value y0 := y(t0),
and yn is a computed approximation to the value of y(nh+ t0). A multistep method is a
recursion of the form

akyn + ak−1yn−1 + · · ·+ a0yn−k = h
(
bkfn + bk−1fn−1 + · · ·+ b0fn−k

)
,∀n ≥ k.

where fn is the computed approximation to the value of f(nh+t0, y(nh+t0)), and a0, . . . , ak,
b0, . . . , bk are fixed constants determined by the particular method.

For example, Euler’s method can be written as yn+1 = yn + hf(yn), so that a1 = 1,
a0 = −1, b0 = 1.

Example 7.17. Suppose y : [0,∞) → R satisfies y(0) := 10, and y satisfies the following
ODE:

y′(t) = −20y(t), ∀ 0 ≤ t ≤ 100.

Note that an exact solution is y(t) := 10e−20t. Euler’s method with step size h satisfies

yn+1 = yn + h(−20)yn = yn(1− 20h), ∀n ≥ 0.

When y0 := 10, this recursion has a unique solution

yn = 10(1− 20h)n, ∀n ≥ 0.

Note that if h > 1/10, then limn→∞ |yn| = ∞ while limt→∞ y(t) = 0. So, choosing a small
step size is very important for solving this ODE via Euler’s method.

Theorem 7.5 implies that small errors in the computed solution of an ODE do not affect
the accuracy of the result, for short times. However, when we compute solutions for long time
intervals, the accumulated errors could become quite large. Unfortunately, large accumulated
errors can actually occur. And the occurrence of such errors can be characterized in terms
of the coefficients a0, . . . , ak, b0, . . . , bk. Define

p(z) := akz
k + ak−1z

k−1 + · · ·+ a1z + a0, ∀ z ∈ C.

q(z) := bkz
k + bk−1z

k−1 + · · ·+ b1z + b0, ∀ z ∈ C.

77

Example 7.18. Recall that Euler’s method with step size h satisfies

yn+1 − yn = hfn, ∀n ≥ 0.

In this case, we have k = 1, a1 = 1, a0 = −1, b0 = 1 and

p(z) = z − 1, q(z) = 1.

Note that p has a single zero at the value z = 1, p(1) = 0, and p′(1) = 1 = q(1).

Theorem 7.19 (Convergence of Multistep Methods). Suppose we have an initial value
problem (from Definition 7.1) on an interval t ∈ [t0, t1] such that the function f(t, y) satisfies
the Lipschitz assumption of Theorem 7.4. Let y(t, h) denote the computed approximation to
y(t) with step size h for a given multistep method. Assume that limh→0+ y(t0 + jh, h) = y(t0)
for all 0 ≤ j < k. Then the multistep method converges (limh→0+ y(t, h) = y(t) for all
t0 ≤ t ≤ t1) if and only if the following two conditions hold:

• All roots of p lie in the set {z ∈ C : |z| ≤ 1}, and any root on the circle {z ∈ C : |z| =
1} has multiplicity one. (Stability)
• p(1) = 0 and p′(1) = q(1). (Consistency)

Proof. We only show the forward implication. We begin with the first condition. Consider
the initial value problem y′(t) = 0 for all t ≥ 0 with y(0) = 0 (so that t0 = 0). Since f = 0,
the multistep method simplifies to the recursion

akyn + ak−1yn−1 + · · ·+ a0yn−k = 0,∀n ≥ k.

Evidently, one solution of this recursion is yn := hλn for all n ≥ k, where λ is a root of p.
For all 0 ≤ j < k, yj := hλj → 0 = y(t0) as h → 0. So, the choice y(jh, h) := hλj for all
0 ≤ j < k is an initial condition that satisfies the hypothesis of our theorem. So, if |λ| > 1,
then in perfect arithmetic, with our initial condition as stated, the computed output of the
algorithm at time t = nh will be

|y(nh, h)| = |yn| = h |λ|n = h |λ|t/h →∞, as h→ 0+.

(This limit is equal to limn→∞
t
n
|λ|n = ∞.) That is, if |λ| > 1, the convergence of the

multistep method cannot occur, i.e. limh→0+ y(t, h) 6= y(t) for all t > 0.
Similarly, if |λ| = 1 and p′(λ) = 0 (so that λ has multiplicity at least two), then a solution

of the multistep recursion is yn := hnλn for all n ≥ k. The choice y(jh, h) := hjλj for all
0 ≤ j < k is an initial condition that satisfies the hypothesis of our theorem. And in perfect
arithmetic, with our initial condition as stated, the computed output of the algorithm at
time t = nh 6= 0 will be

|y(nh, h)| = |yn| = hn |λ|n = t 6= 0.

As h→ 0+, convergence cannot occur, i.e. limh→0+ y(t, h) 6= y(t) for all t > 0.
We now consider the second stated condition. Consider the initial value problem y′(t) = 0

for all t ≥ 0 with y(0) = 1 (so that t0 = 0). Since f = 0, the multistep method simplifies to
the recursion

akyn + ak−1yn−1 + · · ·+ a0yn−k = 0,∀n ≥ k.

A solution of this recursion is then y0 = · · · = yk−1 = 1 and then yk, yk+1, . . . are found by
applying the recursion. If the multistep method converges, then e.g. yk converges to 1 as
h→ 0+, so that

ak + · · ·+ a0 = 0.

78

That is, p(1) = 0.
To see that p′(1) = q(1), consider the initial value problem y′(t) = 1 for all t ≥ 0 with

y(0) = 0 (so that t0 = 0). Since f = 1, the multistep method simplifies to the recursion

akyn + ak−1yn−1 + · · ·+ a0yn−k = h
(
bk + · · ·+ b0

)
, ∀n ≥ k.

Since p(1) = 0, the first item of this Theorem implies that p′(1) 6= 0. A solution of the
recursion is then yn = (n+ k)h · q(1)/p′(1) for all n ≥ k, since

akyn + ak−1yn−1 + · · ·+ a0yn−k

= h
q(1)

p′(1)

(
ak(n+ k) + ak−1(n+ k − 1) + · · ·+ a0n

)
= nh

q(1)

p′(1)

(
ak + · · ·+ a0

)
+ h

q(1)

p′(1)

(
akk + ak−1(k − 1) + · · ·+ a1

)
= nh

q(1)

p′(1)
p(1) + h

q(1)

p′(1)
p′(1) = 0 + hq(1) = h

(
bk + · · ·+ b0

)
.

So, the choice y(jh, h) := (j + k)h · q(1)/p′(1) for all 0 ≤ j < k is an initial condition that
satisfies the hypothesis of our theorem. So, in perfect arithmetic, with our initial condition
as stated, the computed output of the algorithm at time t = nh will be

y(nh, h) = yn = (n+ k)h
q(1)

p′(1)
= (t+ kh)

q(1)

p′(1)
→ t

q(1)

p′(1)
, as h→ 0+.

Since we assume convergence occurs, limh→0+ y(t, h) = y(t) = t for all t > 0. (Recall the
solution of the initial value problem is y(t) = t.) We therefore conclude that q(1)/p′(1) = 1,
so that q(1) = p′(1). �

Exercise 7.20. Fix λ > 0. Suppose y : [0,∞) → R satisfies y(0) := 10, and y satisfies the
following ODE:

y′(t) = f(y(t)) := −λy(t), ∀ 0 ≤ t ≤ 100.

Note that an exact solution is y(t) := 10e−λt. In this exercise, we will try out different
iterative methods for solving this ODE.

Consider setting λ = 20, 200 or 2000 and set the step size h to be 1, .1, .01 and .001 in the
following solution methods.

(a) yn+1 = yn + hf(yn) (Euler’s)
(b) yn+1 = yn + hf(yn+1) (backwards Euler’s) (You should solve for yn+1.)
(c) yn+1 = yn + hf(yn + hf(yn)) (predictor-corrector Euler’s)
(d) yn+1 = yn + hf(yn + h

2
f(yn)) (modified Euler’s)

(e) yn+1 = yn−1 + 2hf(yn) (Nystrom’s midpoint)

For each iterative method and for each value of λ and h, report the computed value of
y(100), and compare this value to the actual value 10e−100λ (which is basically zero). Describe
which methods perform the best, and which methods perform the worst. How do the results
compare to theoretical error bounds? For example, for a multistep method (which is the
case for (a) and (e)), is the method stable and consistent?

Exercise 7.21. Find the values of h where the recursions satisfy stability for the numerical
methods (c), (d) and (e) from Exercise 7.20, and also for

79

(f) yn+1 = yn + h
2
[f(yn) + f(yn+1)] (Trapezoid rule)

Exercise 7.22. We investigate solutions of the differential equation

y′(t) = −1000(y(t)− sin(t)) + cos(t), ∀ t > 0, y(0) = 1.

Using Matlab’s equation solver find the exact solution. For example, the syntax for solving
y′(t) = ty(t), y(0) = 2 would be

syms y(t)

dsolve(diff(y(t),t)==t*y(t) , y(0)==2)

Compare the performance of the textbook function ode23tx to Matlab’s stiff solver ode23s.
How does each method perform?

Denote g(t) := sin(t), λ := 1000, and consider the following rewritten version of the
differential equation (without the initial condition):

y′(t) = −λ(y(t)− g(t)) + g′(t)

If we introduce the variable z(t) = y(t)− g(t) we then have

λz(t) = z′(t)

and if we look at our exact solution when y(0) = 1, we see that z kind of measures the distance
between some general solution and the “attracting” solution y(t) = sin(t). Therefore, since
we have λ = 1000 in this case, we see that this distance to the attracting solution changes
very rapidly. This is exactly why our problem is stiff. Solutions move towards sin(t) at
roughly 1000 times their distance from it. This is much faster than the “stable” solution
y(t) = sin(t) varies (all its derivatives are bounded by 1). Therefore, we have an analytical
explanation of exactly why the problem is stiff.

Exercise 7.23. Consider the following system of equations

y′1(t) = −1000y1(t) + y2(t), y′2(t) = 999y1(t)− 2y2(t).

y1(0) = 1, y2(0) = 0.

(a) Using Matlab, solve this equation exactly. Describe the behavior of y1, y2 and y1/y2

as t→∞.
(b) Solve the system using Euler’s and backwards Euler’s methods up to the time T = 10.

In both cases find (approximately) the largest h which produces an absolute error
ET at time T where ET < 10−5 (this absolute error is the maximum of the errors of
the two variables y1(T) and y2(T)).

(c) Repeat part (b) for Euler’s method, changing your error tolerance to ET < 10−6.
(d) Plot log(ET) as a function of n, for Euler’s method. Try to explain the origin of any

interesting behavior of this plot.

Exercise 7.24. This exercise investigates the double pendulum. We have m1,m2 as the
masses of our two bobs, θ1, θ2 the angle each rod makes with the y − axis (0 indicates the
rod is hanging straight down, an angle with a small and positive value indicates the rod
is pointing into the lower right quadrant, etc.) and `1, `2 are the lengths of the rods. The
positions of the bobs (x1, y1) and (x2, y2), where

x1 = `1 sin(θ1), y1 = −`1 cos(θ1)

x2 = `1 sin(θ1) + `2 sin(θ2), y2 = −`1 cos(θ1)− `2 cos(θ2)

80

and physics leads to a pair of second-order, nonlinear ODEs that describe the motion of the
pendulum. Perform your investigation with the swinger program in the NCM package

(a) When the initial angle of the double pendulum is small, note that it acts like a normal
pendulum. How large can you take the initial angle while maintaining this behavior?

(b) The initial orbit of the swinger function is interesting because it is periodic. It keeps
repeating the same thing over and over, rather than being chaotic like most all other
initial conditions. Try to observe some other initial conditions that lead to periodic
behavior. (To do this, click on different points on the plot.)

(c) If you run swinger for a while, click stop and then type in the command line
get(gcf,'userdata') the initial angles θ1, θ2 (the last ones that were chosen) are
returned.

(d) Now, attempt to change the way the initial conditions of the system are chosen, by
specifying the initial angles θ1 and θ2, instead of specifying the initial values of x2, y2.
In the case where θ1 and θ2 differ, one sees by drawing a parallelogram that if the
position of x2 is specified, then the initial value of x1 has two possible values. From
this parallelogram, we see that the angles θ1 and θ2 are simply swapped between each
case, corresponding to the two choices of x1. Therefore, in the Matlab code that you
write, you can choose either of these two orderings of the angles θ1, θ2.

(e) Now, change the function to handle different masses. That is, extend the main
function definition to accept m1,m2 as the respective weights for the masses of the
bobs.

(f) Modify the swinger function so that lengths other than `1 = `2 = 1 are possible
(g) Modify the function so that we can change g, the acceleration due to gravity.
(h) Alter the program so that it solves its differential equation use the textbook function

odetx.
(i) Is the ODE solved by swinger stiff? (The book defines stiffness as a “wide disparity

in the time scales of the components of the vector solution.”)

Exercise 7.25. Complete NCM Problem 7.21, from here. This exercise investigates an
atmospheric simulation.

7.4. Boundary-Value Problems. Boundary value problems govern the flows of fluids,
heat, electricity and magnetism. Those applications require multivariable calculus, so we
will not discuss them much here.

Definition 7.26 (Ordinary Differential Equation, Boundary Value Problem, One
Variable). Let a, b ∈ R with a < b. Let f : [a, b]×R×R→ R. Let α, β ∈ R. A boundary
value problem is the following example of an ordinary differential equation.

y′′(t) = f(t, y(t), y′(t)), ∀ t ∈ [a, b]

y(a) = α

y(b) = β.

The first equality can be written as a single derivative condition applied to a vector:

d

dt

(
y′(t)
y(t)

)
=

(
f(t, y(t), y′(t))

y′(t)

)
, ∀ t ∈ [a, b].

81

https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/moler/odes.pdf

However, we cannot rewrite Definition 7.26 as an initial value problem as in Definition 7.1,
since doing so would require specifying some initial values of e.g.(

y′(a)
y(a)

)
.

In fact, our first method for solving a boundary value problem will fix these initial values,
and temporarily ignore the constraint on y(b).

7.5. Shooting Methods. A shooting method for the boundary value problem 7.26 solves
a sequence of initial value problems for any η ∈ R:

d
dt

(
y′(t)

y(t)

)
=

(
f(t, y(t), y′(t))

y′(t)

)
, ∀ t ∈ [a, b](

y′(a)

y(a)

)
=

(
η

α

) (∗)

Define then g : R→ R so that g(η) := y(b)− β (note that y depends on η), and find a zero
of the function g. If g(η) = 0, then the function y satisfying (∗) also solves the boundary
value problem 7.26.

7.6. Finite Difference Methods.

Exercise 7.27. In this exercise, we will solve the following boundary value problem in three
different ways. Let y : [0, 1]→ R satisfy

y′′(t) = (y(t))2 − 1, ∀ t ∈ [0, 1], y(0) = 0, y(1) = 1.

(a) First solve this problem using the shooting method. That is, ignore temporarily the
condition y(1) = 1, and instead impose the initial value conditions

y′(0) = η, y(0) = 0.

Denote the solution y which depends on t and η as y(t, η). Then, create a Matlab
function f , defined to be

f(η) := y(1, η)− 1

and look for the zero of this function. If you find an η such that f(η) = 0, then the
solution y satisfies the original boundary value problem.

(b) Now observe that we can re-write the differential equation as

d

dt

(
(y′)2

2
− y3

3
+ y

)
= 0

and if we assume y is continuously differentiable, then this means

(y′)2

2
− y3

3
+ y = K (∗)

is a constant function K. Since y(0) = 0, we can solve (∗) for y′(0) to get y′(0) =

±
√

2K (but trusting the validity of our previous result, we assume that y′(0) =

82

+
√

2K). Solving (∗) for 1
y′(t)

and recalling that (d/dt)y−1(t) = 1/y′(y−1(t)), we can

integrate 1/y′(t) to obtain the inverse function of y, denoted as t(y):

t(y) =

∫ s=y

s=0

1√
2(K + s3

3
− s)

ds. (∗∗)

and since we want to impose the condition y(1) = 1 we want equivalently that t(1) = 1
so that we must find the zero of the following equation

g(K) =

∫ s=1

s=0

1√
2(K + s3

3
− s)

ds

− 1

and this will solve our problem. That is, finding such a K will find the inverse
function of y via (∗∗), so that y is then obtained from (∗∗), since y is the inverse of
t(y).

(c) Now try a finite difference method, choosing n+1 equal subintervals of length h = 1
n+1

which turns the equation y′′ = y2 − 1 into a system involving n unknowns

yi+1 − 2yi + yi−1 = h2(y2
i − 1), ∀ i = 1, . . . , n

where y0 = 0 and yn+1 = 1. In matrix form this is

Ay + b = h2(y2 − 1)

where A has −2’s on the diagonal and 1′s on the superdiagonal and subdiagonal and
zeros elsewhere, bn = 1 and bi = 0 for i < n, and y2 denotes y with each of its entries
squared. In this particular instance, we write

Ay = h2(y2 − 1)− b (‡)
choosing an initial guess for y, and repeatedly solve the linear system, improving our
guess more each time until we are sufficiently close to the solution. That is, if y is
fixed on the right side of (‡), then we solve for x the linear system Ax = h2(y2−1)−b.
We then solve the linear system Az = h2(x2 − 1)− b for z, and so on.

Exercise 7.28. Now consider the boundary value problem

y′′(t) =
−t(y′(t) + π sin(πt))

d
−π2 cos(πt), ∀ t ∈ [−1, 1], y(−1) = −2, y(1) = 0. (∗)

Here d > 0 is a fixed parameter.

(a) First try solving this problem with the shooting method for fairly small d (e.g. try
d = .1, d = .01 and d = .001). What is the smallest value of d for which the shooting

method is able to find a solution y with |y(1)| < 10−3? Denote this value of d as d̂.
(b) Now try to manipulate your initial guesses to improve the performance of the fzero

function used in the shooting method. If f denotes the function used in our definition
of the shooting method, we want to have |f(1)| < 10−2. With d > 0 fixed, let
η(d) denote the value of η that fzero returns when trying to solve f(η) = 0. Let

dk := d̂ · (.8)k for any k ≥ 0. Then, try to use η(dk) as an initial guess in fzero when
you apply the shooting method in the case d = dk+1. Does this method work well for

values of d smaller than d̂?

83

(c) This ODE is linear in the following sense. If y and ỹ are solutions of the differential
equation (∗) with only the initial value specified (i.e. where y(1) and ỹ(1) are not
fixed), then ay + (1− a)ỹ also satisfies (∗) for any a ∈ R. So, if we use two different
shootings y and ỹ with differential initial derivatives y′(−1) and ỹ′(−1), why can we
not just make a linear combination of them fit any of our desired solutions? That is,
why can we not just pick a particular a such that z := ay+(1−a)ỹ satisfies z(1) = 0?
This is exactly what the book suggests we do. Can we do this on the computer to
solve (∗) when d is small (e.g. d = .001)?

(d) Since the ODE is linear, try to use a single iteration finite difference method. Do
this first with evenly spaced nodes, and then estimate the L∞ error for the n−node
solution by comparing it with the 2n-node solution. For select d values, plot the
minimal solution on n = 2j nodes where the estimated error En is less than 10−2.

(e) Try using unevenly spaced nodes in a finite difference method. In particular, try to
use more nodes near t = 0. Do the unevenly spaced nodes perform better than the
evenly spaced case?

7.7. Collocation.

Exercise 7.29. Consider the following two-point boundary value problem{
u′′(t) + p(t)u′(t) + q(t)u(t) = w(t), ∀ t ∈ [a, b]

u(a) = α u(b) = β

which we solve by the method of collocation. Use n − 2 collocation points labelled ti for
i = 1, . . . , n − 2 equally spaced on [a, b]. Obtain a linear system of n equations with n
unknowns c1, . . . , cn 

n∑
j=1

cj (Lvj) (ti) = w(ti) (1 ≤ i ≤ n− 2)

n∑
j=1

cjvj(a) = α
n∑
j=1

cjvj(b) = β

Where
L(vj)(t) = v′′j (t) + p(t)v′j(t) + q(t)vj(t)

and

vj(t) = B

(
t− a
h
− j + 2

)
and B is the standard cubic B − spline.

After obtaining the solution u =
∑n

j=1 cjvj, then also examine the residual, Lu−w on our

original knots, and also the midpoints of the intervals [ti, ti+1], i = 1, . . . , n− 3. To test our
program, we consider the system{

u′′(t) + sin(t)u′(t) + (t2 + 2)u(t) = et−3

u(2.6) = 7 u(5.1) = −3

84

8. Appendix: Notation

Let n,m be a positive integers. Let A,B be sets contained in a universal set Ω.

N = {1, 2, . . .} denotes the set of natural numbers

Z = {. . . ,−2,−1, 0, 1, 2, . . .} denotes the set of integers

Q = {a/b : a, b,∈ Z, b 6= 0} denotes the set of rational numbers

R denotes the set of real numbers

C = {a+ b
√
−1: a, b ∈ R} denotes the set of complex numbers

∈ means “is an element of.” For example, 2 ∈ R is read as “2 is an element of R.”

∀ means “for all”

∃ means “there exists”

Rn = {(x1, x2, . . . , xn) : xi ∈ R ∀ 1 ≤ i ≤ n}
f : A→ B means f is a function with domain A and range B. For example,

f : R2 → R means that f is a function with domain R2 and range R
∅ denotes the empty set

A ⊆ B means ∀ a ∈ A, we have a ∈ B, so A is contained in B

ArB := {a ∈ A : a /∈ B}
Ac := Ω r A, the complement of A in Ω

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B

A∆B := (ArB) ∪ (B r A)

P denotes a probability law on Ω

Let n ≥ m ≥ 0 be integers. We define(
n

m

)
:=

n!

(n−m)!m!
=
n(n− 1) · · · (n−m+ 1)

m(m− 1) · · · (2)(1)
.

Let a1, . . . , an be real numbers. Let n be a positive integer.

n∑
i=1

ai = a1 + a2 + · · ·+ an−1 + an.

n∏
i=1

ai = a1 · a2 · · · an−1 · an.

min(a1, a2) denotes the minimum of a1 and a2.

max(a1, a2) denotes the maximum of a1 and a2.

The min of a set of nonnegative real numbers is the smallest element of that set. We also
define min(∅) :=∞.

85

Let A ⊆ R.

supA denotes the supremum of A, i.e. the least upper bound of A.

inf A denotes the infimum of A, i.e. the greatest lower bound of A.

1A : Ω→ {0, 1}, denotes the indicator function of A, so that

1A(ω) =

{
1 , if ω ∈ A
0 , otherwise.

Let g, h : R→ R. Let t ∈ R.

(g ∗ h)(t) =

∫ ∞
−∞

g(x)h(t− x)dx denotes the convolution of g and h at t ∈ R

References

[Aar11] Scott Aaronson, A linear-optical proof that the permanent is #p-hard, Electronic Colloquium on
Computational Complexity (ECCC) 18 (2011), 43.

[Gal14] François Le Gall, Powers of tensors and fast matrix multiplication, Preprint, arXiv:1401.7714.
ISAAC 2014., 2014.

[GVL13] G.H. Golub and C.F. Van Loan, Matrix computations, Johns Hopkins Studies in the Mathematical
Sciences, Johns Hopkins University Press, 2013.

[JSV04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda, A polynomial-time approximation algorithm for
the permanent of a matrix with nonnegative entries, J. ACM 51 (2004), no. 4, 671–697.

USC Mathematics, Los Angeles, CA
E-mail address: stevenmheilman@gmail.com

86

https://arxiv.org/abs/1401.7714

	1. Matlab and the NCM Toolbox
	1.1. Introduction

	2. Floating Point Number System
	2.1. Floating Point Arithmetic and Loss of Significance
	2.2. Simulation of Random Variables
	2.3. Additional Comments

	3. Solving One Variable Equations
	3.1. Introduction
	3.2. Newton's Method

	4. Numerical Linear Algebra
	4.1. Review of Linear Algebra
	4.2. Row Operations
	4.3. Multiplying Matrices
	4.4. Gaussian Elimination, LU Factorization, Ax=b
	4.5. QR Decomposition
	4.6. Matrix Norms as a Measure of Error
	4.7. Eigenvalues and the Power Method
	4.8. Eigenvalues and the QR Algorithm
	4.9. Least Squares
	4.10. Singular Value Decomposition (SVD)
	4.11. Additional Comments

	5. Interpolation
	5.1. Polynomial Interpolation
	5.2. Hermite Interpolation
	5.3. Spline Interpolation

	6. Numerical Implementation of Calculus
	6.1. Numerical Partial Differentiation
	6.2. Numerical Integration
	6.3. Gaussian Quadrature

	7. Numerical Solution of ODEs
	7.1. Introduction
	7.2. Runge-Kutta Methods
	7.3. Multistep Methods
	7.4. Boundary-Value Problems
	7.5. Shooting Methods
	7.6. Finite Difference Methods
	7.7. Collocation

	8. Appendix: Notation
	References

