458 Midterm 2 Solutions¹

1. Question 1

TRUE/FALSE

(a) The smallest positive number that exists in double precision floating point arithmetic is

$$2^{-1022}$$

FALSE. This is the smallest positive normal number, which can be written as $1.0 \cdots 0 \times 2^{1023-1}$. There are subnormal numbers that are smaller, such as 2^{-1074} .

(b) In double precision floating point arithmetic, the closest number to 4 that is larger than 4 is

$$4+2^{-52}$$
.

(Put another way, if x > 4 is a double precision floating point number, then |x - 4| is minimized when $x = 4 + 2^{-52}$.)

FALSE. The next largest double precision number after 4 can be written in a 52-digit binary after the decimal point as $1.0...01 \times 2^2 = (1 + 2^{-52}) \times 4 = 4 + 4 \cdot 2^{-52}$.

(c) QR Decompositions are unique. That is, if A is an $n \times n$ real matrix, then there is exactly one $n \times n$ orthogonal matrix Q and there is exactly one $n \times n$ upper triangular matrix R such that A can be written as

$$A = QR$$
.

FALSE. If A = QR then A = (-Q)(-R), with -Q orthogonal and -R upper triangular.

(d) Let $a_0, \ldots, a_{10}, b_0, \ldots, b_{10}$ be real numbers. Then there is a unique polynomial p of degree at most 10 such that

$$p(a_i) = b_i \quad \forall 0 \le i \le 10.$$

FALSE. If all of the a_i are equal to 0, then p is not unique.

(e) Let $m, n \ge 1$ be integers. Any real $m \times n$ matrix A can be written as

$$A = UDV$$

where U is an orthogonal $m \times m$ matrix, V is an orthogonal $n \times n$ matrix, and D is an $m \times n$ matrix whose non-diagonal entries are zero (i.e. $D_{ij} = 0$ whenever $1 \le i \le m, 1 \le j \le n$ and $i \ne j$.)

TRUE. This is a restated version of the existence of a singular value decomposition.

2. Question 2

Let $n \ge 1$ be an integer. Suppose I have a function $f: \mathbf{R} \to \mathbf{R}$ and I want to choose a polynomial p_n that interpolates f on the interval [-1, 1]. That is, we would like to choose nodes $a_0, \ldots, a_n \in [-1, 1]$ such that

$$f(a_i) = p_n(a_i), \quad \forall 0 \le i \le n.$$
 (‡)

• Suppose we want to choose the nodes a_0, \ldots, a_n such that $\max_{y \in [-1,1]} |f(y) - p_n(y)|$ is as small as possible. Which nodes a_0, \ldots, a_n would you choose? Justify your answer as best you can.

¹November 5, 2022, © 2022 Steven Heilman, All Rights Reserved.

• Suppose n=2 and $a_0=0$, $a_1=1$ and $a_2=2$. Suppose also that

$$f(x) = x^3, \quad \forall x \in \mathbf{R}.$$

Write an explicit formula for the degree 2 polynomial p_2 satisfying (‡). Simplify your answer to the best of your ability.

Solution. We would choose the Chebyshev nodes $a_i := \cos((i+1/2)\pi/(n+1))$ for all $0 \le i \le n$, since these nodes lead to the best general error bound for $\max_{y \in [-1,1]} |f(x) - p_n(x)|$, i.e. this choice of nodes minimizes the quantity $\max_{|y| \le 1} |\prod_{i=0}^n (y-a_i)|$. (The latter quantity is the only term in the error bound we wrote for $|f-p_n|$ that depends on the nodes a_0, \ldots, a_n .)

Using e.g. Theorem 5.1 in the notes, the polynomial p_2 can be written as

$$p_2(x) = \sum_{j=0}^{2} f(a_j) \prod_{i \neq j} \frac{x - a_i}{a_j - a_i} = 0 + 1^3 \frac{x - 0}{1 - 0} \frac{x - 2}{1 - 2} + 2^3 \frac{x - 0}{2 - 0} \frac{x - 1}{2 - 1}$$
$$= x(2 - x) + 8(x/2)(x - 1) = 2x - x^2 + 4x^2 - 4x$$
$$= 3x^2 - 2x.$$

3. Question 3

Suppose we have data points (-1,1), (0,3), $(1,3) \in \mathbf{R}^2$ denoted as $\{(a_i,b_i)\}_{i=1}^3$. Find the line that best fits the data. That is, find the line $f \colon \mathbf{R} \to \mathbf{R}$ that minimizes the sum of squared differences $\sum_{j=1}^3 |f(a_i) - b_i|^2$.

(You should find an exact formula for f. Do not write a Matlab program in this question.) Solution. We would like to minimize $||Ax - b||^2$ where $f(t) = x_0 + tx_1$, and

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}, \qquad x = \begin{pmatrix} x_0 \\ x_1 \end{pmatrix}, \qquad b = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}.$$

To do this, we could either try to solve this minimization problem directly, or we could solve $A^T A x = A^T b$ (equivalence follows by Lemma 4.95 in the notes). In the second case, we have

$$A^T A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$

$$A^T b = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 2 \end{pmatrix}$$

So, solving $A^TAx = A^Tb$ amounts to solving

$$\begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} x = \begin{pmatrix} 7 \\ 2 \end{pmatrix}.$$

That is, we find that $x_0 = 7/3$ and $x_1 = 1$. So, the best fit line is

$$f(t) = (7/3) + t, \quad \forall t \in \mathbf{R}.$$

Alternatively (for those who know multivariable calculus), we could just minimize the function $g(x_0, x_1) := ||Ax - b||^2$ directly, noting that

$$g = \left\| \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix} \right\|^2 = \left\| \begin{pmatrix} x_0 - x_1 \\ x_0 \\ x_0 + x_1 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix} \right\|^2 = \left\| \begin{pmatrix} x_0 - x_1 - 1 \\ x_0 - 3 \\ x_0 + x_1 - 3 \end{pmatrix} \right\|^2$$
$$= (x_0 - x_1 - 1)^2 + (x_0 - 3)^2 + (x_0 + x_1 - 3)^2.$$

We then have

$$\nabla g = \begin{pmatrix} 2(x_0 - x_1 - 1) + 2(x_0 - 3) + 2(x_0 + x_1 - 3) \\ -2(x_0 - x_1 - 1) + 2(x_0 + x_1 - 3) \end{pmatrix} = \begin{pmatrix} 6x_0 - 14 \\ 4x_1 - 4. \end{pmatrix}$$

Setting the gradient equal to zero, we get $x_1 = 1$ and $x_0 = 14/6 = 7/3$. Since g is strictly convex and has a single critical point, this critical point is the global minimum of q.

4. Question 4

Let A be a real $n \times n$ symmetric positive definite matrix all of whose eigenvalues are distinct.

Write a Matlab program that applies the QR algorithm to A. The output of the program should be two real $n \times n$ matrices D and Q, such that D is a diagonal matrix containing the eigenvalues of D, and Q is an orthogonal matrix whose columns are eigenvectors of A, so that $A = QDQ^T$. (You are allowed to use the built-in Matlab program $q\mathbf{r}$, whose syntax is $[\mathbf{Q},\mathbf{R}]=q\mathbf{r}(\mathbf{A})$, outputting a factorization A=QR.)

(It is okay if QDQ^T is only approximately equal to A and D is only approximately diagonal, so that all non-diagonal entries of D are small.)

In this problem, you will be graded on writing correct syntax in Matlab. Syntax mistakes will result in deductions of points.

Solution.

```
Qa=eye(length(A));
for i=1:100
    [Q R]=qr(A);
    A=R*Q;
    Qa=Qa*Q % updated Qa, as in Theorem 4.90 in notes
end
Qa*A*Qa' % should return the original matrix
% the output Qa is the matrix of eigenvectors
% the output A should be (nearly) diagonal with all eigenvalues
```

5. Question 5

Let n = 500. Let A be a real $n \times n$ symmetric positive definite matrix all of whose eigenvalues are distinct. Suppose the largest eigenvalue of A is 1 and all other eigenvalues of A are at most 1/2.

Suppose $x \in \mathbb{R}^n$ is a nonzero vector such that Ax = x.

Describe, to the best of your ability, the matrix

$$A^{1000}$$

Justify your answer. Simplify your answer as best you can.

You should be able to say what each row of A^{1000} is, within a reasonably small margin of error. For example, you should have a fairly precise description of the 356^{th} row of A.

Solution. From the spectral theorem, $A = QDQ^T$ where D is a diagonal matrix containing the eigenvalues of A, and Q is an orthogonal matrix whose columns contain the eigenvectors of A. We can choose D such that $D_{11} = 1$ and by assumption $0 \le D_{ii} \le 1/2$ for all $i \ge 2$. Moreover, by this choice of D, the first column of Q can be chosen as $x/\|x\|$. Then $A^{1000} = (QDQ^T)^{1000} = QD^{1000}Q^T$. By assumption, all entries of D^{1000} will be smaller than 2^{-1000} , except for the top left entry, which is one. Therefore, A^{1000} is approximately equal to

$$Q\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} Q^{T} = \begin{pmatrix} \frac{x}{\|x\|} & \cdots \end{pmatrix} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} \frac{x}{\|x\|} & \cdots \end{pmatrix}^{T}$$
$$= \begin{pmatrix} \frac{x}{\|x\|} & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} \frac{x}{\|x\|} & 0 & \cdots & 0 \end{pmatrix}^{T} = \frac{xx^{T}}{\|x\|^{2}}.$$

That is, A^{1000} is approximately equal to $\frac{xx^T}{\|x\|^2}$.