
Numerical Methods 458 Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due December 1, 1159PM PST, to be uploaded as a single PDF document to blackboard
(under the Assignments tab).

Homework 11

Exercise 1. Complete NCM Problem 7.21, from here. This exercise investigates an atmo-
spheric simulation.

Exercise 2. Fix λ > 0. Suppose y : [0,∞) → R satisfies y(0) := 10, and y satisfies the
following ODE:

y′(t) = f(y(t)) := −λy(t), ∀ 0 ≤ t ≤ 100.

Note that an exact solution is y(t) := 10e−λt. In this exercise, we will try out different
iterative methods for solving this ODE.

Consider setting λ = 20, 200 or 2000 and set the step size h to be 1, .1, .01 and .001 in the
following solution methods.

(a) yn+1 = yn + hf(yn) (Euler’s)
(b) yn+1 = yn + hf(yn+1) (backwards Euler’s) (You should solve for yn+1.)
(c) yn+1 = yn + hf(yn + hf(yn)) (predictor-corrector Euler’s)
(d) yn+1 = yn + hf(yn + h

2
f(yn)) (modified Euler’s)

(e) yn+1 = yn−1 + 2hf(yn) (Nystrom’s midpoint)

For each iterative method and for each value of λ and h, report the computed value of y(100),
and compare this value to the actual value 10e−100λ (which is basically zero). Describe
which methods perform the best, and which methods perform the worst. How do the results
compare to theoretical error bounds? For example, for a multistep method (which is the
case for (a) and (e)), is the method stable and consistent?

Exercise 3. Find the values of h where the recursions satisfy stability for the numerical
methods (c), (d) and (e) from Exercise 2, and also for

(f) yn+1 = yn + h
2
[f(yn) + f(yn+1)] (Trapezoid rule)

Exercise 4. In this exercise, we will solve the following boundary value problem in three
different ways. Let y : [0, 1]→ R satisfy

y′′(t) = (y(t))2 − 1, ∀ t ∈ [0, 1], y(0) = 0, y(1) = 1.

(a) First solve this problem using the shooting method. That is, ignore temporarily the
condition y(1) = 1, and instead impose the initial value conditions

y′(0) = η, y(0) = 0.

https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/moler/odes.pdf

2

Denote the solution y which depends on t and η as y(t, η). Then, create a Matlab
function f , defined to be

f(η) := y(1, η)− 1

and look for the zero of this function. If you find an η such that f(η) = 0, then the
solution y satisfies the original boundary value problem.

(b) Now observe that we can re-write the differential equation as

d

dt

(
(y′)2

2
− y3

3
+ y

)
= 0

and if we assume y is continuously differentiable, then this means

(y′)2

2
− y3

3
+ y = K (∗)

is a constant function K. Since y(0) = 0, we can solve (∗) for y′(0) to get y′(0) =

±
√

2K (but trusting the validity of our previous result, we assume that y′(0) =

+
√

2K). Solving (∗) for 1
y′(t)

and recalling that (d/dt)y−1(t) = 1/y′(y−1(t)), we can

integrate 1/y′(t) to obtain the inverse function of y, denoted as t(y):

t(y) =

∫ s=y

s=0

1√
2(K + s3

3
− s)

ds. (∗∗)

and since we want to impose the condition y(1) = 1 we want equivalently that t(1) = 1
so that we must find the zero of the following equation

g(K) =

∫ s=1

s=0

1√
2(K + s3

3
− s)

ds

− 1

and this will solve our problem. That is, finding such a K will find the inverse
function of y via (∗∗), so that y is then obtained from (∗∗), since y is the inverse of
t(y).

(c) Now try a finite difference method, choosing n+1 equal subintervals of length h = 1
n+1

which turns the equation y′′ = y2 − 1 into a system involving n unknowns

yi+1 − 2yi + yi−1 = h2(y2i − 1), ∀ i = 1, . . . , n

where y0 = 0 and yn+1 = 1. In matrix form this is

Ay + b = h2(y2 − 1)

where A has −2’s on the diagonal and 1′s on the superdiagonal and subdiagonal and
zeros elsewhere, bn = 1 and bi = 0 for i < n, and y2 denotes y with each of its entries
squared. In this particular instance, we write

Ay = h2(y2 − 1)− b (‡)

choosing an initial guess for y, and repeatedly solve the linear system, improving our
guess more each time until we are sufficiently close to the solution. That is, if y is
fixed on the right side of (‡), then we solve for x the linear system Ax = h2(y2−1)−b.
We then solve the linear system Az = h2(x2 − 1)− b for z, and so on.

3

Exercise 5. Now consider the boundary value problem

y′′(t) =
−t(y′(t) + π sin(πt))

d
−π2 cos(πt), ∀ t ∈ [−1, 1], y(−1) = −2, y(1) = 0. (∗)

Here d > 0 is a fixed parameter.

(a) First try solving this problem with the shooting method for fairly small d (e.g. try
d = .1, d = .01 and d = .001). What is the smallest value of d for which the shooting

method is able to find a solution y with |y(1)| < 10−3? Denote this value of d as d̂.
(b) Now try to manipulate your initial guesses to improve the performance of the fzero

function used in the shooting method. If f denotes the function used in our definition
of the shooting method, we want to have |f(1)| < 10−2. With d > 0 fixed, let
η(d) denote the value of η that fzero returns when trying to solve f(η) = 0. Let

dk := d̂ · (.8)k for any k ≥ 0. Then, try to use η(dk) as an initial guess in fzero when
you apply the shooting method in the case d = dk+1. Does this method work well for

values of d smaller than d̂?
(c) This ODE is linear in the following sense. If y and ỹ are solutions of the differential

equation (∗) with only the initial value specified (i.e. where y(1) and ỹ(1) are not
fixed), then ay + (1− a)ỹ also satisfies (∗) for any a ∈ R. So, if we use two different
shootings y and ỹ with differential initial derivatives y′(−1) and ỹ′(−1), why can we
not just make a linear combination of them fit any of our desired solutions? That is,
why can we not just pick a particular a such that z := ay+(1−a)ỹ satisfies z(1) = 0?
This is exactly what the book suggests we do. Can we do this on the computer to
solve (∗) when d is small (e.g. d = .001)?

(d) Since the ODE is linear, try to use a single iteration finite difference method. Do
this first with evenly spaced nodes, and then estimate the L∞ error for the n−node
solution by comparing it with the 2n-node solution. For select d values, plot the
minimal solution on n = 2j nodes where the estimated error En is less than 10−2.

(e) Try using unevenly spaced nodes in a finite difference method. In particular, try to
use more nodes near t = 0. Do the unevenly spaced nodes perform better than the
evenly spaced case?

