
Numerical Methods 458 Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due October 27, 1159PM PST, to be uploaded as a single PDF document to blackboard
(under the Assignments tab).

Homework 8

Exercise 1. Let f(x) := e2x for all x ∈ R. Let pn be a polynomial of degree n that
interpolates f on [−1, 1] at the n + 1 roots of the Chebyshev polynomial Tn+1 on [−1, 1].
Find the smallest n such that

|f(x)− pn(x)| < 10−6, ∀x ∈ [−1, 1]

Exercise 2. Let h > 0. Let f : [−h, h] → R be continuous. Let p2 be the (unique)
polynomial of degree at most 2 such that

p2(h) = f(h), p2(−h) = f(−h), p2(0) = f(0).

Show that ∫ h

−h
p2(t)dt =

h

3

(
f(h) + f(−h) + 4f(0)

)
.

Exercise 3 (Adaptive Quadrature). The NCM package function quadtx is a simplified
version of Matlab’s built-in integration function quad. (To view the code of quadtx use
the command edit quadtx. Similarly, edit quad should show you the source code for
the function quad.) For example, the command quadtx(@(x)(cos(x))^2,0,4*pi) approx-

imates
∫ 4π

0
(cos(x))2dx. More generally, the program quadtx starts by evaluating the given

function f : [a, b]→ R with two different Simpson’s rule evaluations (one using three points,
and another using five points, each equally spaced on the interval). (In the code, these two
evaluations are denoted Q1 and Q2.)

If these two different Simpson’s rule evaluations are closer than 10−6 (the default value of

tol), then the program believes it has succeeded in estimating
∫ b
a
f(x)dx. So, the program

outputs a combination of these two Simpson’s rule evaluations, which happens to be a sixth
order Newton-Cotes formula (in the code this is Q2 + (Q2 - Q1)/15).

If these two different Simpson’s rule evaluations are not closer than 10−6, then quadtx repeats
the above Simpson’s rule procedure on a smaller subinterval, and then iterates. This is done
via a recursive call to the function quadtxstep. Note the recursive nature of this program,
since the function quadtxstep calls itself. Also, note that varargin is used often in quadtx.
This command allows a variable number of arguments to be input to a function.

The recursive use of Simpson’s rule can be visualized with the quadgui command, after
clicking “auto.” Function evaluations are depicted as blue dots, and the total number of
function evaluations is displayed at the top of the plot.

2

• Run the programs quadtx(@(x)x.^3,0,1) and quadgui(@(x)x.^3,0,1). How many

function evaluations are used to estimate
∫ 1

0
x3dx? What is the absolute error of the

estimation?
• Run the programs quadgui(@(x)x.^5,0,1) and quadgui(@(x)x.^5,0,1,10^(-8)).

(Also use quadtx with the same arguments.) In each case, how many function eval-

uations are used to estimate
∫ 1

0
x5dx? What is the absolute error of the estimation?

• Run the program quadtx(@(x)(cos(x)).^2,0,4*pi). How many function evalua-

tions are used to estimate
∫ 4π

0
(cos(x))2dx? What is the absolute error of the estima-

tion? Explain what happened. Does quad(@(x)(cos(x)).^2,0,4*pi) produce the
same output? Explain why or why not.
• Describe a nonnegative function f : [0, 1]→ [0, 1] such that the Matlab built-in com-

mand quad has the same error as in the previous part of this problem. That is, find
f such that the command quad(@(x) f(x),0,1) outputs 1 and has absolute error
at least 10−4.

Exercise 4.

• Using the textbook program quadtx, try to integrate the function 1
3x−1 from x = 0

to x = 1. Do you get an error? If so, explain why the error happened.
• Find a function f : [0, 1] → [0,∞) such that limx→0+ f(x) = ∞ and with

∫ 1

0
f(x)dx

finite. Can the programs quadtx and quad evaluate your integral with good relative
accuracy?
• Find an interval [a, b] and a function f : [a, b]→ R that exceeds the maximum func-

tion evaluation count (i.e. produces the maximum function count warning) both for

quadtx and quad when trying to estimate
∫ b
a
f(x)dx.

Exercise 5. Recall that we defined U0, U1, . . . to be the Chebyshev polynomials of the second

kind, where Un(x) := sin((n+1) cos−1 x)
sin cos−1 x

for any x ∈ (−1, 1).

• Show that U0, U1, . . . satisfy the recursion

Un+1(x) = 2xUn(x)− Un−1(x), ∀n ≥ 1, ∀x ∈ (−1, 1),

where U0(x) = 1 and U1(x) = 2x.
• Show that

d

dx
Tn(x) = nUn−1(x), ∀n ≥ 1, ∀x ∈ (−1, 1),

where T0, T1, . . . are the Chebyshev polynomials (of the first kind).

Exercise 6. It is known that

π =

∫ 1

−1

2

1 + x2
dx.

(You can compute this integral using (d/dx) tan−1(x) = 1/(1 + x2).)

• In Matlab, program your own trapezoid rule to estimate the integral
∫ 1

−1
2

1+x2
dx. Plot

the relative error of the integral estimate versus the number n of points used in the
trapezoid rule. Do you see any evidence of numerical errors? (You might need to
take n to be quite large, e.g. around 30, 000.)

3

• Use quadtx to estimate
∫ 1

−1
2

1+x2
dx. Make a table recording the integral estimates

for various tolerance values, including the estimated integral value Q, the function
evaluate count fcount, and the relative error. (For example, consider tolerances of
the form 10−k where k ∈ {1, 2, 3, . . . , 12}.) The first two rows of the table might look
like this:

tol Q fcount Relative Error

**

1e-001 3.14211764705882 9 1.671e-004

1e-002 3.14211764705882 9 1.671e-004

Does the relative error decrease as the tolerance decreases?

Exercise 7 (Optional). Read some more about Shamir’s Secret Sharing, as we discussed in
class.

https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing

