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1. INTRODUCTION

This course is an introduction to graduate stochastic processes, assuming no previous
background in measure theory.

A stochastic process is a collection of random variables. These random variables are
often indexed by time, and the random variables are often related to each other by the evo-
lution of some physical procedure. Stochastic processes can then model random phenomena
that depend on time.

A basic question we will often try to answer is: what does the stochastic process “look
like” after it runs for along period of time?

We will use conditional probabilities all the time, and the random variables we consider
will often not be independent; indeed, the dependence of the random variables on each other
makes stochastic processes interesting.

Also, whereas other probability classes focus mostly on equalities, we will additionally deal
with inequalities and limits.

2. REVIEW OF PROBABILITY THEORY
2.1. Random Variables, Conditional Probability, Expectation.

Definition 2.1 (Universal Set). In a specific problem, we assume the existence of a sample
space, or universal set C which contains all other sets. The universal set represents all pos-
sible outcomes of some random process. We sometimes call the universal set the universe.
The universe is always assumed to be nonempty.

Definition 2.2 (Countable Set Operations). Let Ay, As,... C C. We define

U A; = {x € C: 3 a positive integer j such that z € A,}.
i=1

m A, ={x € C: z € Aj, Vpositive integersj}.
i=1

Exercise 2.3. Prove that the set of real numbers R can be written as the countable union
o0
R = | J[-4.j].
j=1

(Hint: you should show that the left side contains the right side, and also show that the
right side contains the left side.)
Prove that the singleton set {0} can be written as

{0} = ([-1/4.1/4]-

=1

Definition 2.4. A Probability Law (or probability distribution) P on a sample space
C is a function whose domain is the set of all subsets of C, and whose range is contained in
0, 1], such that

(i) For any A C C, we have P(A) > 0. (Nonnegativity)



(ii) For any A, B C C such that AN B = (), we have
P(AU B) = P(A) + P(B).

If Ay, As,... CC and A;NA; = () whenever 7, j are positive integers with ¢ # j, then

P ( G Ak> = i P(Ay). (Additivity)

(iii) We have P(C) = 1. (Normalization)

For technical reasons, it might be impossible to define a probability law P on all subsets
of a sample space C. For example, if C = [0,1] and if P is the probability law such that
P([a,b]) :=b—a for all 0 < a < b < 1, then P cannot be defined on all subsets of [0, 1],
due the existence of non-measurable sets. The most natural set of subsets of C on which a
probability law P can be defined is a o-algebra (or o-field). Since this course assumes no
background in measure theory, we will not discuss this issue further.

Exercise 2.5 (Continuity of a Probability Law). Let P be a probability law on a sample
space C. Let Ay, As, ... be sets in C which are increasing, so that A; C Ay C ---. Then

lim P(A,) = P(U,A,).

In particular, the limit on the left exists. Similarly, let A;, Ay, ... be sets in C which are
decreasing, so that A; O Ay O ---. Then

lim P(A,) = P(N2,A4,).

n—oo

Definition 2.6 (Conditional Probability). Let A, B be subsets of some sample space
C. Let P be a probability law on C. Assume that P(B) > 0. We define the conditional
probability of A given B, denoted by P(A|B), as
P(ANB)

P(B)
Let By,...,B, € C. We use the following notation to denote the conditional probability of
A given NI, B;:

P(A|B) =

P(A|Bi,...,B,) = P(A| N, B)).

Proposition 2.7 (A Very Important Proposition). Let B be a fired subset of some
sample space C. Let P be a probability law on C. Assume that P(B) > 0. Given any subset
A in C, define P(A|B) =P(AN B)/P(B) as above. Then P(A|B) is itself a probability law
on C, when viewed as a function of subsets A in C.

Proposition 2.8 (Multiplication Rule). Let n be a positive integer. Let Ay,..., A, be
sets in some sample space C, and let P be a probability law on C. Assume that P(A;) > 0
forallie{1,...,n}. Then

P (ﬁAZ) =P(A)P(A]A))P(A3]|Aa N A)) - P(A,| NP A).
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Theorem 2.9 (Total Probability Theorem). Let Ay, ..., A, be disjoint events in a sam-
ple space C. That is, A; N A; = 0 whenever i,j € {1,...,n} satisfy i # j. Assume also that
U A; =C. Let P be a probability law on C. Then, for any event B C C, we have

:iP(BmA ZP P(B|A;).

Theorem 2.10 (Bayes’ Rule). Let Ay, ..., A, be disjoint events in a sample space C. That
is, A; N A; = 0 whenever i, j € {1,...,n} satisfy i # j. Assume also that U A; = C. Let
P be a probability law on C. Then, for any event B C C with P(B) > 0, and for any
j€e{l,...,n}, we have
P(A;)P(B|A;) _ P(4;)P(B|4;)

P(B) >, P(A)P(BIA)

Definition 2.11 (Independent Sets). Let n be a positive integer. Let Aj,..., A, be
subsets of a sample space C, and let P be a probability law on C. We say that Ay,..., A,

P(A;|B) =

are independent if, for any subset S of {1,...,n}, we have
zGSA H P
€S

Definition 2.12 (Random Variable). Let C be a sample space and let 2 be a set. Let
P be a probability law on C. A random variable X is a function X: C — . (Some
textbooks exclusively refer to function X: C — R as random variables, but we do not
use this convention.) A discrete random variable is a random variable whose range is
either finite or countably infinite. A probability density function (PDF) is a function
f: R — [0,00) such that [*° f(z)dz = 1, and such that, for any —oo < a < b < oo, the

integral ff f(z)dz exists. A real-valued random variable X is called continuous if there
exists a probability density function f such that, for any —oco < a < b < oo, we have

P(angb):/bf(x)dx

When this equality holds, we call f the probability density function of X.
Let X be any real-valued random variable. We then define the cumulative distribution
function (CDF) F': R — [0, 1] of X by

F(z) =P(X < x), VzeR.
We say two random variables X, Y are identically distributed if they have the same CDF.

Definition 2.13 (Probability Mass Function). Let X be a discrete random variable on
a sample space C, so that X: C — 2. The probability mass function (or PMF) of X,
denote px: R — [0, 1] is defined by

px(z) =P(X =2)=P{X =2}) =P{ceC: X(c) =x}), x €.
Let A CR. We denote {X € A} :={ceC: X(c) € A}.

We now give descriptions of some commonly encountered random variables.
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Definition 2.14 (Bernoulli Random Variable). Let 0 < p < 1. A random variable X is
called a Bernoulli random variable with parameter p if X has the following PMF:

P Jifr=1
0 , otherwise.

Definition 2.15 (Binomial Random Variable). Let 0 < p < 1 and let n be a positive
integer. A random variable X is called a binomial random variable with parameters
n and p if X has the following PMF. If k is an integer with 0 < k < n, then

n

For any other z, we have px(z) = 0.

Recall that a sum of n independent Bernoulli random variables with parameter 0 < p < 1
is a binomial random variable with parameters n and p.

Definition 2.16 (Geometric Random Variable). Let 0 < p < 1. A random variable X
is called a geometric random variable with parameter p if X has the following PMF.
If k is a positive integer, then

px(k) =P(X =k) = (1-p)"'p.
For any other x, we have px(z) = 0.

Definition 2.17 (Poisson Random Variable). Let A > 0. A random variable X is called
a Poisson random variable with parameter ) if X has the following PMF. If k is a
nonnegative integer, then
)\k
px(k)=P(X =k) = e‘AF.
For any other x, we have px(z) = 0.

Example 2.18. We say that a random variable X is uniformly distributed in [c, d] when

X has the following density function: f(z) = &= when x € [¢,d], and f(x) = 0 otherwise.

Example 2.19. Let A > 0. A random variable X is called an exponential random

variable with parameter \ if X has the following density function: f(x) = Ae™** when
x >0, and f(z) = 0 otherwise.

Definition 2.20 (Normal Random Variable). Let p € R, 0 > 0. A continuous random
variable X is said to be normal or Gaussian with mean g and variance o2 if X has the
following density function:

1 G
fz) = o : VzeR.

2mo

In particular, a standard normal or standard Gaussian random variable is defined to
be a normal with 4 =0 and o = 1.

Definition 2.21 (Indicator Function). Let A C C be a set. We define the indicator
function of A, denoted 14: C — R so that 14(c) =0if c ¢ A, and 14(c) =1 if c € A.
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Definition 2.22 (Expected Value). Let C be a sample space, let P be a probability law
on C. Let X be a real-valued random variable on C. Assume that X : C — [0,00). We define
the expected value of X, denoted E(X), by

E(X) = /OOOP(X > t)dt.

More generally, if g: [0,00) — [0,00) is a differentiable function such that ¢’ is continuous
and ¢(0) = 0, we define

Eg(X) —/ g (OP(X > t)dt.
0
In particular, taking g(t) = ¢" for any positive integer n, for any ¢ > 0, we have

EX" :/ nt" 'P(X > t)dt.
0

For a general random variable X, if Emax(X,0) < oo and if Emax(—X,0) < oo, we then
define E(X) = Emax(X,0) — Emax(—X,0). Otherwise, we say that E(X) is undefined.

Remark 2.23. If we assume that the expected value and the integral on R can be commuted,
then the following derivation of the formula for Eg(X) can be given. From the Fundamental
Theorem of Calculus, we have

X o0
900 = [ gt = [ e
0 0
Therefore, Eg(X) = E [[7 ¢/ (t)1{xsndt = [ ¢ (O)Elixsnydt = [;° ¢ (O)P(X > t)dt.

Remark 2.24. If X only takes positive integer values, then for any ¢ > 0, if k£ is an integer
such that k —1 <t <k, then P(X >t) =P(X > k), so

E(X) :/OOOP(X>t)dt:§:/:1P(X>t)dt:§:P(X2k) :ip()o k).

Remark 2.25. If X is positive with density function f that is continuous, then recall that
(d/dt)P(X < t) = f(t) for all t € R. Since P(X > t) = 1 — P(X < t), we then have
(d/dt)P(X > t) = —f(t). So, we can recover the usual formula for expected value by
integrating by parts (assuming ¢(0) = 0 and |g(¢)| < 1 for all t > 0):

Eg(X) — /OOO GOP(X > t)dt = — /OOO g(t)%P(X S t)dt = /Uoog(t)f(t)dt.

Theorem 2.26 (Fundamental Theorem of Calculus). Let f be a probability density
function. Then the function g(t) = ffoo f(x)dx is continuous at any t € R. Also, if f is
continuous at a point x, then g is differentiable at t = x, and ¢'(x) = f(x).

Proposition 2.27. Let Xy,..., X, be real-valued random variables. Then

E(Z X;) = Z E(X;).
i=1 i=1
Unfortunately the above property is not obvious from our definition of expected value.
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Definition 2.28 (Convex Function). Let ¢: R — R. We say that ¢ is convex if, for any
x,y € R and for any ¢ € [0, 1], we have

otz + (1 —t)y) < to(z) + (1 — H)d(y).
Exercise 2.29. Let ¢: R — R. Show that ¢ is convex if and only if: for any y € R, there

exists a constant a and there exists a function L: R — R defined by L(z) = a(x —y) + ¢(y),

x € R, such that L(y) = ¢(y) and such that L(x) < ¢(z) for all x € R. (In the case that ¢
is differentiable, the latter condition says that ¢ lies above all of its tangent lines.)

(Hint: Suppose ¢ is convex. If z is fixed and y varies, show that (; 2@) increases as Yy
increases. Draw a picture. What slope a should L have at z7)
Exercise 2.30. Let X, Y be positive random variables on a sample space C. Assume that
X(c) > Y(c) for all ¢ € C. Prove that EX > EY'.

More generally, if X <Y, E|X| < 0o and E|Y| < 0o, show that EX < EY.

Proposition 2.31 (Jensen’s Inequality). Let X be a real-valued random variable. Let
¢: R — R be convex. Then
P(EX) < E¢(X).

Proof. Let y = EX. Then Exercise 2.29 says there exists a linear function L(z) = a(z —
y) + ¢(y) such that L(x) < ¢(z) for all x € R. Taking expected values with respect to
x and using Exercise 2.30, we get EL(X) < E¢(X). But EL(X) = a(EX —y) + ¢(y) =
a(y —y) + ¢(y) = ¢(y). So, ¢(y) = H(EX) < E¢(X).

Definition 2.32 (Variance). Let C be a sample space, let P be a probability law on C. Let
X be a real-valued random variable on C. We define the variance of X, denoted var(X), by

var(X) = E(X — E(X))* =EX? — (EX)*.
We define the standard deviation of X, denoted oy, by
ox = /var(X).

Proposition 2.33. Let C be a sample space, let P be a probability law on C. Let X be a
real-valued random variable on C. Let a,b be constants. Then

var(aX + b) = a*var(X).
We will review conditional expectation later on in the notes.

Definition 2.34 (Joint Density Function). We say that real-valued random variables
Xi,..., X, have joint density function f:R" — [0,00)if [, f(x)dz =1, and if

P((Xy,...,X,) €A = /f x, vVACR"
We define the marginal density fx,: R — [0, 00) of X; so that
fx,(z1) = lf(xl,...,a:n)d:c2~~dxn, Yz €R.
R

Similarly, we can define the marginal density fio: R? — [0, 00) of X7, X5 so that

fxix (21, 20) = flzy, ... xy)dag - - day, Vo, xe €R.
Rn72

And so on.



Definition 2.35 (Independence of Random Variables). Let X;,...,X,: C — Q be
random variables on a sample space C, and let P be a probability law on C. We say that
X1,...,X, are independent if

n

P(X;€A,... . X, €4,)=][P(Xied), VA, . A CC

i=1
In the case that X, ..., X,, are real-valued, this condition implies the following:
P(X1§:L‘1,,Xngxn):HP(XZsz), le,...,xnec.
i=1

Exercise 2.36. Let Xi,...,X,,: C — Q be discrete random variables. Assume that
P(Xllea7Xn:xn):HP<Xz:Iz)7 VZL‘l,...,CL’nEQ.

Show that Xi,..., X, are independent.

Exercise 2.37. Let Xi,..., X, be continuous random variables with joint PDF f: R" —
[0,00). Assume that

Show that Xi,..., X, are independent.

Proposition 2.38. Let Xq,...,X,, be real-valued random wvariables on a sample space C,
and let P be a probability law on C. Assume that X1, ..., X, are pairwise independent. That
is, X; and X; are independent whenever i,j € {1,...,n} with i # j. Then

var(z X;) = Z var(X;).

Proposition 2.39. Let X,Y: Q0 — C be independent random variables. If either condition
X, Y >0 o0rE|XY| <o orE|X|,E|Y| < oo holds, then

E(XY) = EXEY.

More generally, if X, Y : Q — S are independent random variables, if F,G: S — C, and if
either F(X),G(Y) >0 or E|F(X)G(Y)| <0 or E|F(X)|,E|G(Y)| < oo, then

E(F(X)G(Y)) = EF(X)EG(Y).

Proposition 2.40. Let 0 = ng < ny < ng < ... < ng = n be integers. Let Xi,..., X,
be real-valued, independent random variables. For any 1 < i < k, let g;: R"~ ™1 — R.
Then the random variables gi(X1,. .., Xn,), 92(Xnys1y s Xna)sovor Ge( Xy 41,5 Xny)
are independent. Consequently,

k k
E(H gi(me1+1> ce ’Xm)) = H Egi(XniﬂJrla SR >an‘)‘
=1

i=1
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2.2. Some Linear algebra.

Definition 2.41 (Eigenvector, Eigenvalue). Let A be an m x m real matrix, let x € R™
be a column vector, and let y € R™ be a row vector. We say x is a (right) eigenvector of
A with eigenvalue A € C if z # 0 and

Ax = Az,
We say y is a (left) eigenvector of A with eigenvalue A € C if y # 0 and
yA = \y.

Note that z is a right eigenvector for A if and only if 27 is a left eigenvector of AT.

Definition 2.42. The null space (or kernel) of an m x n real matrix A is the set of all
column-vectors = € R™ such that Az = 0. The nullity of A is the number of nonzero vectors
that can form a basis of the null space of A

The column space is the set of all linear combinations of the columns of the matrix A.

The rank of A is the number of nonzero vectors that can form a basis of the column space
of A.

Theorem 2.43 (Rank-Nullity Theorem). Let A be an m x n real matriz. Then the rank
of A plus the nullity of A is equal to n.

2.3. Law Of Large Numbers.

Definition 2.44 (Almost Sure Convergence). We say random variables Y71, Ys,...: C —
R converge almost surely (or with probability one) to a random variable Y: C — R if

P(limY,=Y)=1.

n—oo

That is, P({c € C: lim,,» Yo(c) =Y (0)}) =1

Definition 2.45 (Convergence in Probability). We say that a sequence of random vari-
ables Y7, Y5,...: C — R converges in probability to a random variable Y: C — R if: for
all € > 0,

th—)Holo P(lY,-Y|>¢)=0.

That is, V € > 0, lim,, .« P(c € C: |Y,(c) = Y (¢)| > ¢) =0.

Definition 2.46 (Convergence in Distribution). We say that real-valued random vari-
ables Y1,Y5, ... converge in distribution to a real-valued random variable Y if, for any
t € R such that s — P(Y < s) is continuous at s = t,

lim P(Y,, <t)=P(Y <t).

n—oo

Note that the random variables are allowed to have different domains.

Definition 2.47 (Convergence in L,). Let 0 < p < co. We say that random variables
Y1,Ys,...: C = Rconverge in L, to Y: C — R if ||Y][, < oo and

lim [|Y, =Y, =0.
n—oQ
(Recall that [[Y]], :== (E [YP)YPif 0 < p < oo and || X]|, := inf{c > 0: P(|X| <¢)=1}.)
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Exercise 2.48. Let Y7, Y5, ... : C — R be random variables that converge almost surely to
a random variable Y: C — R. Show that Y7,Y5,... converges in probability to Y in the
following way.

e For any € > 0 and for any positive integer n, let
A= U {ceC: |Y(c) = Y(c)| > ¢}

Show that Anﬁ 2 An+1,6 2 An+2,5 2 LR
e Show that P(N22,A,.) =0.
e Using Continuity of the Probability Law, deduce that lim,_,., P(4,.) = 0.

Now, show that the converse is false. That is, find random variables Y7, Y5, ... that con-
verge in probability to Y, but where Y7, Y5, ... do not converge to Y almost surely.

Exercise 2.49. Let 0 < p < oco. Show that, if Y7,Y5,...: C — R converge to Y: C — R in
L,, then Y7,Y5, ... converges to Y in probability. Then, show that the converse is false.

Exercise 2.50. Suppose random variables Y}, Y5, ...: C — R converge in probability to a
random variable Y: C — R. Prove that Y7,Y5, ... converge in distribution to Y. Then, show
that the converse is false.

Exercise 2.51. Prove the following statement. Almost sure convergence does not imply
convergence in Ly, and convergence in L, does not imply almost sure convergence. That
is, find random variables that converge in L, but not almost surely. Then, find random
variables that converge almost surely but not in Ls.

Remark 2.52. The following table summarizes our different notions of convergence of ran-
dom variables, i.e. the following table summarizes the implications of Exercises 2.49, 2.50
and 2.48.

Almost sure

convergence
2.48
Convergence | 250 | Convergence
in probability in distribution
2.49
Convergence
in L,

Theorem 2.53 (Weak Law of Large Numbers). Let X,..., X, be independent identi-
cally distributed random variables. Assume that u:= EXy s finite. Then for any e > 0

X+ +X,
limP< s —u‘>g>=o.

n—00 n

That s, % converges in probability to p as n — oo.
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Theorem 2.54 (Strong Law of Large Numbers). Let X, ..., X,, be independent iden-
tically distributed random variables. Assume that p = EX is finite. Then

X 4+ + X,
P(lim Lt :,u)zl.
n

n—o0

That s, % converges almost surely to p as n — oco.

2.4. Central Limit Theorem. The following Theorem is a special case of the Central
Limit Theorem.

Theorem 2.55 (De Moivre-Laplace Theorem). Let X1, ..., X, be independent Bernoulli
random variables with parameter 1/2. Recall that X, has mean 1/2 and variance 1/4. Let

a € R. Then
lim P Xt oot Xo - (1/2)n <a :/ 6*t2/2i.
n—00 Vny/1/4 — V2T

That is, when n is large, the CDF of X1+"\'/j;)\71_/—il/2)" is roughly the same as that of a

standard normal. In particular, if you flip n fair coins, then the number of heads you get
should typically be in the interval (n/2 — /n/2,n/2 + /n/2), when n is large.

Remark 2.56. The random variable 22FXn =W/ 1)\ 1hean zero and variance 1, just like
Viy/1/4

the standard Gaussian. So, the normalizations of X; + - -+ X, we have chosen are sensible.
Also, to explain the interval (n/2 —/n/2,n/2 4+ \/n/2), note that

lim P E—@§X1+...+Xn§§+@

<)

2

X 4 X, - 1 ) dt
= lim P <—1 < Lt il 2 < 1) :/ eV .6827.
n—o9 Vn/2 1 Ver

Exercise 2.57. Estimate the probability that 1000000 coin flips of fair coins will result
in more than 501,000 heads, using the De Moivre-Laplace Theorem. (Some of the fol-
lowing integrals may be relevant: ffoo e 12dt/\/2m = 1/2, fjoo e 124t /\/2r ~ 8413,
[ e PRdt )2 ~ 9772, [P emP2dt/ /21 ~ .998T.)

Casinos do these kinds of calculations to make sure they make money and that they do
not go bankrupt. Financial institutions and insurance companies do similar calculations for
similar reasons.

- limP<—4§X1+~-+Xn—

n—o0

|3

In fact, there is nothing special about the parameter 1/2 in the above theorem.

Theorem 2.58 (De Moivre-Laplace Theorem, Second Version). Let Xi,..., X, be
independent Bernoulli random variables with parameter p. Recall that X, has mean p and
variance p(1 — p). Let a € R. Then

lim p (2t X o, —/a otz 4t
n—00 vnyp(l—p) oo V21

11



In fact, there is nothing special about Bernoulli random variables in the above theorem.

Theorem 2.59 (Central Limit Theorem). Let Xi,..., X, be independent identically
distributed random variables. Assume that E|X;| < oo and 0 < Var(X;) < oo.

Let n = EX; and let 0 = \/Var(X1). Then for any —oo < a < oo,

lim P (X1+---—|—Xn—,un Sa) :/ e—tQ/Qi.
n—00 O'\/ﬁ PN \/%

That s, Xﬁ;—\/}%’rn“ converges in distribution to a standard Gaussian as n — 0.

Theorem 2.60 (Fubini Theorem for Integrals). Let h: R? — R be a continuous function
such that [ [o. |h(x,y)|dedy < oco. Then

//R h(x,y)dxdyZA(éh(x,y)dx) dy:/R</Rh(x7y)dy) di.

Theorem 2.61 (Fubini Theorem for Sums). Let {a;;}i ;>0 be a doubly-infinite array of
nonnegative numbers. Then

> (o) -3 (o)
=0 \j=0 =0 \i=0
Exercise 2.62. Find a doubly-infinite array of real numbers {a;;}; ;>0 such that
> (o) - 140-3 ()
i=0 \j=0 7=0 \i=0

(Hint: the array can be chosen to have all entries either —1,0, or 1. And most of the entries
can be chosen to be 0.)

Exercise 2.63. Let X, Y be independent, discrete random variables. Using a total proba-
bility theorem-type argument, show that

P(X—l—Yzz):ZP(X:QC)P(Y:Z—:U), VzeR.

zeR

Exercise 2.64. Let X, Y be independent, continuous random variables with densities fx, fy,
respectively. Let fx.y be the density of X + Y. Show that

fxav(z) = /fo(:c)fy(z — z)dx, Vz e R.

Using this identity, find the density fx.y when X and Y are both independent, uniformly
distributed on [0, 1].

3. MARKOV CHAINS

Our first example of a stochastic process will be a Markov chain. Before defining a Markov
chain formally, we give an example of one.

12



Example 3.1 (Frog on two Lily Pads). Suppose there are two different lily pads labelled
e (for east) and w (for west). Suppose the frog starts on one of the two lily pads. Let
0 < p,q < 1. There is a coin on the lily pad e that has probability p of landing heads
and probability 1 — p of landing tails. Similarly, there is a coin on the lily pad w that has
probability ¢ of landing heads and probability 1 — ¢ of landing tails. Every day, the frog flips
the coin on the lily pad it currently occupies. If the coin lands heads, the frog goes to the
other lily pad. If the coin lands tails, the frog stays on its current lily pad.

For any n > 0, let X,, be the (random) location of the frog at the beginning of day n.
Then the sequence of random variables Xy, X1, X, ... describes the sequence of positions
that the frog takes. Note that if C is the sample space, then for any n > 0, X,,: C — {e,w}
is a random variable, taking either the value e or w. We would like to find the probabilities
that X7, X, ... take the values e and w. To this end, let P be a real 2 x 2 matrix such that
P(z,y) =P(X; =y| Xo = x), for all z,y € {e,w}. That is,

P = P<€7€) P(eaw) _ 1_p p
B P(wae> P(U},U}) B q 1_(] ‘
More generally, note that for any integer n > 1, P(z,y) = P(X,, = y| X,,—1 = x), since the

location of the frog tomorrow only depends on its location today.
The set of random variables (Xg, X7, ...) is a Markov Chain with transition matrix P.

Definition 3.2 (Finite Markov Chain). A finite Markov Chain is a stochastic process
(Xo, X1, Xa,...) together with a finite set {2, which is called the state space of the Markov
Chain, and an || x || real matrix P. The random variables Xy, X7, ... take values in the
finite set {2. The matrix P is stochastic, that is all of its entries are nonnegative and

ZP(m,y)zl, Vel

yeN
And the stochastic process satisfies the following Markov property: for all z,y € €, for
any n > 1, and for all events H,_; of the form H, | = ﬁZ;é{Xk =z}, where z, € Q) for all
0 <k <n-—1,such that P(H,_; N {X, =x}) > 0, we have

P(Xp =y Hypa N{X, =2}) = P(Xop1 =y | X = 7) = P(2,9).

That is, the next location of the Markov chain only depends on its current location. And
the transition probability is defined by P(z,y).

Exercise 3.3. Let P, () be stochastic matrices of the same size. Show that P() is a stochastic
matrix. Conclude that, if r is a positive integer, then P is a stochastic matrix.

Exercise 3.4. Let A, B be events in a sample space. Let Cy,...,C, be events such that
CiNnC; =0 for any i,j € {1,...,n} with ¢ # j, and such that U, C; is the whole sample
space. Show:

P(AIB) = S P(A|B, C)P(CH|B).
i=1
(Hint: consider using the Total Probability Theorem (Theorem 2.9) and Proposition 2.7.)

Example 3.5. Returning to the frog example, we have
p=(t"P P
q 1—gq
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Note that each row of this matrix sums to 1, so P is stochastic. We can then compute the
probabilities that X, takes various values, by conditioning on the two possible values of X;.
Using Exercise 3.4, the Markov Property, and the definition of P,

PXo=w|Xo=¢)=PXo=w|X;=¢,Xo=¢)P(X;=¢| Xy =¢)
+PXo=w| X1 =w,Xo=e)P(X; =w|Xo=¢)
=PXo=w|X;i=e)P(X1=¢|Xop=¢)+ P(Xo=w|X; =w)P(X; =w| Xy =¢)
= P(e,w)P(e,e) + P(w,w)P(e,w) = p(1l —p) + (1 — q)p. (1)
More generally, for any n > 1, define the 1 x 2 row vector
o = (P(X, =e|Xo=c¢), P(X,=w|Xo=¢)).
Also, assume the frog starts on the lily pad e, so that py = (1,0). Then (1) generalizes to
M = fp_1P, Vn>1.
Iteratively applying this identity,
o, = poP", Vn > 0.
What happens when n becomes large? In this case, we might expect the vector u, to
converge to something as n — oo. That is, when n becomes very large, the probability that
X, takes a particular value converges to a number. Suppose the vector u,, converges to some

1 x 2 row vector m as n — oo. Note that the entries of i, sum to 1 and are nonnegative, so
the same is true for 7. We claim that

T =mrP.

That is, 7 is a (left)-eigenvector of P with eigenvalue 1. To see why m = 7P should be true,
note that
m= lim p, = lim peP" = (lim peP")P = (lim u,)P = nP.
n—00 n—o0 n—oo n—oo

The equation m = P allows us to solve for 7, since it says
(7(e), 7(w)) = (7€)1 = p) + 7(w)a, 7(e)p+m(w)(1-q)).
S0, 0 = —pr(e) + m(w)q, w(w) = 7(€)(p/q), and 7(e) + w(w) = 1, 50 7(e)(1 +p/g) = 1, 50
mle) = ——,  m(w) = ——

T ptq T ptq
That is, when n becomes very large, the frog has probability roughly ¢/(q + p) of being on
the e pad, and it has probability roughly p/(q + p) of being on the w pad.

We can actually say something a bit more precise. For any n > 0, define

q

A, = pp(e) — ——.

() o
Then, using the definition of ji,, 41, and p,(w) =1 — p,(e), we have, for any n > 0

q q
Api1 = (upP)(le) — —— = pp(e)(1 —p) +q(1 — pp(e)) — —— = (1 —p — q)A,.
1= (nP)e) = 2 = (€)= p) + (L= pn(e)) = 2 = (1= —q)
So, iterating this equality, we have

A, =(1—-p—q)"Ay, Vn > 1.

14



Since 0 < p,q < 1, this means that the quantity A,, is converging exponentially fast to 0. In
particular,

lim A, =0, lim pu, = .
n—oo n—oo

A similar argument shows that u,(w) — - converges exponentially fast to zero
p+q

Exercise 3.6. Let 0 < p,g < 1. Let P = (1 ;p 1 f q)' Find the (left) eigenvectors of

P, and find the eigenvalues of P. By writing any row vector € R? as a linear combination
of eigenvectors of P (whenever possible), find an expression for zP" for any n > 1. What is
limy, 00 £ P™7 Is it related to the vector m = (q¢/(p + q),p/(p + q))?

3.1. Examples of Markov Chains. Unfortunately, not all Markov chains converge when
n becomes large, as we now demonstrate.

Example 3.7. Consider the Markov chain defined by the matrix P = ((1) (1)) Note that
P" = P for any positive odd integer n, and P" = é ? for any positive even integer n.

So, if p is any 1 x 2 row vector with unequal entries, it is impossible for ©P™ to converge as
n — oo.

Example 3.8 (Random Walk on a Graph). A (finite, undirected, simple) graph G =
(V,E) consists of a finite vertex set V and an edge set E. The edge set consists of
unordered pairs of vertices, so that £ C {{z,y}: z,y € V, z # y}. We think of distinct
vertices as distinct nodes, where two nodes x,y € V are joined by an edge if and only if
{z,y} € E. When {z,y} € E, we say that y is a neighbor of x (and x is a neighbor of
y). The degree deg(x) of a vertex z € V is the number of neighbors of . We assume that
deg(z) > 0 for every x € V, so that G has no isolated vertices.

Given a graph G = (V| E), we define the simple random walk on G to be the Markov
chain with state space V' and transition matrix

1
m@w:{mm

0 , otherwise.

, if z and y are neighbors

In this Markov chain, starting from any position x, the next state is then any neighbor
y of x, each with equal probability. More generally, a random walk on a vertex set V is
any Markov chain with state space V. And a random walk on a graph G is any Markov
chain with state space V' such that P(x,y) = 0 whenever {z,y} ¢ E.

- S e /&

.4 P(4,3)

P(1,2)
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Exercise 3.9. Let G = (V, E) be a graph. Let |E| denote the number of elements in the set
E, ie. |E| is the number of edges of the graph. Prove: ) _, deg(x) =2 |E]|.

Example 3.10 (Lazy Random Walk). Let P be the matrix defined by a simple random
walk on a graph G = (V, E). Let I denote the |V| x |V identity matrix. The lazy random
walk is the Markov chain with transition matrix (P + I)/2. That is, with probability 1/2,
the next state is your current state, and with probability 1/2, the next state is any neighbor
of the current state, each chosen with equal probability.

Example 3.11 (Google’s PageRank Algorithm). We can think of the set of all websites
on the internet as a graph, where each website is a vertex in V| and {z,y} € F if and only if
there is a hyperlink on page x that links to page y (or if there is a hyperlink on page y that
links to page z). Let P denote the normalized adjacency matrix, so that P(x,y) = 1/deg(z)
if {x,y} € E, and P(z,y) = 0 otherwise. Note that P is a stochastic matrix. Let @ be the
|V| x |V| matrix such that all entries of @ are 1. Consider the matrix

N = (85)P + (.15)Q/ |V .

Then N is a stochastic matrix. We can think of the Markov chain associated to N as follows:
85% of the time, you move from one website to another by one of the hyperlinks on that site,
each with equal probability. And 15% of the time, you go to any website on the internet,
uniformly at random. The PageRank vector m is then a 1 x |V| vector with 7(x) > 0 for
all z € V,and ), m(x) = 1 such that 7 = 7 N. That is, the PageRank value of website
x € V is w(x). The most “relevant” websites x have the largest values of ().

The idea here is that if w(x) is large, then the Markov chain will often encounter the website
x, so we think of x as being an important website. At the moment, 7 is not guaranteed to
exist. We will return to this issue in Theorem 3.34 below.

3.2. Classification of States.

Definition 3.12. Suppose we have a Markov chain (X, X7, X5, ...) with state space Q. Let
x € Q be fixed. For any set A in the sample space, define a probability law P, such that
P.(A) :=P(A| X, = 2).

Similarly, we define E, to be the expected value with respect to the probability law P,.

More generally, if 1 is a probability distribution on €2, we let P, denote the probability law,
given that the Markov chain started from the probability distribution u, so that P,(X, =
xo) = p(xg) for any zy € Q. So, for example,

P,(Xi=x)= Z P(zg, x1) (o), Ve .
20 EN
Note also that if = € € is fixed, and if p is defined so that pu(z) = 1 and p(y) = 0 for all
y # x, then P, = P,.
Definition 3.13 (Return Time). Suppose we have a Markov Chain Xy, X1, ... with state
space (2. Let y € (). Define the first return time of y to be the following random variable:
T, :=min{n > 1: X,, = y}.
Also, define
pyy = Py(T, < 00).

That is, py, is the probability that the chain starts at y, and it returns to y in finite time.
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Definition 3.14 (Stopping Time). A stopping time for a Markov chain X, Xi,... is a
random variable T' taking values in 0,1,2,... U {oo} such that, for any integer n > 0, the
event {T' = n} is determined by Xy, ..., X,. More formally, for any integer n > 1, there is
a set B, C Q" such that {T' =n} = {(Xy,...,X,) € B,}. Put another way, the indicator
function 1y7_,y is a function of the random variables Xy, ..., X,.

Example 3.15. Fix y € 2. The first return time 7}, is a stopping time since

{Ty:n}:{Xl#i%XQ#yu"'aXn—l#?ﬁXn:y}
={(Xo,.. ., Xn) € @ x{y} - {y}* x{y}},  Vn=0.

For an intuitive example of a stopping time, suppose Xy, X1, ... is a Markov chain where
X, is the price of a stock at time n > 0. Then a stopping time could be the first time that the
stock price reaches either $90 or $100. That is, a stopping time is a stock trading strategy,
or a way of “stopping” the random process, but only using information from the past and
present. An example of a random variable T" that is not a stopping time is to let T be the
time that stock price becomes highest, before the price drops to 0. (For example, {T" = 100}
could depend on Xjg4.) So, since T relies on future information, 7" is not a stopping time.

More generally, if A C (2, the hitting time of A is defined as

N :=min{n >1: X,, € A}
And N is a stopping time since, for any n > 1,
{N=n}={{X1 €A% ... X,1 €A X, e A} ={(Xy,..., X)) € A% --- x A° x A}.

Exercise 3.16. Let M, N be stopping times for a Markov chain Xy, X;,.... Show that
max (M, N) and min(M, N) are stopping times. In particular, if n > 0 is fixed, then
max (M, n) and min(M,n) are stopping times

Theorem 3.17 (Strong Markov Property). Let T be a stopping time for a Markov chain.
Let £ > 1, and let A C Qf. Fixn > 1. Then, for any xq, ..., T, € §,

P.,(X741,.. ., X1rwe) € A|T =n and (Xo,..., X,) = (20, ., %n))
=P, (X1,...,Xy) € A).

That is, if we know T = n, X,, = x, and if we know the previous n states of the Markov
chain, then this is exactly the same as starting the Markov chain from the state x,,.

Proof. By the definition of the stopping time, there exists B,, C Q" such that {T =n} =
{(Xo,...,X,) € Bp}. If (x0,...,2,) € B, we then have (using Exercise 3.18)

P, (X1, .., Xpye) € AT =n, (Xo,..., X)) = (z0,...,2n))
=P(Xry1,.., Xrye) € AT =n, (Xo,...,Xn) = (20,...,2,))
=P(Xpns1,. -, Xnwe) €A|T =n, (Xo,...,X,) = (xo,..., 7))
=P((Xps1, -, Xne) € A (Xo, ..., X)) = (20, ..., 2,))
=P(Xps1,.- -, Xne) €A| X, =1,) , by Exercise 3.19
=P((Xy,...,Xp) € A| Xog=1x,) , by Exercise 3.19
=P, (Xy,...,Xy) € A), , by definition of P, .
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Finally, if (zo,...,x,) ¢ By, then {T' = n} N {(Xo,...,Xn) = (xo,...,2,)} = 0, so the
conditional probability of this event is undefined, and there is nothing to prove. 0

Exercise 3.18. Let A, B be events such that B C {Xy = z¢}. Then P(A|B) = P,,(A|B).
More generally, if A, B are events, then P, (A|B) = P(A|B, Xy = ).

Exercise 3.19. Suppose we have a Markov Chain with state space Q2. Let n > 0, £ > 1, let
To, ..., T, € Qand let A C QF Using the (usual) Markov property, show that
P((Xn—s—l’ PN 7Xn+(> S Al (X(), ce 7Xn) = (Io, PN ,(L’n))
=P((Xpni1,-.., Xnwe) € A| X, = zy).
Then, show that
P(Xpi1,- s Xoae) €A X, =2,) =P((X1,..., Xp) € A| Xo = x,).
(Hint: it may be helpful to use the Multiplication Rule (Proposition 2.8).)

Exercise 3.20. Suppose we have a Markov chain X, X, ... with finite state space €. Let
y € Q. Define L, := max{n > 0: X,, = y}. Is L, a stopping time? Prove your assertion.

Example 3.21. If y is in the state space of a Markov chain, recall we defined the return
time to be T, = min{n > 1: X,, = y}. We also verified T}, is a stopping time. Let Ty(l) =T,
and for any k > 2, define a random variable

Ty(k) = min{n > Ty(kfl): X, =y}
So, Ték) is the time of the k™ return of the Markov chain to state y. Just as before, we can
verify that Ty(k) is a stopping time for any k£ > 1.
Let T := Ték_l). Note that if T < oo, then Ty(k) — T = min{n > 1: Xy, = y}. Let

A C Qf such that A = {y}°x--- x {y}¢ x {y}. From the Strong Markov Property (Theorem
3.17), for any n > 1,

P.,(Xri1,. ., Xpye) € A|T =n and (Xo, ..., X,) = (o, .., 2n))
=P, (Xq,...,Xy) € A).
Since {Ty" — T =0} = {(Xr11,. .-, Xrp) € A}, and {T, = €} = {(X4, ..., X,) € A}, if we
use ro = T, =Yy, we get
P (TP —T=0|T=nXi=a1,....,Xp-1 =001, Xpn=y) =Py (T, =0), Vi{n>1
From the definition of conditional probability,
Py(Ty(k) —T=0T=n X1=21,....,. X1 =2p_1,Xn = V)

=P,(T=n, Xi=21,....Xp1 =21, X, =y)P,(T, = () Vi n>1.

Summing over all xy, ..., 2,1 such that {X; =21,..., X,,_1 = 2,1, X,, = y} C{T =n},
P (T —T=(,T=n)=P,(T=n)P,(T,=(), Vi{n>1
Taking the union over all £ > 1,
P, (T" =T < oo, T =n) =Py (T =n)P,(T, <oo) =P,(T'=n)p,,, Yn>1L
Then, summing over all n > 1,
P, (T —T <00, T < 0) = p,, P, (T < 0).

Y
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Using the definition of conditional probability again,
Py(quk) —T <oo|T < 00) = pyy. (%)
So, using the multiplication rule (Proposition 2.8) and recalling the definition of T,

P, (T\" < 00) = Py (TP — TV < o0)

= Py(Ty(k) ~TH D < o0 Ty(k’l) < 00)P,(T* ™ < 0)

Y Y

= pnyy(T(k_l) < 00) , by (%)

y
Iterating this equality & — 1 times, we have shown:
Proposition 3.22. For any integer k > 1,

Py(Ty(k) < o00) = [Py (T, < o0)]t = sz-

In particular, if p,, = 1, then the Markov chain returns to y an infinite number of times.
But if p,, < 1, then eventually the Markov chain will not return to y:

P, (T =00 Vk > j) =P,(T}) =00) =1—pl, — L as j — cc.
For this reason, we make the following definitions.

Definition 3.23 (Recurrent State, Transient State). If p,, = 1, we say the state y € Q
is recurrent. If p,, < 1, we say the state y € {1 is transient.

Recall that p,, is defined in Definition 3.13.

Example 3.24 (Gambler’s Ruin). Consider the Markov Chain defined by the following
5 X 5 stochastic matrix

0
0
4
0

i)

I
coo &~
ooy o O
OO n O
N Nl = I e e

0

We label the rows and columns of this matrix as {1, 2, 3,4, 5}, so that we consider the Markov
chain to have state space {1,2,3,4,5}. We think of state 1 as a Gambler going bankrupt,
state 5 as a Gambler reaching a high amount of money and cashing out. And at each of the
states 2, 3,4, the gambler can either win a round of some game with probability .4, or lose
a round of the game with probability .6.

We will show that states 1 and 5 are recurrent, whereas states 2, 3,4 are transient.

Since P(1,1) = 1, Py(Ty = 1) = 1, so Py(11 < o0) = 1. Similarly, P(5,5) = 1, so
P;(T5 = 1) and P5(75 < 00) = 1. So, states 1 and 5 are recurrent.

Now, P(2,1) = .6, and since P(1,1) = 1, if the Markov chain reaches 1 it will never return
to 2. So, using the Multiplication rule and the Markov property,

PQ(TQ = OO) 2 PQ(Xl = 1,X2 = 1,X3 = 1,. . )
—P(X;=1|X,=2P(Xo=1|X; = )P(Xz3=1|Xo=1)---
= lim P(2,1)P(1,1)" = P(2,1) = .6 > 0.

n—o0
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That is, Po(T2 < 00) =1 —P(Ty = 00) < 1 — .6 < 1, so that state 2 is transient. Similarly,
P(4,5) = 4, and P(5,5) =1, so Py(Ty = 0c0) > P(4,5) > 0, so P4(Ty < 00) < 1, so state 4
is transient. Using similar reasoning again,

P3(T5 = 00) > lim P(3,2)P(2,1)P(1,1)" = P(3,2)P(2,1) > 0.
n— o0
So, P3(T3 < 00) < 1, so state 3 is transient.

We defined the transition matrix P so that P(x,y) = P(X; =y | X, = ), for any z,y in
the state space of the Markov chain. Powers of the matrix P have a similar interpretation.
For any n > 1, 2,y € €, define p™ (x,7) := P(X, =y | Xo = 2).

Proposition 3.25 (Chapman-Kolmogorov Equation). Let n,m > 1. Let x,y € § be
states of a finite (or countable) Markov chain. Then

P () = (2,9)
z€Q
So, for any x,y,z € Q, p" (z,y) > p™ (z, 2)p™ (2, y).
Corollary 3.26. Let m > 1. Let x,y € Q be states of a finite Markov chain. Then
P (z,y) = p"™ (2, y).

Proof of Corollary 5.26. We induct on m. The case m = 1 follows since by definition,
pW(z,y) = P(z,y) for all 2,3 € Q. We now perform the inductive step. From Proposition
3.25 with n =1,

p " (@) = p (@, 2)pM () = Y P (@, 2) Plz,y) = P (a, ),
z€eQ zeQ
The second equality is the inductive hypothesis, and the last equality is the definition of
matrix multiplication. O

Proof of Proposition 3.25. Let x,y € (). Using the Total Probability Theorem, we have
p(m+n)(x’ y) = P(Xern =Y ’ Xo = x) = ZP(Xern = anm =z ’ Xo = $)
z€Q

_Z m+n—y,X =2,Xo=1x)

z€Q XO = l‘)

- Z P(Xonin =y, X = 2, Xo = 2) P(Xi = 2, Xo = 7)
2€Q P(Xpm = 2, Xo = ) P(Xo =z)
2€Q

Finally, the Markov property and Exercise 3.19 imply that
P (@, y) =Y P Xy = y| X = 2)P(Xo = 2| Xo = @)

z€Q
=Y P(X, =y|Xo=2)P(Xp =2|Xo=2) = > p"(z,9)p"(,2).
z€Q z€eQ

(Since we only condition on events with positive probability, we did not divide by zero.) O
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Definition 3.27 (Irreducible). A Markov chain with state space {2 and with transition
matrix P is called irreducible if, for any z,y € , there exists an integer n > 1 (which is
allowed to depend on z,y) such that P"(z,y) > 0. That is the Markov chain is irreducible
if any state can reach any other state, with some positive probability, if the chain runs long
enough.

Lemma 3.28. Suppose we have a finite irreducible Markov chain with state space ). Then
there exists 0 < a < 1 and there exists an integer j > 0 such that, for any x,y € €,

P.(T, > kj) <aF,  VE>1

Proof. As a consequence of irreducibility, there exists € > 0 and integer j > 0 such that, for
any z,y € Q, there exists 7(x,y) < j such that P"@¥)(x,y) > . That is, after at most j
steps of the Markov chain, the chain will move from z to y with some positive probability.
Po(Ty > kj) = Po(T, > kj| Ty > (k — 1)j)Po(T, > (k — 1)j)
< maé{Pz(Ty > ))P.(T, > (k—1)j7), by Exercise 3.29
ze

< max Po(T, > 7(2,9)Pu (T, > (k= 1)j),  sincer(z,y) <j
= max(1 = P.(T, <r(2,9)))P.(T, > (k—1)j)

< max(1 — P'E9 (2, ) P(T,
< (1-e)P(T, > (k- 1)j).

Iterating this inequality £ — 1 times concludes the Lemma with o :=1 — €. U

> (k—1)j), by Exercise 3.30

Exercise 3.29. Let z,y be points in the state space of a finite Markov Chain (X, X1, ...).
Let T, = min{n > 1: X,, = y} be the first arrival time of y. Let j, k be positive integers.
Show that

Px(Ty > kj|Ty > (k—1)j) < rgea%PZ(Ty > j).

(Hint: use Exercise 3.19)

Exercise 3.30. Let x,y be points in the state space of a finite Markov Chain (X, X1, ...)
with transition matrix P. Let T, = min{n > 1: X,, = y} be the first arrival time of y. Let
7 be a positive integer. Show that

Pi(z,y) < Po(T, < j).
(Hint: can you induct on j57)

Example 3.31. Consider the Markov Chain with state space = {1,2,3} and transition
matrix

2 .3
P=13 3
4 .5
Then for any z,y in the state space of the Markov chain, P(x,y) > .1. So, we can use
j=r=1and e =.1, «=.9 in Lemma 3.28 to get
P.(T,>k) <(9F  Vk>1Va,yecQ.

In particular, P, (7, < co) = 1, so all states are recurrent.

)
4
1
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Exercise 3.32. Let x,y be any states in a finite irreducible Markov chain. Show that
E,T, < co. In particular, P,(T, < co) = 1, so all states are recurrent.

3.3. Stationary Distribution.

Definition 3.33 (Stationary Distribution). Let P be the m x m transition matrix of a
finite irreducible Markov chain with state space ). Let m be a 1 x m row vector. We say
that 7 is a stationary distribution if 7(x) > 0 for every x € Q, }° _o7(z) = 1, and if 7
satisfies

T =mrP.

As discussed above, if a stationary distribution exists, we can think of m(x) as roughly the
fraction of time that the Markov chain spends in x, when the Markov chain runs for a long
period of time. Put another way, after the Markov chain has run for a long period of time,
7(x) is the probability that the Markov chain is in state z. In fact, 7 defines a probability
law on the state space €: for any A C Q, define 7(A) := >_ _, m(x). Then 7 is a probability
law on €.

Unfortunately, even if the stationary distribution exists, it may not be unique! If there is
more than one stationary distribution, then there may not be a sensible way of describing
where the Markov chain could be, after a long time has passed.

In this section, we address the existence and uniqueness of a stationary distribution 7.

Theorem 3.34 (Existence). Suppose we have a finite irreducible Markov chain (Xo, X1, . . .)
with state space ) and transition matriz P. Then there exists a stationary distribution m
such that m = P and w(x) > 0 for all x € .

Proof. Let y,z € Q. Let let T, = min{n > 1: X,, = z}. We define 7(y) to be the expected
number of times the chain visits y before returning to z. That is, define

%(y> - Ez (Z 1{Xny,Tz>n}> = ZPZ(XTL =Y, Tz > TL) (*)
n=0 n=0

First, note that since the Markov chain is irreducible, there is always some probability that
the chain starts at z and visits y before returning to z. Therefore, 7(y) > 0 for any y € Q.
Now, using Remark 2.24, and then Exercise 3.32,

NE

T(y) <> P(T,>n)=E.T, < o0, Vy e Q.

Il
=)

n

We now show that 7 satisfies 7 = 7P. By definition of 7,

Y F(@)Plry) =Y Y PAX, =z T.>n)Px,y). (%)

€N zeQ n=0

Consider the event {T, > n} = {T, > n+ 1} = {T, < n}°. That is, {T, > n} only depends
on Xy, ..., X,. So, the usual Markov property (rearranged a bit) says

P.Xpn=y,Xo=2,T.>2n+1)=P.(X,=2,T, >n+1)P(z,y).
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Substituting this into (x*) and first changing the order of summation,

> w@)Plr,y) =) Y Pu(Xon=y, Xo =2, T.>n+1)

e n=0 zef)

=Y P Xy =y, T.>2n+1)=) P.(X,=y, T.>n)
n=0 n=1

= %(y) - PZ(XO =Y, Tz > 0) + ZPZ(XH =Y, Tz = 77,), by (*)

n=1

=7(y) — P.(Xo=vy) + P.(X1. =v), substituting n = 7.

We now split into two cases. If y = z, then P,(Xy = y) = 1 by definition of P, and also
X7, = z = y by definition of T}, so P,(X7, = y) = 1. If y # z, then by similar reasoning,
P.(Xo=y) =P.(Xr. =y) =01In any case —P.(Xo=y,7. >0)+ P, (X7, =y)=0. In
conclusion, we have shown that

T =mP.
Finally, to get a stationary distribution 7 also satisfying 7 = 7P, we just define 7(z) :=
T(x)/ > yeq m(y) for any x € €. O

Remark 3.35. We note in passing the following identity. By (%) and Remark 2.24,

YAy =YY P(X,=y, T.>n)=)» P.(T.>n)=E[T.

yeQ n=0 yeN

Lemma 3.36. Let P be the transition matrix of a finite irreducible Markov chain with state
space §2. Let f: Q — R be a harmonic function, so that

f@) =3 Plxy)fly), Vze.

yeN

Then f is a constant function.

Proof. Since € is finite, there exists zo € €2 such that M := max,cq f(x) = f(z0). Let z € Q
with P(xg, z) > 0, and assume that f(z) < M. Then since f is harmonic,

f(wo) = P(wo,2)f(2) + Y Plao,y)f(y) < MY Plao,y) = M,

yeQ: y#z yeQ

a contradiction. Thus, f(z) = M for any z € Q with P(zg, z) > 0.

Finally, for any z € (), irreducibility of P implies that there is a sequence of points
xo, T1, ..., Tk = 2z in Q such that P(x;, z;11) > 0 for every 0 < i < k. So, by repeating the
above argument k — 1 times, M = f(xg) = f(z1) = --- = f(ax) = f(2). That is, f(z) = M
for every z € (). O

Theorem 3.37 (Uniqueness). Let P be the transition matriz of a finite irreducible Markov
chain. Then there exists a unique stationary distribution m such that m = 7 P.

Proof. By Theorem 3.34, there exists at least one stationary distribution 7 such that 7 = 7 P.
Let I denote the || x || identity matrix. Lemma 3.36 implies that the null-space of P — I
has dimension 1. So, by the rank-nullity theorem, the column rank of P — I is |2| — 1. Since
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row rank and column rank are equal, the row rank of P — I is |Q2| — 1. That is, the space of
solutions of the row-vector equation ;1 = pP is one-dimensional (where p denotes a 1 x |Q]
row vector.) Since this space is one-dimensional, it has only one vector whose entries sum
to 1. 0

The following Corollary gives a sensible way of computing the stationary distribution of
an irreducible Markov chain.

Corollary 3.38. Let P be the transition matriz of a finite irreducible Markov chain with
state space Q. If w 1s the unique solution to m = 7P, then

1

~ E, T’
Proof. Let y,z € Q and define 7,(y) := 7(y), where 7(y) is defined in (%) in Theorem
3.34. Also, define 7,(y) := 7,(y)/E.T.. Theorem 3.34 and Remark 3.35 imply that 7, is a
stationary distribution such that 7, = 7, P. Theorem 3.37 implies that 7, does not depend

on z. That is, for any = € Q, if we define 7(x) := 7, (x) (for any particular z € Q, since the
expression does not depend on z), then we have 7 = 7P, and

Ve

()

B C me(z) 1
m(z) = m(z) = ET BT
In the last equality, we used 7,(x) = 1, which follows by the definition of 7,. (The n =0
term in Y P,(X, =z, T, >n) is 1, and all other terms in the sum are zero.) O

Exercise 3.39 (Knight Moves). Consider a standard 8 x 8 chess board. Let V be a set of
vertices corresponding to each square on the board (so V' has 64 elements). Any two vertices
x,y € V are connected by an edge if and only if a knight can move from = to y. (The
knight chess piece moves in an L-shape, so that a single move constitutes two spaces moved
along the horizontal axis followed by one move along the vertical axis (or two spaces moved
along the vertical axis, followed by one move along the horizontal axis.) Consider the simple
random walk on this graph. This Markov chain then represents a knight randomly moving
around a chess board. For every space x on the chessboard, compute the expected return
time E, T, for that space. (It might be convenient to just draw the expected values on the
chessboard itself.)

Exercise 3.40 (Simplified Monopoly). Let Q = {1,2,...,10}. We consider 2 to be the
ten spaces of a circular game board. You move from one space to the next by rolling a fair
six-sided die. So, for example P(1,k) = 1/6 for every 2 < k < 7. More generally, for every
Jj € Qwith j #5, P(j,k) =1/6if k = (j+4) mod 10 for some 1 < ¢ < 6. Finally, the space 5
forces you to return to 1, so that P(5,1) = 1. (Note that mod 10 denotes arithmetic modulo
10, so e.g. 7+ 5 =2mod 10.)

Using a computer, find the unique stationary distribution of this Markov chain. Which
point has the highest stationary probability? The lowest?

Compare this stationary distribution to the stationary distribution that arises from the
doubly stochastic matrix: for all j € Q, P(j,k) =1/6if k = (j+i) mod 10 for some 1 < i < 6.
(See Exercise 3.43.)

Exercise 3.41. Give an example of a Markov chain where there are at least two different
stationary distributions.
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Exercise 3.42. Is there a finite Markov chain where no stationary distribution exists? Either
find one, or prove that no such finite Markov chain exists.

(If you want to show that no such finite Markov chain exists, you are allowed to just prove
the weaker assertion that: for every stochastic matrix P, there always exists a nonzero vector
T with 7 =7P.)

Exercise 3.43. Let P be the transition matrix for a finite Markov chain with state space 2.
We say that the matrix P is doubly stochastic if the columns of P each sum to 1. (Since
P is a transition matrix, each of its rows already sum to 1.) Let 7 such that 7(z) = 1/|Q]
for all x € ). That is, 7 is uniform on 2. Show that = = 7 P.

Remark 3.44. If a finite Markov chain is not irreducible, we can divide the state space into
pieces, each of which is irreducible (or transient), and then study how the Markov chain acts
on each individual piece. (For a precise statement, see Theorem 3.89 below.)

Definition 3.45 (Reversible). Let P be the transition matrix of a finite Markov chain
with state space (2. We say that the Markov chain is reversible if there exists a probability
distribution 7 on {2 satisfying the following detailed balance condition:

m(x)P(z,y) = n(y)P(y,x),  Va,ye
Exercise 3.46. Give an example of a random walk on a graph that is not reversible.

Proposition 3.47 (Reversible Implies Stationary). Let m be a probability distribution
satisfying the detailed balance condition for a finite Markov chain. Then w is a stationary
distribution.

Proof. We sum both sides of the detailed balance condition over y, and use that P is sto-
chastic to get

(7P)(x) = > w(y)P(y,z) = 7(x) > _ Plx,y) = ().

yeQ yeN

O

Exercise 3.48. Let P be the transition matrix of a finite, irreducible, reversible Markov
chain with state space © and stationary distribution 7. Let f, g € R/l be column vectors.
Consider the following inner product function:

=Y f@)gx)n()

Show that P is self-adjoint (i.e. symmetric) in the sense that

<f7Pg>7l': <Pf7g>7r

In particular, the spectral theorem implies that all eigenvalues of P are real.
Finally, find a transition matrix P such that at least one eigenvalue of P is not real.

Proposition 3.49. Suppose we have a finite irreducible Markov chain with state space 2,
transition matriz P and stationary distribution w. Fixn > 1, and for any 0 <m < n, deﬁne
X = X,—m. Then Xm is a Markov chain with transition probabilities given by

ﬁ(x,y)z%, Va,y € .
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Moreover, w is stationary for ﬁ, and we have
P,(Xo=zg,..., Xy =x,) = P,r()?o = a:n,...,)?n = Ty), Vag,...,o, €.

Proof. First, from Theorem 3.34, 7w(x) > 0 for all = in the state space of the Markov chain,
so we have not divided by zero. Now, we first check 7 is stationary for P:

S ()Pl ) = 3 wly) LY

ye ye 7T(y)

Using similar reasoning, we know that >_ P(z,y) = 1, so that P is itself a stochastic

matrix. Finally, noting that P(z;_1,x;) = m(2:)P(x;, 2_1)/m(z;_1) for each 1 <i < n,
P.(Xo=xz0,..., Xy, = x,) = 7w(x0)P(x0,21) - - P(Tp_1,20)
(20 P2, Tp1) - -+ P21, 20)

-~

= Pﬂ—<X0 = xn,...,)?n = f[)()).

O

Remark 3.50. If the Markov chain is reversible, then P=rP. So, being reversible means
that the Markov chain can be run backwards or forwards in the same way, if we start the
Markov chain from the stationary distribution.

Example 3.51. We return to Example 3.8. Let G = (V, E) be a graph with at least one
edge, and let P correspond to the simple random walk on G. So, P(x,y) = 1/deg(x) if x and
y are neighbors, and P(z,y) = 0 otherwise. For any x € V| define w(z) := deg(z)/(2|E|).
We show 7 is stationary. From Proposition 3.47, it suffices to show the detailed balance
condition holds.

If z and y are not neighbors, then P(x,y) = P(y,z) = 0, and both sides of the detailed
balance condition are equal. If z and y are neighbors, then

Cdeg(x) 11 degly) 1
m(x)P(z,y) = 2|E| deg(z) 2|E| 2[E| deg(y)

Exercise 3.52 (Ehrenfest Urn Model). Suppose we have two urns and n spheres. Each
sphere is in either of the first or the second urn. At each step of the Markov chain, one of
the spheres is chosen uniformly at random and moved from its current urn to the other urn.
Let X,, be the number of spheres in the first urn at time n. A state of the Markov chain is
an integer in {0, 1,...,n}, which represents the number of spheres in the first urn. Then for
any j,k € {1,...,n}, the transition matrix defining the Markov chain is

L ifk=j+41
P(jk)=qL L ifk=j—1
0 , otherwise.

= 7(y)P(y, ).

Show that the unique stationary distribution for this Markov chain is a binomial PMF with
parameters n and 1/2.

Exercise 3.53. Let V' = {0,1}" be a set of vertices. We construct a graph from V as
follows. Let z = (z1,...,2,),y = (Y1,...,Yn) € {0,1}". Then = and y are connected by an
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edge in the graph if and only if > " | [x; —y;| = 1. That is, z and y are connected if and
only if they differ by a single coordinate.

For any z € V, define f(z) = > " 2, f: V — {0,1,...,n}. Given z € V, we identify
x with the state in the Ehrenfest urn model where the first urn has exactly f(x) spheres.
Show that the Ehrenfest urn model is a projection of the simple random walk on V' in
the following sense. The probability that x € V transitions to any state z € V such that
y = f(z) is equal to: the probability that Ehrenfest model with state f(z) transitions to
state y.

Moreover, the unique stationary distribution for the simple random walk on V' can be
projected to give the unique stationary distribution in the Ehrenfest model. That is, if
7 is the unique stationary distribution for the simple random walk on V', and if for any
A C{0,1,...,n}, we define u(A) := w(f1(A)), then u is a Binomial PMF with parameters
n and 1/2. (Here f~1(A) ={z € V: f(z) € A}.)

Exercise 3.54 (Birth-and-Death Chains). A birth-and-death chain can model the size
of some population of organisms. Fix a positive integer k. Consider the state space 2 =
{0,1,2,...,k}. The current state is the current size of the population, and at each step the
size can increase or decrease by at most 1. We define {(py, 7, qn) fzzo such that p,+r,+¢q, =
1 and p,,7n, g, > 0 for each 0 < n < k, and

P(n,n+1)=p, >0 for every 0 <n < k.
P(n,n —1) =g, >0 for every 0 < n < k.
P(n,n) =r, >0 for every 0 < n < k.

qo = pr = 0.

Show that the birth-and-death chain is reversible.

3.4. Limiting Behavior. From Theorem 3.37, we know an irreducible Markov chain has
a unique stationary distribution, and Corollary 3.38 gives a sensible way of computing that
stationary distribution. But what does this distribution tell us about the Markov chain’s

behavior? In general, it might not say anything! For example, recall Example 3.7, where we
considered the transition matrix P = ((1] é) If = (u(l),u(2)) is any 1 x 2 row vector,
then uP™ = p for n even, and puP™ = (u(2), u(1)) for n odd. So, if the Markov chain starts
at the probability distribution u where u(1) # p(2), then it is impossible for lim,,_,, uP™ to
exist. That is, there is no sensible way of talking about the limiting behavior of this Markov
chain.

Put another way, we need to eliminate this “periodic” behavior to hope to get convergence
of the Markov chain. Thankfully, if an irreducible Markov chain has no “periodic” behavior
as in the above example, then it does actually converge as n — oo. In fact, we will be
able to give an exponential rate of convergence of the Markov chain. Before doing so, we
formally define periodic behavior, and we formally define periodicity and how the Markov
chain converges.

Definition 3.55 (Period, Aperiodic). Let P be the transition matrix of a finite Markov
chain with state space 2. For any x € Q, let N'(z) := {n > 1: P"(z,x) > 0}. The period of
state x € 2 is the largest integer that divides all of the integers in A/(z). That is, the period
of x, denoted ged NV (x), is the greatest common divisor of N'(z). (If N'(z) = ), we leave
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ged NV (x) undefined.) (We say an integer m divides an integer n if there exists an integer k
such that n = km.)
A Markov chain is called aperiodic if all x € € have period 1.

Exercise 3.56. Give an explicit example of a Markov chain where every state has period
100.

Lemma 3.57. Let P be the transition matrix of an irreducible, finite Markov chain with
state space Q. Then ged N (z) = ged N (y) for all z,y € Q.

Proof. Let x,y € €. Since the Markov chain is irreducible, there exist 7,/ > 1 such that
Pr(x,y) > 0 and P(y,x) > 0. Let m = r + £. Then m € N(z) NN (y) (since P™(x,z) >
Pr(x,y)P(y,x) > 0, and P™(y,y) > P'(y,z)P"(x,y) > 0), and N(z) C N(y) —m. (If
Pk(xz,x) > 0, then P*™(y,y) > P'(y,z)P*(x,2)P"(x,y) > 0.) Since ged N(y) divides
m and all elements of N (y), we conclude that gecd N (y) divides all elements of N (z). In
particular, ged M (y) < ged N (x). Reversing the roles of 2 and y in the above argument,
ged NV (z) < ged N (y). O

Lemma 3.58. Let P be the transition matriz of an aperiodic, irreducible, finite Markov
chain with state space ). Then there exists an integer r > 0 such that P"(x,y) > 0 for all
x,y € Q. (That is, we can choose the r to not depend on x,y.)

Proof. Since the Markov chain is aperiodic, gcd N'(x) = 1. The set N (z) is closed under
addition, since if n,m € N (z), then P"*"(z,z) > P"(x,2)P™(x,x) > 0, so that n +m €
N (z). From Lemma 3.59 with g = 1, there exists n(z) such that if n > n(z), then n € N'(x).
Since the Markov chain is irreducible, for any y € € there exists r = r(z,y) such that
P (z,y) > 0. So, if n > n(z) + r, we have

P"(x,y) > P""(z,2)P"(x,y) > 0.

So, if n > n/(z) = n(xr) + max, yeqr(z,y), then P*(z,y) > 0 for all y € Q. Then, if
n > max,cqn'(z), then P"(z,y) > 0 for all z,y € Q. O

Lemma 3.59. Let S be a nonempty subset of the positive integers. Let g = ged(S). Then
there exists some integer ng such that, for all m > ng, the product mg can be written as a
linear combination of elements of S, with nonnegative integer coefficients.

Proof. Let g* be the smallest positive integer which is an integer combination of elements
of S. Then g* < s for every s € S. Also, g* divides every element of S (if s € S and if g*
does not divide s, then the remainder obtained by dividing s by ¢* would be smaller than
g*, while being an integer combination of elements of S). So, ¢g* < g. Since g divides every
element of S as well, g divides ¢g*, and g < ¢g*. So, g = g*.

Now, without loss of generality, we can assume S is finite, since the case that S is infinite
follows from the case that S is finite. The case when S has one element is clear. As a base
case, we consider when S = {a, b}, where a, b are distinct positive integers. Let m > 0. Since
g = g* and mg > ¢*, we can write mg = ca + db for some integers ¢, d. Since mg = ca + db,
we can also write mg = (c+kb)a+ (d—ka)b for any k. That is, we can write mg = ca+db for
integers ¢,d with 0 < ¢ < b—1. If mg > (b—1)a—b, then db = mg—ca > mg—a(b—1) > —b.
So, d > 0 as well. That is, we can choose ng such that ng > ((ab—a —10)/g) + 1.

We now induct on the size of S, by adding one element a to S. Let gs := ged(95)
and let g := ged({a} U S). For any positive integer a, the definition of ged implies that
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ged({a} U S) = ged(a, gs). Suppose m satisfies mg > nyq4419 + nsgs. Then we can write
mg—nsgs = ca+dgg for integers ¢, d > 0, from the case when S could be {a, gs}. Therefore,
mg = ca + (d +ng)gs = ca+ ), qcss for some integers ¢, > 0, by definition of ng, and
using d + ng > ng. In conclusion, we can choose ny,us = N{ags} + Nsgs/g, completing the
inductive step. U

Definition 3.60 (Total Variation Distance). Let p, v be probability distributions on a
finite state space (2. We define the total variation distance between i and v to be

- = A)—v(A)].
I = vl 2= max a(4) — v(4)
Exercise 3.61. Let €2 be a finite state space. This exercise demonstrates that the total

variation distance is a metric. That is, the following three properties are satisfied:

e || — v||py > 0 for all probability distributions p, v on 2, and || — v||4y = 0 if and
only if up =wv.

o ln=vlley =¥ =y
o |1 —v|py < |l —nllpy + [In = v||py for all probability distributions p, v, 7 on €.

(Hint: you may want to use the triangle inequality for real numbers: |z —y| < |z — 2| +
|z —yl,Vx,y,z € R.)

Exercise 3.62. Let u, v be probability distributions on a finite state space 2. Then

I~ vllay = 5 3 In(e) — vla)].

e

(Hint: consider the set A = {z € Q: u(z) > v(x)}.)

Theorem 3.63 (The Convergence Theorem). Let P be the transition matriz of a fi-
nite, irreducible, aperiodic Markov chain, with state space ) and with (unique) stationary
distribution w. Then there exist constants o € (0,1) and C > 0 such that

max[P"(z,) = 7y < Ca” Vn 21

xe

Proof. Since the Markov chain is irreducible and aperiodic, Lemma 3.58 implies there exists
r > 0 such that all entries of P" are positive. Let II be the matrix with |€2| rows, each of

which is the row vector m (so IT = (1,...,1)"7). From Theorem 3.34 (and Theorem 3.37),
min,cq m(z) > 0. So, there exists 0 < § < 1 such that

P"(z,y) > én(y), Va,yec

From Exercise 3.3, P" is a stochastic matrix. Also, II is a stochastic matrix. Let 6 := 1 — 4.
Define Q := 6~'(P" — (1 — 0)II). Then @ is a stochastic matrix, and

Pr=(1-6)I+6Q.

If M is an |Q| x |Q] stochastic matrix, then MII = II (since MII = M(1,...,1)Tn =
(1,...,1)Tx = I1.) Similarly, if M satisfies TM = 7, then IIM = II. We now prove by
induction that, for all £ > 1,

P = (1- I+ 6°Q%. (%)

29



We already know k& = 1 holds, by the definition of ). Assume (%) holds for all 1 < k < n.
Then using (*) twice,

Pr(n+1) — prnpr — [(1 . en)H + QnQn]Pr

=1 -MIP" + (1 -0)0"Q"Il + grriQntt

=1 =0T+ (1—-0)"I+6"'Q"*',  since 7P =, so 7P" = 7, and Q" is stochastic
— (1 o enJrl)H T 9n+1Qn+1'

So, we have completed the inductive step, i.e. we have shown (x) holds for all £ > 1.
Let j > 1. Multiplying (%) by P on the right and rearranging,

PR T = 0%(QPT —TI). (%)

From Exercise 3.3, Q%P7 is a stochastic matrix. Fix x € €. Sum up the absolute values of
all the entries in row = of both sides of (xx) and divide by 2. By Exercise 3.62, the term
on the right is then #* multiplied by the total variation distance between two probability
distributions, which is at most 1, by definition of total variation distance. That is, the right
side is at most 6*. So, using Exercise 3.62 for the left side as well,

[P, ) = () |y < 0%, Vi k>
Taking the maximum of both sides over x € 2, and writing an arbitrary positive integer n
as n = rk+ j where 0 < j < r by Euclidean division of n by r (so that k = (n/r) — (j/r) >
(n/r) — 1), we get the bound

maéc |P"(x,-) — Tr(')HTV < H_I(QI/T)N-
Te

Setting C' := 6! and « := 0" completes the proof. O
3.5. Infinite State Spaces.

Definition 3.64 (Markov Chain, Countable State Space). Let {2 be a countable set.
A Markov chain on a countable state space 2 is defined, as before, by its transition matrix
P:QxQ—[0,1], where }_, o P(z,y) =1 for all z € Q. The remaining defining properties
are stated in the same way as in the finite case. We can still think of P as a matrix, albeit
one with countably many rows and columns.

Unfortunately, the Convergence Theorem (Theorem 3.63), may not hold for all irreducible,
aperiodic Markov chains on infinite state spaces. So, studying the existence/non-existence
of stationary distributions is not as meaningful for infinite state spaces. However, we can
still try to understand where the Markov chain “typically” lies after the chain runs for a long
time.

To see why the Convergence Theorem cannot hold for all irreducible, aperiodic Markov
chains, just note that all states of the Markov chain could be transient. (We will show
this below in Exercise 3.71; all states are transient for the nearest neighbor simple random
walk on Z3, see Theorem 3.81 below.) And if all states in the chain are transient, then
lim,, o P"(z,x) must converge to 0.

Note that by Exercise 3.32, all states in a finite irreducible Markov chain are recurrent, so
having all transient states can only happen for an irreducible Markov chain when the state
space is infinite.
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Rather than delving into a general theory of infinite state space Markov chains (which can
become a bit more complicated than the finite case), we focus on some classic examples.

Example 3.65 (Nearest-Neighbor Random Walk on Z). Let 2 = Z. Let p,r,q > 0
such that p +r + g = 1. We define the transition matrix P so that

P(k,k+ 1) =p, P(k, k) =, Pk, kE—1)=q.
The case p = ¢ = 1/2 and r = 0 corresponds to the simple random walk on Z. Let k € Z
and let n > 0. If X;, = k, then 37 | (X; — X;_1) = k, and each term in the sum is an
independent random variable, each with probability 1/2 of being 1 and probability 1/2 of
being —1. To sum to k, there must be (n + k)/2, 'sand n — (n+k)/2 = (n —k)/2, —1’s.
There are ((n+rllv)/2) different ways to choose the 1’s and —1’s to sum to k. So,

((nJ:ch)/Q) 27" Jifn—kis even

Po(X, =k) =
ol ) {O , otherwise.

The case p = ¢ = 1/4 and r = 1/2 is the lazy simple random walk on Z.

Exercise 3.66. Let (X(, X1,...) be the simple random walk on Z. Show that Py(X,, = 0)
decays like 1/4/n as n — oo. That is, show

2
lim V2n PQ(XQn = 0) = —.
n—00 T
Also, show the upper bound
10
Po(X,=k) < —, Vn>0,keZ.

vn

(Hint 1: first consider the case n = 2r for r € Z. It may be helpful to show that (Ti’"j) is

maximized when 7 = 0. To eventually deal with k£ odd, just condition on the first step of
the walk.)
(Hint 2: you can freely use Stirling’s formula:

n!

lim — =
n—o0 \/2mn(n/e)"
Or, there is a more precise estimate: for any n > 3, there exists 1/(12n+1) < ¢, < 1/(12n)
such that

n! = V2me "¢ )

We can get an upper bound matching Exercise 3.66 even when the simple random walk
starts away from 0.

Theorem 3.67. Let (Xo, X1,...) be the simple random walk on Z. Let k,r > 0 be integers.
We will start the Markov chain at k and upper bound Ty := min{n > 0: X,, = 0}, the first
time the random walk hits 0.

20k
Pk(To > 7”) < 7

Before proving Theorem 3.67, we prove some lemmas.
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Lemma 3.68 (Reflection Principle). Let (Xo, X1,...) be the simple random walk on Z
or the lazy simple random walk on Z. For any positive integers j, k,r,

Pk(TO <r, Xr = j) = Pk(XT = —j)
Pk(TO <r, X, > O) = Pk(XT < 0)

Proof. From the Strong Markov property, if the walk hits zero, then the walk is independent
of its previous movements, and we can then treat the walk as if it started at 0. That is, for
any integers 0 < s < r and 7,

Pk(XTO—i-(r—s) = j | TO =S, Xs = O) = PO(XT‘—S = ])
Rearranging and simplifying,
P (To = 5, X, = j) = Pp(To = s)Po(X,—s = J). (*)

When the Markov chain starts at zero, it has equal probability of reaching j or —j (that is,
the random walk is symmetric with respect to zero). So, the right side is equal to

Pu(Ty = s)Po(X,_s = —j) C Pu(Ty = s, X, = —j).

Summing over all 1 < s < r, and combining this equality with (x) (with j > 0),
Pk(TO <r, X, :]) = Pk(TO <r, X, = —]) = Pk(Xr = —j)

The last equality follows since a random walk started from k£ > 0 must pass through 0 before

reaching a negative integer —j. That is, given Xy = k, the event X, = —j is contained in
the event Ty < r.
Finally, summing over j > 0 gives the final equality of the Lemma. U
Xn
k—
J
| |
Ty r
<

Remark 3.69. We can interpret Lemma 3.68 combinatorially as follows. We plot the se-
quence of points visited by the Markov chain in the plane as (n, X,,) € R?, n > 0. Then
there is a bijection from the set of paths starting at & > 0 which hit 0 before time r and are
positive at time r, and the set of paths starting at £ > 0 which are negative at time r. To
create the bijection, reflect a path across the line y = 0 after the first time it hits 0.
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Lemma 3.70. Let (Xo, X1,...) be the simple random walk on 7 or the lazy simple random
walk on Z. For any r,k >0

Pi(To > 1) =Po(—k < X, < k).
Proof. First, write
Pu(X,>0)=Pr(X, >0, To<r)+Pp(To >7r) =Pp(X, >0, Ty <)+ Pp(Th >r).
Applying the Reflection Principle (Lemma 3.68), we then get
Pi(X, > 0) = Pi(X, < 0) + Py(Ty > 7).

Since the walk is symmetric, Pr(X, < 0) = Py(X, > 2k), so rearranging and then using
translation invariance of the Markov chain,

Pi(To > 1) = Pp(X, > 0) = Pr(X, > 2k) = Pp(0 < X, < 2k) =Po(—k < X, <k).

O
Proof of Theorem 3.67. Summing the upper bound of Exercise 3.66, we have
20k
Po(-k < X, <k) < i
\/F
Then Lemma 3.70 completes the proof. O

Exercise 3.71. Show that every state in the simple random walk on Z is recurrent. (You
should show this statement for any starting location of the Markov chain.)
Then, find a nearest-neighbor random walk on Z such that every state is transient.

Exercise 3.72. For the simple random walk on Z, show that EqTy = oo. Conclude that,
for any z,y € Z, E,T, = oc.

Exercise 3.73. Let (Xg, X1,...) be the “corner walk” on Z2. The transitions are described
as follows. From any point (z,y) € Z?, the Markov chain adds any of the following four
vector to (z,y) each with probability 1/4: {(1,1,), (1,—1), (=1,1), (—=1,—1)}. Using that
the coordinates of this walk are each independent simple random walks on Z, conclude that
there exists ¢ > 0 such that

lim nP(070) (XQn = (O, 0)) = C.

n—oo
That is, P g,0)(X2, = (0,0)) is about ¢/n, when n is large.

Now, note that the usual nearest-neighbor simple random walk on Z? is a rotation of the

corner walk by an angle of /4. So, the above limiting statement also holds for the simple
random walk on Z2.

3.6. Random Walks on Integer Lattices.

Definition 3.74 (Random Walk). Let X : R? — R? be a random variable. Let X;, Xo, ...
be i.i.d. copies of X. Let z € R%. Let X := x. For any n > 0, let S,, := Xy +--- + X,,. We
call the sequence of random variables S, S, ... a random walk on R? started at z.
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3.6.1. Limiting Behavior.

Theorem 3.75. Let Sy, S1,... be a random walk on R with Sq = 0. FExactly one of the
following four conditions holds with probability one.
(i) S, =0 for alln > 1.

(ii) limp_yee Sn = 0.

(ifi) limpe0 Sy = —00.
(iv) —oo = liminf, S, and limsup,,_,. S, = co.
Exercise 3.76. Let X1, Xo,...: 0 — R be i.i.d. In each of the cases below, show that with

probability one, —oo = liminf, ., S, and limsup,,_,. S, = o©.

e The distribution pyx, is symmetric about 0 (i.e. u_x, = py,) and P(X; =0) < 1.
e EX; =0 and EX? € (0,00). (Hint: use the Central Limit Theorem.)

For example, when P(X; =1) = P(X; = —1) = 1/2 and Sy = 0, show that with probability
one, Sy, 51, ... takes every integer value infinitely many times.

The reasoning of Proposition 3.22 implies the following.
Exercise 3.77. Let Sy, Sq, ... be a random walk with Sp = 0. Let Y be the number of times
the random walk takes the value 0. Let Ty := min{n > 1: S,, = 0}.

e Y is a geometric random variable with success probability P (7 = 00).
e EY = 51— (Here we interpret 1/0 as cc.)

P(To=00)

(Hint: {Y =k} = {TF < 00, TP = 0o} = {TF ™ < 00, T — TV = 0} )
Theorem 3.78. Let Sy, S, ... be a random walk in R? started at x = 0. Let T := min{n >
1: S, = 0}. Then the following are equivalent
(i) P(T < 00) = 1.
(ii) P(S, =0 for mﬁmtely many n > 1) = 1.

(i) 325 P(Sh = 0) =
If additionally Sy, Ss, . .. only takes values in Z2, then (i), (ii), (i) are equivalent to:

(iv)

li ! d
= lim —_

o0 s—1— [ﬂ.ﬂ.dl—SQS() 4
Here i = /=1, ¢(y) := Ee’%X1) ¥V y € R, and for any = (21,...,24),y = (y1,...,ya) €
R?, we define (x,y) := Z?Zl Ty
Proof Let Y be the number of times the random walk takes the value 0. Let T be the

" return time to 0 for any n > 1. Then

Y = i 1Sn=0 = i 1T(n)<oo, T(O) = 0,
n=0 =
EY:iP(Sn ZP T < o00). (%)
n=0

If (i) occurs, then P(T™ < oo) = 1 for every n 2 1 by Proposition 3.22, so that (ii) occurs.
If (ii) occurs, then P(T™ < oo) = 1 for every n > 1, so the second equality of (%) shows that
(iii) occurs. If (iii) occurs, then (i) occurs by Exermse 3.77. So, (i),(ii),(iii) are equivalent.
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By (%), it remains to show that the right side of (iv) is equal to (27)YEY. Recall that
J7_e™?dh = 0 for any nonzero m € Z, while [7_e™°df = 2r. Therefore, for any n > 0,

le .o = Z<yvs’ﬂ>—.
=0 /[—N,Tr]d ‘ (27T)d

Taking expected values of both sides,

- dy
P — — E Z<y,Sn) .
(S, =0) /[ ol e (2 (k)

Recalhng Sh L + -+ X, and using that X;,..., X, are ii.d., we have Ee'¥S:) =
[}, E¢’ (v X; > ( ( )) So, multiplying both sides of (>|<>|<) by s" and summing over n > 0,

Sors=0= [ ;) 55 = | T

(Since |o(y)] < 1V y € RY if |s| < 1, then |sé(y)] < 1V y € RL) Letting s — 17, the left
side increases monotonically to EY by (%), so the limit of the right side exists as well. [

Exercise 3.79. Let (Xo, X1, ...) be a finite, irreducible Markov chain with transition matrix
P and state space 2. For any x,y € €2, define

=E.) lix—y = Y P'(z,9)
n=0 n=0

to be the expected number of visits to y starting from x. Show that the following are
equivalent:

(i) G(z,z) = oo for some z € Q.
i) G(x,y) = oo for all z,y € Q.
) P (T < 00) for some z € .
) P,(T, < o0) for all z,y € Q.

(i
(iii

(iii

So, in an irreducible finite Markov chain, a single state is recurrent if and only if all states
are recurrent.

Definition 3.80 (Simple Random Walk). For any 1 < j < d, let e; € R? be the vector
with a 1 in the j* entry and zeros in all other entries, so that e,...,eq is the standard
basis of R%. Let X be a random variable so that P(X = ¢;) = P(X = —¢;) = 1/(2d) for all
1 <j5<d Let Xi, Xs,... beiid. copies of X. The random walk S,, .= X7 +---+ X,,, V
n > 1 with Sy := 0 is called the simple random walk on Z.

The Simple Random Walk is the most basic random walk. It may be surprising that
the transcience/recurrence of this random walk depends on d. Note that each point in the
integer grid Z? has 2d locations to move to at each step of the walk. And when d is large,
there are more ways for the random walk to wander away from the origin.

Theorem 3.81. Simple Random Walk is recurrent when d < 2 and transient when d > 3.
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Proof. 1t suffices to check whether or not condition (iv) holds of Theorem 3.78. For any
y € R, we have

d d d
1 1 1
O(y) = B = Z e+ em) = 5 ) eos(y;) =1+ 5 Z —1 + cos(y;)]
=1 j=1 j=1

For any z € [—, 7], we have 22/4 < 1—cos(z) < 2? by e.g. taking derivatives and using the
Fundamental Theorem of Calculus. Therefore, for any y € R,

d
dZ:: %; —1 4+ cos(y;)] S_idg

So, for any y € RY, and for any 0 < s < 1,

| —

1—s—|—s—ZyJ§1—sgz5 )<1—s—|—sd2y]

Letting s — 17, and noting that the integrand increases monotonically in a neighborhood
of y = 0 while remaining bounded outside this neighborhood,

1 1 1
(d/4) / _dy < lim  y<d / .
[—m,m]d Zj 1 yj s=17 J—n 7]d 1— S¢(y) —m,m]d Z;l_l y]2

And f[_ﬂ y

Z —=7—dy = oo if and only if d < 2, by e.g. changing to polar coordinates.  [J
j=1Yj
Exercise 3.82. Give a combinatorial proof that the simple random walk Sp, S, ... on Z? is
recurrent for d < 2. That is, estimate P(S, = 0) ~ n~%? when n is large and d < 2, and
conclude Y (P (S, = 0) = oo for d < 2. (Hint: use Stirling’s Formula, Proposition 3.93)

Exercise 3.83. Show that if the Simple Random Walk on Z? is recurrent, then this random
walk takes every value in Z? infinitely many times. And if the Simple Random Walk on Z?
is transient, then this random walk takes any fixed value in Z? only finitely many times.

Exercise 3.84. Let 0 < p < 1. Consider the random walk on Z such that P(X; = 1) =p
and P(X; = —1) = 1 — p. Show that the corresponding random walk Sy, Si, ... is transient
when p # 1/2.

Exercise 3.85. Let Sy, Si,... and S}, S}, ... be independent simple random walks on Z¢.
Let N :=3%_  ~¢ls,=s;, be the number of pairs of intersections of these two random walks.
For any y € R?, let ¢(y) := Eev-X1),
e Show EN = lim,_,;- f
° ForwhatlelsEN<oo
o Let C:={S,:n>0}N{S,: n >0} be the intersection set of the two independent
random walks. Let |C| denote the cardinality of C. Show that if the simple random
walk on Z? is transient, then P(N = oo) = 1 if and only if P(|C| = co) = 1. (Hint:
N =3 cc NoN, where N, := 3" 1g,—, is the number of visits of the first random
walk to #.) In the recurrent case d = 1,2, Exercise 3.83 implies that P(|C| = o0) = 1.

For any d > 1, note that N < oo implies |C| < oo. It can also be shown that
P(N < ) € {0,1}, P(|C| = o0) € {0,1}, and that P(N < oo) = 1 if and only if

m(zﬂ) (Hint: consider Ee!(Sn=5m)) )
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EN < oo (you don’t have to show these things). In summary, P(|C| = o0) = 1 if
and only if EN = cc.

e Hypothesize what happens to EN when we instead consider the tuples of intersections
of k > 2 independent simple random walks in R%. (You don’t have to prove your
hypothesis.)

The following proposition will be derived from a more general result, Theorem 4.22 below.

Proposition 3.86 (Wald’s Equations). Let X;, X5,...: C — R be i.i.d. Let N be a
stopping time. Let Sy, Si,... be the corresponding random walk with Sy := 0.

e IfEN < o0, and E|X;| < 0o, then ESy = EX;EN.

e IfEX, =0,EX? < 00 and EN < oo, then ES% = EX?EN.
Example 3.87. Suppose P(X; =1) = P(X; = —1) = 1/2. Let a,b € Z with a < 0 < b.
Let N :=min{n > 1: S, ¢ (a,b)}. We first check that EN < co. This follows from Lemma

3.28. The first part of Proposition 3.86 says ESy = 0. Note that Sy only takes two values,
a and b, so ESy is straightforward to compute directly. Let ¢ := P(Sy = a). Then

0=ESy =ca+ (1—c)b.

Solving for ¢ we get

b —a
=P(Sy=a)=— P(Sy =0) = .
¢ (S =a) b—a’ (S =1) b—a
The second part of Proposition 3.86 says ES% = EN. Once again, S% only takes two

values, so
a’b — ab? a—b
EN:ESJQVZCCL2+<]_—C)Z)2: b_a :ab_a:_ab'

Exercise 3.88. Let 1/2 < p < 1. Consider the random walk on Z such that P(X; =1) =p
and P(X; = —1) = 1—p. Let Sy, Si, ... be the corresponding random walk with Sy := 0. Let

N :=min{n > 1: S, > 0}. Using Wald’s equation for min(/V,n) and then letting n — oo,
show that EN = 1/EX; =1/(2p — 1).

3.7. Additional Comments. The term “random walk” was first proposed by Karl Pearson
in 1905 in a letter to Nature. In this letter, Pearson proposed model of mosquito infestation
of a forest. At each time step, a single mosquito moves a fixed length at a randomly chosen
angle. Pearson asked for the distribution of the mosquitoes in the forest after a long time
has passed. Rayleigh answered the letter, since he had solved a similar problem in 1880 for
the modeling of sound waves in a heterogeneous material. A sound wave traveling through a
material can be modeled as summing a sequence of vectors of constant amplitude but random
phase, i.e. a sum of the form Z?Zl ei where Y;,Ys,. .. are real-valued and independent.

In 1900, Bachelier proposed random walks as a model for stock prices, and he also related
random walks to the continuous diffusion of heat. Apparently unaware of other related works,
around 1905 Einstein published his work on Brownian motion, i.e. the path of a dust particle
in the air pushed in random directions by collision with gas molecules. Einstein modeled this
behavior with a random walk. Smoluchowski published results similar to Einstein in 1906.

Random Walks are some of the most basic stochastic processes. They are used to model
random phenomena in many scientific fields. The Simple Random Walk is essentially a
discrete version of Brownian Motion.
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In the case that a finite Markov chain is not irreducible, the state space can be partitioned
into irreducible “pieces” plus transient states, in the following way.

Theorem 3.89 (Decomposition Theorem). Let (Xo, Xi,...) be a finite Markov chain
with (finite) state space Q. Then Q0 can be written uniquely as the disjoint union

Q=TULU---UI

where T is the set of transient states of the Markov chain, and for each 1 < i < k, P|;, is
an irreducible Markov chain on the state space I;.

In the case that a finite, irreducible Markov chain is not aperiodic, then all states have
the same period by Lemma 3.57, and a version of the convergence theorem holds.

Lemma 3.90. Let (Xo, X1, ...) be a finite, irreducible Markov chain with (finite) state space
Q. Assume that all states in the Markov chain are recurrent with period j > 1. For any
x,y € Q, let N(z,y) :={n>1: P"(z,y) > 0}. Fizxz € Q. Then
e Im, €{0,1,...,5 — 1} such that, for alln € N(x,y), we have n = m,mod j.
o Forany0<m < j, let Q, ={yeQ:my=m}. Let 0 <m <m' <j. IfyeQ,
and y' € Quy, and P"(y,y') > 0, then n = (m' — m)mod j. Also, Q is the disjoint

union of o, ..., Q1.
e For each 0 < m < j, Pllq, is an irreducible Markov chain where all states have
period 1.

Theorem 3.91 (Convergence Theorem, Periodic Case). Let (Xo, X1,...) be a finite,
irreducible Markov chain with (finite) state space Q). Assume that all states in the Markov
chain are recurrent with period 7 > 1. Assume that a stationary distribution 7 exists for the
Markov chain. Fiz x € §). As in Lemma 3.90, let €, ...,€Q_1 be a decomposition of the
state space 2. Let 0 < m < j and let y € Q,,,. Then

lim P (z,y) = j - m(y).

n—0o0

Our presentation above focused on random walks where X is discrete. In the case that X;

is not discrete, if Sy, Si, . .. is a random walk with Sy := 0, then € R? is called a recurrent
value for the random walk if, for any € > 0, P(||S,, — z|| < € forinfinitely many n > 1) = 1.
Here ||(z1,...,2q)| := (Z?Zl 22)'/2. And z € R? is called a possible value for the random

walk if, for any € > 0, 3 n > 0 such that P(||S, — z|| < €) > 0. The random walk is said to
be transient if it has no recurrent values. Otherwise, the random walk is called recurrent.
If the random walk is recurrent, it can be shown that the set of recurrent values is equal to
the set of possible values, as in Exercise 3.83.

Theorem 3.78 can then be generalized as follows.

Theorem 3.92. Let Sy, S1,... be a random walk on 7 with Sy := 0. For any y € R?, let
B(y) := Ee'vX0)  where i = /—1.
(a) The convergence (or divergence) of > o P(||Su]| <€) for a single ¢ > 0 is sufficient
to prove transience (or recurrence) of the random walk.
(b) Let 6 > 0. Then the random walk is recurrent if and only if

1
sup / Re————dy = c.
o<s<1J(—s5pe 1 — so(y)
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Lemma 3.93 (Stirling’s Formula). Let n € N. Then n! ~ v/2mnn"e™". That is,

|
lim ———— = 1.

n—o0 \/2rnne"

Proof. We prove the weaker estimate that 4 ¢ € R such that
n!=(1+0(1/n))e vnn"e ™™  (x)

Note that log(n!) = >"" _, logm. We use integral comparison for this sum. On the interval
[m, m + 1] the function x — log z has second derivative O(1/m?). So, Taylor expansion (i.e.
the trapezoid rule) gives

m+1 1 1
/ log zdx = 510g(m+1)—|—§10gm+0(1/m2).

m

n n—1 m41 n—1
1
log zdx = / log zdx = logem + =logn +c+ O(1/n).
| 1o )3 gads = 3 logm + 5 log (1/n)

m

Since [["logzdx = n(log(n) — 1) + 1, log(n!) = >_1 _, log m, exponentiating proves (x). [

4. MARTINGALES
We begin by reviewing conditional expectation.

Definition 4.1 (Conditional Expectation). Let X be a random variables on a sample
space C. Let A C C with P(A) > 0. Then the conditional expectation of X given A,
denoted E(X|A) is
E(X - 14)

P(A)
Equivalently, E(X|A) is the expectation of X with respect to the conditional probability
P(BJA) :=P(BNA)/P(A), for any B C C. To see the equivalence, note that the expectation
of X > 0 with respect to P(-|A) is

00 1 [ 1 [ E(X -1,)

/0 P(X > 1l4)it = 5o /0 P(X > 1, Ayt = 5o /0 P(X14 > )t = 5
Example 4.2. Suppose a random variable X and a set A C C are independent. That is,
P(X € B,A) = P(X € B)P(A) for all B C R. Then P(X € B, A%) = P(X € B)P(A°)
for all B C R. Consequently, X and 14 are independent as random variables. So, from
Proposition 2.39, E(X1,4) = (EX)(El4) = P(A)EX. That is, if X, A are independent, then

E(X|A) = EX.

E(X|A) :=

Also, if XY are random variables, then since E(X|A) is expectation of X with respect to
a conditional probability, we immediately have from Proposition 2.27

E(X +Y|A) = E(X|A) + E(Y|A).
Remark 4.3. Let Aq,..., A; be sets and let X be a random variables. We use the notation
E(X Ay, ..., A) =EX|[A NN A).
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Lemma 4.4. Let X,Y be random variables on a sample space C. Let A C C and let d € R.
If X is a random variable such that X = d on the set A, then

E(XY]A) = dE(Y|A).

Proof. Since X = d on A, XY14 = dY1y, so E(XY1,4) = dE(Y1,4). Dividing by P(A)
concludes the Lemma. O

As stated in Definition 4.1, conditional expectation is itself an expected value with respect
to a conditional probability. In particular, Jensen’s inequality (Proposition 2.31) applies to
conditional expectation

Lemma 4.5 (Jensen’s Inequality). Let X be a random variable on a sample space C. Let
ACC. Let ¢: R — R be convex. Then

P(E(X[A)) < E(¢(X)[A).

Lemma 4.6. Let Ay, ..., Ay be disjoint events such that U¥_|A; = B. Let X be a random
variable. Then

E(X|B) = ZE X|4;) ))

In particular, if B = C, we get the Total E:z:pectatwn Theorem: EX = Zle E(X|A)P(4;).
Proof. By assumption, 1g = Zf 1 14,. So,

P(B)

~—

E(X]B):% (X1p) = Z—EXlA) iE(XMi)

O

Definition 4.7 (Martingale). Let (X, X1,...) be a real-valued stochastic process. A real-
valued martingale with respect to (Xy, X1, ...) is a stochastic process (Mg, Mj, . ..) such
that E |M,| < oo for all n > 0, and for any mq, zo, ..., z, € R,

E(Mys1 — M| Xy = 2, ..., Xo = 20, My = myg) = 0.
We say (Mo, M, ...) is a supermartingale with respect to (Xg, X7, ...) if

E(M, 1 — M,|X,, = x,,..., X0 =20, Mg = myg) <0.
We say (Mo, M, ...) is a submartingale with respect to (Xo, Xy, ...) if

E(Myp1 — My| Xy = 2, ..., Xo = 20, My = mg) > 0.

Remark 4.8. Some martingales are not Markov chains. Some Markov chains are not mar-
tingales. Some Markov chains are martingales. And some martingales are Markov chains.

Remark 4.9. A stochastic process is a martingale if and only if it is both a submartingale
and a supermartingale.

Remark 4.10. It follows from the Total Expectation Theorem that E(M, 1 — M,) = 0 for
a martingale, for every n > 0. Consequently,

EM, = EM,,  VYn>0.

That is, a martingale does not change in expectation.

40



Similarly, a supermartingale decreases in expectation, and a submartingale increases in
expectation. This terminology may then seem a bit backwards, but it is standard.

4.1. Examples of Martingales.

Example 4.11 (Random Walk). Let Xj, Xs,... be independent identically distributed
random variables. Assume also that E|X;| < co. Let p := EX;. For any n > 1, define
M, =X+ -+ X, — pn. Let My := 0 and let X := 0. Then (My, My, ...) is a martingale
with respect to (Xo, X1, ...). Indeed, for any mg, xo, ..., z,, using Example 4.2,

E(Mn—H — Mn|Xn = Tp,y ... 7)(0 = Xy, Mg = mg)
= E(Xn+1 — /L|Xn = Tp, ... ,Xo = Xy, M() = m0> == E(Xn+1) — U= 0.

Example 4.12 (Gambler’s Ruin). Let 0 < p < 1. Suppose you are playing a game of
chance. For each round of the game, with probability p you win $1 and with probability
1 —p you lose $1. Suppose you start with $50 and you decide to quit playing when you reach
either $0 or $100. With what probability will you end up with $1007?

Later on, we will answer this question using Martingales and Stopping Times.

Let (X1, Xs,...) be independent random variables such that P(X,, = 1) =: p and P(X,, =
—1)=1-p=1qVn>1 Let Xg:=50. Let Y,, = Xg+---+ X, and let M, := (¢/p)*"
V n > 1. Then Y,, denotes the amount of money you have at time n < 50. We claim that
My, My, ... is a martingale with respect to Xy, X1, .... Indeed,

E((q/p)™ — (¢/p)" | X\ = 2, . . ., Xo = @0, My = mp)
= (¢/p)™ T T E((¢/p)* — 1| X, = 2, ..., Xo = 20, My = myg)

= (g/p)™ " E((q/p) " = 1) = (a/p)™ " (p(g/p) + alp/q) — 1) = 0.
4.2. Gambling Strategies.

Example 4.13. Suppose you can bet any amount of money you want on a fair coin flip.
And the coin can be flipped any number of times, i.e. you can play this game any number
of times. If you bet $d with d > 0 and the coin lands heads, then you win $d, but if the
coin lands tails, then you lose $d. A naive strategy to make money off of this game is the
following. Just keep doubling your bet until you win. For example, start by betting $1. If
you lose, bet $2. If you lose that, bet $4. Then let’s say you finally won, then in total you
won $4 and you lost $3, so you gained $1 in total. We know that the probability of losing
k > 0 rounds of this game in a row is 27%, so it seems like this strategy must win money.
However, there are some caveats to this analysis.

First, if your starting bet is $1, and if you lose twenty rounds of the game in a row, you
will be betting over one million dollars. More generally, if you lose k times in a row, you will
have to bet $2¥. So, when k > 20, most people would not be able to continue playing the
game, i.e. they would lose all of their money.

Second, your expected gain from every round of the game is zero. At each round of the
game, no matter what your bet is, your expected earnings are zero. So, it is impossible to
win money in this game, in expectation. And indeed, the Law of Large Numbers (Theorem
2.54) assures us that when the game is repeated many times, we will earn zero dollars on
average, with probability 1.
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It turns out that, no matter what betting strategy is chosen in this game, there is still no
way to make any money. We will prove this using martingale methods. And indeed, these
gambling strategies are the first studied examples of martingales.

Let X1, X, ... each be independent random variables such that P(X; = 1) = P(X; =
—1) =1/2 for every i > 0. For any n > 1, let M,, = X; +---+ X,,. Let My = 0. If someone
bets one dollar at every round of the game, then their profit is M, after the n* round of the
game. Since EX; = 0, Example 4.11 implies that My, M, ... is a martingale with respect
to Xo, X1,.... A gambling strategy for the n* round of the game can use any information
from the previous rounds of the game. Let H,, be the amount of money we bet in the n'”
round of the game. We assume that H, is a function of X,,_1,..., X1, My, and we call the
random variables Hi, Hs, ... a predictable process. That is, for every n > 1, there exists
a function f,: R® — R such that H, = f,(X,_1,..., X1, My). When the m™ round of the
game occurs, we earn H,,(M,, — M,,_1) dollars. In summary, our wealth W,, at time n > 1
is then

W= Mo+ Y Hp(My — Mpy_y).

m=1

We will now prove that we cannot make money from this game.

Theorem 4.14. Let (Xo, X1,...) be a stochastic process. Assume that (Mg, My,...) is a
(super)martingale with respect to Xo, X1,.... Let ¢y, co,. .. be constants. Let Hy, Ho, ... be a
predictable process. Assume that 0 < H,, < ¢, for alln > 1. Then

W= Mo+ Y Huy(My — My_y).

m=1

is also a (super)martingale with respect to (Xo, X1, . ..).
That is, you cannot make money by trying to bet on a (super)martingale.

Remark 4.15. The quantity Mo+ " _, H,,(M,, — M,,_1) is a finite version of a stochastic
integral. And in fact, there is a corresponding statement to be made about stochastic
integrals, namely that you cannot make money off of (continuous time) supermartingales.

Remark 4.16. Allowing H,, < 0 would correspond to betting negative amounts, so that
the gambler could assume the position of the “house.” So, we do not allow this to happen.
Also, requiring the predictable process to be bounded is only assumed so that the expected
values involved are finite; the boundedness assumption can in fact be weakened.

Proof of Theorem 4.14. First, observe that
Wn+1 - Wn = Hn+1(Mn+1 - Mn)

Also, from the triangle inequality, and since My, My,... is a (super)martingale, so that
E|M,,| < oo for all m > 0,

E|W,| <E|Mo|+ Y cn(E M|+ E[M,_1]) < oc.

m=1

So, the sequence Wy, Wi, ... satisfies the first condition of being a (super)martingale. Now,
let mg,zo,...,x, € R. Let A == {X,, = z,,..., X0 = 209, My = mo}. Since H, is
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predictable, H, 1 is constant on A, so Lemma 4.4 implies
E(Wn—I—l - Wy | A) = E(Hn+1(Mn+1 - Mn) | A) = Hn-i-lE(Mn-i-l - M, | A) <0.
The last inequality follows since My, My, ... is a (super)martingale and H, 1 > 0. O

Definition 4.17 (Stopping Time). A stopping time for a martingale My, M, ... is a
random variable T taking values in 0, 1,2,...,U{occ} such that, for any integer n > 0, the
event {T' = n} is determined by My, Xo, ..., X,. More formally, for any integer n > 1, there
is a set B, C R"2 such that {T' = n} = {(My, Xo, ..., X,) € B,}. Put another way, the
indicator function 1{7—, is a function of the random variables My, Xo, ..., X,.

From Remark 4.10, a martingale satisfies EM,, = EM, for all n > 0. In some cases, we
can replace n with a stopping time 7" in this equality. However, this cannot always hold.

Example 4.18. Let (X, Xy, ...) be a sequence of independent random variables such that
P(X,=1)=P(X, =—-1)=1/2for all i > 0. Let My =0 and let M,, = Xo+--- + X,
for all n > 0. Note that EXy = 0. So, from Example 4.11, My, My, ... is a martingale. Let
T :=min{n > 1: M,, = 1} be the return time to 1. Then My =1, so EM7 =1 # 0 = EM,.

Remark 4.19. Let a,b € R. We use the notation a A b := min(a,b). Note that if 7" is a
stopping time, then a A T is a stopping time, for any fixed a € R.

Theorem 4.20 (Optional Stopping Theorem, Version 1). Let (My, My, ...) be a mar-
tingale with respect to Xo, X1, ..., and let T be a stopping time. Then (Morr, Mipr, .. .) is
a martingale. In particular, EM,»r = EMy for all n > 0.

Proof. Let n > 1. Let H,, = 1{7>y). Then

n—1
Hn =1- 1{T§n—1} =1- Z 1{T:m}‘
m=0
Since 7' is a stopping time, we know that H, can be written as a function of Xj,..., X, 1.

That is, Hy, Ho, ... is a predictable process. For any n > 0, define

W= Mo+ Y Hy(My — My_y).

m=1

By Theorem 4.14, Wy, Wy, ... is a martingale. By definition of H,,,

Wn - MO + Z(l{TZm})(Mm - Mm—l) - MO + Z(MT/\m - MT/\(m—l)) - MT/\n-

m=1 m=1

[l

Theorem 4.21 (Optional Stopping Theorem, Version 2). Let (Mg, My, ...) be a mar-
tingale, and let T' be a stopping time such that P(T < oco) = 1. Let d € R. Assume that
|Muar| < d for alln > 0. Then EMp = EM,.

Proof. From Theorem 4.20, for any n > 1,
EMy = EMyar = EMoar(Lir<ny + Lirsny) = EMparlir<n) + EMoarlirsn.
We bound each term separately. We have
|EMunrlirsny| < E M| gsny < d-Elgrsny =d-P(T >n). (%)
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Also, since P(T' < o0) = 1, we have
n—oo
Therefore, for any n > 1,
|EM,nrlir<ny — EMr| = [EMrlir<py — EMr(Lir<n) + lirsny)|
= |[EMrlirsny| S E M| Lrsny < d-Elipsyy =d-P(T >n). (%)
So, subtracting EM7 from both sides of the above equality and using the triangle inequality,
|EMp — EM,| = ‘EMT — EMyarlir<ny — EMn/\Tl{T>n}’
(%), ()
< |[EMp — EMonrlir<ny| + |[EMuarlirsny| < 2d-P(T >n), Vn>1.

Letting n — oo and using P(T" < oo) = 1 concludes the proof. (By continuity of the
probability law, lim,, .. P(T' > n) = P(T = oc0) = 0.) O

Theorem 4.22 (Optional Stopping Theorem, Version 3). Let (My, My, ...) be a mar-
tingale, and let T be a stopping time such that ET < oo. Let d € R. Assume that
E|M,, — M,| <d for alln > 0. Then EMp = EM,.

Exercise 4.23. Prove Wald’s Equation, Proposition 3.86, using Theorem 4.22.

For a real-world example, suppose My, My, ... is a martingale which describes the price of a
stock. Suppose the stock is currently priced at My = 100 and you instruct your stock broker
to sell the stock when its price reaches either $110 or $90. That is, define the stopping time
T = min{n > 1: M,, > 110 or M,, < 90}. Then T is a stopping time. From the Optional
Stopping Theorem Version 2, EMy = EM,. That is, you cannot make money off of this
stock (if it is a martingale).

Remark 4.24. The assumptions of the Optional Stopping Theorem cannot be abandoned,
as shown in Example 4.18. Let (Mg, Mi,...) be the symmetric simple random walk on
Z with My = 0. Let T = min{n > 1: M,, = 1}. Then EM, = 0 but My = 1, so
EMr =1+#0=EM,.

Example 4.25 (Gambler’s Ruin). We return to Example 4.12. Let 0 < p < 1 with
p#1/2, andlet ¢ :=1—p. Let 0 < a < xy < b. Let Xy := zg. Let (Xo,Xy,...) be
independent random variables such that P(X; = 1) = p and P(X; = —1) = 1 — p for all
i>1. Foranyn>0,letY,=Xo+ -+ X,. Let T =min{n >1:Y, € {a,b}}. Thatis, T
is the first time the simple random walk Y,, hits either a or b. We showed in Example 4.12
that (¢/p)¥" is a Martingale. Let ¢ := P(Yy = a) be the probability that the random walk
hits a before it hits b. Lemma 3.28 implies that P(7" < oo) = 1. (Consider the corresponding
Markov chain on the state space {a,a + 1,a + 2,...,b} that “reflects at its boundary,” so
that P(a,a+ 1) =1 and P(b,b— 1) = 1.) From Theorem 4.21,

(¢/p)™ = E(q/p)" = E(q/p)'™ = clq/p)* + (1 — c)(a/p)".
Solving for ¢, we get

(¢/p)* = (q/p)®
(¢/p)* — (q/p)® "
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In the case p = 1/2, Y, itself is a martingale, so
zo = EYy = EYy = ca+ (1 — ¢)b.

Solving for ¢, we get

o — b

a—>b’
Exercise 4.26. Let Xy, = 0. Let (Xo, X1,...) such that P(X; =1) = P(X; = —1) = 1/2
for all ¢ > 1. For any n > 0, let Y,, = Xy + --- + X,,. So, (Yp,Y3,...) is a symmetric simple
random walk on Z. Show that Y, — n is a martingale (with respect to (X, X1, ...)).

Exercise 4.27. Let 1/2 < p < 1. Let (Xo, Xj,...) such that P(X; = 1) = p and P(X; =
—1)=1-—pforalli > 1. Foranyn > 0,let Y, = Xo+---+X,,. Let Ty = min{n > 1: Y, = 0}.
Prove that Py (7, = oo0) > 0. Then, deduce that Po(7y = co) > 0. That is, there is a positive
probability that the biased random walk never returns to 0, even though it started at 0.

C =

Example 4.28. Continuing the Gambler’s Ruin example with p = 1/2, let a < 0 < b be
integers, and let 2o = 0 and let 7' := min{n > 0: Y, ¢ (a,b)}. We claim that ET = —ab.
To see this, we use Exercise 4.26 and the Optional Stopping Theorem to get 0 = E(YZ —T),
then using Example 4.25,

ET = EY} = a®P(Sy = a) + b*P(Sy = b)

b (—a) a—>b

2 2
“ b—a + b—a “ b—a “

Strictly speaking, the Optional Stopping Theorem, Version 2, does not apply, since the

martingale is not bounded. But Theorem 4.20 does apply, and we can then let n — oo to

get ET' = —ab. Filling in the details is beyond the scope of this course.

Exercise 4.29. Let Xi,... be independent identically distributed random variables with
P(X;=1)=P(X;,=—-1)=1/2 for every i > 1. For any n > 1, let M,, := X7 +--- + X,,.
Let My = 0. For any n > 1, define

W= Mo+ Y Hp(My — My_y).
m=1

Show that if you have an infinite amount of money, then you can make money by using
the double-your-bet strategy in the game of coinflips (where if you bet $d, then you win $d
with probability 1/2, and you lose $d with probability 1/2). For example, show that if you
start by betting $1, and if you keep doubling your bet until you win (which should define
some betting strategy Hip, Hs,... and a stopping time T'), then EW; = 1, for a suitable
stopping time 7'.

Exercise 4.30. Prove the following variant of the Optional Stopping Theorem. Assume
that (Mo, My, ...) is a submartingale, and let 7" be a stopping time such that P(7 < o).
Let ¢ € R. Assume that |[M,,r| < ¢ for all n > 0. Then EM7y > EM,. That is, you can
make money by stopping a submartingale.

Exercise 4.31 (Ballot Theorem). Let a, b be positive integers. Suppose there are ¢ votes
cast by ¢ people in an election. Candidate 1 gets a votes and candidate 2 gets b votes. (So
¢c=a+b.) Assume a > b. The votes are counted one by one. The votes are counted in a
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uniformly random ordering, and we would like to keep a running tally of who is currently
winning. (News agencies seem to enjoy reporting about this number.) Suppose the first
candidate eventually wins the election. We ask: with what probability will candidate 1
always be ahead in the running tally of who is currently winning the election? As we will
see, the answer is Zﬁe

To prove this, for any positive integer k, let S be the number of votes for candidate 1,
minus the number of votes for candidate 2, after k votes have been counted. Then, define
Xy = S._x/(c— k). Show that Xy, X7,... is a martingale with respect to S.,S._1,Sc2, .. ..
Then, let T such that T'=min{0 < k < ¢: X3 =0}, or T = ¢ — 1 if no such k exists. Apply

the Optional Stopping theorem to X to deduce the result.

Exercise 4.32. Let (X, Xi,...) be the simple random walk on Z. For any n > 0, define
M, = X? — 3nX,. Show that (Mg, My, ...) is a martingale with respect to (X, Xi,...)

Now, fix m > 0 and let T be the first time that the walk hits either 0 or m. Show that,
for any 0 < k < m,
m? — k2

3

Exercise 4.33. Let X, X,,... be i.i.d. random variables with EX; = 0 for every ¢ > 1.
Suppose there exists ¢ > 0 such that Var(X;) = o2 for all ¢ > 1. For any n > 1, let
S, = Xi + -+ X,. Show that S? — no? is a martingale with respect to X;, Xo,.... (We
let XO = O)

Let a > 0. Let T'=min{n > 1: |S,| > a}. Using the Optional Stopping Theorem, show
that ET > a?/0?. Observe that a simple random walk on Z has 02 = 1 and ET = a? when
a € Z.

Eu(T| X7 =m) =

4.3. Concentration for Product Measures. In certain cases, we can make rather strong
conclusions about the distribution of sums of i.i.d. random variables, improving upon esti-
mates from either the Markov or Chevyshev inequalities.

Theorem 4.34 (Hoeffding Inequality/ Large Deviation Estimate). Let X, X5, ... be
independent identically distributed random variables with P(X; =1) = P(X; = —1) = 1/2.
Let aq,as,... € R. Then, for anyn > 1,

n +2
P<ZaiXiZt> <e Xl V> 0.

=1

Consequently,

2
Zt) < 2e *Tiiei Vit >0.

i=1

Proof. By dividing ay, ..., a, by a constant, we may assume » . a? = 1. Let a > 0. Using
the (exponential) moment method, and at > 0,

n n

P(Z a; X; > t) = Pe®Zim1 aiXi > gat) < pmatpea im ek — pat H Eec®iXi,

i=1 i=1

The last equality used independence of X7, X, ... and Proposition 2.39. Using an explicit
computation and Exercise 4.35,

Beer! = (1/2)(e2 + ¢~ = cosh(aa,) < 2, Wiz 1
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In summary, for any ¢ > 0
Z%X >t) e—0te0? i a}/2 _ —at+a?/2

Since o > 0 is arbitrary, we choose « to minimize the right side. This minimum occurs when
a =t, so that —at + a?/2 = —t%/2, giving the first desired bound. The final bound follows
by writing P(|>°" , a;X;| > ¢) =P, aiX; > )+ P(= >, a;X; > t) and then applying
the first inequality twice. d

Exercise 4.35. Show that cosh(z) < e**/2, ¥ z € R.

In particular, Hoeffding’s inequality implies that

°(;

This inequality is much stronger than either Markov’s or Cheyshev’s inequality, since they
only respectively imply that

P(1 izt)gl, (
n t

Note also that Hoeffding’s inequality gives a quantitative bound for any fixed n > 1, unlike
the (non-quantitative) limit theorems which only hold as n — oc.

i > t> <2 wi>0.

|
>t> 5. vtz

Exercise 4.36 (Chernoff Inequality). Let 0 < p < 1. Let Xj, Xs,... be independent
identically distributed random variables with P(X; = 1) = p and P(X; = 0) = 1 —p for any
1> 1. Then for any n > 1

(ZX>t> m’(t)m, Vi >p.

Prove the same estimate for P(; Yoo X, <t)forany t <p. (Hint: 1+ 2 < e* for any
T ER, 501+ (e —1)p < el"~1p)

Exercise 4.37. For any natural number n and a parameter 0 < p < 1, define an Erdos-
Renyi graph on n vertices with parameter p to be a random graph (V, E) on a (deterministic)
vertex set V' of n vertices (thus (V, ) is a random variable taking values in the discrete space

of all 2(2) possible undirected graphs one can place on V') such that the events {i,j} € F
for unordered pairs with ¢, 7 € V' are independent and each occur with probability p.

For each n > 1, let (V,,, E,,) be an Erdés-Renyi graph on n vertices with parameter p = 1/2
(we do not require the graphs to be independent of each other). Define d := p(n — 1).

e Show that d is the expected degree of each vertex in G. (The degree of a vertex
v € V is the number of vertices connected to v by an edge in E.)

e Show that there exists a constant ¢ > 0 such that the following holds. Assume
p> Cl"%. Then with probability larger than .9, all vertices of G have degrees in the
range (.9d, 1.1d). (Hint: first consider a single vertex, then use the union bound over
all vertices.)
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Exercise 4.38 (Azuma’s Inequality). In this exercise, we prove a generalization of the
Hoeffding inequality to martingales. Let ¢1,¢,... > 0. Let (Xo, X1,...) be a martingale.
Assume that |X,, — X,,_1| < ¢, for all n > 1. Then for any ¢ > 0,

t2

P(|X, — Xo| > 1) < 2e X<l

Prove this inequality using the following steps.

e Let @ > 0. Show that Ee*Xn=X0) = Ele®Xn-1=XO)E(exXn=Xnu-1)| F, )], (When Y
is a random variable, we denote E(Y|F,) := g(Xo,..., X,) where g(xo,...,z,) =
E(Y|Xy=zo,...,X,, = z,) for any x¢,...,z, € R.)

e For any y € [—1,1], show that e®n¥ < Hleacn 4 Ive—acn,

e Take the conditional expectation of this inequality when y = (X,, — X,,_1)/cn.

e Now argue as in Hoeffding’s inequality.

Using Azuma’s inequality, deduce McDiarmid’s Inequality. Let Xi,..., X,, be indepen-
dent real-valued random variables. Let ¢q,co,... > 0. Let f: R®™ — R be a measurable
function such that, for any 1 < m <n,

sup If (21, ) — f(@1, o 1, T Tty e Tn) | < e
T1yeesTm—1,TmThy s T 1,0, Tn ER

Then, for any ¢ > 0,
t2

P(|f(X1,...,Xn) —Ef(Xy,...,X,)| >t) <2 *Zied,
(Note that a linear function f recovers Hoeffding’s inequality, Theorem 4.34.)

5. PoIssoN PROCESS

Before introducing the Poisson Process, we review conditional expectation for continuous
random variables.

Definition 5.1 (Conditioning one Random Variable on Another). Let X and Y be
continuous random variables with joint PDF fxy. That is, for any A C R?

P((X,Y) € A) — / /A Fey (2, y)dedy.

Fix some y € R with fy(y) > 0. For any = € R, define the conditional PDF of X given
that Y =y by

fxy(z,y)
I )= —r—F—, VaeR.
v ely) fr(y)
We also define the conditional expectation
BOY|Y =) = [ ofuylalds

And for any —oo < a < b < 0o, define the conditional probability
b
Pla< X <b|Y =9) = [ farlaly)is
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More generally, if X3, ..., X,, have joint PDF fx, . x,, we define
_ le,...,Xn(ﬁb - 7In)
fXQ,...,Xn(SCm e ,xn)

x, 1s defined by

le‘X%_“’Xn(.Z'llxz,...,l'n) s V£L'1,...,l'n - R

Here the marginal fy,

-----

o0
fxo X (1527 . Jn) = / X, X (Ih S 7$n)dI1, Vg, ..., x, € R.
— o0

We can similarly define conditional probability and conditional expectations.

FIGURE 1. One Sample Path of a Poisson Process. The horizontal axis is the s-axis.

5.1. Construction of the Poisson Process. Up until this point, we have focused on
discrete time stochastic processes. That is, we have discussed sequences (Xo, X7, Xo,...)
of random variables, indexed by the nonnegative integers. In theory and in applications,
it is often beneficial to consider continuous time stochastic processes. That is, it is often
helpful to consider sets of random variables {X;}s>0. Here, s ranges over all nonnegative
real numbers.

The Poisson Process is our first example of a continuous time stochastic process. This
process will be integer-valued.

Let A\ > 0. Recall that a random variable T is exponential with parameter ) if T
has the density function given by fr(x) = Ae™* for all x > 0, and fr(x) = 0 otherwise.
Moreover,

1—e M ift>0
0 if t <O.

P(T<t)= /_too fr(x)dx = /Ot fr(z)de = {

Lemma 5.2. Let 7 be an exponential random variable with parameter X > 0. Let t,s > 0.
Then

P(r>t+s|7>t)=P(1>s).
That is, T has the memoryless property, or lack of memory property. Moreover,

P(r<t+s|t>t)=P(r <s).
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Proof.

P(r>t >t P(r>t
Pir>t+s|t>1t)= (r tsr>t) _ Pl + )

P(r >1t) - P(r>1)
Az _ s 00
_ )\ft;}se dx e A(t+s) :e/\sz)\/ g
A7 e Avdr et s

Then, note that P(7r < t+s|7 >t)=1-P(r > t+s|7>t)=1-P(r>s)=P(r <s). O

Lemma 5.3. Let A > 0. Let 7y,...,7, be independent exponential random wvariables with
parameter \. Define T,, == 7 + --- + 7,. Then T, is a gamma distributed random
variable with parameters n and X. That is, T,, has density

—at (p)nt )
fr.(t) = {Ae oo =0

0, otherwise.

Proof. We induct on n. The case n = 1 follows (using 0! = 1) since T} = 71 is an exponential
random variable. We now do the inductive step. Suppose the assertion holds for n and
consider the case n + 1. Then T, .1 = T}, + 7,.1. So, for any s > 0, using that T;, and 7,1,
are independent,

P(Ty1 < 8) = P(Th + mr < 5) / / P () fr (1) ydt.

Taking the derivative with respect to s > 0,

an+1 (8) = %P(TnJrl < 3 / / f‘rn+1 an dydt = / an+1 an( )

Applying the inductive hypothesis,

s )\t>n 1 A\ s A\gn
_ A —)\(s—t))\ —At ( 2t = de —As / tn_ldt =\ —As )
I (5) /0 ‘ (n—1)! (n—1) J, ‘Tl

U

Definition 5.4 (Poisson Process). Let A > 0. Let 71,7, ... be independent exponential
random variables with parameter A\. Let Ty = 0, and for any n > 1, let T;, ;=7 + - - - + 7.

A Poisson Process with parameter A > 0 is a set of integer-valued random variables
{N(s)}s>0 defined by N(s) := max{n > 0: T, < s}.

We can think of the Poisson Process intuitively, so that 7 is the time between the arrival
of the (k —1)* person and the k' person at a bank, and N(s) is the number of people who
have arrived by time s > 0.

Recall that a discrete random variable X is a Poisson random variable with mean
A>0if P(X =n)=e*- 2} for all nonnegative integers n.

Lemma 5.5. Let {N(s)}s>0 be a Poisson Process with parameter A > 0. Then, for any
s >0, N(s) is a Poisson random variable with parameter \s.
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F1GURE 2. One Sample Path of a Poisson Process.

Proof. Let n be a nonnegative integer. Then
P(N(s)=n)=P(max{m >0: T, < s} =n) =P(T, < s, Ty1 > s)
=P(T, <s,T,+ Tur1 > 9)

= / / Jrni (W) fr, (t)dydt, since T,, and 7,41 are independent
—o0 J s—t

s s M\ n—1
= / P(7y11 > s—1t)fr,(t)dt = / eA(St))\e’\t%dt, by Lemma 5.3
—00 0 n— :
)\n S ATL n
— e)\s—/ tnfldt — e*/\s S .
(n—1)"J, n!
O
Exercise 5.6. Let A > 0. Let 71, 7, ... be independent exponential random variables with
parameter \. For any n > 1, let T,, = 71 + - - - + 7,,. Fix positive integers n; > --- > n; and
positive real numbers ¢t > --- > t;. Then

Sty G 1) = [, (e = teer) - Sy, (B2 = 0) fr,, (1)
(Hint: just try to case k = 2 first, and use a conditional density function.)
Exercise 5.7. Let s,t > 0 and let m,n be nonnegative integers. Let 0 < t,, < t;,41 <
tman < tmant1, and define (using the notation of Exercise 5.6),

g(t'rru tm—l—l; tm—l—ny tm+n+1) = le (tm+n+1 - tm+n)an,1(tm+n - tm—i—l)le (tm+1 - tm)me (tm)
Let {N(s)}s>0 be a Poisson Process with parameter A > 0. Show that
P(N(s+t)=m+mn, N(s) =m)

s s+t s+t 00
— / (/ (/ (/ G(tms tms1s tmgns tm+n+1)dtm+n+1) dtm+n) dth) dt,,.
0 S tmt1 s+t

(Hint: use the joint density, and then use Exercise 5.6.)
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FIGURE 3. Several Sample Paths of a Poisson Process. The horizontal axis is
the s-axis.

Lemma 5.8. Let {N(s)}s>0 be a Poisson Process with parameter A\ > 0. Let s,t > 0 and

let m,n be nonnegative integers. Then
P(N(s+t)=m+n, N(s) =m) =P(N(s) =m)P(N(t) = n).

Proof. Suppose n > 1. From Lemma 5.3 and Exercise 5.7 we have

— \HntL = Mgt (thrn - tmﬂ)“—? tﬁ_l
(n —2)! (m—1)"

g(tma tm—l—la tm+n7 tm-l—n—i—l)

)\m+n+1 00
P(V(s+8) =m+n, N(s) = m) = e / e Honrgy
. c Js+t

s+t s+t S
: </ / (tm—l—n - tm+1)n_2dtm+ndtm+l> / tm_ldtm
S tm41 0

Sm s+t
= /\m+"e*)‘(s+t)—)' </ (s+t— tm+1)n1dtm+1>

ml(n —1

1 p(N(s) = mP(N(t) = n).

_ /\m—l-ne—)\(s—l-t _
m!n!

In the last line, we used Lemma 5.5. The cases n = 0 and n = 1 are treated similarly. [

Lemma 5.9. Let {N(s)}s>0 be a Poisson Process with parameter A > 0. Fiz s > 0. Then
N(t + s) — N(s) is a Poisson random variable which is independent of N(s). (In fact,
{N(t + s) — N(s)}t>0 is a Poisson process with parameter X which is independent of the
random variable N(s), but we cannot prove this yet.)

Proof. Let s,t > 0 and let m, n be nonnegative integers. From Lemma 5.8,
P(N(s+t)— N(s)=n, N(s) =m)=P(N(s+t) =m+mn, N(s) =m)
=P(N({) =n)P(N(s) =m). ()
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Summing over all m > 0 gives P(N(s +t) — N(s) =n) = P(N(t) = n), for all s,t > 0, for
all n > 0. That is, N(t +s) — N(s) is a Poisson random variable with parameter A. For the
independence property, we can just rewrite (%) as

P(N(s+t)—N(s) =n, N(s) =m) =P(N(s+t)—N(s) =n)P(N(s) =m), Vm,n > 0.
U

Lemma 5.10. The Poisson Process has independent increments. That is, for any 0 <
ug < -+ < ug, the following random variables are independent:

N(uy) — N(ug), ..., N(ug) — N(ug_1).

Proof. In Lemma 5.9, we showed that N(s+t)—N(s) is independent of N (s). By generalizing
the arguments of Exercise 5.7 and Lemma 5.8, we have: if 1 < nq,...,ng, and if m; =
ni+---+mn;, foralll <i<k,

TL1 1 7,'_2
c— )\mk‘i’le*)\trnk+l ml

mz - m(z +1)
g<tm17tm1+1>-”7tmk7tmk+1) ) n1 — 1 l '

If0<31,... sk,andifui::31+---+siforalll<z§k,

=Mk, ... ,
/ / /tm1+1 / /tm2+1 /tmk-i-l [Lk

( mi m1+1a s tmkv tmk-i—l)dtmk—‘rldtmk T dtm1+1dtm1

— Ak AUk H zx H AteT s HP(N(sk) = ny).

=1 =1

AS; S

So, using this equality and Lemma 5.9,
P(N(uk) — N(uk,l) =Nk, ... N(UQ) — N(ul) = Na, N(Ul) = nl)
=P(N(ur) = mg, ..., N(ug) = mg, N(u1) = nq)

= HP(N(s =[P N (ug—1) = nyg,).

1=

[y

We summarize the above discussion.

Definition 5.11 (Right-Continuous Function). Let f: [0,00) — R. We say that f is
right-continuous if: for any s > 0, lim; .+ f(¢) = f(s).

Exercise 5.12. Give an example of a right-continuous function. Then give an example of a
function that is not right-continuous.
Theorem 5.13. Let {N(s)}s>0 be a Poisson process with parameter A > 0. Then N(0) =0,
(i) With probability 1, s — N(s) is right-continuous.
(ii)) N(t+s) — N(s) is a Poisson random variable with parameter A\t for all s,t > 0.
(iii) {N(s)}s>0 has independent increments.
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Conversely, if N(0) = 0 and if (i), (ii) and (iii) hold, then {N(s)}s>o is a Poisson process
with parameter A > 0.

Remark 5.14. In particular, we could use (i), (ii) and (iii) as an alternate definition of a
Poisson process.

Proof. Property (ii) follows from Lemma 5.9, and Property (iii) follows from Lemma 5.10.
Property (i) follows from Definition 5.4. For the converse direction, suppose {N(s)}s>0
is a stochastic process satisfying (i), (ii) and (iii) and N(0) = 0. For any n > 1, define
T, = min{s > 0: N(s) > n}. Note that N(s) is valued in the nonnegative integers and
increasing by Property (ii). Also, by Property (i), min{s > 0: N(s) > n} exists and
N(T,) = n for any n > 1. To see that N(7T,) = n, note that, N(7,) > n by definition
of T,,, and if N(T},) > n, then N(T,,) — N(T,, —¢) > 1 for all 0 < € < T,,. Then, for any
s > 0,7 > 1, we have by the union bound

P(N(T,) >n,T, < s)
<p (=i ((0-5) v ((0-5) )
< ;ZIP (N(s(l ~ 3)) - N(s(1- Z;—l)) > 1) @ i(l — e M1+ M/4))

J i=

By Taylor expansion, e 7(1 + \/j) = 1 — A\2/j% + ¢(j), where |c(j)| < 10A3/53. So,

J_ 2 3 2 3
A2 10N A2 10N
P(N(T,) >n,T, <s) < St ==+—7
—~ 2 i
Letting j — oo, we get P(N(T,) > n,T,, < s) = 0. Letting s,n — oo, we see that N(T,,) = n
with probability 1, as desired.
Now, for any ¢ > 0, property (ii) says

P(T, >t)=P(N(t) =0) = e ™.

That is, T} is an exponential random variable with parameter \.
Also, if 7 := T} and 7» := Ty — T, then property (iii) implies

Prn>t|mn=s)=P(Iy>t+s|N(s)— N(r)=1for all0 < r < s)
=P(N(t+s)—N(s) =0|N(s) = N(r) =1for all0 < r < s)
=P(N(t+s)—N(s)=0) =e ™, by Property (ii).

Since this equality holds for any s > 0, we conclude that 7, is an exponential random variable
with parameter A\, and 71, 75 are independent.
More generally, if £ > 1 and 74, := T}, — T)_1, then for any 0 < 51 < - -+ < $p_1,

P(re > t| 71 =Sk1,...,71 = 51)
=P(N(t+ sg_1) — N(sx_1) =0

N(sg—1) = N(ry—1) =1, Vspo <7Tp_1 < Sk_1,...,N(s1) = N(r) =1, V0 < r; < s1)
=P(N(t+s,_1) — N(sp_1) =0) = e, by Property (ii).
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Since this equality holds for any 0 < s; < --- < s,_1, we conclude that 7 is an exponential
random variable with parameter A\, and by induction on k, 7, ..., 7, are independent. [

Remark 5.15. Let {N(s)}s>0 be a Poisson Process with parameter A > 0. Fix s > 0. Then
{N(t +s) — N(s)}+>0 is a Poisson process with parameter A which is independent of the
random variable N(s). This follows from Theorem 5.13.

Proposition 5.16 (Poisson Approximation to the Binomial). Let A > 0. For each
positive integer n, let 0 < p, < 1, and let X,, be a binomial distributed random variable with
parameters n and p,. Assume that lim, . p, = 0 and lim,_,.onp, = A. Then, for any
nonnegative integer k, we have

)\k;
lim P(X, = k) =e .

From the Poisson Approximation to the Binomial, we can use a Poisson random variable
to model any low probability event with many chances of happening. For example, the
Poisson random variable can model the number of people who win the lottery, the number
of magnetic defects in a hard drive, the number of typos per page in a book, etc.

The Poisson Process can be treated in the same way, with an added time variable. That
is, we can use the Poisson Process to model any kind of low probability event with many
chances of happening over time. For example, this process can model the number of people
arriving at a restaurant during a week, the number of car accidents over the course of a day,
the number of visitors to a website over the course of a year, etc.

Definition 5.17 (Inhomogeneous Poisson Process). Let A: [0,00) — [0, 00) be a func-
tion. We say a stochastic process { N(s)}s>0 is a inhomogeneous Poisson Process with
rate \ if N(0) =0 and if
(i) With probability 1, s — N(s) is right-continuous.
(ii) N(t) — N(s) is a Poisson random variable with parameter fst A(r)dr for all t > s > 0.
(iii) {N(s)}s>o has independent increments.

We recover the usual Poisson process by choosing A(r) := A for all » > 0.
5.2. Compound Poisson Process.

Exercise 5.18. Let Y7, Y5,... be independent identically distributed random variables. Let
N be an independent, nonnegative integer-valued random variable. Let S = Y] + - + Yy,
where S :=0if N =0.

o If E Y| < oo and EN < oo, then ES = (EN)(EY}).

e If EY? < 0o and EN? < oo, then var(S) = (EN)(var(Y7)) + (EY;)?(var(N)).

e If N is a Poisson random variable with parameter A > 0, then var(S) = AEY}.
(Hint: for the second part, use E(S?|N = n) = n - var(Y;) + (nEY})% Use this to compute
ES?. Then compute var(5).)

Exercise 5.19. Suppose the number of students going to a restaurant in a single day has a
Poisson distribution with mean 500. Suppose each student spends an average of $10 with a
standard deviation of $5. What is the average revenue of the restaurant in one day? What
is the standard deviation of the revenue in one day? (The amounts spent by the students
are independent identically distributed random variables.)
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5.3. Transformations.

Theorem 5.20 (Splitting). Let Y1,Ys,... be independent identically distributed positive
integer-valued random variables. Let {N(s)}s>o be a Poisson process with parameter A > 0
that is independent of Y1,Ya,.... Foranys >0, j > 1, let Nj(s) be the number of integers i <
N(s) such that Y; = j. Then {N1(s)}s>0, {N2(s)}s>0, ... are independent Poisson processes
with rates AP(Y; = 1),A\P(Y; =2),....

Proof. Fix an integer k > 0 and assume that Y7 < k. Note that N;(s) = Zf\i(f) Liy,=;, and
Ni(s)+---+ Ni(s) = N(s). Let n:=ny +--- +ng. We first consider the case k = 2. Then

P(Ni(s) = n1, No(s) = na | N(s) Zl{y 1}—n1,21{y 2} = na | N(s) =n)

= P(Z 1{Yi:1} = Ny, Z 1{yi:2} = nz) , by independence
= i=1

|
= S P(Y: = )"P(Y; =2)™,

nl‘ng

So, since {N(s) =n} D {Ni(s) = n1, Na(s) = na}, we get from Lemma 5.5,

P(Ni(s) = ny, No(s) = n2) P(Ni(s) = ny, No(s) = ng, N(s) =n)
P(Ni(s) = n1, Na(s) = na [ N(s) = n)P(N(S) =n)

n! A"s
= P(Y; = 1)"P(Y; = 2)2e ™
= P = P =2
_ o s(P(v: 1y AsP(Yy = 1)]™ o As(P(¥i=2)) [AsP (Y = 2)]™
TL1! TLQ!

So, Ni(s) and Ny(s) are independent Poisson random variables with parameters AsP(Y; =
1) and AsP(Y; = 2), respectively. So, one part of condition (ii) of Theorem 5.13 holds.
Conditions (iii) follows since {N(s)}s>0 itself has independent increments. (If we condition
on the values of Y7,Ys, ..., then N; has (conditionally) independent increments. Then the
Total Probability Theorem implies that N; has independent increments.)

We now handle the more general case, where we verify the full condition (ii). Let s,¢ > 0,
and for any 1 <i <k, let X; := N;(s+1t) — N;(s), and let X := N(s+t¢) — N(s). Then

P(Xlznl,...,Xk:nk]X:n)
k

=1

i=1 j=1

= P(Z Liy=1} = N1,y - s Z Liy,=k} = M) , by independence

— PV =) P(Y) = k)
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So, since {X =n} D {X; =nq,..., Xx = ni}, we get from Lemma 5.5,
P(Xi=ny,.... X =n) =P(X1 =n4q,..., X, =n4, X =n)

=P(Xi=ny,..., X =n | X =n)P(X =n)

n!

= —P(YI — 1)n1 . P(Y'l — k)nke—)\s

nyl-nyg!

A" s™

n!
_ ﬁeAs(P(lei)) [AsP(Y; = @')]ni'

i=1
The Theorem now follows since conditions (i), (ii) and (iii) of Theorem 5.13 hold ¥V j > 1. O

Exercise 5.21. Suppose you run a (busy) car wash, and the number of cars that come to
the car wash between time 0 and time s > 0 is a Poisson poisson with rate A = 1. Suppose
each car is equally likely to have one, two, three, or four people in it. What is the average
number of cars with four people that have arrived by time s = 1007

Proposition 5.22 (Superposition). Let {N1(s)}s>0,- ., {Ni(s)}s>0 be independent Pois-
son processes with rates Ay, ..., \, > 0, respectively. Then {Ny(s) + -+ + Ni(s)}s>0 is a
Poisson process with rate \y + -+ -+ Ay

Proof. Tt suffices to check the three conditions of Theorem 5.13. The first condition is clear.
The second condition follows by repeated application of Exercise 5.23. The third condition
follows by assumption. 0

Exercise 5.23. Let X be a Poisson random variable with parameter A > 0. Let Y be a
Poisson random variable with parameter § > 0. Assume that X,Y are independent. Then
X +Y is a Poisson random variable with parameter A + ¢.

Exercise 5.24. Suppose you are still running a (busy) car wash. The number of red cars
that come to the car wash between time 0 and time s > 0 is a Poisson poisson with rate
2. The number of blue cars that come to car wash between time 0 and time s > 0 is a
Poisson poisson with rate 3. Both Poisson processes are independent of each other. All cars
are either red or blue. With what probability will five blue cars arrive, before three red cars
have arrived?

5.4. Continuous-Time Chains and Semigroups. In a discrete-time Markov chain, the
chain changes its state at nonnegative integer times. In a continuous-time Markov chain,
the chain changes its state at the transition times of a rate one Poisson process. That
is, the times between changes of state are independent exponential random variables with
parameter A\ = 1.

For some applications, a continuous-time Markov chain could be more natural than its
discrete-time counterpart.

Definition 5.25 (Continuous Time Markov Chain). Let (Yp, Y1, .. .) be a finite (discrete-
time) Markov chain with (finite) state space 2 and transition matrix P. Let {N(¢)}:>0 be
a Poisson process with parameter A = 1 that is independent of (Yp,Y1,...). The (finite)
continuous-time Markov chain {X,;};>o with transition matrix P and state space € is
defined by

Xt = YN(t)a Vi Z 0.
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Let m be a positive integer and let P be an m x m real matrix. Define the matrix e by
% pk
P
: o
k=0
That is, the (z,y) entry of ef’, denoted e”(z,y) is

ZP’“J:y'

k=

o It I.

For example, if I denotes the m x m identity matrix, we have e/ = b0 T = €

Exercise 5.26. Let m be a positive integer and let P be an m X m real matrix.
e Show that the sum

k!
k=0
converges. That is, e’ is well-defined.
e Show that
oPH — Pl

e Find m x m matrices P, @Q such that e+? £ ePe?.

Proposition 5.27 (Markov Property, Continuous-Time). A (finite) continuous-time
Markov chain satisfies the following Markov property: for all x,y € €, and for any s,t > 0,

P(X, 1, =y| X, =) = P(X; = y| Xo =) = " D(z,y).

Proof. Let n be a positive integer. From Definition 5.25, Theorem 5.13, the Markov property
for (Yp,Y7,...), and Exercise 5.26,

P(XH—S :y|Xs :l‘,N(S) = ) P(YN(tJrs) _ylyN (s) — N(S) :TL)
= P(YN(t4s)-N)tn = Y| Yo =2) = P(YN(t)+n y| Y, =12)

=Y P(Yiyn =y | Vo =2)P(N(t) = k) = ZP(Yk = y| Yo = 2)P(N(t) = k)

= PHa,y)P(N ZP'“ T, y)e Tt (x,y) = P (@, y).
k=0

By averaging over all values of N(s), we conclude that
P(XH—S =Y | X, = 17) = et(P_I)(xa y)
Choosing in particular s = 0 concludes the proof. 0

Definition 5.28 (Semigroup, Heat Kernel). Let {X;};>o be a (finite) continuous-time
Markov chain with transition matrix P and state space 2. The heat kernel H,(z,y) of the
Markov chain is defined as

Hy(w,y) =P(X; =y| Xo=2) =" Dz,y),  Vt20,V(ry) e
The set of matrices {H,};>0 := {e!P~D},5¢ is sometimes called a semigroup with gener-
ator P — 1.
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Exercise 5.29. Let m be a positive integer and let P be an m x m real matrix. Denote
H, := =D for all t > 0. Let f € R™ be a column vector. Then H,f denotes multiplying
the matrix H; against the vector f. Show the following:
o Hy=1.
e Hyyy = HyH; for all s,t > 0. (This identity is an analogue of the Chapman-
Kolmogorov equation from Proposition 3.25.)
e H;1 =1 for all t > 0. (Moreover, H, is a stochastic matrix, for all ¢ > 0. Here 1
denotes the vector of all ones.)
o 4l oH, =limy o+ 250 = (P —1).
e For any f € R™, we have

%Htf:(P—[)Htf, vt > 0.

Exercise 5.30 (Markov Property, Continuous-Time). Show that a (finite) continuous-
time Markov chain satisfies the following Markov property: for all z,y € €, for any n > 1,
t > 0 and for any s > s,.1 > --- > s9 > 0 and for all events H,_; of the form H, ; =
NP2 { X, = a1}, where z; € Q for all 0 < k < n — 1, such that P(H,_; N {X, = z}) > 0,
we have

P(Xt+s =Yy ‘ H,_1N {Xs = x}) = P(Xt =Yy ‘ Xo = 55’)

Theorem 5.31 (The Convergence Theorem, Continuous-Time). Let P be the tran-
sition matriz of a finite, irreducible Markov chain, with state space Q and with (unique)
stationary distribution w. Let H; be the corresponding heat kernel. Then wH, = © for all
t>0 and
Jim max || Hy(z, ) = ()|l py = 0.
Unlike in the discrete-time case of Theorem 3.63, we do not need to assume aperiodicity
of the Markov chain in Theorem 5.31. Also, since 7 = 7P, we have
= thpk =tk
__HP-1) _ —t ot v
TH; = me =e WZ ] =e Wzk!—w.
k=0 k=0

Exercise 5.32. Let P be the transition matrix of a finite Markov chain. Show the following.

o If A\ € C is an eigenvalue of P, then |\| < 1.
e If P is irreducible, then the vector space of eigenvectors of P corresponding to the
eigenvalue 1 is the one-dimensional space spanned by the all ones vector (1,...,1)%.

e if P is irreducible and aperiodic, then —1 is not an eigenvalue of P.

Assume that the Markov chain is finite, reversible, and irredicuble, and let 7 be the
corresponding (unique) stationary distribution. For any f, g € R®, define the inner product

(f,9)= =) f(2)g(@)m(x).
€
From Exercise 3.48, the inner product space (R?, (-,-),) has an orthonormal basis of real-
valued eigenfunctions gi, ..., gjo € R® of P with real eigenvalues. So, if P is the transition
matrix of a reversible, irreducible Markov chain, we can label the corresponding eigenvalues
of P in decreasing order:
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Exercise 5.32 implies that |A;| <1 for all 1 < j <|Q] and A\ > Aq.
© Lk pk k\k
AP ng_e(A i
k! k!
k=0 k=0

Higj =P g =

™

9j-

So, if f € R?, then we can write H,f in terms of its action on the basis vectors:
12| 12|
Htf = th f g] n9j = Zet()\ f gj 95, Vit >0.
j=1

1€
Htf gZ Ze f g] <gjagl>7T = et()\iil)<f7 gi>ﬂ'7 Vit Z 07 V1 S i S ‘Ql . (*)

The spectral gap of P is defined as
vi=1—= .
Also, define
Ef = (1), Wlax={ D Vaa(f):=If = Ecfl3,.

In the reversible case, the following variant of Theorem 5.31 holds:
Proposition 5.33. Let P be the transition matrix of a finite, reversible, irreducible Markov

chain, with state space Q0 and with (unique) stationary distribution w. Let H; be the corre-
sponding heat kernel. Let v := 1 — Ay be the spectral gap of P. Then, for any f € R,

2 -2
t) T Hm = 7 TS - Y-
|Hif —Exfl, <e "Var, f Vt>0

Proof. From Exercise 5.29, for any f € R™ and for any ¢ > 0, we have

d
EHtf = (P —DH.f.

For any ¢t > 0, let u(t) := HHtfH;ﬂ. From the product rule, we have

d
u'(t) = 2(H.f, aHtﬁn- =2(Hef, (P — I)Hif)x
From Exercises 5.32 and 3.48, we can uniquely write H;f as a linear combination of or-
thonormal eigenvectors g1, ..., gjo € R® of P, so that
[g] 1|

—2Z|Htfgz (gi2 (P = 1)gi) —2Z|Htfgz>\<&—1>.

Assume for now that E.f = 0, so that (H.f, g1)~ ® E,.f = 0 since A\; = 1 and ¢; is the
constant vector. Then
12

() < =2 S [HLf, gial” = —2v I3, = —27 - ult).
=1

That is, <[u(t)e*"] = 0 for all ¢ > 0, so there exists ¢ > 0 such that u(t) = ce~*"". Since

u(0) =c= Hf||§7r, we have shown that

IHefll5 < e flls,  VE>0,
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in the case that E,f = 0. For the general case, we apply the above result to f —E.f. 0O

Exercise 5.34. Prove the following discrete-time version of the above spectral gap inequality.
Let P be the transition matrix of a finite, irreducible, reversible Markov chain, with state
space ) and with (unique) stationary distribution 7. Let

7« =1 —max{|A| : A is an eigenvalue of P with \ # 1}
be the absolute spectral gap of P. Then, for any f € R® and for any integer k > 1,
Var,(P*f) < (1 — v.)*Var, f.

6. RENEwWAL THEORY

The Poisson Process can be generalized by replacing the exponential random variables by
more general random variables. This generalized process is called a renewal process. We
can still think of a renewal process in the same way that we think of the Poisson process,
e.g. by modeling the number of people visiting a restaurant over time, or the number of
lightbulbs that need to be installed in a single socket, up to a certain time, etc. However, a
general renewal process will no longer have the independent increment property, as we had
in the case of the Poisson process. Indeed, the independent increment property was a crucial
ingredient in Theorem 5.13, where we uniquely characterized the Poisson process.

Definition 6.1 (Renewal Process). Let 7y, 7, ... be nonnegative independent identically
distributed variables. Let Ty = 0, and for any n > 1, let T, := 7 + --- + 7,,. A Renewal
process is a set of integer-valued random variables { N(s)}s>0 defined by N(s) := max{n >
0: T, <s}.

Example 6.2. Let Xy, Xi,... be a Markov chain with X := z € Q. Let 77 := min{k >
1: Xy = z}, and for any n > 2, inductively define T, := min{k > T,,_1: X = x}. Let
Tn = Typy1 — T, for any n > 1. The Strong Markov property implies that 7, 7,... are
independent and identically distributed. Therefore, {N(s)}s>0, as defined above is a renewal
process. Note that N(s) is the number of times the Markov chain returns to x up to time s.

6.1. Law of Large Numbers.

Theorem 6.3 (Law of Large Numbers for Renewal Process). Suppose we have a

renewal process {N(s)}s>o with arrival increments 11, 7o, .... Let p := Er. Assume that
0<pu<oo. Then
N 1
P(hm (5) :—) ~ 1.
s—00 8§ 1

That is, if one light bulb lasts u years on average, then after s years, we will have replaced
about s/p light bulbs (when s is large).

Proof. Let T,, := 71 + --- + 7,. Recall that 7,7, ... are independent and identically dis-
tributed, by the definition of a renewal process. So, the Strong Law of Large Numbers,
Theorem 2.54, implies that

P(lim&:u) =1. (%

n—oo M
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By the definition of N(s) := max{n > 0: T,, < s}, we have
Ty <5 < Tns)+1-
Dividing by N(s) > 0, we get
T T
N(s) < S N(s)+1 N(S) + 1 (**)
N(s) = N(s) N(s)+1 N(s)

Also by definition of N(s), for any fixed integer m > 0, we have P(N(s) < m) = P(T,,, >
s) < ET,/s=mu/s — 0 as s — co. So, using this fact and (x), the left and right sides of
(x%) converge to pu with probability 1. The Theorem follows. O

Exercise 6.4. Prove the following two facts, which we used in the proof of the Law of Large
Numbers for Renewal Processes.
Let X1, Xs,..., Y1, Yo, ..., Z1, Zs, ... be random variables. Let a,b € R.

e Assume that X,, <Y, < Z, for any n > 1. Assume that P(lim, ,,, X,, =a) =1 and
P(lim, o Z, = a) = 1. Prove that P(lim, .. Y, = a) = 1.

e Assume that P(lim, ;o X;, = a) = 1 and P(lim, Y, = b) = 1. Prove that
P(lim, o X, Y, = ab) = 1.

7. BROWNIAN MOTION

7.1. Construction of Brownian Motion. Let X, X5,... be independent random vari-
ables such that P(X; =1) = P(X; = —1) = 1/2 for all ¢ > 1. Define

1)
Bi(t):=) X, Vt>0.
i=1

Note that if j is an integer such that j < ¢ < j+1, then |t] := j and B (t) is constant when
t € [j,7 +1). So, the value of B;(t) changes at t = j, according to the value of X;. That
is, the value of Bi(t) changes at each positive integer value according to one of the random
variables X7, Xo,.... Put another way, B;(t) plots the path of a simple random walk on
the integers, if we imagine that the random walker stops for one second before each of their
random movements. Note also that, for any integers t > s > 0, B;(t) — By (s) has mean zero
and variance t — s.

Let k£ be a positive integer. We now consider changing the time between the random
walker’s movements to 1/k. To keep the same variance property as before, we also multiply

the sum by 1/Vk:
Bi(t):=—=> Xi,  Vt>0.

Note that By(t) is only constant on intervals of length 1/k now. Also, as promised, if t > s >
0 are integers divided by k, then By (t)— By(s) has mean zero and variance (tk—sk)/k = t—s.
Finally, observe that the process {B(t)}+>0 has the independent increments property.
So, for example, if 0 < t; < to < t3 < t4 are integers divided by k, then By (t4) — Bi(t3) and
By(ts) — By(t1) are independent.

If k£ is large, i.e. something like & = 1000, already By (t) can model various random
phenomena that depend on time, e.g. a stock price, the position of a randomly moving
particle, etc. However, just as we let Riemann sums converge to integrals to create a useful
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theory of integration, it is also helpful for us to take a certain limit of the continuous-time
process {Bi(t)}i>0 as k — oco. The resulting limiting stochastic process {B(t) }>¢ is called
Brownian motion. The precise meaning of this limit as k& — oo is beyond this course
material. However, we can still make some observations about Brownian motion.

Fix ¢ > 0. From the Central Limit Theorem (Theorem 2.59), observe that

[tk
1 1 a 2 dl’

lim P —=B,(t)<a]=1lmP|—) X, <al| = e 2P VaeR.

k—o0 (\/i k()_ > k—o0 Vtk; - /oo /27

Replacing a by a/+/t and changing variables, we get

a/Vi dz @ 2 dx
lim P (B(t) < a) = e = e ——,  Vack
k—o0 (Bilt) < a) /_oo Vo o V27t

That is, from Definition 2.20, as k — oo, By(t) has the same CDF as a Gaussian random
variable with mean zero and variance ¢.

Arguing similarly, if ¢ > s > 0, then as k — o0, By(t) — Bi(s) has the same CDF as a
Gaussian random variable with mean zero and variance ¢t — s. Moreover, we could believe
that the stationary increments property is also preserved as k — oo. We are therefore led
to the following definition.

Definition 7.1 (Brownian Motion). Standard Brownian motion is a stochastic process
{B(t) }+>0 which is the limit (in a sense we will not make precise) of the processes { By (t) }+>0
as k — oo. Standard Brownian motion with B(0) = 0 is uniquely characterized by the
following properties:

(i) (Continuous Sample Paths) With probability 1, the function ¢ — B(t) is continuous.
(ii) (Stationary Gaussian increments) for any 0 < s < ¢, B(t) — B(s) is a Gaussian
random variable with mean zero and variance ¢ — s.
(iii) (Independent increments) For any 0 < t; < --- < t,, the random variables B(ts) —
B(t1),...,B(t,) — B(t,_1) are all independent.

Exercise 7.2 (Scaling Invariance). Let a > 0. Let {B(¢)}:>o be a standard Brownian
motion. For any ¢ > 0, define X (¢) := \/iaB(at). Then { X (t) }+>0 is also a standard Brownian
motion.

Dealing rigorously with Brownian motion is beyond our course material. So, we will
occasionally ignore some details when dealing with Brownian motion, and when doing your
homework, it is okay to do the same. However, we will always try to provide as many details
as possible, and you should try your best to do the same.

Below, we will not formally define a stopping time, and we will not formally state an
Optional Stopping Theorem. However, since we know that { By (t) }icfo,1/k,2/k,3/k,..} is a mar-
tingale for every k£ > 1, then it seems that {B(t)};>o should be a martingale in some sense.
In fact, by the independent increments property of Brownian Motion, if ¢ > s > 0, if
T1,...,x, €E R and if s > s, > -+ > s; >0, then

E(B(t) — B(s) | B(sy) = @n. ..., B(s1) = 21) = B(B(t) — B(s)) = 0.

The last equality follows since B(t) — B(s) is a mean zero Gaussian random variable.
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FI1GURE 4. Sample Paths of Standard Brownian Motion. The horizontal axis
is the t-axis.

Remark 7.3. Just as we have seen for random walks, we cannot apply an Optional Stopping
Theorem to every stopping time. For example, let {B(t)};>0 be standard Brownian motion,
and let 7' = min{t > 0: B(t) = 1}. Then EB(0) = E(0) = 0 but B(T) = 1, so EB(T) =
14 0= EB(0).

Below, whenever we apply an Optional Stopping Theorem to a stochastic process { X (¢) }+>0
and stopping time T, we will always verify that there exists a constant ¢ > 0 such that
| X(tAT)| <cforallt >0, as in the statement of Theorem 4.21.

We will not formally define a stopping time 7" in these notes for continuous time stochastic
processes.

Brownian Motion satisfies a Markov property, in the following sense

Proposition 7.4 (Markov Property). Let {B(t)}1>0 be a standard Brownian motion. Let
s > 0. Then the stochastic process { B(t+s)— B(s) }+>0 is itself a standard Brownian motion,
which is independent of the set of random variables { B(u)}o<u<s-

Proof. Properties (i), (ii) and (iii) for {B(t + s) — B(S)}+>0 in the definition of Brownian
Motion all follow from properties (i), (ii) and (iii) for {B(t)}:>0. To see the independence

property, note that the independent increments property for { B(¢)};>o implies that B(t) —
B(s) is independent of B(u) — B(0) = B(u), for all 0 < u < s. O
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Remark 7.5. Standard Brownian motion is also a martingale in the following sense: if
t>s>0,andif s >s, > --->s >0,and z1,...,2, € R, then

E(B(t) - B(s) | B(sa) = o, Bls1) = 1) = E(B(t) — B(s)) = 0.
The first equality follows from property (iii) and the second equality follows from (ii).

Exercise 7.6. Let zq,...,x, € R, and ift, > --- > t; > 0. Using the independent increment
property, show that the event

{B(tl) = T1,... ,B(tn) = I‘n}
has a multivariate normal distribution. That is, the joint density of (B(t1),..., B(t,)) is

f(xh e ,ﬂUn) = ft1($1)ft2—t1($2 - !E1) T ftn—tn,l(xn - CEn—1)

where

1 2
ft(l') = \/?ﬂ-te_z /(Qt), Vx € R, t > 0.

Exercise 7.7. Let X be a Gaussian random variable with mean 0 and variance 0% > 0. Let
Y be a Gaussian random variable with mean 0 and variance o3 > 0. Assume that X and
Y are independent. Show that X + Y is also a Gaussian random variable with mean 0 and
variance 0% + 0%

(Hint: write an expression for P(X +Y <), t € R, then take a derivative in ¢.)

The covariances of Brownian motion can be computed from the definition of Brownian
motion.

Proposition 7.8. Let {B(t)}i>0 be a standard Brownian motion. Let 0 < s <t. Then
EB(s)B(t) = s.
Proof. Using that B(s) has variance s, and using the independent increment property,
EB(s)B(t) = EB(s)(B(t) — B(s) + B(s)) = E(B(s))* + E[B(s)(B(t) — B(5))]
— 5+ [EB(s)|[E(B(t) — B(s))] = s.

7.2. Properties of Brownian Motion.

Proposition 7.9. Let {B(t)}i>0 be a standard Brownian motion. Let a,b > 0. Let T, :=
min{t > 0: B(t) = a}. Then

b
a+b
Proof. Let ¢ := P(T, < T—;). Let T := min{t > 0: B(t) € {a,—b}}. From the Optional
Stopping Theorem (for continuous-time martingales) (noting that |B(t A T')| < max(a, b) for
all t > 0)

P(T, <T.,) =

0=EB(0) =EB(T) =ac—b(1l —¢).

Solving for ¢ proves the result. O

65



Exercise 7.10. Let {B(t)}:>0 be a standard Brownian motion. Then {(B(t))* — t}4>¢ is a
(continuous-time) martingale in the following sense: it ¢ > s > 0, and if s > 5, > -+ > 51 >
0, and z,...,x, € R, then

E((B(t)* =t — ((B(s))* = 8)| B(sp) = Tn, ..., B(s1) = 21) = 0.

More generally, for any a € R, let Y () := e*P®O="/2 Show that {Y (t)};>0 is a martin-
gale.

Then, using the power series expansion of the exponential function, we have Y (t) =
> o S M, (t) for some random variables M (t), Ma(t), ..., for any v € R. It follows that
{M;(t)}+>0 is a martingale, {Ms(t)}+>¢ is a martingale, etc. (Starting with the following
sentence, you do not have to prove anything.) It turns out that

M, (t) = t"?p,(B(t)/Vt), VteR, Vn>1,

where p,, is the n'* Hermite polynomial, so that

dn

pn(z) = 612/2(—1)”d—e’”32/2, VeeR, Vn>1.

:ETL
For example, using n = 3, we know that {(B(t))®> — 3B(t)}+>o is a martingale.
Proposition 7.11. Let a,b > 0. Let {B(t)}i>0 be a standard Brownian motion. Let T =
min{t > 0: B(t) ¢ (=b,a)}. Then

ET = ab.

Proof. Using Exercise 7.10 and the Optional Stopping Theorem, we get 0 = E((B(T))?—T),
then using Proposition 7.9,

ET = E(B(T))*> = a®P(B(T) = a) + b*P(B(T) = —b)

=a? b + b? (1—L> =a? b + b? ¢ :aba+b:ab.
a+b a a+b a+b a+b
Strictly speaking, the Optional Stopping Theorem, Version 2, does not apply, since the
martingale is not bounded. But Optional Stopping Version 1 does apply to (B(T'At))?—T At,
and we can then let t — oo to get ET' = —ab. Filling in the details is beyond the scope of
this course, as in Example 4.28. O

Exercise 7.12. Let {B(t)};>0 be a standard Brownian motion.

e Given that B(1) = 10, what is the expected length of time after ¢ = 1 until B(t) hits
either 8 or 127

e Now, let 0 = 2, and p = —5. Suppose a commodity has price X (t) = o B(t) + ut for
any time ¢t > 0. Given that the price of the commodity is 4 at time ¢t = 8, what is
the probability that the price is below 1 at time ¢t = 97

e Suppose a stock has a price S(t) = 4¢B® for any ¢t > 0. That is, the stock moves
according to Geometric Brownian Motion. What is the probability that the stock
reaches a price of 7 before it reaches a price of 27

Proposition 7.13 (Reflection Principle). Let x > 0. Then

X 2dy
PTx>t:P—x<Bt<:c:/e%t , Vit > 0.
(L>1)=P(a<Bl)<a)= [ oL
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The final equality above follows since B(t) is a Gaussian random variable with mean 0
and variance t.

Exercise 7.14. Fixz > 0

e Show the bound P(—z < B(t) < z) > 5% holds for all ¢ > 2.
e Show that ET, = cc.

Corollary 7.15.

T 2 dy
(mas, Bs) > < 1—P(—x<B(t)<x)—1—/xe Vot

Proof. The first equality follows since maxg<s<; B(s) > « occurs if and only if 7, < ¢ (by
property (i) of Brownian motion). Finally, apply Proposition 7.13. O

.
=
Qo
"
o
V2
v
=
I
9
&
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I

Remark 7.16. Property (i) of Brownian motion and the Extreme Value Theorem ensure
that maxo<s<¢ B(s) exists with probability 1.

Definition 7.17 (Brownian Motion with Drift). Let ¢ > 0 and let 1 € R. A standard
Brownian motion with drift ; and variance o2 is a stochastic process of the form

{oB(t) + pt}i=o0
where {B(t)}+>0 is a standard Brownian motion.

Exercise 7.18. Let {X(s)}s>0 be a standard Brownian motion with drift p and variance
o?. For any t > s > 0, show that X(#) — X(s) is a Gaussian random variable with mean
u(t — s) and variance o%(t — s).

In the Gambler’s ruin problem (i.e. for a biased random walk on Z), in Example 4.25, we
computed the probabilities that the random walk hits a certain value before another. We
can do a similar computation for the standard Brownian motion with drift.

Exercise 7.19. Let {X(¢)}+>0 = {0B(t) + ut}i>o be a standard Brownian motion with
variance 02 > 0 and drift 4 € R. Fix A € R. Then {Y (£)}yzo = {MXO-QutN2o/2)1 g 5
(continuous-time) martingale in the following sense: it ¢ > s > 0, and if s > 5, > --- > s >
0, and z1,...,2, € R, then

E(Y(t) =Y (s)|B(sn) = xp,...,B(s1) = x1) = 0.
Proposition 7.20. Let {X(t)}i>0 = {0 B(t) + pt}i>o0 be a standard Brownian motion with

variance o> > 0 and negative drift 4 < 0. Let a < 0 < b. Let a := 2|u|/o? Let
T, :=min{t > 0: X(t) = a}. Then

1 _ eaa

P(T,<T,) = —FY——.

( b ) eab _ e0a
Letting a — —oo, we then get

P(max X(t) >b) =e*,  Vb>0.

t>0

That is, max;>o X (t) is an exponential random variable with mean o2 /(2 |ul).
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Proof. Let ¢ := P(T, < T,). Choose \ := o = —2u /0. Then, by Exercise 7.19, e*¥® is a
martingale. Let T := min{t > 0: X(¢) € {a,b}}. From the Optional Stopping Theorem

1 = Ee®X0) = X)) = et 4 (1 —c)e*.

Solving for ¢ proves the first statement. (We verify the assumptions of the Optional Stopping
Theorem, Version 2. Note that [e*X(T)| < max{e®®, ¢**} for all t > 0. Also, P(T < o0) >
P(T, < 00), and if T, = oo, then a < X(t) = 0B(t) + pt < oB(t) for all t > 0. So, if we
define T := min{t > 0: B(t) = a/o}, then T, = oo implies T = oo, by property (i) of
Brownian motion. So, P(7, = oc0) < P(7), = o0), and P(7, = o0) = 0 by Proposition 7.13,
since P(T) = 00) = lim,_, ffé‘;ﬂ e \/% =0.)

For the second statement, letting a — —oo gives P(T, < o0o) = e~ *° (assuming that
T, — 00 as a — —o0). Then, note that {7, < co} = {max;>¢ X (¢) > b}. O

ab

For example, there is some chance that the standard Brownian motion with negative drift
will never take the value b = 1.

Exercise 7.21. Let {X(¢)}+>0 = {0B(t) + ut}i>o be a standard Brownian motion with
variance 0 > 0 and negative drift 4 < 0. Let a < 0 < b. Let T := min{t > 0: X(t) €
{a,b}}. Let o :=2|u| /o*. Show that

1 b1 —e) 4 a(e® —1)

- o eb _ paa

ET

(If you use a martingale, you do not have to verify that it is bounded.)

Exercise 7.22. Let {X(¢)}t>0 = {0B(t) + ut}>o be a standard Brownian motion with
variance 0% > 0 and negative drift u < 0. Let a < 0. Let T, := min{t > 0: X(¢) = a}. Let
a:=2]|pu| /o?. Show that
ET, = —.
0
(If you use a martingale, you do not have to verify that it is bounded.)

Exercise 7.23 (Optional). Write a computer program to simulate standard Brownian mo-
tion. More specifically, the program should simulate a random walk on Z with some small
step size such as .002. (That is, simulate B(t) when k = 500% and, say, 0 < ¢ < 1.)

Exercise 7.24 (Optional). The following exercise assumes familiarity with Matlab and is
derived from Cleve Moler’s book, Numerical Computing with Matlab.

The file brownian.m plots the evolution of a cloud of particles that starts at the origin and
diffuses in a two-dimensional random walk, modeling the Brownian motion of gas molecules.

(a) Modify brownian.m to keep track of both the average and the maximum particle
distance from the origin. Using loglog axes, plot both sets of distances as functions of n, the
number of steps. You should observe that, on the log-log scale, both plots are nearly linear.
Fit both sets of distances with functions of the form e¢n'/2. Plot the observed distances and
the fits, using linear axes.

(b) Modify brownian.m to model a random walk in three dimensions. Do the distances
behave like n'/2?

The program brownian.m appears below.
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%» BROWNIAN  Two-dimensional random walk.
% What is the expansion rate of the cloud of particles?

shg

clf

set (gcf, ’doublebuffer’,’on’)
delta = .002;

x = zeros(100,2);
h = plot(x(:,1),x(:,2),’.7);
axis([-1 1 -1 11)
axis square
stop = uicontrol(’style’,’toggle’,’string’,’stop’);
while get(stop,’value’) == 0
X = X + delta*randn(size(x));
set(h,’xdata’,x(:,1),’ydata’,x(:,2))
drawnow
end
set(stop,’string’,’close’,’value’,0,’callback’,’close(gcf)’)

7.3. Geometric Brownian Motion, Options, Black-Scholes. Below, we let log denote
the natural logarithm.

Exercise 7.25. Let 4 € R and let 0 > 0. Let X be a Gaussian random variable with mean
p and variance 02, Let Y := eX. We then say Y has a lognormal distribution with
parameters p and o®. Show that Y has density

(log(y)—p)?
i) = dgvme ity >0
0 ,ify <0.

Then, show that
EY = e/t /2,
EY? = 2427,

Recall that if { B(t)}:>0 is a standard Brownian motion and if ¢ > 0 is fixed, then B(t) is a
mean zero Gaussian random variable. In particular, B(¢) has an equal chance of being above
or below 0. For this reason, Brownian motion is perhaps not the best model for certain stocks
or commodities. For example, stocks often go up or down by an amount proportional to their
value. To better model this situation, we can instead model a stock price by {ef®)1},5¢ where
{B(t)}+>0 is a standard Brownian motion. More generally, we can also incorporate a drift.

Definition 7.26 (Geometric Brownian Motion). Let {X (¢)}i>0 = {oB(t) + pt}i>0 be
a standard Brownian motion with variance 02 > 0 and drift u € R. Let S; > 0. We then
define geometric Brownian motion with parameters ¢ > 0 and 1 € R to be a stochastic

process of the form {S(t)};50 = {SoeX®}.
Definition 7.27 (European Call Option). Let {S(t)}+>0 be a geometric Brownian motion
with parameters ¢ > 0 and p € R. Let ¢, k be positive real numbers. In a European call

option, we model a stock price as a geometric Brownian motion, and there is a payoff of
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FiGURE 5. Sample Paths of Geometric Brownian Motion with Sy =1, 0 =1
and p = 0. The horizontal axis is the t-axis.

max(S(t) — k,0). That is, at some future time ¢, we have the option to purchase the stock
for a strike price k. If the price of the stock goes below k, i.e. if S(t) < k we do not buy
the stock (so the payoff is 0). And if the stock price goes above k (so that S(t) > k), we buy
the stock at the price k, so the payoff is S(t) — k.

If the option has positive value at time ¢ = 0, the option is called in the money. If the
option has no value at time ¢ = 0, the option is called out of the money. If S(0) = k, the
option is called at the money.

From Exercise 7.19 with A = 1, and r := p + 0%/2,
{e7"S(t) =0
is a martingale. So, at time ¢, it is sensible to value the European call option at the price
¢ = e WP max(S(t) — k, 0).
. i
Below, if d € R, we define ®(d;) := [ e V"/>JL. Note: 1 — &(—dy) = d(dy).

Theorem 7.28 (Black-Scholes Option Pricing Formula). Let {S(t)}i>0 be a geometric
Brownian motion with parameters o > 0 and p € R which models the price of a stock. Fiz
t,k > 0. Define r := p+ 02/2. The value of the European call option with expiration time t
and strike price k is
c=So®(dy) — e " k®(dy — oV/1),

where
_ log(So/k) + (r + % /2)t

o/t ‘

dll

Proof. We compute the quantity
c=e¢ "Emax(S(t) — k,0)
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Note that X (t) = 0 B(t) + ut is a Gaussian random variable with variance ot and mean pt.
That is, X (¢) has density

1 Tx—put 2
e_( 2 , Vo eR.
oV 2nt
Therefore
e 1 x—put 2
e"'c = Emax(S(t) — k,0) = / max(Spe” — k,0) T

oV 2rt

1 > (@—ut)?
= / (Soe” — k)e™ wo? d
log(k/So)

oV 2t
1 (z—pt)? k ° (z—pt)?
= So ee 20?2 dx — / e 2e? dx
oV 2rt log(k/So) oV 21t Jiog(k/50)
e“t e 2 l{ e 2
_ yovt —y?/2 3, —y°/2 IR _ (z—pt)
— _27TSO /Og(k/sf())ut e e dy G /Dgwsfo)#t e dy, substituting y = —~
oVt oVt
0'2 oo
_ eMH‘ t/ZS —(y—a\/f)2/2d —kl1—-® lOg(k/SO) - Mt
O/ (k/S0)—ut ¢ Y \/_
V2T Los(k/ Sg)—pt oVt
eH (oD
_ - —(y—0o o - : o o _
- S0 Jo s e € dy — k®(dy — oV/t),  using 1 — ®(—d;) = ®(dy)
oVt
ert

= So/ e 20y — k®(d; — a\/f), substituting z =y — oVt
27 W_ Vi

= " Sp[l — B(—dy)] — k®(dy — oVt) = €SP (dy) — kP(dy — oV/1).
O

Remark 7.29. Since e?B®+# has a log-normal density, we could have also used the formula

1 1 _(ogx-ut)?
—e 202 dz.
oV 2t 2

Exercise 7.30 (Binomial Option Pricing Model). Let u,d > 0. Let 0 < p < 1. Let
(X1, Xa,...) be independent random variables such that P(X, = logu) =: p and P(X,, =
logd) =1—pV n >1 Let Xy be a fixed constant. Let Y, :== Xy + -+ + X,,, and let
S, :=e' ¥ n > 1. In general, Sy, S1,... will not be a martingale, but we can still compute
ES,, by modifying Sy, S, ... to be a martingale.

First, note that if n > 1, then Y,, has a binomial distribution, in the sense that

e "Emax(S(t) — k,0) = e_”/ max(Spz — k,0)
0

P(Y, = Xo+ilogu+ (n—1)logd) = <n)pl(1 —p)" V0 <i<n.
i

Now define

ri=plu—d)—1+d.
Here we chose r so that p = 1:+;d. For any n > 1, define

M, = (1+r)"S,.
Show that My, My, ... is a martingale with respect to Xg, X1, .... Consequently,
(1+7r)"ES, = ES), Vn >0.
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(This presentation might be a bit backwards from the financial perspective. Typically, r
is a fixed interest rate, and then you choose p such that p = %ﬂ. That is, you adjust how
the random variables behave in order to get a martingale.)

Remark 7.31. In Exercise 7.30, we considered a discrete version of geometric Brownian
motion as follows. Let u,d > 0. Let 0 < p < 1. Let (Xi, Xs,...) be independent random
variables such that P(X,, = logu) = p and P(X,, =logd) =1—pV n > 1. Let X, be a
fixed constant. Let Y, := Xg+---+ X, and let S,, :=e¥" Vn > 1. Let r := p(u—d)—1+d.
Let M, == (1 +r) ™S, for any n > 1. Then My, Mj,... is a martingale with respect to
Xo, X1, .... So, using this discrete version of geometric Brownian motion and Remark 4.10,
we can similarly price a European call option at time n at the price

(1+7)""Emax(S, —k,0)=(1+r)"™" Z (?)p’(l —p)" " max(u'd" 'Sy — k,0).

1=0

Remark 7.32. Using the Black-Scholes theory to model a stock incurs the following unre-
alistic assumptions.

e Infinite Divisibility. The stock can be bought and sold in arbitrary non-integer
amounts.

e Short selling. Market participants can borrow arbitrary amounts of stock at no
interest for an arbitrary amount of time. In a short sale, you borrow the stock and
instantly sell it to someone else, and you can then buy back the stock at any later
time.

e No storage costs. Market participants can hold arbitrary amounts of stock at no
cost for an arbitrary amount of time.

Remark 7.33 (Implied Volatility). Theorem 7.28 is often used in the following way. It is
given that r is an interest rate, o is the unknown volatility, and we then define j := r—o?/2.
(In mathematical finance, volatility and standard deviation are nearly synonymous.) Then
the only unknown quantity in Theorem 7.28 is 0. We then choose o so that c is equal to
the actual observed price of the European call option. The o found in this way is referred
to as implied volatility. (From Exercise 7.48, ¢ is an increasing function of o, so a unique
solution exists.)

If the volatility o of a fixed stock is known, and if Theorem 7.28 accurately models this
stock price, then European call options based on this stock should use the same volatility,
regardless of the strike price k. In practice, this is not true. In practice, it is observed that o
has a U-shaped graph, as a function of k. That is, 0 does seem to depend on k. This graph
of ¢ as a function of k is known as the volatility smile, and it is one way of demonstrating
that Theorem 7.28 is not an accurate model of a stock price. Alternatively, a firm believer
in the Black-Scholes theory could argue that the pricing of options with very low or high
volatility is irrational, as demonstrated by the volatility smile.

Remark 7.34. It follows by property (i) of Brownian motion in Definition 7.1 that the
sample paths of Geometric Brown motion are continuous, with probability 1. Since Theorem
7.28 models a stock price as Geometric Brownian motion, we are implicitly assuming that
a stock price is continuous, i.e. it does not “jump.” This assumption is unrealistic. It is
possible to model stocks using jumps, but doing so is fairly complicated.
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Definition 7.35 (American Call Option). Let {S(t)}+>0 be a geometric Brownian motion
with parameters ¢ > 0 and p € R. Let ty, k be positive real numbers. In an American call
option, we model a stock price as a geometric Brownian motion, and there is a payoff of
¢ = max(S(t) — k,0) if the stock is purchased at any time 0 <t < t;. That is, at any time
0 <t <ty, we have the option to purchase the stock for a strike price k.

Remark 7.36. For a stock that does not pay dividends, even though we can exercise the
call option at any time 0 < t < ¢y, it is always optimal to choose t = t3. That is, it is
optimal to treat this option as a European call option, so the American call option has the
same value as the European call option. To see this, note that it never makes sense to buy
the stock at time ¢ if S(t) < k, so we assume that S(¢) > k. That is, suppose we purchase
the stock at time ¢ < ¢ for price k, and S(¢) > k. But instead of exercising the option, we
could have just waited until time ¢¢; in the case S(ty) > k, we could have purchased the
stock for the price k, so the profit S(ty) — k would be the same at time ¢y, no matter when
we purchased the stock. However, if S(tg) < k, then it would have been better if we never
exercised the option at all. So, in any case, it is better to exercise the option at time .

(If S(t) > k with t < ¢, you might be tempted to exercise the option at time ¢, since this
seems to be a profit that may be lost in the future. However, if you genuinely believe the
profit will be lost in the future, then instead of exercising the option at ¢t < ¢y, consider short
selling the stock at time t < ¢y. Doing so guarantees a profit of at least S(¢) — k at time o,
and you will even increase your profit in the case that S(ty) < k.)

The above argument no longer holds when the stock does pay dividends, since it that case
it may be more sensible to e.g. buy the stock a day before it pays out a dividend, instead of
waiting until time ¢, is reached.

Definition 7.37 (European Put Option). Let {S(¢)}:+>0 be a geometric Brownian motion
with parameters ¢ > 0 and p € R. Let ¢, k be positive real numbers. In a European put
option, we model a stock price as a geometric Brownian motion, and there is a payoff of
p = max(k — S(t),0). That is, at some future time ¢, we have the option to sell the stock
for a strike price k.

The value of the European Put Option can be computed from the value of the European
Call Option, via the following formula.

Proposition 7.38 (Put-Call Parity). Let ¢ be the price of a European call option for a
fized stock with strike price k, with an option to exercise it at time t. Let p be the price
of a European put option with strike price k for the same stock, with an option to exercise
it at time t. Let Sy be the price of the stock at time 0. Suppose money can be borrowed
at a continuously-compounded nominal interest rate r > 0 (i.e. the rate of interest before
adjusting for inflation). Then, assuming no arbitrage opportunity exists,

So +p—c= ke ",

Proof. Assume that Sy +p — ¢ < ke™"™. We will demonstrate an arbitrage opportunity. At
the present time, buy one share of stock, buy one put option, and sell one call option. We
then initially borrow Sy 4+ p — ¢ and pay this amount to complete the purchase. We now
break into two cases according to the price S(t) of the stock at time ¢.

Case 1. S(t) < k. Then the call option has no value, so it will not be exercised, and we
exercise the put option to sell the stock we own for the price k.
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Case 2. S(t) > k. Then the put option has no value, and the call option we sold will be
exercised, so that we have to sell the stock we own for the price k.

In either case, we earned k at time ¢. Since € (Sy+ p — ¢) < k, we can pay off the loan
and earn a profit k — e (Sp+p —¢) > 0.

Now, assume that Sy + p — ¢ > ke™"". We can demonstrate an arbitrage opportunity by
reversing the above procedure. 0

Exercise 7.39. In the context of Put-Call parity, show that an arbitrage opportunity exists
if So4+p—c > ke ™. (That is, fill in the omitted details from the notes in this case.)

Exercise 7.40 (MFE Sample Question). Consider a European call option and a European
put option on a nondividend-paying stock. The following things are given

e The current price of the stock is 60.

e The call option currently sells for 0.15 more than the put option.

e Both the call option and put option will expire in 4 years.

e Both the call option and put option have a strike price of 70.
Calculate the continuously compounded risk-free interest rate. (That is, compute the interest
rate r that ensures that no arbitrage opportunity exists.)

Exercise 7.41 (MFE Sample Question). Near market closing time on a given day, you lose
access to stock prices, but some European call and put prices for a stock are available as
follows:

Strike Price | Call Price | Put Price
$40 $11 $3
$50 $6 $8
$55 $3 $11

All six options have the same expiration date.

After reviewing the information above, John tells Mary and Peter that no arbitrage op-
portunities can arise from these prices.

Mary disagrees with John. She argues that one could use the following portfolio to obtain
arbitrage profit: Long one call option with strike price 40; short three call options with strike
price 50; lend $1; and long some calls with strike price 55. Peter also disagrees with John.
He claims that the following portfolio, which is different from Mary’s, can produce arbitrage
profit: Long 2 calls and short 2 puts with strike price 55; long 1 call and short 1 put with
strike price 40; lend $2; and short some calls and long the same number of puts with strike
price 50.

Which of the following statements is true?

(A) Only John is correct.

(B) Only Mary is correct.

(C) Only Peter is correct.

(D) Both Mary and Peter are correct.

(E) None of them is correct.

Definition 7.42 (American Put Option). Let {S(¢) }:+>0 be a geometric Brownian motion
with parameters ¢ > 0 and u € R. Let o, k be positive real numbers. In an American
put option, we model a stock price as a geometric Brownian motion, and there is a payoff
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of py = max(k — S(t),0) if the stock is sold at any time 0 < ¢ < ¢;,. That is, at any time
0 <t <ty, we have the option to sell the stock for a strike price k.

If 0 <t <tyandif S(t) < k, then it can make sense to exercise the American put option
at time ¢t. In this case, your profit k — S(¢) would then earn interest at a rate r > 0 until
time ty3. And this profit could be more than the profit obtained by waiting to exercise until
time to. Also, the profit (k — S(t))e" ™~ at time ¢, could be more than the profit obtained
by buying the stock at time ¢ and waiting to exercise the option until time t,.

Recall that, for an American call option, the “reverse” of this argument does not apply.
If S(t) > k, and if you believe the stock has reached a high value at time ¢ < ¢y, then
rather than exercising the American call option early, you should short sell the stock at time
t. Short selling the stock at time ¢ means you borrow the stock for zero interest, and you
instantly sell it, so you earn the price S(t) of the short sold stock at time ¢ upon completion
of the short sale.

Since it can make sense to exercise the American put option early, the Put-call parity as
stated in Proposition 7.38 no longer holds.

Exercise 7.43. There are many ways of buying and selling American put and call options on
the same underlying asset, in order to make profits while minimizing risk. These strategies
are known as spreads. (Every put and call option below will be an American option.)
Describe the pros and cons of creating each spread specified below.

e In the collar spread, you own a stock which has a variable price s, you buy a put
option for that same stock with strick price k;, and you short a call option with
strike price ko, where ky < ko. So, the revenue you will make by exercising all of
these options (and selling the stock) is

s + max(k; — s,0) — max(s — k»,0).

Plot this function as a function of s. The zero-cost collar occurs when k; is equal
to the current price of the stock.

e In the straddle spread, you buy a call and a put option for the same stock and with
the same strike price k. So, the revenue you can make by exercising both options
simultaneously is

max(k — s,0) + max(s — k,0).
Plot this function as a function of s.

e In the strangle spread, you buy a call option with strike price k1, and you buy a put
option with strike price ko, where k; < ky. Plot your revenue from exercising both
options simultaneously, as a function of s, the price of the underlying asset.

e Let ¢ > 0. In the butterfly spread, you buy a call option with strike price k, you
short two call options with strike price k + ¢, and you buy a call option with strike
price k 4+ 2c. Plot your revenue from exercising these options simultaneously, as a
function of s, the price of the underlying asset.

Exercise 7.44. There are many ways to try to value an American Put Option. One way is
to emulate the formula for a European Put Option which is exercised at time 0 <t < #:

e~ (/2R max (k — S(t),0)
We would like to simply take the maximum of the above quantity over all ¢ € [0, ¢y]. However,

this would be equivalent to knowing the future price of the stock at all times, which is
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unrealistic. So, we instead consider replacing the variable ¢ by a stopping time. Suppose
T is a stopping time. That is, 7'(t) > 0 is only allowed to depend on values of S(¢') where
t' < t. Then we could try to maximize the quantity

Ec~ W27 max(k — S(T),0)

over all stopping times 7" where 0 < T < t;. To approximate that quantity, let 0 < t; <t
and just consider stopping times 7" of the form 7' = min{t; <t <ty: S(t) < S(t')V0<t' <
(3/4)t1}, or T =ty if the set of ¢ inside the minimum is empty. Then, using a computer,
compute the maximum over all 0 < ¢; < t; of

Ec~ o2 max(k — S(T),0)

when p=0,=0=ty=5,=1and k = 2.

This procedure is analogous to the solution of the Secretary Problem.

In order to compute the expected value, use a Monte Carlo simulation of Brownian motion,
and take the average value over many runs of the simulation.

Exercise 7.45. In each of the following examples, choose a few parameters (e.g. use p = 0,
o=5 =t=1and k = 2.), and value the option using several runs of a Monte Carlo
simulation of Brownian motion. In each case, we multiply by an exponential term in order
to emulate the Black-Scholes formula.

(i) (Asian Call Option) The value of an Asian option with strike price & > 0 at time
t > 0 is computed using the average value of the stock from time 0 to time ¢. That
is, if the option is exercised at time t > 0, then its value is

t
o~ (1% /TR nax ((%/ S(rydr) — k,O) :
0

(ii) (Lookback Call Option) The value of a lookback call option with strike price k > 0
at time ¢ > 0 is computed using the maximum value of the stock between time 0 and
time t. That is, if the option is exercised at time t > 0, then its value is

¢~ (4% /2VE max (max S(r) — k, 0) .

0<r<t

In other words, you can “look back” over the past behavior of the stock, and choose
the best price possible over the past.

(iii) (Lookback Put Option) The value of a lookback put option with strike price k& > 0
at time ¢t > 0 is computed using the minimum value of the stock between time 0 and
time t. That is, if the option is exercised at time t > 0, then its value is

0<r<t

e~ (o /2VE max <k — min S(r),O) .

Finally, using Corollary 7.15, give an exact formula for the value of the Lookback Call Option.
(And check that this formula agrees with the results of your simulation.)
Can you also give an explicit formula for the value of the Lookback Put Option?
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7.4. Black-Scholes Statistics. Recall that in Theorem 7.28, we modeled a stock price in
the following way. Let {S(¢)}:+>0 be a geometric Brownian motion with parameters ¢ > 0
and p € R. Fix t,k > 0. Define r := p + 0/2. The value of the European call option with
expiration time ¢ and strike price k is

c=So®(dy) — e " k®(d, — oV/1),
where ®(d;) := f_d;o e ¥’ 2dy /\/27, and
log(So/k) + (r + 02/2)
oVt

In this section, we consider ¢ as defined above to be a function of its input parameters, so
that

dl =

c=c(So,t, k,o,1).
Several statistics of the stock are studied by taking derivatives of ¢ with respect to its
input parameters. That is, these statistics measure how the price changes as the underlying
parameters change.

Definition 7.46 (Greeks).

o A= 80/830

o ' = 820/8280.

e O := —0c/0t.

e v :=(0c/do. (This quantity is called vega, but it is denoted by the Greek letter nu.)
e p:=0c/Or.

e \:=A. % = aa_sco . % =S5 - 65 log c. (This quantity is called the elasticity.)

Exercise 7.47. Let Z be a standard normal random variable. Recall that we can express a
geometric Brownian motion as

S(t) = Spe”VI#Hr=at At ¢ >,
Show that
eiTtE[S( ) Z 1{5( >k}] S()( (d1> +O’\/¥(I)(d1>)
e "E[S(t) - Lisy>ry] = So®(dy).
Exercise 7.48. Show the following (using the notation from the Black-Scholes Formula)
p = kte "t ®(d, — o\/1).
VvV = S(]\/%@l(Ch)
-0 = #S@@l(d1> + kre_”q)(dl — O'\/g)
(Hint: use Exercise 7.47.) (To make these exercises easier, write ¢ = E(e~" max(S(t)—k, 0)),
use the S(t) formula from Exercise 7.47, and pretend that you can apply the chain rule to

the max function, so that (d/dr) max(x,0) = 1(;~0 for any = € R, even though technically
the max function is not differentiable at 0.)

Exercise 7.49 (MFE Sample Question). You are considering the purchase of a 3-month
41.5-strike American call option on a nondividend-paying stock.
You are given:

(i) The Black-Scholes framework holds.
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(ii) The stock is currently selling for 40.
(iii) The stock’s volatility is 30%.
(iv) The current call option delta is 0.5.

Determine the current price of the option.
(A) 20 — 20453 [0 e=*/%dx.
(B) 20 — 16.138 [ e=**/2dx.
(C) 20 — 40.453 [ e=**/2d.
(D) —20.453 +16.138 ['> ¢=**/?dx.
(E) —20.453 + 40.453 [ e=**/2dz.

Remark 7.50. Suppose f: R — R is a piecewise linear function that is zero outside of [0, 1].
Let y1 < -++ < yp_1. Suppose f(i/n) = y; for every 1 < i < n — 1, and that f is linear
between the points 0,1/n,2/n,...,1. Then it is theoretically possible to buy and short call
options so that, if the stock has a price 0 < s < 1, then your revenue from exercising all of
the options is f(s). To see this, recall that for any 1 < i < n — 1, a butterfly spread can
be constructed so that the revenue r;(s) from exercising it as a function of s is a piecewise
linear function of s which is zero outside of [(i — 1)/n, (i + 1)/n] and which takes the value
1 at i/n. So, consider the portfolio obtained by constructing the i** such butterfly spread in
the amount y;, for every 1 < i < n — 1. Then the revenue from exercising all of the options

(as a function of s) is
n—1
r(s) = Zyiri(s).
i=1

Then r is linear between the points 0,1/n,2/n, ..., 1, r is zero outside of [0, 1], and r(j/n) =
y; for every 1 < j <n — 1. Therefore, r = f.

Exercise 7.51 (Put-Call Parity for American Options). As we mentioned above, Put-call
parity does not hold for American Options, as an equality. However, we can still obtain
upper and lower bounds on the difference of the American put and call option, as stated
below.

Let ¢ be the price of an American call option for a fixed stock with strike price k, with
an option to exercise it at any time 0 < ¢t < ty5. Let p be the price of an American put
option with strike price k£ for the same stock, with an option to exercise it at any time
0 <t <ty Let Sy be the price of the stock at time 0. Suppose money can be borrowed
at a continuously-compounded nominal interest rate » > 0 (i.e. the rate of interest before
adjusting for inflation). Then, assuming no arbitrage opportunity exists,

So—k<c—p<Sy—ke .

(Hint: first, show that p > ¢ — Sy + ke ", since p is larger or equal to the value of a
European put option, and then apply the Put-Call parity for European options. Then, show
that ¢ > p+ Sy — k in the following way. Consider the portfolio of buying one call, shorting
one put, shorting the stock and borrowing k dollars. If all of the options are exercised at
any time 0 < t < ty3, show that you obtain a nonnegative profit. That is, the value of this
portfolio at time 0 is nonnegative.)
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Exercise 7.52. In the discrete binomial model, we can find a price for an American put
option using dynamic programming.

Recall this model. Let u,d > 0. Let 0 < p < 1. Let (Xj, Xy, ...) be independent random
variables such that P(X,, = logu) =: p and P(X,, = logd) =1—pV n > 1. Let Xy be a
fixed constant. Let Y, := Xg+---+X,,, and let S, := ¥ Vn > 1. Let r := p(u—d) — 1 +d.
For any n > 1, define M,, := (14 r)™"S,. Recall that My, My, ... is a martingale.

Note that, at time n, the random variable S,, has n+ 1 possible values. Label these values
as Sy < -+ < Spm. Let k> 0. Let V,,,,, be the value of the American put option at time
n > 0 with strike price k, when S, has its m'* value. Then

Vim = max (max(k —Snm,0), (1 +T)_1(an+1,m+1 +(1 —p)VnH,m)), Vi<m<n+l1.

This recursion formula holds since, at step n, you can either exercise the option at time n,
or you can wait and see what happens at time n + 1. The quantity max(k — S, 0) is your
revenue from exercising at time n, and the second quantity (1+7) " (pVos1.m+1+(1—p) Vit 1.m)
is your expected revenue from waiting until time n + 1 to exercise the option. So, at time n,
you choose the maximum of these two quantities.

Let’s solve this recursion in the following example. Suppose Sy = 8, p = 1/2, u = 2,
d =1/2 (so that r = 1/4), and k = 10. And suppose the option expires at time n = 3 (so
that Vi, = max(k — S3,,,0) is known for each 1 < m < 4.) Then, working backwards,
eventually find V{;, the price of the option.

Compare your result in this example with the price of the European put option with the
same parameters. (It should be smaller.)

8. STOCHASTIC INTEGRATION, ITO’S FORMULA

Let —oo < a <b< oo. Let f: R — R be a continuous function. Recall that a continuous
function f is Riemann integrable on [a,b]. That is, there is a real number, denoted by

f; f(z)dx such that
/ fa

Note that we are using the “left endpoint” Riemann sum. We will continue to do so below.

Since the sample paths of Brownian motion are continuous with probability 1, we can also
integrate a standard Brownian motion {B(t)}:>¢ using a Riemann integral. For any n > 1,
consider the Riemann sum

n—1

nh_)IgOZf a+(b—a) /n

-1

Z (a+ (b—a)i /n)b ¢

n
=0

We would like to say that this quantlty converges in some sense as n — 0o. However, since
this Riemann sum no longer has a meaning as a real number, we need to change the meaning
of the limit as n — oo.

Definition 8.1 (Convergence in Probability). Let X;, X5, ... be random variables, and
let X be a random variable. We say that X, X,,... converges in probability to X if: for
any € > 0,

lim P(|X,, — X|>¢)=0.

n—oo
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Exercise 8.2. Let P be the uniform probability law on [0, 1]. Let X (¢) = 0 for any ¢ € [0, 1].
For any n > 1, define X,,(t) = n - Ljo<t<1/n}. Show that X;, Xy, ... converges in probability
to X. However, EX = 0 whereas EX,, = 1 for all n > 1. So, convergence in probability
does not imply that expected values converge.

Also, note that X,,(0) does not converge to X (0) as n — 0o. So, convergence in probability
does not imply pointwise convergence.

Exercise 8.3 (Uniqueness of the Limit). Suppose X, Xs, ... converges in probability to
X. Also, suppose X1, Xs, ... converges in probability to Y. Show that P(X # Y) = 0.

Example 8.4. Returning to the above example, there exists a random variable, which we
denote by fab B(t)dt such that

—_

X, = ; B(a+ (b— a)z'/n)b

%

—a

n

Il
o

converges to f ’ B(t)dt in probability as n — oo.

For example, choosing a = 0, S0 B(bi/n)% converges to fObB(t)dt in probability as
n — 0o. To compute the variance of the Riemann sum, we first rearrange the sum and then
use a telescoping sum to get

ZB bz/n ZB(bz’/n) (b(i: b _ %) =" B/t Y ZB (bi /n

= ZB(b(z’ - 1)/n)@ . B(bz/n)%
= 3 (B — 1)/n) ~ B{bi/n) 0i/n) + bB(o(n ~ 1)/n)

= (B(b(i — 1)/n) — B(bi/n)) (% - b>

i=1

From the independent and stationary increment properties of standard Brownian motion,
Soi B(bi/n)? is then a Gaussian random variable with mean zero, and variance

E <§B(bz’/n)%> ZE b(i — 1)/n) — B(bi/n))? <@ - b)2 = ni(b/n) <% - b)Q.

i=1

Letting n — oo, this becomes

’ 2 1 L3
O(S—b)ds 3(S—b) |SO—3b.
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So, we anticipate that fo t)dt is a Gaussian random variable with mean zero and variance
(1/ 3)b3 And indeed, we can Compute the variance as follows

E(/ObB(t)dt)2 :E/ObB(t)dt/ ds—/ / EB(t)B(s)dsdt

/ / min(s, t)dsdt , by Proposition 7.8

t=b 1
= 2/ / sdsdt = / t2dt = =b.
t s=0 t=0 3

Example 8.5. Similarly, if —oco < a < b < oo, and if f: R — R is continuous, we define

/abf(Bt dt

to be the random variable such that, as n — oo, Zf_ol f(B(a+ (b—a)i/n)):=2 converges
in probability to f; f(B(t))dt. We can think of f f(B(t))dt as the area under the random
curve f(B(t)).

Exercise 8.6. Let {B(t)}+>0 be a standard Brownian motion. Let f: R — R. Assume that
Je | f(@)]dz < co and [, f(x)dx = 1. For any s > 0, define

X(s) = %/Osf(gt dt

Show that lim,_,,, EX (s \/2/7. For an optional challenge, show that lim, ., E(X(s))? =
1. (Hint: for the second part look up the formula for a multivariate normal random variable.)

The Stochastic integral is a slightly different object, where instead of integrating against
the “infinitesimal width” of a rectangle, we integrating against the “infinitesimal increment”
of a Brownian motion.

Definition 8.7 (Stochastic Integral). Let f: R — R be continuous. Let b > 0. For any
n > 1, consider the Riemann sum on [0, b]:

() (1) 5 ()

1

—_

I
=)

We define the stochastic integral of f on [0,b] with respect to Brownian motion, denoted

/0 F(B(s))dB(s).

to be the random variable X such that X,, converges to X in probability, as n — oo.
More generally, if f: R? — R is continuous, we define

b
/0 £(s, B(s))dB(s)
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as the limit as n — oo of the following Riemann sums (in the sense of convergence in

probability): 1
S (L (1)) ((122) -0 (1))

So, the stochastic integral is itself a random variable, unlike the Riemann integral of a
real-valued function, which is a fixed number. We can think of fob f(B(s))dB(s) as the
randomly measured area under the random curve f(B(s)).

Also, if W, :==>"" f (%,B (%)) (B (b(Z—H)> - B (%)) for any m > 1, then Wy, W, ...

n

is a martingale by Theorem 4.14. So fobf(s, B(s))dB(s) should be a martingale as well.
(We can think of the integrand as some function of the stock price, such as a stock trading
strategy, and we multiplying the integrand by the change in the stock price.)

Okay, we now have a stochastic integral, so we should discuss how to manipulate this
integral. In real variable calculus, the most important way to compute integrals is via the
Fundamental Theorem of calculus. Recall that if f: R — R has one continuous derivative,
and if b > 0, then the Fundamental Theorem of Calculus says

_ /Ob F(s)ds

So, if g: R — R is another function with one continuous derivative, then the chain rule
implies

o) - 5060 = [ staomas= [ 1

Or, using the notation dg(s) := ¢'(s)ds, we have

o) - 51600 = [ 1
This equality almost holds if we replace g(s) by a standard Brownian motion B(s), but we

need to add an additional term on the right side, for reasons we will explain below.

Exercise 8.8. Let ¢t > 0 and let {B(s)}s>0 be a standard Brownian motion. Compute the
mean and variance of

t
/ B(s)dB(s).
0
(Hint: start with the Riemann sum, then take a limit.)

Exercise 8.9. Let f: R — R be a function. Let ¢ > 0 and let {B(s)}s>o be a standard
Brownian motion. Find the distribution of

[ rpane)

That is, find the CDF of [ f(s)dB(s). (Hint: use Exercise 7.7.)

Theorem 8.10 (Itdé’s Formula). Let f: R — R have two continuous derivatives. Let
{B(t) }+>0 be a standard Brownian motion. Then, with probability 1, for all b > 0,

b b
F(BO) = 1(BO) = [ F(BE)BE) +5 [ 1(Bs)s
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Remark 8.11. Choosing f(x) = z for all z € R shows that
b
B(b) = B(b) — B(0) :/ aB(s).
0

Choosing f(x) = 2? for all z € R shows that (B(b))? = 2fObB(s)dB(s) + fob ds, so that

b
/O B(s)dB(s) = %(B(b))Q - %b.

Remark 8.12. Theorem 8.10 can be stated in the equivalent differential form as

df (B(s)) = f'(B(s))dB(s) + %f”(B(S))dS-

We can almost interpret this expression as a chain rule, except that the second derivative
has no analogue in real variable calculus.

Exercise 8.13. Using It6’s formula, write an expression for fol(B(s))QdB(s).

Exercise 8.14. Let b > 0. We know from calculus that fob eSds =eb — 1.

Use f(z) = €%, x € R, in It6’s formula to find a similar expression for fob eBe)dB(s). (Note
that e?®) is a Geometric Brownian motion, so now we know how to take the stochastic
integral of Geometric Brownian motion.)

Exercise 8.15 (MFE Sample Question, from an old exam). Let {Z(¢)};>0 be a standard
Brownian motion. You are given:

(i) U(t) :=2Z(t) — 2, for all t > 0.
(i) V(t) := (Z(t))* —t, for all t > 0.
(iit) W (t) == t2Z(t) — 2 [, sZ(s)ds, for all t > 0.
Which of the processes defined above has/have zero drift? (A stochastic process {U(t)}i>0
has zero drift if dU(t) = f(Z(t),t)dZ(t) for some function f: R? — R.)

Recall that if ¢ > s > 0, then E(B(t) — B(s))? = t — s. So, intuitively, (B(t) — B(s))?
behaves like (¢ —s). More specifically, we have the following lemma, which we will not prove.

Lemma 8.16. Let f: R — R be continuous. Let b > 0. Consider the following sum (which
is not quite a Riemann sum, since the increment is squared):

n—1 . . . 2
bi b(i+1) bi
X, = B — B —B|— .
> () (e () -2 ()
Then, as n — oo, X,, converges in probability to
b
| B
0

Proof Sketch of Theorem 8.10. From Taylor’s Theorem, if x,y € R, then there exists an
error term R(z,y) such that

£) = F) = f')(e —9) + 5 "W)( — 9)? + R(z.y),
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Forany 0 <i<mn—1,let x := B(b(i+1)/n), let y := B(bi/n), and sum over i to get

FBO) ~ F(BO)) = Y (F(BOG +1)/m) — F(Bbi/m)
= 3 7B (B +1)/m) — B(bi/n)

n—1 n—1
1
5 D f1(Bbi/n) (B(bi +1)/n) - B(bi/n))® + > R(B(b(i+1)/n), B(bi/n)).
i=1 i=1
We now let n — oo. The first term converges in probability to fob ' (B(s))dB(s) by the defi-
nition of the stochastic integral. The second term converges in probability to 3 fob 1" (B(s))ds
by Lemma 8.16. Treating the last term as an error term concludes the proof. 0

There is also a version of 1t6’s formula for a function f both of time and of the Brownian
motion.

Theorem 8.17 (Itd’s Formula, Version 2). Let f: R? — R have two continuous deriva-
tives in each coordinate. We write f = f(z,y), z,y € R. Then, with probability 1, for all
b>0,

) b 92
0,300 - 10,800 = [ Xis.mpas+ [ D s mnases) +§ [ 9L B
Remark 8.18. Theorem 8.17 can be stated in the equivalent dlﬂ'erentlal form as

0 0 02
(6,80 = 5 6, 860a6) + (515,56 + 5L 6806 ) s
Exercise 8.19. Let f: R x [0,00) — R. We write f = f(x,t), where (z,t) € R x [0,00).
Let g: R — R be a continuous and bounded function with [; |g(z)|dz < oo. We say that f
satisfies the one-dimensional heat equation if

0 0?
a—{(m,t) 83:];( ), V(x,t) € R x[0,00),
f(x,0) =g(z), Ve R.

Show that f deﬁned by

f(.T t \/H
satisfies the heat equation. (Just check the first condition. You do not have to show that
limy o+ f(x,t) = g(z) for all z € R.)

Using a computer, plot the function f(z,t) as a function of x for several different values
of t > 0, using g = 1jo,1). Lastly, verify that [, ﬁe_ﬁ/(“)d:v =1 for any t > 0.
Exercise 8.20. Let f: Rx[0,00) — R. We write f = f(z,t), where (z,t) € R x[0,00). Let

g: R — R be a continuous and bounded function. We say that f satisfies the one-dimensional
heat equation with forcing term h: R x [0,00) — R if

2
of
E('xﬂf) O )

y)dy = E(g(B(2t) + z)), V(z,t) € R x [0,00),

—=(z,t) + h(x,t), V(x,t) € R x[0,00),
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f@,0)=g(), VreR
For any (z,t) € R x [0, 00), define f(x,t) so that

_(z=y)

e G- *)h (y, s)dyds.

_(z— u)2
+
\/47r Jdy /\/47rt—s/

Show that f satisfies the heat equation with forcing term h. (Just check the first condition.)

f(a,t)

Exercise 8.21. Let ty > 0. Let V: R x [0,to] = R. We write V =V (s,t), s € R, t € [0, ¢].
Let F: R — R. Let r € R, let 0 > 0. We say that V' satisfies the Black-Scholes equation
if V(s,t9) = F(s) for all s € R, and if

ov oV o2 0%V

- t+rs—+ =0.
ot 0s 2 0s?
Show that a solution of this equation is
e~ r(to—t) o0 1 _ (og(s/2)+(r—0?/2)(tg—1))
V(s,t) := 20%(tg—1) F(z)dz.

\2mo?(ty —t)
(This formula should be nearly identical to the Black-Scholes Option Pricing formula from
Remark 7.29, where we take F'(z) := max(Spz — k,0).) Instead of differentiating V' directly,
use the following strategy.
First, show that the Black-Scholes equation reduces to the one-dimensional heat equation
ou  9°U
or 0z’
where V (s, t) = e U(x,7), x = logs, 7 = (62/2)(tg — t), a = (1/2) — r/o?, and b =
—(1/2 + r/0?)?, and U satisfies the initial condition U(x,0) = e **F(e*) for all x € R.
(Start by differentiating V' with respect to s and ¢, etc.) That is, the Black-Scholes equation

is the heat equation, run backwards in time.
Finally, use the formula for U using Exercise 8.20.

8.1. Vasicek Interest Rate Model/Ornstein-Uhlenbeck Model. Let f: R — R be a
differentiable function. We write f = f(¢) so that ¢t € R. Let a,b > 0. Suppose f satisfies
the following ordinary differential equation

df
St =alb—f(1), VieR ()

We can solve this equation using the method of integrating factors. Note that

d at . atdf at \*) . at
S (1)) = e ) + aet 1) @ e (b — £(2) + F(1)) = abe

Integrating both sides with respect to ¢,
t
eatf(t) = f(0) 4+ / abe®ds = f(0) + b(@@t —1).
0

In summary, we can solve (x) using the formula

) =ef0)+b—be ™ =b+e *(f(0)—b), VteR.

85



Note that lim; . f(t) = b since a > 0. Also, by (x), if f(¢) > b, then f will decrease,
and if f(t) < b, then f will increase. And from our explicit formula for f, we see that f
converges exponentially fast to b.

The Vasicek model uses the same differential equation, with an added stochastic noise,
which together form a stochastic differential equation.

3r

2.5t

2 -

15¢
g
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; M
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0 05 1 15 2 25 3 3.5 4

FIGURE 6. Sample Paths of the Vasicek model with a = b =0 = f(0) = 1.
The horizontal axis is the t-axis.

Definition 8.22 (Vasicek model/Ornstein-Uhlenbeck model). Let a,b,0 > 0. Let
{B(t)}+>0 be a standard Brownian motion. The Vasicek model models an interest rate as
a (random) function f: R — R satisfying the following stochastic differential equation for
any t > 0:

df (t) = a(b— f(t))dt + odB(t).
(Since f is a random function, f is also a function of the sample space, but we omit this
dependence from our notation here and below.)

Proposition 8.23. A solution of the Vasicek model can be written as

() =b+e " (f(0) —b) + 0/ e VdB(s),  Vt>0.

0

Proof. As in the case 0 = 0, we use the method of integrating factors. Using It6’s formula
Version 2, Theorem 8.17, for the function g(z,y) = €* f(x), and the usual product rule,

d(e™f(t)) = %[eat f))dt = ae™ f(t)dt + e“t%(t)dt
= ae™ f(t)dt + e™df (t) = ae™ f(t)dt + e™[a(b — f(t))dt + ocdB(t)]
= abe™dt + oe™dB(t).

Or, written in integral form,

e f(t) = f(0) + ab/o e*ds + 0/0 e®dB(s) = f(0) + b(e™ — 1) + cr/o e"dB(s).
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—at

Multiplying both sides by e~ completes the proof. 0

Exercise 8.24. Let a,b,0 > 0. Let f: R — R satisfying the Vasicek stochastic differential
equation for any t € R.

df(t) = a(b— f(t))dt + cdB(t).
Show that, for any ¢t > 0,

Ef(t) =b+e (f(0)=b),  var(f(t)) = - (1 —e).
More generally, for any s,¢ > 0, show that
cov(f(t), f(u)) = E((f(t) —Ef())(f(u) — Ef(u)) = g—a(e_“'t_“' — e,

2

Conclude that lim, . Ef(t) = b and lim;_, var(f(t)) = 5.

Exercise 8.25. Using a Monte Carlo simulation, plot several sample paths of the Vasicek
stochastic differential equation, with a = b =0 = f(0) = 1.

3.5r

FIGURE 7. Sample Paths of the CIR model with ¢ =b =0 = f(0) = 1. The
horizontal axis is the t-axis.

Exercise 8.26 (Cox-Ingersoll-Ross (CIR) model). Let a,b,0 > 0. Let {B(t)}+>0 be a
standard Brownian motion. The Cox-Ingersoll-Ross model models an interest rate as a
(random) function f: R — R satisfying the following stochastic differential equation for any

t> 0:
df(t) = a(b— f(t))dt + / f(t)odB(t).
(Since f is a random function, f is also a function of the sample space, but we omit this
dependence from our notation here and below.)
A priori, this stochastic differential equation is not rigorously defined, since +/ f(t) will
not be a real number when f(¢) < 0. In this exercise, we ignore this issue. (In actuality, if
f(0) > 0, then f(t) < 0 occurs with probability 0.)
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Unlike the Vasicek model, we might not be able to get a closed form solution of this equa-
tion. Nevertheless, we can still run a Monte Carlo simulation of this stochastic differential
equation as follows. Let f(0) = 1. Let ¢,n > 0 be integers. Suppose we have induc-
tively determined f(i/n) using a Monte Carlo simulation, and we would like the determine
f((i41)/n). The stochastic differential equation then suggests that

i+ 1)/n) = f(i/n) + a(b = f(i/n))(1/n) + / [(i/n)o(B((i +1)/n) — B(i/n)).
This approximation is known as a finite difference scheme.
Using this approximation, plot several sample paths of the CIR model with a = b = f(0) =
o=1.
What would be the corresponding finite difference scheme for the Vasicek model?

8.2. Stochastic Heat Equation. In Exercise 8.20, we showed that a solution f of the heat
equation with forcing term
0 0?
O ity = Tl wt) + b)Y (a0) € R x [0,00),
f(z,0) =g(z), VzeR.
can be written so that, for any (z,t) € R x [0, 00),

_ (z— y)
_'_
VAart y /\/47715—3/

The heat equation is a partlal differential equation that is used to model the flow of heat,
given an initial distribution of heat defined by the function g: R — R. We can think of h
as supplying a “source” of heat in this equation. The stochastic heat equation is the same
equation, where the function A becomes a random variable.

fla,t) =

e re) S> h(y, s)dyds.

Definition 8.27 (Stochastic Heat Equation). Let {Z(z,t)},cr >0 be a set of indepen-
dent, standard Gaussian random variables. Let g: R — R be a bounded continuous function.
The stochastic heat equation is the following stochastic partial differential equation for
a (random) function f: R x [0, 00) — R:
0 aof 0 f
T,t) = —%
f(x,0)=g(x), VzekR

(Since f is a random function, f is also a function of the sample space, but we omit this
dependence from our notation here and below.)

t)+ Z(x,t), V(x,t) €R x[0,00),

Exercise 8.28. Let {Z(z,t)}.crs>0 be a set of independent, standard Gaussian random
variables. Suppose f: R X [0,00) — R satisfies the stochastic heat equation.

of

—(xt):aQ—f(xt)+h(a:t) V(z,t) € R x [0,00)
ot 02 T ’ Y

f(xz,0)=0, VzeR.
We can explicitly solve this equation by its analogy with Exercise 8.20. That is,

/e S5 Z(y, s)dyds, ¥ (2,1) € R x [0, 00),

t)
(@ /\/47Tt—8
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satisfies the stochastic heat equation. Show that f has the following covariance for any
s,t > 0:
1 1/2 1/2
E/f(0 0,1)] = ——= t —|s—=1 .
FO0.9F(0.0) = 5= 1172 = s = 1)

8.3. Itd Processes. Let Sp,0 > 0 and let p € R. Let {S(t)}is0 = {Soe”PO+#} 50 be
a geometric Brownian motion. Using the function f(z,y) := Spe?™* V z,y € R in Ito’s
Lemma, Theorem 8.10, we get

dS(t) = oS(t)dB(t) + (u+ 0*/2)S(t)dt, ¥Vt > 0.
If X(t):=0B(t)+ ut,Vt>0,weuse f(x,y) = oy + px V x,y € R in Theorem 8.10 to get
dX(t) = odB(t) + pdt, Vit > 0.

The term in front of dB(t) is called the diffusion of the stochastic process, and the term
in front of dt is called the drift of the stochastic process. In mathematical finance, the
diffusion term is interpreted as the volatility of the stock. An Ito6 processes is a stochastic
process satisfying a general stochastic differential equation of the above form.

Definition 8.29 (Ité Process). Let {B(t)}:>0 be a standard Brownian motion. We say
that a stochastic process {Y'(t)}s>0 is an It6 process if 3 functions o, 1: R? — R such that
Y (t) satisfies a stochastic differential equation of the following form:

dY (t) = o(t, Y ())dB(t) + u(t, Y (£))dt, V> 0.

As we have shown above, Brownian motion and geometric Brownian motion are examples
of 1td processes. ItO processes can model stock prices and other financial securities. Ito
processes themselves satisfy a version of It6’s Lemma. The difference between Theorem 8.10
and this new version of It6’s Lemma is that the dt term in Theorem 8.10 might be different.
We now describe this new term in [t6’s Lemma.

Definition 8.30 (Quadratic Variation). Let {Y(¢)};>o be an It6 process. We define
another stochastic process {[Y];}:+>0 so that, for any b > 0, [Y], is the limit in probability as
n — oo of

—

n—

(Y(b(i +1)/n) — Y (bi/n))>.

I
o

7

Remark 8.31. Some books use a fairly deceptive and informal notation of “(dY'(¢))*” in-
stead of d[Y], for the quadratic variation process.

Remark 8.32. In Lemma 8.16, if we choose f to be a constant function, and if { B(t)}+>¢ is
standard Brownian motion, it follows that [B]; = ¢, for all ¢ > 0. In general, the quadratic
variation will be a random variable. Though, in this special case, the quadratic variation of
Brownian motion itself is not random.

Lemma 8.33. Let {Y(t)}i>0 be an Ité process, so that 3 o,pu: R? — R with dY (t) =
o(t,Y(t))dB(t) + u(t,Y(t))dt ¥ t > 0. Then

dlY], = (o(t,Y(t)))*dt, vVt > 0.
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Proof Sketch. By the definition of the Ito process, for any b > 0, we have the approximation

S (0 + 1))~ Y (fm)?
—/ . . . . by
~ (a(bz/n,B(bz/n))(B(b(@ +1)/n) — B(bz/n)) + ,u(bz/n,B(b@/n))E)
_ ’_ (obi/n. Bvi/n)) " (B((i +1)/n) — Bi/m) + % i(,u(bi/n, B(bz’/n)))2%
+2 i %(J(bi/n, B(bi/n)) (B(b(z’ +1)/n) — B(bz’/n)) u(bi /n, B(bi/n)).

As n — oo, the first term converges in probability to fob(a(s, B(s)))?ds by Lemma 8.16. The
second term is a Riemann sum divided by n, so it converges to 0. The final term is a mean
zero Gaussian with variance

n—1
b’ . : : W2
4 EE(J(bz/n,B(bz/n)),u(bz/n,B(bz/n)) :
i=0
So, the final term converges to 0 as n — co. That is, [Y], = [J(a(s, Y (s)))%ds. O

Theorem 8.34 (Ité’s Formula, Version 3). Let f: R — R have two continuous deriva-
tives. Let {Y (t)}i>0 be an Ité process. Then, with probability 1, for all b > 0,

YO =1 O) = [ Py +5 [ ).
Remark 8.35. Or, written in its differential form, we get
df (Y (s)) = f'(Y(s))dY (s) + %f”(Y(s))d[Y]s, Vs >0.

In the case that Y'(¢) is a standard Brownian motion, [Y]s; = s for any s > 0, so we recover
It6’s formula, Theorem 8.10, as a special case of Theorem 8.34. Also, from Lemma 8.33,

df (Y (s)) = f'(Y (s))dY (s) + %f”(Y(S))(U(& Y(s)*ds,  Vs=>0.

Proof Sketch. From Taylor’s Theorem, if z,y € R, then there exists an error term R(z,y)
such that

£@) = F) = F'W) —9) + 5 /W)~ 9)? + R(z.y),
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Forany 0 <i<n-—1,let x :=Y(b(i+ 1)/n), let y := Y (bi/n), and sum over i to get

—_

n—

Y 0) = f(Y(0) = D _(fY(b(i + 1)/n)) = f(Y (bi/n)))

i

_Zf’ (bi/n)) (Y (b(i + 1) /n) — Y (bi/n))

I
=)

n—1

+ Zf” (bi/n)) (Y (b(i + 1)/n) —Y(bz’/n))2+ZR(Y(b(@'+1)/n),Y(bi/n)).
We now let n — oo. The first term converges in probability to fob (Y (s))dY (s) by the

definition of the stochastic integral. The second term converges to 3 fob f"(Y(s))d[Y]s in
probability. Treating the last term as an error term concludes the proof. 0

Lemma 8.33 simplifies computations of Theorem 8.34.

Theorem 8.36 (Itd’s Formula, Version 4). Let f: R* — R have two continuous deriva-
tives in each coordinate. We write f = f(z,y), x,y € R. Let {Y(t) >0 be an Ité process.
Then, with probability 1, for all b > 0,

ey -10vo) = [ Ly [[Livenarry [T 6 v,

Remark 8.37. Or, written in its differential form, for all s > 0,

of of 10%f

df(S, Y(S)) = a—x(s, Y(s))ds + a—y 58—y2

Also, from Lemma 8.33, we have for all s > 0,

0 0 102

s, L YONY () + 5 5L Y (9D (o(s,Y (9)ds.
Proposition 8.38 (The Sharpe Ratio). Let {B(t)}i>0 be a standard Brownian motion.
Let iy, pig € R, 01,09 > 0. Suppose the prices {S1(t) >0 and {S2(t) }i>0 of two (non-dividend
paying) stocks satisfy the following (coupled) stochastic differential equations for any t > 0:

dSl (t) = ,UqSl (t)dt + Ulsl(t)dB(t),

(s,Y(s))dY (s) + (s, Y (5))d[Y]s.

df (s, Y (s)) = Y(s))ds +

dSs(t) = paSa(t)dt + 0255(t)dB(t).
If no arbitrage opportunity exists, and if money can be borrowed at a risk-free interest rate
r > 0, then the Sharpe ratios of the stocks are the same:
pr—7T _ M2 T
01 02 .

Proof. We argue by contradiction. Without loss of generality, assume that £ > £2=2_We
will then create an arbitrage opportunity. At time 0, buy 1/(015:1(0)) shares of the first
stock for the price 1/0y, short 1/(0252(0)) shares of the second stock for the price 1/05, and

91



lend the price difference (1/09) — (1/07) at the interest rate r. (If this quantity is negative,
we borrow this amount.) At time 0, the instantaneous revenue from this investment is

L isi0) - — _as,0)+ (i - i)rdt - (“1 A T)dt.

0'151(0) O'QSQ(O) 09 01 01 09
Note that the dB(t) terms cancelled. By assumption, the instantaneous revenue is positive,
a contradiction. 0

Example 8.39 (MFE Sample Question, from an old exam). Let {B(t)}:>o be a standard
Brownian motion. Let a,b,c € R. Suppose the prices {S;(t) };>0 and {Ss(t) }+>0 of two (non-
dividend paying) stocks satisfy the following (coupled) stochastic differential equations for
any t > 0:
dSy(t) = (.07)S1(t)dt + (.12)S1(t)dB(t),
dSz (t) = aSQ(t)dt + bSQ(t)dB(t)
It is also given that r = .04 is a risk-free interest rate, and

dlog(Ss(t)) = cdt + (08)dB(t), Yt > 0.

What is a?
Applying Theorem 8.34 and Lemma 8.33, for any ¢t > 0,
og(Sy(t)) = —-—dSy(t) — — - d[Sy], = ——dasy(t) — Lat
0 = —— - = — — —dt.
sL2 So() 7 T (5,2 T S, Y T 2

Using the assumed formula for dSs(t), for any ¢ > 0,
dlog(Sa(t)) = (a — b*/2)dt + bdB(t).

Then, using the given formula for dlog(Ss(t)), we get b = .08, and ¢ = a — b*/2. Then, using
Proposition 8.38,

07— 04 a— .04
12 .08
Solving for a, we get a = (2/3)(.03) + .04 = .06.

8.4. Partial Differential Equations and Brownian Motion. Some (deterministic) par-
tial differential equations can be solved by taking expected values with respect to Brownian
motion. This probabilistic perspective offers an alternative to analytical approaches to solv-
ing (deterministic) PDEs.

Let U C R™ be a connected open set with boundary 0U, such that OU can be locally
written as the graph of a twice continuously differentiable function. Let f: U — R be a
twice continuously differentiable function. We say that f is harmonic in U if

Af(x) = Y a2—f(x):O Ve eU

i=1 Ou? , .
We say that f is subharmonic in U if Af(x) > 0 for all z € U. We say that f is
superharmonic in U if Af(z) <0 for all z € U.

Let ¢: OU — R be a continuous function. We say that f: U — R solves the Dirichlet
problem with boundary value ¢ if f is harmonic in U and f(z) = ¢(z) for all x € OU. Let

92



{B(t)}+>0 be a Brownian motion. For any x € U, we use the notation E, to denote that the
Brownian motion is started at x (so that B(0) = z). Define a stopping time

T :=inf{t > 0: B(t) € OU}.
Theorem 8.40 (Solution of Dirichlet Problem). Given ¢, define f: U — R by
f(z) = E.¢(B(T)).

Then f is the unique continuous function that is harmonic in U such that f(x) = ¢(z) for

all x € OU.

Proof Sketch. Let ¢ > 0. Denote D(z,¢) := {y € R": ||z —y|| < €}. Choose ¢ > 0 so that
D(x,e) C U and define T := inf{t > 0: B(t) ¢ D(z,2)}. Let {B,}+>0 be a Brownian motion
that is independent of {B(t)}:>o. Using the Strong Markov property for Brownian motion
(ie. Proposition 7.4 for a stopping time: {B(T + s) — B(s)}s0 is a standard Brownian
motion that is independent of f), and then using the definition of f,

f(@) = Bug(B(T)) = E(o(B(T)) | B(0) = z)

—E(6(B(T))| B(0) ==, B(0) = B(T)) = E(f(B(T) | B(0) = z) = E../(B(T)).
That is, f(x) is the average value of f on 0D(x,¢), for any ¢ > 0, for any x € U such that
D(z,e) € U. This mean value property implies that f is harmonic. (Hint: define h(e) to
be E,f(B(T)), as defined above. Then show h'(¢) = 0, let £ — 0, and apply the divergence
theorem.) 0

Brownian motion can be used to prove the following well-known (deterministic) result for
harmonic functions.

Theorem 8.41 (Liouville’s Theorem). Let f: R™ — R be a bounded harmonic function.
Then f is a constant function.

Proof. Let z,y € R"™ with x # y, and let H C R" be the unique hyperplane such that
reflection across H interchanges x and y. Let { B(t) };+>¢ be a Brownian motion with B(0) = «
and let {B(t)};>0 be the reflection of {B(t)};>0 across H. Let T := inf{t > 0: B(t) € H}.
Then the following two events are equal in distribution
{B(t):t > T}, {B(t):t>T}. (¥
Since f is harmonic and bounded, f(z) = Ef(B(T)). Fix t > 0. Then
f(w) = Bf(B(T)) = Bf(B(T)ler + BF (B(T)) o1

and similarly,
fly) = Ef(E(T)) = Ef(E(T))le + Ef(F(T))ltzT-

So, by (%),
f(@) = f(y)| = [EF(B(T)Licr + Ef(B(T))lier| < sup |f(z)|-2-P(t <T).
Letting ¢t — oo, we have P(T' > t) — 0 as t — oo, so that f(x) = f(y). d

Remark 8.42. For more details on stochastic integration, see e.g. Section 7 of
https://people.bath.ac.uk /maspm /book.pdf
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One can solve other partial differential equations in a similar way to Theorem 8.40.
Example 8.43. A solution of the equation
%Af(x):—g(x), Ve, flz)=0, VYxedU
can be written as .
f0):=E. | g(B)dt
where T :=inf{t > 0: B(t) ¢ U}. '
Example 8.44. A solution of the equation
%Af(x) 4 g@)f(x) =0, Veel,  f(z)=dx), VeeoU

can be written as
f(z) = Eu(o(B(T))e'D),
Example 8.45. A solution of the equation

SAf(nf) = Si), Vit eR x (0,00),  f(r,0) = (), Voedl

can be written as
F@ 1) = Bab(B(), ¥ (x.1) € R x (0, 00).
Example 8.46. A solution of the equation
%Af(x,t) gl t) = %f(x,t), V(o) R x (0,00),  f(x,0) = 6(x), V€U
can be written as
o) =B (o(BO) + [ o(BG)t-s)ds), V(w0 € R x 0.00).

Example 8.47. A solution of the equation

%Af(x,t)Jrg(ac,t)f(x,t) _ %f(x,t), V(r,t) € R"x(0,00),  f(2,0) = (), VaedU

can be written as

f(a,1) = E, ((b(B(t))eXp (/Otg(B(s),t - s)ds)), Y (z,t) € R" x (0,00).

94



9. APPENDIX: NOTATION

Let n, m be a positive integers. Let A, B, By, ..., B, be sets contained in a universal set

C.

R denotes the set of real numbers

7, denotes the set of integers

€ means “is an element of.” For example, 2 € R is read as “2 is an element of R.”
VY means “for all”

3 means “there exists”
R™ = {(x1,29,...,2,): z; E RV1 < i <n}
f: A— B means f is a function with domain A and range B. For example,

f: R? — R means that f is a function with domain R? and range R
() denotes the empty set

A C Bmeans V a € A, we have a € B, so A is contained in B
ANB:={a€A:a¢ B}
A¢:=C ~\ A, the complement of Ain C
AN B denotes the intersection of A and B
AU B denotes the union of A and B
P denotes a probability law on C

P(A|B) denotes the conditional probability of A, given B.

P(A|By,...,B,) = P(A| N, B;) denotes the conditional probability of A, given N, B;.

|A| denotes the number of elements in the (finite) set A.

14: C — {0,1}, denotes the indicator function of A, so that

1A(C)={1 Jifce A

0 , otherwise.

Let aq,...,a, be real numbers. Let n be a positive integer.

Zai:al+a2+"'+an—l+an-
i=1

n
Hai =ai a2 Qp—1 " Ap.
i=1
min(ay,as) = a A b denotes the minimum of a; and as.
max(aj, as) = a V b denotes the maximum of a; and as.
Let A be a set and let f: A — R be a function. Then max,c4 f(x) denotes the maximum

value of f on A (if it exists). Similarly, minge 4 f(x) denotes the minimum value of f on A
(if it exists).
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Let Y be a discrete random variable on a sample space C, so that Y: C — R. Let P be a
probability law on C. Let € R. Let A C C. Let Y be another discrete random variable

py(z) =P =2)=P{ceC:Y(c)=xa}),Vz R
the Probability Mass Function (PMF) of V'
E(Y) denotes the expected value of Y
var(Y) = E(Y — E(Y))?, the variance of Y
oy = \/V&TY') , the standard deviation of Y
Y| A denotes the random variable Y conditioned on the event A.

E(Y|A) denotes the expected value of Y conditioned on the event A.
E(Y|By,...,B,) = E(Y|N, B;) denotes the conditional expectation of Y, given NI , B;.

Let Y, Y be a continuous random variables on a sample space C, so that Y, Y : C — R. Let
—0<a<b<oo, —0<c<d<oo. Let P be a probability law on C. Let A C C.

fr: R — [0,00) denotes the Probability Density Function (PDF) of Y, so

b
Pla<Y <b)— / fy(2)da
friy: R —[0,00) denotes the joint PDF of Y and Y, so

d b
Pla<yshesy<d= [ [ fryloydedy

fy|a denotes the Conditional PDF of Y given A
E(Y|A) denotes the expected value of Y conditioned on the event A.
E(Y]A) denotes the expected value of Y given a partition A = {A;,..., Ax} of C.

Let Y be a random variable on a sample space C, so that Y : C — R. Let P be a probability
law on C. Let x € R.

Fy(z)=PY <z2)=P{ceC:Y(c) <zx})
the Cumulative Distibution Function (CDF) of Y.

Let (Yp,Y1,...) be a real valued stochastic process. Let x,y € R.
P. denotes the conditional probability such that
P.(A) =P(A|Y, =),V A in the sample space

E, denotes expectation with respect to P,

v dt
o = e_t2/2—.
) / i _

Let {B(s)}s>0 be a standard Brownian motion. Let f: R — R be a continuous function.
Let g: R? — R be a continuous function. Let b > 0. Let Sy,0 > 0, u € R.
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{S(t)}is0 = {Soe?BOFHY -y denotes a geometric Brownian motion
¢ = So®(dy) — e "k®(dy — oV/t) denotes the Black-Scholes pricing formula for a
European call option with strike price £ > 0 and expiration time ¢ > 0, where
log(So/k) + (r + % /2)t
a\/_ ’
/ f(s)ds = lim Z f <b2> denotes the Riemann integral of f on [0, ]

n—o0

/ f ds = limit in probability Z f < ( ))%

as Nn—oo

dy = r::u+02/2

denotes the Riemann integral of f(B(s)) on [0, b]

[ 005 =g 51 ((2)) (8(2) - (%))

, denotes the stochastic integral of f on [0, D]

/Obg(s, B(s))dB(5) = limit in probability Sg(%a B(%)) <B<w> - B(%))

as n—oo

, denotes the stochastic integral of g on [0, b]

Let {Y'(s)}s>0 be an Itd process.

/ Uty —hm“;;%fgb;bﬂltyzf (v (J)(W@)‘Y(%))

, denotes the stochastic integral of f on [0, b], with respect to {Y(s)}s>0

/Obg(s,Y(s))dY( ) = limit in probability nz_lg<%>y<%>) <Y<w> - Y(%))

as n—oo

, denotes the stochastic integral of g on [0, b], with respect to {Y(s)}s>0
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