505B Midterm 2 Solutions¹

1. Question 1

Let S_0, S_1, \ldots denote the simple random walk on **Z** with $S_0 := 0$. Let n and c be positive integers. Show that:

$$\mathbf{P}\Big(\max_{1 \le j \le n} |S_j| \ge c\Big) \le 2\mathbf{P}(|S_n| \ge c).$$

(Hint: is this related at all to the reflection principle?)

Solution. The event $\max_{1 \leq j \leq n} |S_j| \geq c$ is equal to the event $\{T_c \leq n\} \cup \{T_{-c} \leq n\}$, where T_c is the hitting time of c. So, using symmetry and translation invariance of the random walk and also Lemma 3.70 in the notes,

$$\mathbf{P}\Big(\max_{1 \le j \le n} |S_j| \ge c\Big) = \mathbf{P}\Big(\{T_c \le n\} \cup \{T_{-c} \le n\}\Big) \le \mathbf{P}(T_c \le n) + \mathbf{P}(T_{-c} \le n) \\
= 2\mathbf{P}(T_c \le n) = 2(1 - \mathbf{P}(T_c > n)) = 2(1 - \mathbf{P}_0(T_c > n)) \\
= 2(1 - \mathbf{P}_c(T_0 > n)) = 2(1 - \mathbf{P}_c(-c < S_n \le c)) \\
= 2\mathbf{P}(S_n < -c \text{ or } S_n > c) < 2\mathbf{P}(|S_n| > c).$$

2. Question 2

Let (X_0, X_1, \ldots) be the simple random walk on **Z**. For any $n \ge 0$, define $M_n = X_n^3 - 3nX_n$. Show that (M_0, M_1, \ldots) is a martingale with respect to (X_0, X_1, \ldots)

Now, fix m > 0 and let T be the first time that the walk hits either 0 or m. Show that, for any $0 < k \le m$,

$$\mathbf{E}_k(T \,|\, X_T = m) = \frac{m^2 - k^2}{3}.$$

(You are allowed to apply the Optional Stopping Theorem Version 2 without verifying boundedness of the martingale.)

Solution.

$$\mathbf{E}(M_{n+1} - M_n \mid X_n = x_n, \dots, X_0 = x_0, M_0 = m_0)$$

$$= \mathbf{E}(([X_{n+1} - X_n] + x_n)^3 - 3(n+1)([X_{n+1} - X_n] + x_n) - x_n^3 + 3nx_n \mid X_n = x_n)$$

$$= \frac{1}{2} \Big((1+x_n)^3 - 3(n+1)(1+x_n) - x_n^3 + 3nx_n \Big)$$

$$+ \frac{1}{2} \Big((-1+x_n)^3 - 3(n+1)(-1+x_n) - x_n^3 + 3nx_n \Big)$$

$$= \frac{1}{2} \Big((1+x_n)^3 - x_n^3 - 3x_n + (-1+x_n)^3 - x_n^3 - 3x_n \Big) = \frac{1}{2} \Big(3x_n^2 + 1 - 3x_n^2 - 1 \Big) = 0.$$

Now, if $X_0 = k$ with $0 \le k \le m$, then the Optional Stopping Theorem says

$$k^{3} = \mathbf{E}_{k} X_{0}^{3} = \mathbf{E}_{k} M_{0} = \mathbf{E}_{k} M_{T} = \mathbf{E}_{k} X_{T}^{3} - 3 \mathbf{E}_{k} T X_{T}.$$

¹May 17, 2021, © 2021 Steven Heilman, All Rights Reserved.

(Note that $\mathbf{P}(T < \infty) = 1$ by Lemma 3.28 in the notes.) Let $p := \mathbf{P}_k(T = m)$. Since T = 0 or T = m, the Total Expectation Theorem says

$$\mathbf{E}_k T X_T = \mathbf{P}_k (T = m) \mathbf{E}_k (T X_T \mid X_T = m) + \mathbf{P}_k (T = 0) \mathbf{E}_k (T X_T \mid X_T = 0)$$
$$= mp \mathbf{E}_k (T \mid X_T = m).$$

Also, $\mathbf{E}_k X_T^3 = m^3 p$. So, we have

$$k^3 = m^3 p - 3mp \mathbf{E}_k(T \mid X_T = m).$$

From Example 4.25 in the notes, $p = \frac{k}{m}$. So,

$$\mathbf{E}_k(T \mid X_T = m) = \frac{k^3 - m^3 p}{-3mp} = \frac{m^2 k - k^3}{3k} = \frac{m^2 - k^2}{3}.$$

3. Question 3

Let $m \ge 1$ be an integer. Let P be the $m \times m$ transition matrix of a finite (discrete-time) reversible, irreducible Markov chain. Denote the eigenvalues of P as $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_m$. (You can take it as given that the eigenvalues are real, since we verified this in an exercise.) Show:

- $\lambda_i \leq 1$ for all $1 \leq i \leq m$.
- $|\lambda_i| \leq 1$ for all $1 \leq i \leq m$.
- $\lambda_1 > \lambda_2$.
- If additionally P is aperiodic, then $\lambda_m > -1$.

Solution. Suppose $f \in \mathbf{R}^m$ is a right eigenvector of P with eigenvalue λ . Since Ω is finite, there exists $x_0 \in \Omega$ such that $M := \max_{x \in \Omega} f(x) = f(x_0)$. Let $z \in \Omega$ with $P(x_0, z) > 0$, and assume that f(z) < M. Then since f is an eigenvector, $Pf = \lambda f$, i.e.

$$\lambda M = \lambda f(x_0) = P(x_0, z) f(z) + \sum_{y \in \Omega: y \neq z} P(x_0, y) f(y) < M \sum_{y \in \Omega} P(x_0, y) = M,$$

a contradiction, unless f(z) = M and $\lambda < 1$.

Finally, for any $z \in \Omega$, irreducibility of P implies that there is a sequence of points $x_0, x_1, \ldots, x_k = z$ in Ω such that $P(x_i, x_{i+1}) > 0$ for every $0 \le i < k$. So, by repeating the above argument k-1 times, $M = f(x_0) = f(x_1) = \cdots = f(x_k) = f(z)$. That is, f(z) = M for every $z \in \Omega$ or $\lambda \le 1$. If f is constant, then $\lambda = 1$. So, in any case $\lambda \le 1$.

Applying the same argument to the stochastic matrix P^2 , we get $\lambda^2 \leq 1$ for all eigenvalues λ of P (since the eigenvalues of P^2 are the squares of the eigenvalues of P). The second item follows.

By Lemma 3.70 in the notes, the eigenspace of the largest eigenvalue is one-dimensional, so the third item $\lambda_1 > \lambda_2$ follows.

Finally, suppose π is the stationary distribution of an irreducible, aperiodic Markov chain and let $g \in \mathbf{R}^m$ be a left eigenvector of P with eigenvalue λ_m . Since the Markov chain is irreducible, g is not a multiple of π . If $\lambda_m = -1$, then $gP^2 = g$, so that $gP^{2k} = g$ for any $k \geq 1$. So, $\lim_{k \to \infty} gP^{2k} = g$, but this violates the convergence theorem. We conclude that $\lambda_m > -1$.

4. Question 4

Let Ω be a finite set. Let π be a probability distribution on Ω . For any $0 , and for any <math>f \in \mathbf{R}^{\Omega}$, define

$$||f||_{p,\pi} := \left(\sum_{x \in \Omega} |f(x)|^p \pi(x)\right)^{1/p}, \qquad \mathbf{E}_{\pi}f := \sum_{x \in \Omega} f(x)\pi(x).$$

- Show that $||f||_{1,\pi} \leq ||f||_{2,\pi}$ for any $f \in \mathbf{R}^{\Omega}$.
- Let μ be a probability distribution on Ω . If $\pi(x) > 0$ for all $x \in \Omega$, show that

$$\|\mu - \pi\|_{\text{TV}} \le \frac{1}{2} \left\| \frac{\mu(\cdot)}{\pi(\cdot)} - 1 \right\|_{2,\pi}.$$

• Let t > 0. Prove the bound

$$\max_{x \in \Omega} \left\| \frac{H_t(x, \cdot)}{\pi(\cdot)} - 1 \right\|_{2,\pi} \le \sup_{f \in \mathbf{R}^{\Omega}: \|f\|_{2,\pi} \le 1} \max_{x \in \Omega} \left| \left[(H_t - \mathbf{E}_{\pi}) f \right](x) \right|.$$

(Hint: show, for any $f \in \mathbf{R}^{\Omega}$, $||f||_{2,\pi} = \sup_{g \in \mathbf{R}^{\Omega}: ||g||_{2,\pi} \le 1} |\langle f, g \rangle_{\pi}|$.)

Let P be the transition matrix of a finite, irreducible (discrete-time) Markov chain, let π be the unique stationary distribution of the chain, and let $H_t := e^{t(P-I)}$, $t \ge 0$, be the corresponding heat kernel. The mixing time of a continuous-time Markov chain measures how rapidly the Markov chain converges to equilibrium, providing a more quantitative estimate than the convergence theorem provides. For any $\varepsilon > 0$, we define

$$t_{\min}(\varepsilon) := \inf \Big\{ t \ge 0 \colon \max_{x \in \Omega} \|H_t(x, \cdot) - \pi(\cdot)\|_{\text{TV}} \le \varepsilon \Big\}.$$

The mixing time of the continuous-time Markov chain is defined to be $t_{\text{mix}}(1/4)$.

• Suppose we have a finite, irreducible, reversible Markov chain with spectral gap $\gamma := 1 - \lambda_2$. Prove that $t_{\text{mix}} \leq \frac{1}{\gamma} \log(2/\sqrt{\min_{y \in \Omega} \pi(y)})$ by first proving

$$\max_{x \in \Omega} \|H_t(x, \cdot) - \pi(\cdot)\|_{\text{TV}} \le \frac{1}{2} \frac{e^{-\gamma t}}{\sqrt{\min_{y \in \Omega} \pi(y)}}, \quad \forall t > 0$$

(Hint: if $g_1, \ldots, g_{|\Omega|} \in \mathbf{R}^{\Omega}$ are an orthonormal basis of eigenfunctions of P, and if $x \in \Omega$ and $e_x \in \mathbf{R}^{\Omega}$ satisfies $e_x(x) := 1$ and $e_x(y) := 0$ for all $y \neq x$, then show that $\pi(x) = \langle e_x, e_x \rangle_{\pi} = (\pi(x))^2 \sum_{j=1}^{|\Omega|} |g_j(x)|^2$.)

Solution. The first item follows from Jensen's inequality. The second item follows from Exercise 3.62 in the notes, since

$$\|\mu - \pi\|_{\text{TV}} = \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \pi(x)| = \frac{1}{2} \sum_{x \in \Omega} \left| \frac{\mu(x)}{\pi(x)} - 1 \right| \pi(x) = \frac{1}{2} \left\| \frac{\mu(\cdot)}{\pi(\cdot)} - 1 \right\|_{1,\pi} \stackrel{(i)}{\leq} \frac{1}{2} \left\| \frac{\mu(\cdot)}{\pi(\cdot)} - 1 \right\|_{2,\pi}.$$

For the third item, we have

$$\left\| \frac{H_t(x,\cdot)}{\pi(\cdot)} - 1 \right\|_{2,\pi} = \sup_{g \in \mathbf{R}^{\Omega} : \|g\|_{2,\pi} < 1} \left| \left\langle \left[\frac{H_t(x,\cdot)}{\pi(\cdot)} - 1 \right], g \right\rangle_{\pi} \right| = \sup_{g \in \mathbf{R}^{\Omega} : \|g\|_{2,\pi} < 1} \left| H_t g(x) - \mathbf{E}_{\pi} g \right|.$$

The supremum characterization of the L_2 norm is sometimes called the reverse Hölder inequality. Taking the maximum over x concludes this item.

For the fourth item, we combine the above items to get

$$\max_{x \in \Omega} \|H_t(x, \cdot) - \pi(\cdot)\|_{\text{TV}} \stackrel{(ii) \wedge (iii)}{\leq} \frac{1}{2} \sup_{g \in \mathbf{R}^{\Omega} : \|g\|_{2,\pi} \leq 1} \max_{x \in \Omega} |[H_t - \mathbf{E}_{\pi}]g|. \tag{*}$$

Let $g \in \mathbf{R}^{\Omega}$ with $||g||_{2,\pi} \leq 1$. If $g_1, \ldots, g_{|\Omega|} \in \mathbf{R}^{\Omega}$ are an orthonormal basis of eigenfunctions of P with eigenvalues $1 \geq \lambda_1 > \lambda_2 \geq \cdots \geq \lambda_{|\Omega|} \geq -1$, we can then write

$$g = \sum_{i=1}^{|\Omega|} c_i g_i,$$

where $\sum_{i=1}^{|\Omega|} c_i^2 = \|g\|_{2,\pi}^2 \le 1$. Moreover, g_1 is a constant vector, i.e. there exists $a \in \mathbf{R}$ such that $g_1 = (a, \ldots, a)$, and $1 = \langle g_1, g_1 \rangle_{\pi} = \sum_{x \in \Omega} a^2 \pi(x) = a^2$, so we may assume a = 1, i.e. $g_1 = (1, \ldots, 1)$, so that $\mathbf{E}_{\pi} g_1 = 1$. Also, for any $1 \le j \le |\Omega|$,

$$H_t g_j = e^{t(P-I)} g_j = e^{-t} \sum_{k=0}^{\infty} \frac{t^k P^k}{k!} g_j = e^{-t} \sum_{k=0}^{\infty} \frac{t^k \lambda_j^k}{k!} g_j = e^{t(\lambda_j - 1)} g_j.$$
 (**)

So, $[H_t - \mathbf{E}_{\pi}]g_1 = [e^0 - 1]g_1 = 0$. By orthonormality, $\forall j \geq 2, 0 = \langle g_1, g_j \rangle_{\pi} = \mathbf{E}_{\pi}g_j$, so

$$[H_t - \mathbf{E}_{\pi}]g = \sum_{i=1}^{|\Omega|} c_i [H_t - \mathbf{E}_{\pi}]g_i = \sum_{i=2}^{|\Omega|} c_i H_t g_i \stackrel{(**)}{=} \sum_{i=2}^{|\Omega|} c_i e^{t(\lambda_i - 1)} g_i.$$

We apply the Cauchy-Schwarz inequality, $\sum_{i=1}^{|\Omega|} c_i^2 \leq 1$ and the definition of γ to get

$$|[H_t - \mathbf{E}_{\pi}]g(x)| \le \left(\sum_{i=2}^{|\Omega|} c_i^2 e^{2t(\lambda_i - 1)}\right)^{1/2} \left(\sum_{i=2}^{|\Omega|} [g_i(x)]^2\right)^{1/2} \le e^{-t\gamma} \left(\sum_{i=2}^{|\Omega|} [g_i(x)]^2\right)^{1/2}. \tag{\ddagger}$$

As suggested in the hint, if $x \in \Omega$ is fixed, then using orthonormality of the basis g_1, \ldots, g_{Ω} ,

$$\pi(x) = \langle e_x, e_x \rangle_{\pi} = \left\langle \sum_{i=1}^{|\Omega|} \langle e_x, g_i \rangle_{\pi} g_i, \sum_{i'=1}^{|\Omega|} \langle e_x, g_{i'} \rangle_{\pi} g_{i'}, \right\rangle_{\pi}$$
$$= \left\langle \sum_{i=1}^{|\Omega|} g_i(x) \cdot g_i, \sum_{i'=1}^{|\Omega|} g_{i'}(x) \cdot g_{i'} \right\rangle_{\pi} = (\pi(x))^2 \sum_{i=1}^{|\Omega|} |g_i(x)|^2.$$

That is, $\sum_{i=1}^{|\Omega|} |g_i(x)|^2 = 1/\pi(x)$. Substituting into (‡) we finally get

$$|[H_t - \mathbf{E}_{\pi}]g(x)| \le \frac{e^{-t\gamma}}{\sqrt{\pi(x)}}.$$

Taking the maximum over x and applying (*) concludes the proof.

Finally, to get a bound on the mixing time $t_{\text{mix}}(1/4)$, we need to find t>0 such that

$$\max_{x \in \Omega} \|H_t(x, \cdot) - \pi(\cdot)\|_{\text{TV}} \le 1/4.$$

From our proven inequality, it suffices to find t > 0 such that

$$\frac{1}{2} \frac{e^{-\gamma t}}{\sqrt{\min_{y \in \Omega} \pi(y)}} \le 1/4.$$

Solving for t, we get $e^{-\gamma t} \leq (1/2)\sqrt{\min_{y\in\Omega}\pi(y)}$, i.e. $-\gamma t \leq \log((1/2)\sqrt{\min_{y\in\Omega}\pi(y)})$, i.e.

$$t \ge \frac{1}{\gamma} \log(2/\sqrt{\min_{y \in \Omega} \pi(y)}).$$

The mixing time bound follows.

5. Question 5

Let n be a positive integer and denote $i := \sqrt{-1}$. Let $\tau := e^{2\pi i/n}$. Let $\Omega := \{\tau, \tau^2, \tau^3, \dots, \tau^{n-1}, 1\}$ be the set of n^{th} roots of unity. Let P be the transition matrix such that $P(\omega, \tau\omega) = P(\omega, \tau^{-1}\omega) = 1/2$ for all $\omega \in \Omega$. That is, P is the simple random walk on the cyclic group of n elements.

- Show that the (discrete time) Markov chain with transition matrix P is reversible with stationary distribution $\pi(x) := 1/n$ for all $x \in \Omega$.
- Show that the eigenvalues of P are $\{\cos(2\pi j/n)\}_{j=0}^{n-1}$. Consequently, the spectral gap is $\gamma := 1 \cos(2\pi/n)$.
- \bullet Bound the mixing time of the continuous-time Markov chain corresponding to P, using your result from the previous problem.

Solution. Reversibility is clear. For any $0 \le j \le n$, let $f_j \in \mathbf{R}^{\Omega}$ be the vector $f_j(k) := e^{2\pi i j k/n}$ for all $1 \le k \le n$. Then

$$Pf_j(k) = (1/2)f_j(k+1) + (1/2)f_j(k-1) = \frac{1}{2}f_j(k)[e^{2\pi i j/n} + e^{-2\pi i j/n}] = f_j(k)\cos(2\pi j/n).$$

That is $\{f_j\}_{j=0}^{n-1}$ are a set of eigenvectors of P. Taking the real and imaginary parts gives an orthogonal basis of real eigenvectors with the stated eigenvalues.

From the previous problem, we have (for n > 3)

$$t_{\text{mix}} \le \frac{1}{\gamma} \log(2/\sqrt{\min_{y \in \Omega} \pi(y)}) \le \frac{1}{1 - \cos(2\pi/n)} \log(2/\sqrt{1/n}) \le n^2 (\log 2 + (1/2) \log n) \le 2n^2 \log n.$$