
505B Midterm 2 Solutions1

1. Question 1

Let S0, S1, . . . denote the simple random walk on Z with S0 := 0. Let n and c be positive
integers. Show that:

P
(

max
1≤j≤n

|Sj| ≥ c
)
≤ 2P(|Sn| ≥ c).

(Hint: is this related at all to the reflection principle?)
Solution. The event max1≤j≤n |Sj| ≥ c is equal to the event {Tc ≤ n} ∪ {T−c ≤ n}, where

Tc is the hitting time of c. So, using symmetry and translation invariance of the random
walk and also Lemma 3.70 in the notes,

P
(

max
1≤j≤n

|Sj| ≥ c
)

= P
(
{Tc ≤ n} ∪ {T−c ≤ n}

)
≤ P(Tc ≤ n) + P(T−c ≤ n)

= 2P(Tc ≤ n) = 2(1−P(Tc > n)) = 2(1−P0(Tc > n))

= 2(1−Pc(T0 > n)) = 2(1−Pc(−c < Sn ≤ c))

= 2P(Sn ≤ −c or Sn > c) ≤ 2P(|Sn| ≥ c).

2. Question 2

Let (X0, X1, . . .) be the simple random walk on Z. For any n ≥ 0, define Mn = X3
n−3nXn.

Show that (M0,M1, . . .) is a martingale with respect to (X0, X1, . . .)
Now, fix m > 0 and let T be the first time that the walk hits either 0 or m. Show that,

for any 0 < k ≤ m,

Ek(T |XT = m) =
m2 − k2

3
.

(You are allowed to apply the Optional Stopping Theorem Version 2 without verifying
boundedness of the martingale.)

Solution.

E(Mn+1 −Mn |Xn = xn, . . . , X0 = x0,M0 = m0)

= E(([Xn+1 −Xn] + xn)3 − 3(n+ 1)([Xn+1 −Xn] + xn)− x3
n + 3nxn |Xn = xn)

=
1

2

(
(1 + xn)3 − 3(n+ 1)(1 + xn)− x3

n + 3nxn

)
+

1

2

(
(−1 + xn)3 − 3(n+ 1)(−1 + xn)− x3

n + 3nxn

)
=

1

2

(
(1 + xn)3 − x3

n − 3xn + (−1 + xn)3 − x3
n − 3xn

)
=

1

2

(
3x2

n + 1− 3x2
n − 1

)
= 0.

Now, if X0 = k with 0 ≤ k ≤ m, then the Optional Stopping Theorem says

k3 = EkX
3
0 = EkM0 = EkMT = EkX

3
T − 3EkTXT .
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(Note that P(T <∞) = 1 by Lemma 3.28 in the notes.) Let p := Pk(T = m). Since T = 0
or T = m, the Total Expectation Theorem says

EkTXT = Pk(T = m)Ek(TXT |XT = m) + Pk(T = 0)Ek(TXT |XT = 0)

= mpEk(T |XT = m).

Also, EkX
3
T = m3p. So, we have

k3 = m3p− 3mpEk(T |XT = m).

From Example 4.25 in the notes, p = k
m

. So,

Ek(T |XT = m) =
k3 −m3p

−3mp
=
m2k − k3

3k
=
m2 − k2

3
.

3. Question 3

Let m ≥ 1 be an integer. Let P be the m×m transition matrix of a finite (discrete-time)
reversible, irreducible Markov chain. Denote the eigenvalues of P as λ1 ≥ λ2 ≥ · · · ≥ λm.
(You can take it as given that the eigenvalues are real, since we verified this in an exercise.)
Show:

• λi ≤ 1 for all 1 ≤ i ≤ m.
• |λi| ≤ 1 for all 1 ≤ i ≤ m.
• λ1 > λ2.
• If additionally P is aperiodic, then λm > −1.

Solution. Suppose f ∈ Rm is a right eigenvector of P with eigenvalue λ. Since Ω is finite,
there exists x0 ∈ Ω such that M := maxx∈Ω f(x) = f(x0). Let z ∈ Ω with P (x0, z) > 0, and
assume that f(z) < M . Then since f is an eigenvector, Pf = λf , i.e.

λM = λf(x0) = P (x0, z)f(z) +
∑

y∈Ω: y 6=z

P (x0, y)f(y) < M
∑
y∈Ω

P (x0, y) = M,

a contradiction, unless f(z) = M and λ ≤ 1.
Finally, for any z ∈ Ω, irreducibility of P implies that there is a sequence of points

x0, x1, . . . , xk = z in Ω such that P (xi, xi+1) > 0 for every 0 ≤ i < k. So, by repeating the
above argument k − 1 times, M = f(x0) = f(x1) = · · · = f(xk) = f(z). That is, f(z) = M
for every z ∈ Ω or λ ≤ 1. If f is constant, then λ = 1. So, in any case λ ≤ 1.

Applying the same argument to the stochastic matrix P 2, we get λ2 ≤ 1 for all eigenvalues
λ of P (since the eigenvalues of P 2 are the squares of the eigenvalues of P ). The second item
follows.

By Lemma 3.70 in the notes, the eigenspace of the largest eigenvalue is one-dimensional,
so the third item λ1 > λ2 follows.

Finally, suppose π is the stationary distribution of an irreducible, aperiodic Markov chain
and let g ∈ Rm be a left eigenvector of P with eigenvalue λm. Since the Markov chain is
irreducible, g is not a multiple of π. If λm = −1, then gP 2 = g, so that gP 2k = g for any
k ≥ 1. So, limk→∞ gP

2k = g, but this violates the convergence theorem. We conclude that
λm > −1.
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4. Question 4

Let Ω be a finite set. Let π be a probability distribution on Ω. For any 0 < p < ∞, and
for any f ∈ RΩ, define

‖f‖p,π :=
(∑
x∈Ω

|f(x)|p π(x)
)1/p

, Eπf :=
∑
x∈Ω

f(x)π(x).

• Show that ‖f‖1,π ≤ ‖f‖2,π for any f ∈ RΩ.

• Let µ be a probability distribution on Ω. If π(x) > 0 for all x ∈ Ω, show that

‖µ− π‖TV ≤
1

2

∥∥∥∥µ(·)
π(·)
− 1

∥∥∥∥
2,π

.

• Let t > 0. Prove the bound

max
x∈Ω

∥∥∥∥Ht(x, ·)
π(·)

− 1

∥∥∥∥
2,π

≤ sup
f∈RΩ : ‖f‖2,π≤1

max
x∈Ω
|[(Ht − Eπ)f ](x)| .

(Hint: show, for any f ∈ RΩ, ‖f‖2,π = supg∈RΩ : ‖g‖2,π≤1 |〈f, g〉π| .)
Let P be the transition matrix of a finite, irreducible (discrete-time) Markov chain, let
π be the unique stationary distribution of the chain, and let Ht := et(P−I), t ≥ 0, be the
corresponding heat kernel. The mixing time of a continuous-time Markov chain measures how
rapidly the Markov chain converges to equilibrium, providing a more quantitative estimate
than the convergence theorem provides. For any ε > 0, we define

tmix(ε) := inf
{
t ≥ 0: max

x∈Ω
‖Ht(x, ·)− π(·)‖TV ≤ ε

}
.

The mixing time of the continuous-time Markov chain is defined to be tmix(1/4).

• Suppose we have a finite, irreducible, reversible Markov chain with spectral gap
γ := 1− λ2. Prove that tmix ≤ 1

γ
log(2/

√
miny∈Ω π(y)) by first proving

max
x∈Ω
‖Ht(x, ·)− π(·)‖TV ≤

1

2

e−γt√
miny∈Ω π(y)

, ∀ t > 0

(Hint: if g1, . . . , g|Ω| ∈ RΩ are an orthonormal basis of eigenfunctions of P , and if
x ∈ Ω and ex ∈ RΩ satisfies ex(x) := 1 and ex(y) := 0 for all y 6= x, then show that

π(x) = 〈ex, ex〉π = (π(x))2
∑|Ω|

j=1 |gj(x)|2.)

Solution. The first item follows from Jensen’s inequality. The second item follows from
Exercise 3.62 in the notes, since

‖µ− π‖TV =
1

2

∑
x∈Ω

|µ(x)− π(x)| = 1

2

∑
x∈Ω

∣∣∣∣µ(x)

π(x)
− 1

∣∣∣∣ π(x) =
1

2

∥∥∥∥µ(·)
π(·)
− 1

∥∥∥∥
1,π

(i)

≤ 1

2

∥∥∥∥µ(·)
π(·)
− 1

∥∥∥∥
2,π

.

For the third item, we have∥∥∥∥Ht(x, ·)
π(·)

− 1

∥∥∥∥
2,π

= sup
g∈RΩ : ‖g‖2,π≤1

∣∣∣∣〈[Ht(x, ·)
π(·)

− 1
]
, g
〉
π

∣∣∣∣ = sup
g∈RΩ : ‖g‖2,π≤1

|Htg(x)− Eπg| .

The supremum characterization of the L2 norm is sometimes called the reverse Hölder in-
equality. Taking the maximum over x concludes this item.

For the fourth item, we combine the above items to get
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max
x∈Ω
‖Ht(x, ·)− π(·)‖TV

(ii)∧(iii)

≤ 1

2
sup

g∈RΩ : ‖g‖2,π≤1

max
x∈Ω
|[Ht − Eπ]g| . (∗)

Let g ∈ RΩ with ‖g‖2,π ≤ 1. If g1, . . . , g|Ω| ∈ RΩ are an orthonormal basis of eigenfunctions
of P with eigenvalues 1 ≥ λ1 > λ2 ≥ · · · ≥ λ|Ω| ≥ −1, we can then write

g =

|Ω|∑
i=1

cigi,

where
∑|Ω|

i=1 c
2
i = ‖g‖2

2,π ≤ 1. Moreover, g1 is a constant vector, i.e. there exists a ∈ R such

that g1 = (a, . . . , a), and 1 = 〈g1, g1〉π =
∑

x∈Ω a
2π(x) = a2, so we may assume a = 1, i.e.

g1 = (1, . . . , 1), so that Eπg1 = 1. Also, for any 1 ≤ j ≤ |Ω|,

Htgj = et(P−I)gj = e−t
∞∑
k=0

tkP k

k!
gj = e−t

∞∑
k=0

tkλkj
k!

gj = et(λj−1)gj. (∗∗)

So, [Ht − Eπ]g1 = [e0 − 1]g1 = 0. By orthonormality, ∀ j ≥ 2, 0 = 〈g1, gj〉π = Eπgj, so

[Ht − Eπ]g =

|Ω|∑
i=1

ci[Ht − Eπ]gi =

|Ω|∑
i=2

ciHtgi
(∗∗)
=

|Ω|∑
i=2

cie
t(λi−1)gi.

We apply the Cauchy-Schwarz inequality,
∑|Ω|

i=1 c
2
i ≤ 1 and the definition of γ to get

|[Ht − Eπ]g(x)| ≤ (

|Ω|∑
i=2

c2
i e

2t(λi−1))1/2(

|Ω|∑
i=2

[gi(x)]2)1/2 ≤ e−tγ(

|Ω|∑
i=2

[gi(x)]2)1/2. (‡)

As suggested in the hint, if x ∈ Ω is fixed, then using orthonormality of the basis g1, . . . , gΩ,

π(x) = 〈ex, ex〉π =
〈 |Ω|∑

i=1

〈ex, gi〉πgi,
|Ω|∑
i′=1

〈ex, gi′〉πgi′ ,
〉
π

=
〈 |Ω|∑

i=1

gi(x) · gi,
|Ω|∑
i′=1

gi′(x) · gi′
〉
π

= (π(x))2

|Ω|∑
i=1

|gi(x)|2 .

That is,
∑|Ω|

i=1 |gi(x)|2 = 1/π(x). Substituting into (‡) we finally get

|[Ht − Eπ]g(x)| ≤ e−tγ√
π(x)

.

Taking the maximum over x and applying (∗) concludes the proof.
Finally, to get a bound on the mixing time tmix(1/4), we need to find t > 0 such that

max
x∈Ω
‖Ht(x, ·)− π(·)‖TV ≤ 1/4.

From our proven inequality, it suffices to find t > 0 such that

1

2

e−γt√
miny∈Ω π(y)

≤ 1/4.
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Solving for t, we get e−γt ≤ (1/2)
√

miny∈Ω π(y), i.e. −γt ≤ log((1/2)
√

miny∈Ω π(y)), i.e.

t ≥ 1

γ
log(2/

√
min
y∈Ω

π(y)).

The mixing time bound follows.

5. Question 5

Let n be a positive integer and denote i :=
√
−1. Let τ := e2πi/n. Let Ω := {τ, τ 2, τ 3, . . . , τn−1, 1}

be the set of nth roots of unity. Let P be the transition matrix such that P (ω, τω) =
P (ω, τ−1ω) = 1/2 for all ω ∈ Ω. That is, P is the simple random walk on the cyclic group
of n elements.

• Show that the (discrete time) Markov chain with transition matrix P is reversible
with stationary distribution π(x) := 1/n for all x ∈ Ω.
• Show that the eigenvalues of P are {cos(2πj/n)}n−1

j=0 . Consequently, the spectral gap
is γ := 1− cos(2π/n).
• Bound the mixing time of the continuous-time Markov chain corresponding to P ,

using your result from the previous problem.

Solution. Reversibility is clear. For any 0 ≤ j ≤ n, let fj ∈ RΩ be the vector fj(k) :=
e2πijk/n for all 1 ≤ k ≤ n. Then

Pfj(k) = (1/2)fj(k + 1) + (1/2)fj(k − 1) =
1

2
fj(k)[e2πij/n + e−2πij/n] = fj(k) cos(2πj/n).

That is {fj}n−1
j=0 are a set of eigenvectors of P . Taking the real and imaginary parts gives an

orthogonal basis of real eigenvectors with the stated eigenvalues.
From the previous problem, we have (for n ≥ 3)

tmix ≤
1

γ
log(2/

√
min
y∈Ω

π(y)) ≤ 1

1− cos(2π/n)
log(2/

√
1/n) ≤ n2(log 2+(1/2) log n) ≤ 2n2 log n.
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