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Final Exam

This exam contains 10 pages (including this cover page) and 5 problems. Check to see if any
pages are missing. Enter all requested information on the top of this page.

You may use your books and notes on this exam. You cannot use a calculator or any other
electronic device (or internet-enabled device) on this exam. You are required to show your
work on each problem on the exam. The following rules apply:

• You have 120 hours to complete the exam.

• If you use a theorem or proposition from
class or the notes or the book you must
indicate this and explain why the theorem
may be applied. It is okay to just say, “by
some theorem/proposition from class.”

• Organize your work, in a reasonably neat
and coherent way, in the space provided. Work
scattered all over the page without a clear or-
dering will receive very little credit.

• Mysterious or unsupported answers will
not receive full credit. A correct answer, un-
supported by calculations, explanation, or al-
gebraic work will receive no credit; an incorrect
answer supported by substantially correct cal-
culations and explanations might still receive
partial credit.

• If you need more space, use the back of the
pages; clearly indicate when you have done
this. Scratch paper is at the end of the exam.

Do not write in the table to the right. Good luck!a

aMay 8, 2021, c© 2021 Steven Heilman, All Rights Re-
served.

Problem Points Score

1 10

2 10

3 15

4 15

5 20

Total: 70



1. (10 points) Let {B(t)}t≥0 be a standard Brownian motion. Let {Y (t)}t≥0, and let
{Z(t)}t≥0 be two (coupled) Itô processes. So, σ1, µ1, σ2, µ2 : R → R are continuous
functions such that

dY (t) = σ1(t)dB(t) + µ1(t)dt, ∀ t ≥ 0.

dZ(t) = σ2(t)dB(t) + µ2(t)dt, ∀ t ≥ 0.

Show that the following “product rule” holds for all t > 0:

d(Y Z)(t) = Y (t)dZ(t) + Z(t)dY (t) + σ1(t)σ2(t)dt.

(Hint: apply Itô’s formula to Y 2, Z2 and (Y + Z)2 each separately and then use the
equality Y Z = (1/2)((Y + Z)2 − Y 2 − Z2).)
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2. (10 points) Let {Y (t)}t≥0, and let {Z(t)}t≥0 be two Itô processes. Then, we define the
covariation process {[Y, Z]t}t≥0 so that, for any b > 0, [Y, Z]b is the limit in probability
as n→∞ of

n−1∑
i=0

(Y (b(i+ 1)/n)− Y (bi/n))(Z(b(i+ 1)/n)− Z(bi/n)),

if this limit exists. (In particular, [Y, Y ]t = [Y ]t for all t ≥ 0, where [Y ]t denotes the
quadratic variation of Y at time t.)

• Show that, for any t > 0, with probability one we have

[Y + Z]t = [Y ]t + [Z]t + 2[Y, Z]t.

• Show that, for any t > 0, with probability one we have∣∣[Y, Z]t
∣∣ ≤√[Y ]t[Z]t.

(This is a special case of the so-called Kunita-Watanabe inequality.)

• Using the arithmetic mean-geometric mean inequality, conclude that, for any t > 0,
with probability one we have

[Y + Z]t ≤ 2
(
[Y ]t + [Z]t

)
, ∀ t > 0.
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3. (15 points) Let {B(t)}t≥0 be a Brownian motion in Rn (so thatB(t) = (B1(t), . . . , Bn(t))
where {B(t)}t≥0, . . . , {Bn(t)}t≥0 are n independent one-dimensional Brownian motions).
For any x = (x1, . . . , xn) ∈ Rn, denote ||x|| := (x2

1 + · · ·+ x2
n)1/2. Denote the open unit

ball in Rn as
D := {x = (x1, . . . , xn) ∈ Rn : ||x|| < 1}.

For any x ∈ D, we use the notation Ex to denote that the Brownian motion is started
at x (so that B(0) = x). Define a stopping time

T := inf{t > 0: B(t) ∈ ∂D}.

• This problem describes the distribution of the exit time of Brownian motion from
the unit ball D. Let f : Rn → R be an infinitely differentiable function. Let µ
denote the probability measure that is uniformly distributed in ∂D. Show that,

Exf(B(T )) =

∫
∂D

1− ||x||2

||x− y||n
f(y)dµ(y), ∀x ∈ D.

(Hint: let ky(x) := 1−||x||2
||x−y||n for any x, y ∈ D with x 6= y. You can freely use the fact

that ∆ky(x) = 0, where ∆ is the Laplacian on Rn. Define

v(x) :=

{∫
∂D

1−||x||2
||x−y||nf(y)dµ(y) , ifx ∈ D

f(x) , if x ∈ ∂D.

Is it true that ∆v(x) = 0? You do not need to justify moving the Laplacian inside
the integral. Moreover, you may freely use that a solution of the Dirichlet problem
is unique.)

• Let 0 < a < b <∞. Let U denote the annulus

U := {x ∈ Rn : a < ||x|| < b}.

Define u : Rn r {0} → R by

u(x) :=


||x|| , ifn = 1

log ||x|| , ifn = 2

||x||2−n , ifn ≥ 3.

Verify that ∆u(x) = 0 for all x 6= 0. Define

Ta := inf{t > 0: ||B(t)|| = a}, Tb := inf{t > 0: ||B(t)|| = b}.

Show that, for any x ∈ U ,

Px(Ta < Tb) =
u(b, 0, . . . , 0)− u(x)

u(b, 0, . . . , 0)− u(a, 0, . . . , 0)
.

(Hint: Since u is harmonic, how is u(x) related to Exu(B(Ta ∧ Tb)) ?)
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• Let x ∈ Rn with ||x|| > a > 0. Conclude that

Px(Ta <∞) =

{
1 , ifn ≤ 2

(a/ ||x||)n−2 , ifn ≥ 3.

(This is analogous to our recurrience/transience results for the simple random walk
on Zn.)
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4. (15 points) Suppose we have n finite, irreducible transition matrices P1, . . . , Pn with n
corresponding state spaces Ω1, . . . ,Ωn and stationary distributions π1, . . . , πn. Define
Ω := Ω1 × · · · × Ωn. Let w = (w1, . . . , wn) be a probability distribution on {1, . . . , n}.
Consider the (discrete-time) Markov chain on Ω that, at each step, selects coordinate
1 ≤ j ≤ n with probability wj, and then changes the state of the chain only in coordinate
j according to Pj. The transition matrix P for this chain is then

P (x, y) :=
n∑
j=1

wjPj(xj, yj)
∏

k∈{1,...,n} :
k 6=j

1{xk=yk}, ∀x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Ω.

(You do not have to prove this.) For each 1 ≤ j ≤ n, let fj : Ωj → R, and define the
tensor product function f1 ⊗ f2 ⊗ · · · ⊗ fn : Ω→ R by

(f1 ⊗ f2 ⊗ · · · ⊗ fn)(x1, . . . , xn) :=
n∏
j=1

fj(xj), ∀x = (x1, . . . , xn) ∈ Ω.

Let π := π1 ⊗ · · · ⊗ πn (so that π is a probability distribution on Ω, where we consider
each πj to be a function on Ωj in order to use the tensor product definition). Then π is
stationary for P (you do not have to prove this). Assume that, for any 1 ≤ j ≤ n, the
transition matrix Pj has an eigenfunction fj ∈ RΩj with eigenvalue λj.

• Show that the function f := f1 ⊗ · · · ⊗ fn is an eigenfunction of P with eigenvalue∑n
j=1 wjλj.

• Assume that, for each 1 ≤ j ≤ n, Bj is an orthonormal basis for RΩj with respect
to the inner product 〈·, ·〉πj . Show that

B := {f1 ⊗ f2 ⊗ · · · ⊗ fn : fj ∈ Bj, ∀ 1 ≤ j ≤ n}

is an orthonormal basis with respect to the inner product 〈·, ·〉π.

• If Pj has spectral gap γj for all 1 ≤ j ≤ n, show that P has spectral gap

γ := min
1≤j≤n

wjγj.

• For any 1 ≤ j ≤ n, let Ωj := {−1, 1} and let Pj(a, b) = 1 for all a, b ∈ {−1, 1}
with a 6= b and Pj(a, b) = 0 otherwise. Let w := (1/n, . . . , 1/n). Then P on Ω
corresponds to the simple random walk on the discrete hypercube {−1, 1}n. (You
do not have to prove this.) Conclude that the spectral gap for the Markov chain P
on Ω is

γ = 2/n.

• Using the result from Exam 2, then give a bound on the mixing time of the
(continuous-time) Markov chain P on Ω = {−1, 1}n.
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5. (20 points) This problem is a continuation of the mixing time problem from Exam 2.
Suppose we have a finite, irreducible Markov chain with state space Ω, transition matrix
P , and stationary distribution π. For any 0 < p <∞, and for any f ∈ RΩ, define

||f ||p,π :=
(∑
x∈Ω

|f(x)|p π(x)
)1/p

, Eπf :=
∑
x∈Ω

f(x)π(x).

Another way to bound the mixing time is to give a bound on the logarithmic-Sobolev
constant of the chain (or log-Sobolev constant). Define α ≥ 0 so that 1/α is the smallest
constant c > 0 such that, for all f ∈ RΩ with ||f ||2,π 6= 0,∑

x∈Ω

|f(x)|2
[

log
( |f(x)|2

||f ||22,π

)]
π(x) ≤ c · 1

2

∑
x,y∈Ω

|f(x)− f(y)|2 P (x, y)π(x). (∗)

(If no such c exists, α := 0.) (Note that (∗) is dilation invariant, i.e. if f ∈ RΩ satisfies
(∗), then tf also satisfies (∗) for all t > 0.) You can freely use the following bound:

max
x∈Ω
||Ht(x, ·)− π(·)||TV ≤

√
1

2
log
( 1

miny∈Ω π(y)

)
e−αt, ∀ t > 0.

• Give an upper bound on the mixing time of a (continuous-time) Markov chain in
terms of the log-Sobolev constant α.

• Additionally assume the Markov chain is reversible. Show that the spectral gap γ
can be equivalently defined so that 1/γ is the smallest constant b > 0 such that,
for all f ∈ RΩ,

1

2

∑
x,y∈Ω

|f(x)− f(y)|2 π(x)π(y) ≤ b · 1

2

∑
x,y∈Ω

|f(x)− f(y)|2 P (x, y)π(x).

(If no such b exists, γ := 0.) (Hint: the left side is the variance of f .)

• Additionally assume the Markov chain is reversible. Show that 2α ≤ γ. (Hint:
consider f = 1 + εg in the definition of the log-Sobolev constant, and let ε→ 0+.)

• Let us re-use the notation of the previous problem to define P1, . . . , Pn, Ω1, . . . ,Ωn,
π1, . . . , πn, Ω, w and P . Show: if Pj has logarithmic Sobolev constant αj for all
1 ≤ j ≤ n, then P has logarithmic Sobolev constant

α := min
1≤j≤n

wjαj.

(Hint: just consider the case n = 2. Let f : Ω1 × Ω2 → R. Define F : Ω2 → R by

F (x2) :=
√∑

x1∈Ω1
|f(x1, x2)|2 π1(x1), ∀ x2 ∈ Ω2. Observe that

∑
x∈Ω

|f(x)|2
[

log
( |f(x)|2

||f ||22,π

)]
π(x) =

∑
x2∈Ω2

|F (x2)|2 log
( |F (x2)|2

||F ||22,π2

)
π2(x2)

+
∑

(x1,x2)∈Ω1×Ω2

|f(x1, x2)|2
[

log
( |f(x1, x2)|2

|F (x2)|2
)]
π(x1, x2).
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Apply the definition of α2 to the first term, and apply the definition of α1 to
the second term. Then, observe that |F (a)− F (b)| ≤ ||f(·, a)− f(·, b)||2,π1 for all
a, b ∈ Ω2 to get a bound on the first term in terms of f(x1, ·). )

• For any 1 ≤ j ≤ n, let Ωj := {−1, 1} and let Pj(a, b) = 1 for all a, b ∈ {−1, 1}
with a 6= b and Pj(a, b) = 0 otherwise. Let w := (1/n, . . . , 1/n). Then P on Ω
corresponds to the simple random walk on the discrete hypercube {−1, 1}n. (You
do not have to prove this.) You can freely use that αj = 1 for all 1 ≤ j ≤ n.
Conclude that the log-Sobolev constant for this Markov chain P on Ω is

α = 1/n.

How does the resulting bound on the mixing time of the corresponding continuous-
time Markov chain compare with the bound from the previous problem?
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(Scratch paper)
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(Extra Scratch paper)
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