505B Final Solutions¹

1. Question 1

Let $\{B(t)\}_{t\geq 0}$ be a standard Brownian motion. Let $\{Y(t)\}_{t\geq 0}$, and let $\{Z(t)\}_{t\geq 0}$ be two (coupled) Itô processes. So, $\sigma_1, \mu_1, \sigma_2, \mu_2 \colon \mathbf{R}^2 \to \mathbf{R}$ are continuous functions such that

$$dY(t) = \sigma_1(t)dB(t) + \mu_1(t)dt, \quad \forall t \ge 0.$$

$$dZ(t) = \sigma_2(t)dB(t) + \mu_2(t)dt, \quad \forall t \ge 0.$$

Show that the following "product rule" holds for all t > 0:

$$d(YZ)(t) = Y(t)dZ(t) + Z(t)dY(t) + \sigma_1(t, Y(t))\sigma_2(t, Z(t))dt.$$

(Hint: apply Itô's formula to Y^2 , Z^2 and $(Y+Z)^2$ each separately and then use the equality $YZ=(1/2)((Y+Z)^2-Y^2-Z^2)$.)

Solution. Itô's formula and Lemma 8.33

$$dY^{2}(t) = 2Y(t)dY(t) + d[Y]_{t} = 2Y(t)dY(t) + \sigma_{1}^{2}(t)dt$$

$$dZ^{2}(t) = 2Z(t)dZ(t) + d[Z]_{t} = 2Z(t)dZ(t) + \sigma_{2}^{2}(t)dt$$

Note that

$$d(Y+Z)(t) = dY(t) + dZ(t) = \left(\sigma_1(t) + \sigma_2(t)\right)dB(t) + \left(\mu_1(t) + \mu_2(t)\right)dt, \quad \forall t \ge 0.$$

So, Y+Z is an Itô process, and again by Itô's formula and Lemma 8.33

$$d(Y+Z)^{2}(t) = 2(Y(t) + Z(t))d(Y+Z)(t) + d[Y+Z]_{t}$$

= 2(Y+Z)(t)(dY(t) + dZ(t)) + (\sigma_{1}(t) + \sigma_{2}(t))^{2}dt.

So

$$2d(YZ)(t) = d(Y+Z)^{2}(t) - dY^{2}(t) - dZ^{2}(t)$$

$$= 2Y(t)dZ(t) + 2Z(t)dY(t) + \left((\sigma_{1}(t) + \sigma_{2}(t))^{2} - \sigma_{1}^{2}(t) - sigma_{2}^{2}(t)\right)dt$$

2. Question 2

Let $\{Y(t)\}_{t\geq 0}$, and let $\{Z(t)\}_{t\geq 0}$ be two Itô processes. Then, we define the **covariation** process $\{[Y,Z]_t\}_{t\geq 0}$ so that, for any b>0, $[Y,Z]_b$ is the limit in probability as $n\to\infty$ of

$$\sum_{i=0}^{n-1} (Y(b(i+1)/n) - Y(bi/n))(Z(b(i+1)/n) - Z(bi/n)),$$

if this limit exists. (In particular, $[Y, Y]_t = [Y]_t$ for all $t \ge 0$, where $[Y]_t$ denotes the quadratic variation of Y at time t.)

• Show that, for any t > 0, with probability one we have

$$[Y+Z]_t = [Y]_t + [Z]_t + 2[Y,Z]_t.$$

• Show that, for any t > 0, with probability one we have

$$|[Y, Z]_t| \le \sqrt{[Y]_t [Z]_t}.$$

(This is a special case of the so-called Kunita-Watanabe inequality.)

¹May 17, 2021, © 2021 Steven Heilman, All Rights Reserved.

• Using the arithmetic mean-geometric mean inequality, conclude that, for any t > 0, with probability one we have

$$[Y+Z]_t \le 2([Y]_t + [Z]_t), \quad \forall t > 0.$$

Solution. For any b > 0, $n \ge 1$ and $0 \le i \le n - 1$, we have

$$\begin{split} \Big((Y+Z)(b(i+1)/n) - (Y+Z)(bi/n) \Big) \Big((Y+Z)(b(i+1)/n) - (Y+Z)(bi/n) \Big) \\ &= (Y(b(i+1)/n) - Y(bi/n))(Y(b(i+1)/n) - Y(bi/n)) \\ &+ (Z(b(i+1)/n) - Z(bi/n))(Z(b(i+1)/n) - Z(bi/n)) \\ &+ 2(Y(b(i+1)/n) - Y(bi/n))(Z(b(i+1)/n) - Z(bi/n)). \end{split}$$

Summing over $0 \le i \le n-1$, and then letting $n \to \infty$ implies that $[Y+Z]_b = [Y]_b + [Z]_b + 2[Y,Z]_b$ for any b > 0.

From the Cauchy-Schwarz inequality (for discrete sequences of real numbers), for any b > 0 and $n \ge 1$,

$$\left(\sum_{i=0}^{n-1} (Y(b(i+1)/n) - Y(bi/n))(Z(b(i+1)/n) - Z(bi/n))\right)^{2} \le \sum_{i=0}^{n-1} (Y(b(i+1)/n) - Y(bi/n))^{2} \sum_{i=0}^{n-1} (Z(b(i+1)/n) - Z(bj/n))^{2}.$$

Letting $n \to \infty$ implies that $[Y, Z]_b^2 \le [Y]_b[Z]_b$ for any b > 0. The AMGM inequality them implies that

$$[Y, Z]_b \le \sqrt{[Y]_b [Z]_b} \le (1/2)([Y]_b + [Z]_b)$$
 (*)

Combining the above,

$$[Y+Z]_b = [Y]_b + [Z]_b + 2[Y,Z]_b \stackrel{(*)}{\leq} 2([Y]_b + [Z]_b).$$

Let $\{B(t)\}_{t\geq 0}$ be a Brownian motion in \mathbf{R}^n (so that $B(t)=(B_1(t),\ldots,B_n(t))$ where $\{B(t)\}_{t\geq 0},\ldots,\{B_n(t)\}_{t\geq 0}$ are n independent one-dimensional Brownian motions). For any $x=(x_1,\ldots,x_n)\in\mathbf{R}^n$, denote $||x||:=(x_1^2+\cdots+x_n^2)^{1/2}$. Denote the open unit ball in \mathbf{R}^n as

$$D := \{ x = (x_1, \dots, x_n) \in \mathbf{R}^n \colon ||x|| < 1 \}.$$

For any $x \in D$, we use the notation \mathbf{E}_x to denote that the Brownian motion is started at x (so that B(0) = x). Define a stopping time

$$T := \inf\{t > 0 \colon B(t) \in \partial D\}.$$

• This problem describes the distribution of the exit time of Brownian motion from the unit ball D. Let $f: \mathbf{R}^n \to \mathbf{R}$ be an infinitely differentiable function. Let μ denote the probability measure that is uniformly distributed in ∂D . Show that,

$$\mathbf{E}_{x}f(B(T)) = \int_{\partial D} \frac{1 - \|x\|^{2}}{\|x - y\|^{n}} f(y) d\mu(y), \qquad \forall x \in D.$$

(Hint: let $k_y(x) := \frac{1-\|x\|^2}{\|x-y\|^n}$ for any $x, y \in D$ with $x \neq y$. You can freely use the fact that $\Delta k_y(x) = 0$, where Δ is the Laplacian on \mathbb{R}^n . Define

$$v(x) := \begin{cases} \int_{\partial D} \frac{1 - \|x\|^2}{\|x - y\|^n} f(y) d\mu(y) &, \text{ if } x \in D \\ f(x) &, \text{ if } x \in \partial D. \end{cases}$$

Is it true that $\Delta v(x) = 0$? You do not need to justify moving the Laplacian inside the integral. Moreover, you may freely use that a solution of the Dirichlet problem is unique.)

• Let $0 < a < b < \infty$. Let U denote the annulus

$$U := \{ x \in \mathbf{R}^n \colon a < ||x|| < b \}.$$

Define $u: \mathbf{R}^n \setminus \{0\} \to \mathbf{R}$ by

$$u(x) := \begin{cases} ||x|| & \text{, if } n = 1\\ \log ||x|| & \text{, if } n = 2\\ ||x||^{2-n} & \text{, if } n \ge 3. \end{cases}$$

Verify that $\Delta u(x) = 0$ for all $x \neq 0$. Define

$$T_a := \inf\{t > 0 \colon ||B(t)|| = a\}, \qquad T_b := \inf\{t > 0 \colon ||B(t)|| = b\}.$$

Show that, for any $x \in U$,

$$\mathbf{P}_x(T_a < T_b) = \frac{u(b, 0, \dots, 0) - u(x)}{u(b, 0, \dots, 0) - u(a, 0, \dots, 0)}.$$

(Hint: Since u is harmonic, how is u(x) related to $\mathbf{E}_x u(B(T_a \wedge T_b))$?)

• Let $x \in \mathbf{R}^n$ with ||x|| > a > 0. Conclude that

$$\mathbf{P}_{x}(T_{a} < \infty) = \begin{cases} 1 & \text{, if } n \leq 2\\ (a/\|x\|)^{n-2} & \text{, if } n \geq 3. \end{cases}$$

(This is analogous to our recurrience/transience results for the simple random walk on \mathbb{Z}^n .)

Solution.

For any $x \in \overline{D}$, we know from Theorem 8.40 in the notes that

$$g(x) := \mathbf{E}_x f(B(T))$$

solves the Dirichlet problem, i.e. $\Delta g(x) = 0$ for all $x \in D$ and g(x) = f(x) for all $x \in \partial D$. So, by uniqueness of solution of the Dirichlet problem, since g(x) = v(x) for all $x \in \partial D$, it suffices to verify that $\Delta v(x) = 0$ for all $x \in D$. We can justify this identity by moving the derivatives inside the integral:

$$\Delta v(x) = \int_{\partial D} \Delta_x \frac{1 - \|x\|^2}{\|x - y\|^n} f(y) d\mu(y) = \int_{\partial D} 0 d\mu(y) = 0.$$

Now, since u is harmonic, we have from Theorem 8.40 that

$$u(x) = \mathbf{E}_x u(B(T_a \wedge T_b)) = u(a, 0, \dots, 0) \mathbf{P}(T_a < T_b) + u(b, 0, \dots, 0) \mathbf{P}(T_a > T_b)$$

= $u(a, 0, \dots, 0) \mathbf{P}(T_a < T_b) + u(b, 0, \dots, 0) [1 - \mathbf{P}(T_a < T_b)].$

Solving for $P(T_a < T_b)$ gives

$$\mathbf{P}(T_a < T_b) = \frac{u(x) - u(b, 0, \dots, 0)}{u(a, 0, \dots, 0) - u(b, 0, \dots, 0)}.$$

Letting $b \to \infty$, we have $T_b \to \infty$ as well, so that

$$\mathbf{P}(T_a < T_b) = \lim_{b \to \infty} \frac{u(x) - u(b, 0, \dots, 0)}{u(a, 0, \dots, 0) - u(b, 0, \dots, 0)}.$$

When n = 1, we have

$$\lim_{b \to \infty} \frac{u(x) - u(b)}{u(a) - u(b)} = \lim_{b \to \infty} \frac{|x| - |b|}{|a| - |b|} = 1.$$

When n=2, we have

$$\lim_{b \to \infty} \frac{u(x) - u(b, 0)}{u(a, 0) - u(b, 0)} = \lim_{b \to \infty} \frac{\log ||x|| - \log ||b||}{\log ||a|| - \log ||b||} = 1.$$

When $n \geq 3$, we have When n = 1, we have

$$\lim_{b \to \infty} \frac{u(x) - u(b, 0, \dots, 0)}{u(a, 0, \dots, 0) - u(b, 0, \dots, 0)} = \lim_{b \to \infty} \frac{\|x\|^{2-n} - \|b\|^{2-n}}{\|a\|^{2-n} - \|b\|^{2-n}} = \frac{\|x\|^{2-n}}{\|a\|^{2-n}}.$$

4. Question 4

Suppose we have n finite, irreducible transition matrices P_1, \ldots, P_n with n corresponding state spaces $\Omega_1, \ldots, \Omega_n$ and stationary distributions π_1, \ldots, π_n . Define $\Omega := \Omega_1 \times \cdots \times \Omega_n$. Let $w = (w_1, \ldots, w_n)$ be a probability distribution on $\{1, \ldots, n\}$. Consider the (discrete-time) Markov chain on Ω that, at each step, selects coordinate $1 \le j \le n$ with probability w_j , and then changes the state of the chain only in coordinate j according to P_j . The transition matrix P for this chain is then

$$P(x,y) := \sum_{j=1}^{n} w_j P_j(x_j, y_j) \prod_{\substack{k \in \{1, \dots, n\}: \\ k \neq j}} 1_{\{x_k = y_k\}}, \quad \forall x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \Omega.$$

(You do not have to prove this.) For each $1 \leq j \leq n$, let $f_j : \Omega_j \to \mathbf{R}$, and define the tensor product function $f_1 \otimes f_2 \otimes \cdots \otimes f_n : \Omega \to \mathbf{R}$ by

$$(f_1 \otimes f_2 \otimes \cdots \otimes f_n)(x_1, \dots, x_n) := \prod_{j=1}^n f_j(x_j), \quad \forall x = (x_1, \dots, x_n) \in \Omega.$$

Let $\pi := \pi_1 \otimes \cdots \otimes \pi_n$ (so that π is a probability distribution on Ω , where we consider each π_j to be a function on Ω_j in order to use the tensor product definition). Then π is stationary for P (you do not have to prove this). Assume that, for any $1 \leq j \leq n$, the transition matrix P_j has an eigenfunction $f_j \in \mathbf{R}^{\Omega_j}$ with eigenvalue λ_j .

- Show that the function $f := f_1 \otimes \cdots \otimes f_n$ is an eigenfunction of P with eigenvalue $\sum_{j=1}^n w_j \lambda_j$.
- Assume that, for each $1 \leq j \leq n$, \mathcal{B}_j is an orthonormal basis for \mathbf{R}^{Ω_j} with respect to the inner product $\langle \cdot, \cdot \rangle_{\pi_j}$. Show that

$$\mathcal{B} := \{ f_1 \otimes f_2 \otimes \cdots \otimes f_n \colon f_j \in \mathcal{B}_j, \ \forall \ 1 \le j \le n \}$$

is an orthonormal basis with respect to the inner product $\langle \cdot, \cdot \rangle_{\pi}$.

• If P_j has spectral gap γ_j for all $1 \leq j \leq n$, show that P has spectral gap

$$\gamma := \min_{1 \le j \le n} w_j \gamma_j.$$

• For any $1 \le j \le n$, let $\Omega_j := \{-1, 1\}$ and let $P_j(a, b) = 1$ for all $a, b \in \{-1, 1\}$ with $a \ne b$ and $P_j(a, b) = 0$ otherwise. Let $w := (1/n, \dots, 1/n)$. Then P on Ω corresponds to the simple random walk on the discrete hypercube $\{-1, 1\}^n$. (You do not have to prove this.) Conclude that the spectral gap for the Markov chain P on Ω is

$$\gamma = 2/n$$
.

• Using the result from Exam 2, then give a bound on the mixing time of the Markov chain P on $\Omega = \{-1, 1\}^n$.

Solution. By assumption $P_j f_j(x_j) = \lambda_j f_j(x_j)$, i.e.

$$\sum_{y_j \in \Omega_j} P_j(x_j, y_j) f_j(y_j) = \lambda_j f_j(x_j). \tag{*}$$

Now, fix $x = (x_1, \ldots, x_n) \in \Omega$. Then

$$P(f_{1} \otimes \cdots \otimes f_{n})(x) = \sum_{y \in \Omega} P(x, y)(f_{1} \otimes \cdots \otimes f_{n})(y)$$

$$= \sum_{y \in \Omega} \sum_{j=1}^{n} w_{j} P_{j}(x_{j}, y_{j}) \prod_{k \in \{1, \dots, n\}: k \neq j} 1_{\{x_{k} = y_{k}\}} \prod_{i=1}^{n} f_{i}(y_{i})$$

$$= \sum_{j=1}^{n} w_{j} \sum_{y_{j} \in \Omega_{j}} P_{j}(x_{j}, y_{j}) \sum_{y_{\ell} \in \Omega_{\ell} \ \forall \ell \in \{1, \dots, n\} \setminus \{j\}} \prod_{k \in \{1, \dots, n\}: k \neq j} 1_{\{x_{k} = y_{k}\}} \prod_{i=1}^{n} f_{i}(y_{i})$$

$$= \sum_{j=1}^{n} w_{j} \sum_{y_{j} \in \Omega_{j}} P_{j}(x_{j}, y_{j}) \prod_{i=1}^{n} f_{i}(x_{i}) = \sum_{j=1}^{n} w_{j} \sum_{y_{j} \in \Omega_{j}} P_{j}(x_{j}, y_{j}) f_{j}(y_{j}) \prod_{k \in \{1, \dots, n\}: k \neq j} f_{k}(x_{k})$$

$$\stackrel{(*)}{=} \sum_{j=1}^{n} w_{j} \lambda_{j} f_{j}(x_{j}) \prod_{k \in \{1, \dots, n\}: f_{k}(x_{k}) = \sum_{j=1}^{n} w_{j} \lambda_{j} \prod_{k=1}^{n} f_{k}(x_{k}) = \sum_{j=1}^{n} w_{j} \lambda_{j} (f_{1} \otimes \cdots \otimes f_{n})(x).$$

By definition of π , if $g = g_1 \otimes \cdots \otimes g_n \in \mathcal{B}$, then

$$\langle f, g \rangle_{\pi} = \prod_{i=1}^{n} \langle f_i, g_i \rangle_{\pi_i}.$$

This equality implies: if $f, g \in \mathcal{B}$ with $f \neq g$, then $\langle f, g \rangle_{\pi} = 0$ (since at least one term in the product on the right is zero) and $\langle f, f \rangle_{\pi} = 1$ (since the term on the right is then a product of ones). So, \mathcal{B} forms an orthonormal set. To see that \mathcal{B} is a basis, note that the set of all functions on Ω has dimension $\prod_{i=1}^{n} |\Omega_i|$, and \mathcal{B} has the same number of elements. Therefore, \mathcal{B} is a basis.

The set of all eigenvalues of P is

$$\Lambda := \{ \sum_{j=1}^{n} w_j \lambda_j \colon \lambda_j \text{ is an eigenvalue of } P_j \text{ for all } 1 \le j \le n \}.$$

Since $\lambda_j \leq 1$ for all $1 \leq j \leq n$, the largest element of Λ is $\sum_{j=1}^n w_j = 1$. The next largest element of Λ then correspond to all choices of λ_j being equal to one, except one (the choice of j with the smallest (weighted) spectral gap). Let $1 \leq j' \leq n$ such that $w_{j'}\gamma_{j'} = \min_{1 \leq j \leq n} w_j\gamma_j$. That is, the second largest eigenvalue of P is

$$w_{j'}[1 - \gamma_{j'}] + \sum_{j \in \{1, \dots, n\}: j \neq j'} w_j = 1 - \gamma_{j'} w_{j'}.$$

So, P has spectral gap equal to 1 minus this number, i.e.

$$\gamma = w_{j'}\gamma_{j'} = \min_{1 \le j \le n} w_j \gamma_j.$$

By assumption, the eigenvalues of $P_j = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ are 1 and -1, so $\gamma_j = 2$ for all $1 \le j \le n$. With $w = (1/n, \ldots, 1/n)$, the previous problem shows that $\gamma = (1/n)(2) = 2/n$. Finally, the result from exam 2 shows that $\gamma = O(n^2)$.

5. Question 5

This problem is a continuation of the mixing time problem from Exam 2. Suppose we have a finite, irreducible Markov chain with state space Ω , transition matrix P, and stationary distribution π . For any $0 , and for any <math>f \in \mathbf{R}^{\Omega}$, define

$$||f||_{p,\pi} := \left(\sum_{x \in \Omega} |f(x)|^p \pi(x)\right)^{1/p}, \qquad \mathbf{E}_{\pi}f := \sum_{x \in \Omega} f(x)\pi(x).$$

Another way to bound the mixing time is to give a bound on the logarithmic-Sobolev constant of the chain (or log-Sobolev constant). Define $\alpha \geq 0$ so that $1/\alpha$ is the smallest constant c > 0 such that, for all $f \in \mathbf{R}^{\Omega}$ with $||f||_{2\pi} \neq 0$,

$$\sum_{x \in \Omega} |f(x)|^2 \left[\log \left(\frac{|f(x)|^2}{\|f\|_{2,\pi}^2} \right) \right] \pi(x) \le c \cdot \frac{1}{2} \sum_{x,y \in \Omega} |f(x) - f(y)|^2 P(x,y) \pi(x). \tag{*}$$

(If no such c exists, $\alpha := 0$.) (Note that (*) is dilation invariant, i.e. if $f \in \mathbf{R}^{\Omega}$ satisfies (*), then tf also satisfies (*) for all t > 0.) You can freely use the following bound:

$$\max_{x \in \Omega} \|H_t(x, \cdot) - \pi(\cdot)\|_{\text{TV}} \le \sqrt{\frac{1}{2} \log \left(\frac{1}{\min_{y \in \Omega} \pi(y)}\right)} e^{-\alpha t}, \quad \forall t > 0.$$

- Give an upper bound on the mixing time of a Markov chain in terms of the log-Sobolev constant α .
- Additionally assume the Markov chain is reversible. Show that the spectral gap γ can be equivalently defined so that $1/\gamma$ is the smallest constant b > 0 such that, for all $f \in \mathbf{R}^{\Omega}$.

$$\frac{1}{2} \sum_{x,y \in \Omega} |f(x) - f(y)|^2 \pi(x) \pi(y) \le b \cdot \frac{1}{2} \sum_{x,y \in \Omega} |f(x) - f(y)|^2 P(x,y) \pi(x).$$

(If no such b exists, $\gamma := 0$.) (Hint: the left side is the variance of f.)

- Additionally assume the Markov chain is reversible. Show that $2\alpha \leq \gamma$. (Hint: consider $f = 1 + \varepsilon g$ in the definition of the log-Sobolev constant, and let $\varepsilon \to 0^+$.)
- Let us re-use the notation of the previous problem to define $P_1, \ldots, P_n, \Omega_1, \ldots, \Omega_n, \pi_1, \ldots, \pi_n, \Omega, w$ and P. Show: if P_j has logarithmic Sobolev constant α_j for all $1 \leq j \leq n$, then P has logarithmic Sobolev constant

$$\alpha := \min_{1 \le j \le n} w_j \alpha_j.$$

(Hint: just consider the case n=2. Let $f: \Omega_1 \times \Omega_2 \to \mathbf{R}$. Define $F: \Omega_2 \to \mathbf{R}$ by $F(x_2) := \sqrt{\sum_{x_1 \in \Omega_1} |f(x_1, x_2)|^2 \pi_1(x_1)}$, $\forall x_2 \in \Omega_2$. Observe that

$$\sum_{x \in \Omega} |f(x)|^2 \left[\log \left(\frac{|f(x)|^2}{\|f\|_{2,\pi}^2} \right) \right] \pi(x) = \sum_{x_2 \in \Omega_2} |F(x_2)|^2 \log \left(\frac{|F(x_2)|^2}{\|F\|_{2,\pi_2}^2} \right) \pi_2(x_2)$$

$$+ \sum_{(x_1, x_2) \in \Omega_1 \times \Omega_2} |f(x_1, x_2)|^2 \left[\log \left(\frac{|f(x_1, x_2)|^2}{|F(x_2)|^2} \right) \right] \pi(x_1, x_2).$$

Apply the definition of α_2 to the first term, and apply the definition of α_1 to the second term. Then, observe that $|F(a) - F(b)| \leq ||f(\cdot, a) - f(\cdot, b)||_{2,\pi_1}$ for all $a, b \in \Omega_2$ to get a bound on the first term in terms of $f(x_1, \cdot)$.

• For any $1 \leq j \leq n$, let $\Omega_j := \{-1, 1\}$ and let $P_j(a, b) = 1$ for all $a, b \in \{-1, 1\}$ with $a \neq b$ and $P_j(a, b) = 0$ otherwise. Let $w := (1/n, \dots, 1/n)$. Then P on Ω corresponds to the simple random walk on the discrete hypercube $\{-1, 1\}^n$. (You do not have to prove this.) You can freely use that $\alpha_j = 1$ for all $1 \leq j \leq n$. Conclude that the log-Sobolev constant for this Markov chain P on Ω is

$$\alpha = 1/n$$
.

How does the resulting bound on the mixing time of this Markov chain compare with the bound from the previous problem?

Solution. Expanding out the right side, using reversibility $(\pi(x)P(x,y) = \pi(y)P(y,x))$, and that the sum of any row of P is 1,

$$\frac{1}{2} \sum_{x,y \in \Omega} |f(x) - f(y)|^2 P(x,y) \pi(x) = \sum_{x,y \in \Omega} |f(x)|^2 P(x,y) \pi(x) - \sum_{x,y \in \Omega} f(x) f(y) P(x,y) \pi(x)
= \sum_{x \in \Omega} |f(x)|^2 \pi(x) - \sum_{x \in \Omega} f(x) (Pf)(x) \pi(x).$$

So, we need to show that, for all $f \in \mathbf{R}^{\Omega}$

$$\operatorname{Var}_{\pi} f \le \frac{1}{\gamma} \Big(\sum_{x \in \Omega} |f(x)|^2 \pi(x) - \sum_{x \in \Omega} f(x) (Pf)(x) \pi(x) \Big),$$

with equality when f is the eigenfunction of P with the second largest eigenvalue. Let $f \in \mathbf{R}^{\Omega}$ and let f_1, \ldots, f_{Ω} be eigenfunctions of P with eigenvalues $1 = \lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n \geq -1$.

Then $f = \sum_{i=1}^{|\Omega|} c_i f_i$ where $c_i = \langle f, f_i \rangle_{\pi}$ for all $1 \leq i \leq |\Omega|$. Then

$$\operatorname{Var}_{\pi} f = \sum_{i=2}^{|\Omega|} c_i^2,$$

$$\sum_{x \in \Omega} |f(x)|^2 \pi(x) - \sum_{x \in \Omega} f(x)(Pf)(x)\pi(x) = \sum_{i=1}^{|\Omega|} c_i^2 - \sum_{i=1}^{|\Omega|} \lambda_i c_i^2 = \sum_{i=1}^{|\Omega|} (1 - \lambda_i) c_i^2 = \sum_{i=2}^{|\Omega|} (1 - \lambda_i) c_i^2.$$

The penultimate equality used $\lambda_1 = 1$. Since $\lambda_2 \geq \lambda_i$ for all $2 \leq i \leq |\Omega|$, we have $1 - \lambda_i \geq 1 - \lambda_2 = \gamma$ also, i.e. $\frac{1}{\gamma}(1 - \lambda_i) \geq 1$ for all $2 \leq i \leq n$, so that

$$\frac{1}{\gamma} \sum_{i=2}^{|\Omega|} (1 - \lambda_i) c_i^2 \ge \sum_{i=2}^{|\Omega|} c_i^2,$$

And equality holds when $c_i = 0$ for all $3 \le i \le n$. That is,

$$\operatorname{Var}_{\pi} f \leq \frac{1}{\gamma} \Big(\sum_{x \in \Omega} |f(x)|^2 \pi(x) - \sum_{x \in \Omega} f(x) (Pf)(x) \pi(x) \Big),$$

with equality when $f = f_2$.

Now, consider $f = 1 + \varepsilon g$. The right side of (*) is

$$\frac{1}{2} \sum_{x,y \in \Omega} |f(x) - f(y)|^2 P(x,y) \pi(x) = \varepsilon^2 \frac{1}{2} \sum_{x,y \in \Omega} |g(x) - g(y)|^2 P(x,y) \pi(x)$$

We now examine the left side of (*). We have

$$|f(x)|^{2} = (1 + \varepsilon g(x))^{2} = 1 + 2\varepsilon g(x) + \varepsilon^{2} (g(x))^{2}.$$

$$||f||_{2,\pi}^{2} = ||1 + \varepsilon g||_{2,\pi}^{2} = 1 + 2\varepsilon \mathbf{E}_{\pi} g + \varepsilon^{2} ||g||_{2,\pi}^{2}.$$

$$\frac{|f(x)|^{2}}{||f||_{2,\pi}^{2}} = \frac{1 + 2\varepsilon g(x) + \varepsilon^{2} (g(x))^{2}}{1 + 2\varepsilon \mathbf{E}_{\pi} g + \varepsilon^{2} ||g||_{2,\pi}^{2}}.$$

Then, using $\log(1 + a\varepsilon + b\varepsilon^2) = a\varepsilon + b\varepsilon^2 - (a\varepsilon + b\varepsilon^2)^2 / 2 + O(\varepsilon^3) = a\varepsilon + \varepsilon^2 (b - a^2 / 2) + O(\varepsilon^3)$

$$\log\left(\frac{|f(x)|^{2}}{\|f\|_{2,\pi}^{2}}\right) = \log\left(1 + 2\varepsilon g(x) + \varepsilon^{2}(g(x))^{2}\right) - \log\left(1 + 2\varepsilon \mathbf{E}_{\pi}g + \varepsilon^{2}\|g\|_{2,\pi}^{2}\right)$$

$$= 2\varepsilon(g(x) - \mathbf{E}_{\pi}g) + \varepsilon^{2}((g(x))^{2} - 2(g(x))^{2} + 2(\mathbf{E}_{\pi}g)^{2} - \|g\|_{2,\pi}^{2}) + O(\varepsilon^{3})$$

$$= 2\varepsilon(g(x) - \mathbf{E}_{\pi}g) + \varepsilon^{2}(-(g(x))^{2} + 2(\mathbf{E}_{\pi}g)^{2} - \|g\|_{2,\pi}^{2}) + O(\varepsilon^{3}).$$

Therefore,

$$|f(x)|^{2} \left[\log \left(\frac{|f(x)|^{2}}{\|f\|_{2,\pi}^{2}} \right) \right]$$

$$= \left(1 + 2\varepsilon g(x) + \varepsilon^{2} (g(x))^{2} \right) \left(2\varepsilon (g(x) - \mathbf{E}_{\pi}g) + \varepsilon^{2} (-(g(x))^{2} + 2(\mathbf{E}_{\pi}g)^{2} - \|g\|_{2,\pi}^{2}) + O(\varepsilon^{3}) \right)$$

$$= 2\varepsilon (g(x) - \mathbf{E}_{\pi}g) + \varepsilon^{2} \left(-(g(x))^{2} + 2(\mathbf{E}_{\pi}g)^{2} - \|g\|_{2,\pi}^{2} + 4(g(x))^{2} - 4g(x)\mathbf{E}_{\pi}g \right)$$

$$= 2\varepsilon (g(x) - \mathbf{E}_{\pi}g) + \varepsilon^{2} \left(3(g(x))^{2} + 2(\mathbf{E}_{\pi}g)^{2} - \|g\|_{2,\pi}^{2} - 4g(x)\mathbf{E}_{\pi}g \right) + O(\varepsilon^{3})$$

And

$$\sum_{x \in \Omega} |f(x)|^2 \left[\log \left(\frac{|f(x)|^2}{\|f\|_{2,\pi}^2} \right) \right] \pi(x) = \varepsilon^2 \left(3 \|g\|_{2,\pi}^2 + 2(\mathbf{E}_{\pi}g)^2 - \|g\|_{2,\pi}^2 - 4(\mathbf{E}_{\pi}g)^2 \right) + O(\varepsilon^3)$$

$$= \varepsilon^2 2(\|g\|_{2,\pi}^2 - \mathbf{E}_{\pi}g)^2 + O(\varepsilon^3) = \varepsilon^2 2 \operatorname{Var}(g) + O(\varepsilon^3)$$

So, letting $\varepsilon \to 0^+$ in the log-Sobolev inequality, we arrive at

$$2\text{Var}(g) \le \frac{1}{\alpha} \frac{1}{2} \sum_{x,y \in \Omega} |g(x) - g(y)|^2 P(x,y) \pi(x).$$

From the previous part of the problem, we conclude that $\frac{1}{2\alpha} \ge \frac{1}{\gamma}$, i.e. $\gamma \ge 2\alpha$. For the next part of the problem, note that it suffices to prove the case n=2 and then iterate. As in the hint, let $F(x_2) := \sqrt{\sum_{x_1 \in \Omega_1} |f(x_1, x_2)|^2 \pi_1(x_1)}$, $\forall x_2 \in \Omega_2$, and observe that

$$\sum_{x \in \Omega} |f(x)|^2 \left[\log \left(\frac{|f(x)|^2}{\|f\|_{2,\pi}^2} \right) \right] \pi(x) = \sum_{x_2 \in \Omega_2} |F(x_2)|^2 \log \left(\frac{|F(x_2)|^2}{\|F\|_{2,\pi_2}^2} \right) \pi_2(x_2)$$

$$+ \sum_{(x_1, x_2) \in \Omega_1 \times \Omega_2} |f(x_1, x_2)|^2 \left[\log \left(\frac{|f(x_1, x_2)|^2}{|F(x_2)|^2} \right) \right] \pi(x_1, x_2).$$

We then apply the definition of α_2 to the first term, and apply the definition of α_1 to the second term (noting that $|F(x_2)|^2 = ||f(\cdot, x_2)||_{2,\pi_1}^2$) to get

$$\sum_{x \in \Omega} |f(x)|^2 \left[\log \left(\frac{|f(x)|^2}{\|f\|_{2,\pi}^2} \right) \right] \pi(x) \le \frac{1}{\alpha_2} \frac{1}{2} \sum_{x_2, y_2 \in \Omega_2} |F(x_2) - F(y_2)|^2 P_2(x_2, y_2) \pi_2(x_2)$$

$$+ \frac{1}{\alpha_1} \frac{1}{2} \sum_{x_2 \in \Omega_2} \left(\sum_{x_1, y_1 \in \Omega_1} |f(x_1, x_2) - f(y_1, x_2)|^2 P_1(x_1, y_2) \pi_1(x_1) \right) \pi_2(x_2).$$

Also as suggested in the hint, observe that for all $a, b \in \Omega_2$, by the (reverse) triangle inequality,

$$|F(a) - F(b)| = \left| \|f(\cdot, a)\|_{2, \pi_1} - \|f(\cdot, b)\|_{2, \pi_1} \right| \le \|f(\cdot, a) - f(\cdot, b)\|_{2, \pi_1}.$$

So, we can apply this inequality to the first term above to get

$$\sum_{x \in \Omega} |f(x)|^2 \left[\log \left(\frac{|f(x)|^2}{\|f\|_{2,\pi}^2} \right) \right] \pi(x) \le \frac{1}{\alpha_2} \frac{1}{2} \sum_{x_2, y_2 \in \Omega_2} \|f(\cdot, x_2) - f(\cdot, y_2)\|_{2,\pi_1}^2 P_2(x_2, y_2) \pi_2(x_2)
+ \frac{1}{\alpha_1} \frac{1}{2} \sum_{x_2 \in \Omega_2} \left(\sum_{x_1, y_1 \in \Omega_1} |f(x_1, x_2) - f(y_1, x_2)|^2 P_1(x_1, y_2) \pi_1(x_1) \right) \pi_2(x_2)
= \frac{1}{w_2 \alpha_2} \frac{1}{2} \sum_{x_1 \in \Omega_1} \left(\sum_{x_2, y_2 \in \Omega_2} |f(x_1, x_2) - f(x_1, y_2)|^2 w_2 P_2(x_2, y_2) \pi_2(x_2) \right) \pi_1(x_1)
+ \frac{1}{w_1 \alpha_1} \frac{1}{2} \sum_{x_2 \in \Omega_2} \left(\sum_{x_1, y_1 \in \Omega_1} |f(x_1, x_2) - f(y_1, x_2)|^2 w_1 P_1(x_1, y_2) \pi_1(x_1) \right) \pi_2(x_2).$$

By definition of P, we then have

$$\sum_{x \in \Omega} |f(x)|^2 \left[\log \left(\frac{|f(x)|^2}{\|f\|_{2,\pi}^2} \right) \right] \pi(x) \le \max \left(\frac{1}{w_2 \alpha_2}, \frac{1}{w_1 \alpha_1} \right) \frac{1}{2} \sum_{x,y \in \Omega} |f(x) - f(y)|^2 P(x,y) \pi(x).$$

The result follows.

Finally, the mixing time bound we get from this problem is $O(n \log n)$, which is much smaller than the $O(n^2)$ bound we got from the previous problem.

More specifically, using the inequality

$$\max_{x \in \Omega} \|H_t(x, \cdot) - \pi(\cdot)\|_{\text{TV}} \le \sqrt{\frac{1}{2} \log \left(\frac{1}{\min_{y \in \Omega} \pi(y)}\right)} e^{-\alpha t}, \quad \forall t > 0,$$

to get a mixing time bound, it suffices to solve for t such that

$$\sqrt{\frac{1}{2}\log\left(\frac{1}{\min_{y\in\Omega}\pi(y)}\right)}e^{-\alpha t} \le 1/4.$$

Solving for t, we get $e^{-2\alpha t} \le 1/8 \log \left(\frac{1}{\min_{y \in \Omega} \pi(y)}\right)$, i.e. $-2\alpha t \le \log \left(1/8 \log \left(\frac{1}{\min_{y \in \Omega} \pi(y)}\right)\right)$, i.e.

$$t \ge \frac{1}{2\alpha} \log \left(8 \log \left(\frac{1}{\min_{y \in \Omega} \pi(y)} \right) \right).$$

We conclude that

$$t_{\min} \le \frac{1}{2\alpha} \log \left(8 \log \left(\frac{1}{\min_{y \in \Omega} \pi(y)} \right) \right).$$

Substituting in $\pi(y) = 2^{-n}$ for all $y \in \Omega$ and $\alpha = 1/n$, we get

$$t_{\text{mix}} \le \frac{n}{2} \log \left(8 \log 2^n \right) = \frac{n}{2} \log(8n \log 2).$$