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1. Question 1

Let {B(t)}t≥0 be a standard Brownian motion. Let {Y (t)}t≥0, and let {Z(t)}t≥0 be two
(coupled) Itô processes. So, σ1, µ1, σ2, µ2 : R2 → R are continuous functions such that

dY (t) = σ1(t)dB(t) + µ1(t)dt, ∀ t ≥ 0.

dZ(t) = σ2(t)dB(t) + µ2(t)dt, ∀ t ≥ 0.

Show that the following “product rule” holds for all t > 0:

d(Y Z)(t) = Y (t)dZ(t) + Z(t)dY (t) + σ1(t, Y (t))σ2(t, Z(t))dt.

(Hint: apply Itô’s formula to Y 2, Z2 and (Y +Z)2 each separately and then use the equality
Y Z = (1/2)((Y + Z)2 − Y 2 − Z2).)
Solution. Itô’s formula and Lemma 8.33

dY 2(t) = 2Y (t)dY (t) + d[Y ]t = 2Y (t)dY (t) + σ2
1(t)dt

dZ2(t) = 2Z(t)dZ(t) + d[Z]t = 2Z(t)dZ(t) + σ2
2(t)dt

Note that

d(Y + Z)(t) = dY (t) + dZ(t) =
(
σ1(t) + σ2(t)

)
dB(t) +

(
µ1(t) + µ2(t)

)
dt, ∀ t ≥ 0.

So, Y + Z is an Itô process, and again by Itô’s formula and Lemma 8.33

d(Y + Z)2(t) = 2(Y (t) + Z(t))d(Y + Z)(t) + d[Y + Z]t

= 2(Y + Z)(t)(dY (t) + dZ(t)) + (σ1(t) + σ2(t))2dt.

So

2d(Y Z)(t) = d(Y + Z)2(t)− dY 2(t)− dZ2(t)

= 2Y (t)dZ(t) + 2Z(t)dY (t) +
(

(σ1(t) + σ2(t))2 − σ2
1(t)− sigma2

2(t)
)
dt

2. Question 2

Let {Y (t)}t≥0, and let {Z(t)}t≥0 be two Itô processes. Then, we define the covariation
process {[Y, Z]t}t≥0 so that, for any b > 0, [Y, Z]b is the limit in probability as n→∞ of

n−1∑
i=0

(Y (b(i+ 1)/n)− Y (bi/n))(Z(b(i+ 1)/n)− Z(bi/n)),

if this limit exists. (In particular, [Y, Y ]t = [Y ]t for all t ≥ 0, where [Y ]t denotes the quadratic
variation of Y at time t.)

• Show that, for any t > 0, with probability one we have

[Y + Z]t = [Y ]t + [Z]t + 2[Y, Z]t.

• Show that, for any t > 0, with probability one we have∣∣[Y, Z]t
∣∣ ≤√[Y ]t[Z]t.

(This is a special case of the so-called Kunita-Watanabe inequality.)
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• Using the arithmetic mean-geometric mean inequality, conclude that, for any t > 0,
with probability one we have

[Y + Z]t ≤ 2
(
[Y ]t + [Z]t

)
, ∀ t > 0.

Solution. For any b > 0, n ≥ 1 and 0 ≤ i ≤ n− 1, we have(
(Y + Z)(b(i+ 1)/n)− (Y + Z)(bi/n)

)(
(Y + Z)(b(i+ 1)/n)− (Y + Z)(bi/n)

)
= (Y (b(i+ 1)/n)− Y (bi/n))(Y (b(i+ 1)/n)− Y (bi/n))

+ (Z(b(i+ 1)/n)− Z(bi/n))(Z(b(i+ 1)/n)− Z(bi/n))

+ 2(Y (b(i+ 1)/n)− Y (bi/n))(Z(b(i+ 1)/n)− Z(bi/n)).

Summing over 0 ≤ i ≤ n− 1, and then letting n→∞ implies that [Y +Z]b = [Y ]b + [Z]b +
2[Y, Z]b for any b > 0.

From the Cauchy-Schwarz inequality (for discrete sequences of real numbers), for any b > 0
and n ≥ 1, ( n−1∑

i=0

(Y (b(i+ 1)/n)− Y (bi/n))(Z(b(i+ 1)/n)− Z(bi/n))
)2

≤
n−1∑
i=0

(Y (b(i+ 1)/n)− Y (bi/n))2

n−1∑
j=0

(Z(b(j + 1)/n)− Z(bj/n))2.

Letting n → ∞ implies that [Y, Z]2b ≤ [Y ]b[Z]b for any b > 0. The AMGM inequality them
implies that

[Y, Z]b ≤
√

[Y ]b[Z]b ≤ (1/2)([Y ]b + [Z]b) (∗).
Combining the above,

[Y + Z]b = [Y ]b + [Z]b + 2[Y, Z]b
(∗)
≤ 2

(
[Y ]b + [Z]b

)
.

3. Question 3

Let {B(t)}t≥0 be a Brownian motion in Rn (so that B(t) = (B1(t), . . . , Bn(t)) where
{B(t)}t≥0, . . . , {Bn(t)}t≥0 are n independent one-dimensional Brownian motions). For any
x = (x1, . . . , xn) ∈ Rn, denote ‖x‖ := (x2

1 + · · ·+ x2
n)1/2. Denote the open unit ball in Rn as

D := {x = (x1, . . . , xn) ∈ Rn : ‖x‖ < 1}.

For any x ∈ D, we use the notation Ex to denote that the Brownian motion is started at x
(so that B(0) = x). Define a stopping time

T := inf{t > 0: B(t) ∈ ∂D}.

• This problem describes the distribution of the exit time of Brownian motion from the
unit ball D. Let f : Rn → R be an infinitely differentiable function. Let µ denote
the probability measure that is uniformly distributed in ∂D. Show that,

Exf(B(T )) =

∫
∂D

1− ‖x‖2

‖x− y‖n
f(y)dµ(y), ∀x ∈ D.
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(Hint: let ky(x) := 1−‖x‖2
‖x−y‖n for any x, y ∈ D with x 6= y. You can freely use the fact

that ∆ky(x) = 0, where ∆ is the Laplacian on Rn. Define

v(x) :=

{∫
∂D

1−‖x‖2
‖x−y‖nf(y)dµ(y) , ifx ∈ D

f(x) , ifx ∈ ∂D.

Is it true that ∆v(x) = 0? You do not need to justify moving the Laplacian inside
the integral. Moreover, you may freely use that a solution of the Dirichlet problem
is unique.)
• Let 0 < a < b <∞. Let U denote the annulus

U := {x ∈ Rn : a < ‖x‖ < b}.
Define u : Rn r {0} → R by

u(x) :=


‖x‖ , ifn = 1

log ‖x‖ , ifn = 2

‖x‖2−n , ifn ≥ 3.

Verify that ∆u(x) = 0 for all x 6= 0. Define

Ta := inf{t > 0: ‖B(t)‖ = a}, Tb := inf{t > 0: ‖B(t)‖ = b}.
Show that, for any x ∈ U ,

Px(Ta < Tb) =
u(b, 0, . . . , 0)− u(x)

u(b, 0, . . . , 0)− u(a, 0, . . . , 0)
.

(Hint: Since u is harmonic, how is u(x) related to Exu(B(Ta ∧ Tb)) ?)
• Let x ∈ Rn with ‖x‖ > a > 0. Conclude that

Px(Ta <∞) =

{
1 , ifn ≤ 2

(a/ ‖x‖)n−2 , ifn ≥ 3.

(This is analogous to our recurrience/transience results for the simple random walk
on Zn.)

Solution.
For any x ∈ D, we know from Theorem 8.40 in the notes that

g(x) := Exf(B(T ))

solves the Dirichlet problem, i.e. ∆g(x) = 0 for all x ∈ D and g(x) = f(x) for all x ∈ ∂D.
So, by uniqueness of solution of the Dirichlet problem, since g(x) = v(x) for all x ∈ ∂D, it
suffices to verify that ∆v(x) = 0 for all x ∈ D. We can justify this identity by moving the
derivatives inside the integral:

∆v(x) =

∫
∂D

∆x
1− ‖x‖2

‖x− y‖n
f(y)dµ(y) =

∫
∂D

0dµ(y) = 0.

Now, since u is harmonic, we have from Theorem 8.40 that

u(x) = Exu(B(Ta ∧ Tb)) = u(a, 0, . . . , 0)P(Ta < Tb) + u(b, 0, . . . , 0)P(Ta > Tb)

= u(a, 0, . . . , 0)P(Ta < Tb) + u(b, 0, . . . , 0)[1−P(Ta < Tb)].
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Solving for P(Ta < Tb) gives

P(Ta < Tb) =
u(x)− u(b, 0, . . . , 0)

u(a, 0, . . . , 0)− u(b, 0, . . . , 0)
.

Letting b→∞, we have Tb →∞ as well, so that

P(Ta < Tb) = lim
b→∞

u(x)− u(b, 0, . . . , 0)

u(a, 0, . . . , 0)− u(b, 0, . . . , 0)
.

When n = 1, we have

lim
b→∞

u(x)− u(b)

u(a)− u(b)
= lim

b→∞

|x| − |b|
|a| − |b|

= 1.

When n = 2, we have

lim
b→∞

u(x)− u(b, 0)

u(a, 0)− u(b, 0)
= lim

b→∞

log ‖x‖ − log ‖b‖
log ‖a‖ − log ‖b‖

= 1.

When n ≥ 3, we have When n = 1, we have

lim
b→∞

u(x)− u(b, 0, . . . , 0)

u(a, 0, . . . , 0)− u(b, 0, . . . , 0)
= lim

b→∞

‖x‖2−n − ‖b‖2−n

‖a‖2−n − ‖b‖2−n =
‖x‖2−n

‖a‖2−n .

4. Question 4

Suppose we have n finite, irreducible transition matrices P1, . . . , Pn with n corresponding
state spaces Ω1, . . . ,Ωn and stationary distributions π1, . . . , πn. Define Ω := Ω1 × · · · × Ωn.
Let w = (w1, . . . , wn) be a probability distribution on {1, . . . , n}. Consider the (discrete-
time) Markov chain on Ω that, at each step, selects coordinate 1 ≤ j ≤ n with probability wj,
and then changes the state of the chain only in coordinate j according to Pj. The transition
matrix P for this chain is then

P (x, y) :=
n∑
j=1

wjPj(xj, yj)
∏

k∈{1,...,n} :
k 6=j

1{xk=yk}, ∀x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Ω.

(You do not have to prove this.) For each 1 ≤ j ≤ n, let fj : Ωj → R, and define the tensor
product function f1 ⊗ f2 ⊗ · · · ⊗ fn : Ω→ R by

(f1 ⊗ f2 ⊗ · · · ⊗ fn)(x1, . . . , xn) :=
n∏
j=1

fj(xj), ∀x = (x1, . . . , xn) ∈ Ω.

Let π := π1 ⊗ · · · ⊗ πn (so that π is a probability distribution on Ω, where we consider each
πj to be a function on Ωj in order to use the tensor product definition). Then π is stationary
for P (you do not have to prove this). Assume that, for any 1 ≤ j ≤ n, the transition matrix
Pj has an eigenfunction fj ∈ RΩj with eigenvalue λj.

• Show that the function f := f1 ⊗ · · · ⊗ fn is an eigenfunction of P with eigenvalue∑n
j=1 wjλj.

• Assume that, for each 1 ≤ j ≤ n, Bj is an orthonormal basis for RΩj with respect to
the inner product 〈·, ·〉πj . Show that

B := {f1 ⊗ f2 ⊗ · · · ⊗ fn : fj ∈ Bj, ∀ 1 ≤ j ≤ n}
is an orthonormal basis with respect to the inner product 〈·, ·〉π.
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• If Pj has spectral gap γj for all 1 ≤ j ≤ n, show that P has spectral gap

γ := min
1≤j≤n

wjγj.

• For any 1 ≤ j ≤ n, let Ωj := {−1, 1} and let Pj(a, b) = 1 for all a, b ∈ {−1, 1} with
a 6= b and Pj(a, b) = 0 otherwise. Let w := (1/n, . . . , 1/n). Then P on Ω corresponds
to the simple random walk on the discrete hypercube {−1, 1}n. (You do not have to
prove this.) Conclude that the spectral gap for the Markov chain P on Ω is

γ = 2/n.

• Using the result from Exam 2, then give a bound on the mixing time of the Markov
chain P on Ω = {−1, 1}n.

Solution. By assumption Pjfj(xj) = λjfj(xj), i.e.∑
yj∈Ωj

Pj(xj, yj)fj(yj) = λjfj(xj). (∗)

Now, fix x = (x1, . . . , xn) ∈ Ω. Then

P (f1 ⊗ · · · ⊗ fn)(x) =
∑
y∈Ω

P (x, y)(f1 ⊗ · · · ⊗ fn)(y)

=
∑
y∈Ω

n∑
j=1

wjPj(xj, yj)
∏

k∈{1,...,n} :
k 6=j

1{xk=yk}

n∏
i=1

fi(yi)

=
n∑
j=1

wj
∑
yj∈Ωj

Pj(xj, yj)
∑

y`∈Ω` ∀ `∈{1,...,n}r{j}

∏
k∈{1,...,n} :

k 6=j

1{xk=yk}

n∏
i=1

fi(yi)

=
n∑
j=1

wj
∑
yj∈Ωj

Pj(xj, yj)
n∏
i=1

fi(xi) =
n∑
j=1

wj
∑
yj∈Ωj

Pj(xj, yj)fj(yj)
∏

k∈{1,...,n} :
k 6=j

fk(xk)

(∗)
=

n∑
j=1

wjλjfj(xj)
∏

k∈{1,...,n} :
k 6=j

fk(xk) =
n∑
j=1

wjλj

n∏
k=1

fk(xk) =
n∑
j=1

wjλj(f1 ⊗ · · · ⊗ fn)(x).

By definition of π, if g = g1 ⊗ · · · ⊗ gn ∈ B, then

〈f, g〉π =
n∏
i=1

〈fi, gi〉πi .

This equality implies: if f, g ∈ B with f 6= g, then 〈f, g〉π = 0 (since at least one term in the
product on the right is zero) and 〈f, f〉π = 1 (since the term on the right is then a product
of ones). So, B forms an orthonormal set. To see that B is a basis, note that the set of all
functions on Ω has dimension

∏n
i=1 |Ωi|, and B has the same number of elements. Therefore,

B is a basis.
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The set of all eigenvalues of P is

Λ := {
n∑
j=1

wjλj : λj is an eigenvalue of Pj forall 1 ≤ j ≤ n}.

Since λj ≤ 1 for all 1 ≤ j ≤ n, the largest element of Λ is
∑n

j=1 wj = 1. The next largest

element of Λ then correspond to all choices of λj being equal to one, except one (the choice of j
with the smallest (weighted) spectral gap). Let 1 ≤ j′ ≤ n such that wj′γj′ = min1≤j≤nwjγj.
That is, the second largest eigenvalue of P is

wj′ [1− γj′ ] +
∑

j∈{1,...,n} : j 6=j′
wj = 1− γj′wj′ .

So, P has spectral gap equal to 1 minus this number, i.e.

γ = wj′γj′ = min
1≤j≤n

wjγj.

By assumption, the eigenvalues of Pj =

(
0 1
1 0

)
are 1 and −1, so γj = 2 for all 1 ≤ j ≤ n.

With w = (1/n, . . . , 1/n), the previous problem shows that γ = (1/n)(2) = 2/n.
Finally, the result from exam 2 shows that γ = O(n2).

5. Question 5

This problem is a continuation of the mixing time problem from Exam 2. Suppose we have
a finite, irreducible Markov chain with state space Ω, transition matrix P , and stationary
distribution π. For any 0 < p <∞, and for any f ∈ RΩ, define

‖f‖p,π :=
(∑
x∈Ω

|f(x)|p π(x)
)1/p

, Eπf :=
∑
x∈Ω

f(x)π(x).

Another way to bound the mixing time is to give a bound on the logarithmic-Sobolev
constant of the chain (or log-Sobolev constant). Define α ≥ 0 so that 1/α is the smallest
constant c > 0 such that, for all f ∈ RΩ with ‖f‖2,π 6= 0,∑

x∈Ω

|f(x)|2
[

log
( |f(x)|2

‖f‖2
2,π

)]
π(x) ≤ c · 1

2

∑
x,y∈Ω

|f(x)− f(y)|2 P (x, y)π(x). (∗)

(If no such c exists, α := 0.) (Note that (∗) is dilation invariant, i.e. if f ∈ RΩ satisfies (∗),
then tf also satisfies (∗) for all t > 0.) You can freely use the following bound:

max
x∈Ω
‖Ht(x, ·)− π(·)‖TV ≤

√
1

2
log
( 1

miny∈Ω π(y)

)
e−αt, ∀ t > 0.

• Give an upper bound on the mixing time of a Markov chain in terms of the log-Sobolev
constant α.
• Additionally assume the Markov chain is reversible. Show that the spectral gap γ

can be equivalently defined so that 1/γ is the smallest constant b > 0 such that, for
all f ∈ RΩ,

1

2

∑
x,y∈Ω

|f(x)− f(y)|2 π(x)π(y) ≤ b · 1

2

∑
x,y∈Ω

|f(x)− f(y)|2 P (x, y)π(x).
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(If no such b exists, γ := 0.) (Hint: the left side is the variance of f .)
• Additionally assume the Markov chain is reversible. Show that 2α ≤ γ. (Hint:

consider f = 1 + εg in the definition of the log-Sobolev constant, and let ε→ 0+.)
• Let us re-use the notation of the previous problem to define P1, . . . , Pn, Ω1, . . . ,Ωn,
π1, . . . , πn, Ω, w and P . Show: if Pj has logarithmic Sobolev constant αj for all
1 ≤ j ≤ n, then P has logarithmic Sobolev constant

α := min
1≤j≤n

wjαj.

(Hint: just consider the case n = 2. Let f : Ω1 × Ω2 → R. Define F : Ω2 → R by

F (x2) :=
√∑

x1∈Ω1
|f(x1, x2)|2 π1(x1), ∀ x2 ∈ Ω2. Observe that

∑
x∈Ω

|f(x)|2
[

log
( |f(x)|2

‖f‖2
2,π

)]
π(x) =

∑
x2∈Ω2

|F (x2)|2 log
( |F (x2)|2

‖F‖2
2,π2

)
π2(x2)

+
∑

(x1,x2)∈Ω1×Ω2

|f(x1, x2)|2
[

log
( |f(x1, x2)|2

|F (x2)|2
)]
π(x1, x2).

Apply the definition of α2 to the first term, and apply the definition of α1 to the second
term. Then, observe that |F (a)− F (b)| ≤ ‖f(·, a)− f(·, b)‖2,π1

for all a, b ∈ Ω2 to

get a bound on the first term in terms of f(x1, ·). )
• For any 1 ≤ j ≤ n, let Ωj := {−1, 1} and let Pj(a, b) = 1 for all a, b ∈ {−1, 1} with
a 6= b and Pj(a, b) = 0 otherwise. Let w := (1/n, . . . , 1/n). Then P on Ω corresponds
to the simple random walk on the discrete hypercube {−1, 1}n. (You do not have to
prove this.) You can freely use that αj = 1 for all 1 ≤ j ≤ n. Conclude that the
log-Sobolev constant for this Markov chain P on Ω is

α = 1/n.

How does the resulting bound on the mixing time of this Markov chain compare with
the bound from the previous problem?

Solution. Expanding out the right side, using reversibility (π(x)P (x, y) = π(y)P (y, x)),
and that the sum of any row of P is 1,

1

2

∑
x,y∈Ω

|f(x)− f(y)|2 P (x, y)π(x) =
∑
x,y∈Ω

|f(x)|2 P (x, y)π(x)−
∑
x,y∈Ω

f(x)f(y)P (x, y)π(x)

=
∑
x∈Ω

|f(x)|2 π(x)−
∑
x∈Ω

f(x)(Pf)(x)π(x).

So, we need to show that, for all f ∈ RΩ,

Varπf ≤
1

γ

(∑
x∈Ω

|f(x)|2 π(x)−
∑
x∈Ω

f(x)(Pf)(x)π(x)
)
,

with equality when f is the eigenfunction of P with the second largest eigenvalue. Let f ∈ RΩ

and let f1, . . . , fΩ be eigenfunctions of P with eigenvalues 1 = λ1 > λ2 ≥ · · · ≥ λn ≥ −1.
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Then f =
∑|Ω|

i=1 cifi where ci = 〈f, fi〉π for all 1 ≤ i ≤ |Ω|. Then

Varπf =

|Ω|∑
i=2

c2
i ,

∑
x∈Ω

|f(x)|2 π(x)−
∑
x∈Ω

f(x)(Pf)(x)π(x) =

|Ω|∑
i=1

c2
i −

|Ω|∑
i=1

λic
2
i =

|Ω|∑
i=1

(1− λi)c2
i =

|Ω|∑
i=2

(1− λi)c2
i .

The penultimate equality used λ1 = 1. Since λ2 ≥ λi for all 2 ≤ i ≤ |Ω|, we have 1 − λi ≥
1− λ2 = γ also, i.e. 1

γ
(1− λi) ≥ 1 for all 2 ≤ i ≤ n, so that

1

γ

|Ω|∑
i=2

(1− λi)c2
i ≥

|Ω|∑
i=2

c2
i ,

And equality holds when ci = 0 for all 3 ≤ i ≤ n. That is,

Varπf ≤
1

γ

(∑
x∈Ω

|f(x)|2 π(x)−
∑
x∈Ω

f(x)(Pf)(x)π(x)
)
,

with equality when f = f2.
Now, consider f = 1 + εg. The right side of (∗) is

1

2

∑
x,y∈Ω

|f(x)− f(y)|2 P (x, y)π(x) = ε2 1

2

∑
x,y∈Ω

|g(x)− g(y)|2 P (x, y)π(x)

We now examine the left side of (∗). We have

|f(x)|2 = (1 + εg(x))2 = 1 + 2εg(x) + ε2(g(x))2.

‖f‖2
2,π = ‖1 + εg‖2

2,π = 1 + 2εEπg + ε2 ‖g‖2
2,π .

|f(x)|2

‖f‖2
2,π

=
1 + 2εg(x) + ε2(g(x))2

1 + 2εEπg + ε2 ‖g‖2
2,π

.

Then, using log(1 + aε+ bε2) = aε+ bε2− (aε+ bε2)2/2 +O(ε3) = aε+ ε2(b− a2/2) +O(ε3)

log
( |f(x)|2

‖f‖2
2,π

)
= log

(
1 + 2εg(x) + ε2(g(x))2

)
− log

(
1 + 2εEπg + ε2 ‖g‖2

2,π

)
= 2ε(g(x)− Eπg) + ε2((g(x))2 − 2(g(x))2 + 2(Eπg)2 − ‖g‖2

2,π) +O(ε3)

= 2ε(g(x)− Eπg) + ε2(−(g(x))2 + 2(Eπg)2 − ‖g‖2
2,π) +O(ε3).

Therefore,

|f(x)|2
[

log
( |f(x)|2

‖f‖2
2,π

)]
=
(

1 + 2εg(x) + ε2(g(x))2
)(

2ε(g(x)− Eπg) + ε2(−(g(x))2 + 2(Eπg)2 − ‖g‖2
2,π) +O(ε3)

)
= 2ε(g(x)− Eπg) + ε2

(
− (g(x))2 + 2(Eπg)2 − ‖g‖2

2,π + 4(g(x))2 − 4g(x)Eπg
)

= 2ε(g(x)− Eπg) + ε2
(

3(g(x))2 + 2(Eπg)2 − ‖g‖2
2,π − 4g(x)Eπg

)
+O(ε3)
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And∑
x∈Ω

|f(x)|2
[

log
( |f(x)|2

‖f‖2
2,π

)]
π(x) = ε2

(
3 ‖g‖2

2,π + 2(Eπg)2 − ‖g‖2
2,π − 4(Eπg)2

)
+O(ε3)

= ε22(‖g‖2
2,π − Eπg)2 +O(ε3) = ε22Var(g) +O(ε3)

So, letting ε→ 0+ in the log-Sobolev inequality, we arrive at

2Var(g) ≤ 1

α

1

2

∑
x,y∈Ω

|g(x)− g(y)|2 P (x, y)π(x).

From the previous part of the problem, we conclude that 1
2α
≥ 1

γ
, i.e. γ ≥ 2α.

For the next part of the problem, note that it suffices to prove the case n = 2 and then

iterate. As in the hint, let F (x2) :=
√∑

x1∈Ω1
|f(x1, x2)|2 π1(x1), ∀ x2 ∈ Ω2, and observe

that ∑
x∈Ω

|f(x)|2
[

log
( |f(x)|2

‖f‖2
2,π

)]
π(x) =

∑
x2∈Ω2

|F (x2)|2 log
( |F (x2)|2

‖F‖2
2,π2

)
π2(x2)

+
∑

(x1,x2)∈Ω1×Ω2

|f(x1, x2)|2
[

log
( |f(x1, x2)|2

|F (x2)|2
)]
π(x1, x2).

We then apply the definition of α2 to the first term, and apply the definition of α1 to the
second term (noting that |F (x2)|2 = ‖f(·, x2)‖2

2,π1
) to get∑

x∈Ω

|f(x)|2
[

log
( |f(x)|2

‖f‖2
2,π

)]
π(x) ≤ 1

α2

1

2

∑
x2,y2∈Ω2

|F (x2)− F (y2)|2 P2(x2, y2)π2(x2)

+
1

α1

1

2

∑
x2∈Ω2

( ∑
x1,y1∈Ω1

|f(x1, x2)− f(y1, x2)|2 P1(x1, y2)π1(x1)
)
π2(x2).

Also as suggested in the hint, observe that for all a, b ∈ Ω2, by the (reverse) triangle
inequality,

|F (a)− F (b)| =
∣∣∣‖f(·, a)‖2,π1

− ‖f(·, b)‖2,π1

∣∣∣ ≤ ‖f(·, a)− f(·, b)‖2,π1
.

So, we can apply this inequality to the first term above to get∑
x∈Ω

|f(x)|2
[

log
( |f(x)|2

‖f‖2
2,π

)]
π(x) ≤ 1

α2

1

2

∑
x2,y2∈Ω2

‖f(·, x2)− f(·, y2)‖2
2,π1

P2(x2, y2)π2(x2)

+
1

α1

1

2

∑
x2∈Ω2

( ∑
x1,y1∈Ω1

|f(x1, x2)− f(y1, x2)|2 P1(x1, y2)π1(x1)
)
π2(x2)

=
1

w2α2

1

2

∑
x1∈Ω1

( ∑
x2,y2∈Ω2

|f(x1, x2)− f(x1, y2)|2w2P2(x2, y2)π2(x2)
)
π1(x1)

+
1

w1α1

1

2

∑
x2∈Ω2

( ∑
x1,y1∈Ω1

|f(x1, x2)− f(y1, x2)|2w1P1(x1, y2)π1(x1)
)
π2(x2).
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By definition of P , we then have∑
x∈Ω

|f(x)|2
[

log
( |f(x)|2

‖f‖2
2,π

)]
π(x) ≤ max

( 1

w2α2

,
1

w1α1

)1

2

∑
x,y∈Ω

|f(x)− f(y)|2 P (x, y)π(x).

The result follows.
Finally, the mixing time bound we get from this problem is O(n log n), which is much

smaller than the O(n2) bound we got from the previous problem.
More specifically, using the inequality

max
x∈Ω
‖Ht(x, ·)− π(·)‖TV ≤

√
1

2
log
( 1

miny∈Ω π(y)

)
e−αt, ∀ t > 0,

to get a mixing time bound, it suffices to solve for t such that√
1

2
log
( 1

miny∈Ω π(y)

)
e−αt ≤ 1/4.

Solving for t, we get e−2αt ≤ 1/8 log
(

1
miny∈Ω π(y)

)
, i.e. −2αt ≤ log

(
1/8 log

(
1

miny∈Ω π(y)

))
, i.e.

t ≥ 1

2α
log
(

8 log
( 1

miny∈Ω π(y)

))
.

We conclude that

tmix ≤
1

2α
log
(

8 log
( 1

miny∈Ω π(y)

))
.

Substituting in π(y) = 2−n for all y ∈ Ω and α = 1/n, we get

tmix ≤
n

2
log
(

8 log 2n
)

=
n

2
log(8n log 2).
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