
Graduate Applied Probability II Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due February 12, 12PM noon PST, to be uploaded as a single PDF document to blackboard
(under the Assignments tab).

Homework 2

Exercise 1. Let P,Q be stochastic matrices of the same size. Show that PQ is a stochastic
matrix. Conclude that, if r is a positive integer, then P r is a stochastic matrix.

Exercise 2. Let A,B be events in a sample space. Let C1, . . . , Cn be events such that
Ci ∩ Cj = ∅ for any i, j ∈ {1, . . . , n} with i 6= j, and such that ∪ni=1Ci is the whole sample
space. Show:

P(A|B) =
n∑

i=1

P(A|B, Ci)P(Ci|B).

Exercise 3. Let 0 < p, q < 1. Let P =

(
1− p p
q 1− q

)
. Find the (left) eigenvectors of P ,

and find the eigenvalues of P . By writing any row vector x ∈ R2 as a linear combination of
eigenvectors of P (whenever possible), find an expression for xP n for any n ≥ 1. What is
limn→∞ xP n? Is it related to the vector π = (q/(p+ q), p/(p+ q))?

Exercise 4. Let G = (V,E) be a graph. Let |E| denote the number of elements in the set
E, i.e. |E| is the number of edges of the graph. Prove:

∑
x∈V deg(x) = 2 |E|.

Exercise 5. LetM,N be stopping times for a Markov chainX0, X1, . . .. Show that max(M,N)
and min(M,N) are stopping times. In particular, if n ≥ 0 is fixed, then max(M,n) and
min(M,n) are stopping times

Exercise 6. Let A,B be events such that B ⊆ {X0 = x0}. Then P(A|B) = Px0(A|B).

More generally, if A,B are events, then Px0(A|B) = P(A|B,X0 = x0).

Exercise 7. Suppose we have a Markov Chain with state space Ω. Let n ≥ 0, ` ≥ 1, let
x0, . . . , xn ∈ Ω and let A ⊆ Ω`. Using the (usual) Markov property, show that

P((Xn+1, . . . , Xn+`) ∈ A | (X0, . . . , Xn) = (x0, . . . , xn))

= P((Xn+1, . . . , Xn+`) ∈ A |Xn = xn).

Then, show that

P((Xn+1, . . . , Xn+`) ∈ A |Xn = xn) = P((X1, . . . , X`) ∈ A |X0 = xn).

(Hint: it may be helpful to use the Multiplication Rule .)

Exercise 8. Suppose we have a Markov chain X0, X1, . . . with finite state space Ω. Let
y ∈ Ω. Define Ly := max{n ≥ 0: Xn = y}. Is Ly a stopping time? Prove your assertion.
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Exercise 9. Let x, y be points in the state space of a finite Markov Chain (X0, X1, . . .). Let
Ty = min{n ≥ 1: Xn = y} be the first arrival time of y. Let j, k be positive integers. Show
that

Px(Ty > kj |Ty > (k − 1)j) ≤ max
z∈Ω

Pz(Ty > j).

(Hint: use Exercise 7)

Exercise 10. Let x, y be points in the state space of a finite Markov Chain (X0, X1, . . .)
with transition matrix P . Let Ty = min{n ≥ 1: Xn = y} be the first arrival time of y. Let
j be a positive integer. Show that

P j(x, y) ≤ Px(Ty ≤ j).

(Hint: can you induct on j?)

Exercise 11. Let x, y be any states in a finite irreducible Markov chain. Show that ExTy <
∞. In particular, Py(Ty <∞) = 1, so all states are recurrent.

Exercise 12 (Simplified Monopoly). Let Ω = {1, 2, . . . , 10}. We consider Ω to be the ten
spaces of a circular game board. You move from one space to the next by rolling a fair
six-sided die. So, for example P (1, k) = 1/6 for every 2 ≤ k ≤ 7. More generally, for every
j ∈ Ω with j 6= 5, P (j, k) = 1/6 if k = (j+ i) mod 10 for some 1 ≤ i ≤ 6. Finally, the space 5
forces you to return to 1, so that P (5, 1) = 1. (Note that mod 10 denotes arithmetic modulo
10, so e.g. 7 + 5 = 2 mod 10.)

Using a computer, find the unique stationary distribution of this Markov chain. Which point
has the highest stationary probability? The lowest?

Compare this stationary distribution to the stationary distribution that arises from the
following doubly stochastic matrix: for all j ∈ Ω, P (j, k) = 1/6 if k = (j + i) mod 10 for
some 1 ≤ i ≤ 6.


