
Graduate Applied Probability II Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due April 9, 12PM noon PST, to be uploaded as a single PDF document to blackboard
(under the Assignments tab).

Homework 6

Exercise 1. Let λ > 0. Let τ1, τ2, . . . be independent exponential random variables with
parameter λ. For any n ≥ 1, let Tn = τ1 + · · ·+ τn. Fix positive integers nk > · · · > n1 and
positive real numbers tk > · · · > t1. Then

fTnk
,...,Tn1

(tk, . . . , t1) = fT(nk−nk−1)
(tk − tk−1) · · · fT(n2−n1)

(t2 − t1)fTn1
(t1).

(Hint: just try to case k = 2 first, and use a conditional density function.)

Exercise 2. Let s, t > 0 and let m,n be nonnegative integers. Let 0 < tm < tm+1 < tm+n <
tm+n+1, and define (using the notation of Exercise 1),

g(tm, tm+1, tm+n, tm+n+1) := fT1(tm+n+1 − tm+n)fTn−1(tm+n − tm+1)fT1(tm+1 − tm)fTm(tm).

Let {N(s)}s≥0 be a Poisson Process with parameter λ > 0. Show that

P(N(s+ t) = m+ n, N(s) = m)

=

∫ s

0

(∫ s+t

s

(∫ s+t

tm+1

(∫ ∞
s+t

g(tm, tm+1, tm+n, tm+n+1)dtm+n+1

)
dtm+n

)
dtm+1

)
dtm.

(Hint: use the joint density, and then use Exercise 1.)

Exercise 3. Suppose you are running a (busy) car wash. The number of red cars that come
to the car wash between time 0 and time s > 0 is a Poisson poisson with rate 2. The number
of blue cars that come to car wash between time 0 and time s > 0 is a Poisson poisson with
rate 3. Both Poisson processes are independent of each other. All cars are either red or blue.
With what probability will five blue cars arrive, before three red cars have arrived?

Exercise 4. Let m be a positive integer and let P be an m×m real matrix.

• Show that the sum
∞∑
k=0

P k

k!

converges. That is, eP is well-defined.
• Show that

eP+I = eP eI .

• Find m×m matrices P,Q such that eP+Q 6= eP eQ.

Exercise 5. Let m be a positive integer and let P be an m × m real matrix. Denote
Ht := et(P−I) for all t ≥ 0. Let f ∈ Rm be a column vector. Then Htf denotes multiplying
the matrix Ht against the vector f . Show the following:
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• H0 = I.
• Hs+t = HsHt for all s, t ≥ 0. (This identity is an analogue of the Chapman-

Kolmogorov equation.)
• Ht1 = 1 for all t ≥ 0. (Moreover, Ht is a stochastic matrix, for all t ≥ 0. Here 1

denotes the vector of all ones.)
• d

dt
|t=0Ht = limt→0+

Ht−H0

t
= (P − I).

• For any f ∈ Rm, we have

d

dt
Htf = (P − I)Htf, ∀ t ≥ 0.

Exercise 6 (Markov Property, Continuous-Time). Show that a (finite) continuous-time
Markov chain satisfies the following Markov property: for all x, y ∈ Ω, for any n ≥ 1, t > 0
and for any s > sn−1 > · · · > s0 > 0 and for all events Hn−1 of the form Hn−1 = ∩n−1

k=0{Xsk =
xk}, where xk ∈ Ω for all 0 ≤ k ≤ n− 1, such that P(Hn−1 ∩ {Xs = x}) > 0, we have

P(Xt+s = y |Hn−1 ∩ {Xs = x}) = P(Xt = y |X0 = x).

Exercise 7. Prove the following discrete-time version the above spectral gap inequality from
class.

Let P be the transition matrix of a finite, irreducible, reversible Markov chain, with state
space Ω and with (unique) stationary distribution π. Let

γ∗ := 1−max{|λ| : λ is an eigenvalue of P with λ 6= 1}
be the absolute spectral gap of P . Then, for any f ∈ RΩ and for any integer k ≥ 1,

Varπ(P kf) ≤ (1− γ∗)2kVarπf.

Exercise 8 (Scaling Invariance). Let a > 0. Let {B(t)}t≥0 be a standard Brownian motion.
For any t > 0, define X(t) := 1√

a
B(at). Show that {X(t)}t≥0 is also a standard Brownian

motion.

Exercise 9. Let x1, . . . , xn ∈ R, and if tn > · · · > t1 > 0. Using the independent increment
property, show that the event

{B(t1) = x1, . . . , B(tn) = xn}
has a multivariate normal distribution. That is, the joint density of (B(t1), . . . , B(tn)) is

f(x1, . . . , xn) = ft1(x1)ft2−t1(x2 − x1) · · · ftn−tn−1(xn − xn−1)

where

ft(x) =
1√
2πt

e−x
2/(2t), ∀x ∈ R, t > 0.


