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1. Homework 1

Exercise 1.2 (Continuity of a Probability Law). Let P be a probability law on a sample
space C. Let A1, A2, . . . be sets in C which are increasing, so that A1 ⊆ A2 ⊆ · · · . Then

lim
n→∞

P(An) = P(∪∞n=1An).

In particular, the limit on the left exists. Similarly, let A1, A2, . . . be sets in C which are
decreasing, so that A1 ⊇ A2 ⊇ · · · . Then

lim
n→∞

P(An) = P(∩∞n=1An).

Solution. First, recall that A r B := A ∩ Bc where A,B ⊆ C. Now, let B1 := A1, let
B2 := A2 r A1, and for any n ≥ 1, inductively define Bn := An r An−1. We claim that
B1, B2, . . . are disjoint, and ∪kn=1An = ∪kn=1Bn for any 1 ≤ k ≤ ∞.

To see the first statement, let i, j ≥ 1 with i > j. Since i−1 ≥ j, Aj ⊆ Ai−1, so Aci−1∩Aj = ∅.
So

Bi ∩Bj = (Ai r Ai−1) ∩ (Aj r Aj−1) = Ai ∩ Aci−1 ∩ Aj ∩ Acj−1 = ∅.
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To see the second statement, let x ∈ ∪kn=1An. Let m ≥ 1 such that m = min{1 ≤ n ≤ k : x ∈
An}. If m = 1, then x ∈ B1 = A1. If m > 1, then x /∈ Am−1 so x ∈ Bm = Am r Am−1. So,
in any case, x ∈ ∪kn=1Bn. For the reverse inclusion, let x ∈ ∪kn=1Bn. Then x ∈ Bn for some
n ≥ 1. So x ∈ An since Bn ⊆ An. So, x ∈ ∪kn=1An. The claim is proven.

Now, using our claim, we have by the second axiom for probability laws,

P(∪∞n=1An) = P(∪∞n=1Bn) =
∞∑
n=1

P(Bn) = lim
k→∞

k∑
n=1

P(Bn)

= lim
k→∞

P(∪kn=1Bn) = lim
k→∞

P(∪kn=1An) = lim
k→∞

P(Ak).

The last line used Ak ⊇ Ak−1 ⊇ · · · ⊇ A1.

Applying the above result to Acn for any n ≥ 1, and then apply De Morgan’s law:

lim
n→∞

P(An) = 1− lim
n→∞

P(Acn) = 1−P(∪∞n=1A
c
n) = P(∩∞n=1An).

�

Exercise 1.3. Let 0 < p ≤ ∞. Show that, if Y1, Y2, . . . : C → R converge to Y : C → R in
Lp, then Y1, Y2, . . . converges to Y in probability.

Then, show that the converse is false.

Solution. The first part follows from Markov’s inequality since P(|Yn − Y | > ε) ≤ ε−pE |Yn − Y |p
for all ε > 0, ∀ n ≥ 1. For the second part, fix 0 < p < ∞. Consider C = [0, 1], P uniform
on C and Yn(t) := n1+1/p1(0,1/n](t) for all n ≥ 1 ∀ t ∈ [0, 1]. Then Y1, Y2, . . . converges in
probability to 0, since P(Yn 6= 0) = 1/n for all n ≥ 1, but Y1, Y2 does not converge in Lp
since E |Yn|p = np →∞ as n→∞. So, if Y ∈ Lp then ||Yn − Y ||p ≥ ||Yn||p− ||Y ||p →∞ as
n→∞. �

Exercise 1.4. Suppose random variables Y1, Y2, . . . : C → R converge in probability to a
random variable Y : C → R. Prove that Y1, Y2, . . . converge in distribution to Y .

Then, show that the converse is false.

Exercise 1.5. Prove the following statement. Almost sure convergence does not imply
convergence in L2, and convergence in L2 does not imply almost sure convergence. That
is, find random variables that converge in L2 but not almost surely. Then, find random
variables that converge almost surely but not in L2.

Solution. We first find random variables that converge in L2 but not almost surely. We can
do this by a “traveling bump” construction with “decreasing width.” Let C = [0, 1] with P
uniform on C. For any integer n ≥ 1, write n = 2j + b where b is a positive integer with
b < 2j and j ≥ 0 is a nonnegative integer. Let Xn : [0, 1]→ {0, 1} be the function

Xn := 1[2−jb,2−j(b+1)].

As n → ∞, j → ∞, so EX2
n → 0 as n → ∞, so that X1, X2, . . . converges to 0 in L2.

However, X1, X2, . . . does not converge almost surely since, for any t ∈ [0, 1], the sequence
X1(t), X2(t), . . . has infinitely many zero and one values.
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To find random variables that converge almost surely but not in L2, we re-use a previous
construction. Consider C = [0, 1], P uniform on C and Yn(t) := n1(0,1/n](t) for all n ≥ 1 ∀
t ∈ [0, 1]. Then Y1, Y2, . . . converges almost surely to 0, limn→∞ Yn(t) = 0 for all t ∈ [0, 1],
but Y1, Y2 does not converge in L2 since E |Yn|2 = n → ∞ as n → ∞. So, if Y ∈ L2 then
||Yn − Y ||2 ≥ ||Yn||2 − ||Y ||2 →∞ as n→∞. �

2. Homework 2

Exercise 2.1. Let P,Q be stochastic matrices of the same size. Show that PQ is a stochastic
matrix. Conclude that, if r is a positive integer, then P r is a stochastic matrix.

Solution. Since each entry of P and Q is nonnegative, each entry of PQ is also nonnegative.
Also, if P,Q are n× n matrices, then for any 1 ≤ i ≤ n,

n∑
j=1

(PQ)ij =
n∑
j=1

n∑
k=1

PikQkj.

Since Q is stochastic,
∑n

j=1Qkj = 1. So, by switching the order of summation, we have

n∑
j=1

(PQ)ij =
n∑
k=1

Pik

n∑
j=1

Qkj =
n∑
k=1

Pik = 1.

In the last line, we used that P is stochastic. We can now conclude that P r is stochastic
by induction on r, since P r = P r−1P . By assumption P 1 = P is stochastic (verifying the
base case), and the inductive hypothesis assumes P r−1 is stochastic, so that P r is stochastic,
since it is the product of two stochastic matrices. �

Exercise 2.2. Let A,B be events in a sample space. Let C1, . . . , Cn be events such that
Ci ∩ Cj = ∅ for any i, j ∈ {1, . . . , n} with i 6= j, and such that ∪ni=1Ci = C. Show:

P(A|B) =
n∑
i=1

P(A|B, Ci)P(Ci|B).

(Hint: consider using the Total Probability Theorem and that P(·|B) is a probability law.)

Solution. From the Total Probability Theorem applied to P(·|B), and then using the defi-
nition of conditional probability,

P(A|B) =
n∑
i=1

P(A ∩ Ci|B) =
n∑
i=1

P(A ∩B ∩ Ci)
P(B)

=
n∑
i=1

P(A ∩B ∩ Ci)
P(B ∩ Ci)

P(B ∩ Ci)
P(B)

=
n∑
i=1

P(A|B, Ci)P(Ci|B).

�

Exercise 2.3. Let 0 < p, q < 1. Let P =

(
1− p p
q 1− q

)
. Find the (left) eigenvectors of P ,

and find the eigenvalues of P . By writing any row vector x ∈ R2 as a sum of eigenvectors of
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P (whenever possible), find an expression for xP n for any n ≥ 1. What is limn→∞ xP
n? Is

it related to the vector π = (q/(p+ q), p/(p+ q))?

Solution. The matrix P has trace 2− p− q and determinant (1− p)(1− q)− pq = 1− p− q.
So, the eigenvalues a, b of P satisfy ab = 1 − p − q and a + b = 2 − p − q. So, a = 1 and
b = 1−p−q. The corresponding (left) eigenvectors are (q, p) and (1,−1). If p 6= q, then these
vectors form a basis of R2. So, any vector x ∈ R2 can be written as x = α(q, p) + β(1,−1),
for some α, β ∈ R. Then by definition of (left) eigenvector,

xP n = α(q, p) + β(1− p− q)n(1,−1).

So, limn→∞ xP
n = α(q, p). That is, xP n becomes proportional to the probability distribution

π = (q/(p+ q), p/(p+ q)) �

Exercise 2.4. Let G = (V,E) be a graph. Let |E| denote the number of elements in the set
E, i.e. |E| is the number of edges of the graph. Prove:

∑
x∈V deg(x) = 2 |E|.

Solution. Let x ∈ V . Then deg(x) is the number of edges emanating from x. Fix an edge
e ∈ E. Then e = {x, y} where x, y ∈ V , x 6= y. As we sum over all x ∈ V in

∑
x∈V deg(x),

any fixed edge e ∈ E is counted exactly twice (once for x, once for y, and never again). So,
1
2

∑
x∈V deg(x) = |E|, as desired. �

Exercise 2.5. Let M,N be stopping times for a Markov chain X0, X1, . . .. Show that
max(M,N) and min(M,N) are stopping times. In particular, if n ≥ 0 is fixed, then
max(M,n) and min(M,n) are stopping times

Exercise 2.6. Let A,B be events such that B ⊆ {X0 = x0}. Then P(A|B) = Px0(A|B).

More generally, if A,B are events, then Px0(A|B) = P(A|B,X0 = x0).

Solution. Using the definition of conditional probability, and then the definition of Px0 ,

Px0(A |B) = Px0(A ∩B)/Px0(B) =
P(A ∩B |X0 = x0)

P(B |X0 = x0)

=
P(A ∩B ∩ {X0 = x0})

P(B ∩ {X0 = x0})
= P(A |B,X0 = x0).

Now, since B ⊆ {X0 = x0}, we get

Px0(A |B) =
P(A ∩B)

P(B)
= P(A |B).

�

Exercise 2.7. Suppose we have a Markov Chain with state space Ω. Let n ≥ 0, ` ≥ 1, let
x0, . . . , xn ∈ Ω and let A ⊆ Ω`. Using the (usual) Markov property, show that

P((Xn+1, . . . , Xn+`) ∈ A | (X0, . . . , Xn) = (x0, . . . , xn))

= P((Xn+1, . . . , Xn+`) ∈ A |Xn = xn).

Then, show that

P((Xn+1, . . . , Xn+`) ∈ A |Xn = xn) = P((X1, . . . , X`) ∈ A |X0 = xn).

(Hint: it may be helpful to use the Multiplication Rule.)



MATH 505B HOMEWORK SOLUTIONS 5

Solution. Let x0, . . . , xn+` ∈ Ω. Then by the Multiplication rule, (Proposition 2.7 in the
notes),

P(Xn+1 = xn+1, . . . , Xn+` = xn+` | (X0, . . . , Xn) = (x0, . . . , xn))

= P(X0 = x0, . . . , Xn+` = xn+`)/P(X0 = x0, . . . , Xn = xn)

= P(Xn+` = xn+` |X0 = x0, . . . , Xn+`−1 = xn+`−1)

·P(Xn+`−1 = xn+`−1 |X0 = x0, . . . , Xn+`−2 = xn+`−2)

· · ·P(Xn+1 = xn+1 |X0 = x0, . . . , Xn = xn).

From the Markov property, we get

P(Xn+1 = xn+1, . . . , Xn+` = xn+` | (X0, . . . , Xn) = (x0, . . . , xn))

= P(Xn+` = xn+` |Xn+`−1 = xn+`−1)

·P(Xn+`−1 = xn+`−1 |Xn+`−2 = xn+`−2) · · ·P(Xn+1 = xn+1 |Xn = xn).

Using the Multiplication rule and the Markov property again,

P(Xn+1 = xn+1, . . . , Xn+` = xn+` |Xn = xn))

= P(Xn = xn, . . . , Xn+` = xn+`)/P(Xn = xn)

= P(Xn+` = xn+` |Xn = xn, . . . , Xn+`−1 = xn+`−1)

·P(Xn+`−1 = xn+`−1 |Xn = xn, . . . , Xn+`−2 = xn+`−2) · · ·P(Xn+1 = xn+1 |Xn = xn)

= P(Xn+` = xn+` |Xn+`−1 = xn+`−1)

·P(Xn+`−1 = xn+`−1 | Xn+`−2 = xn+`−2) · · ·P(Xn+1 = xn+1 |Xn = xn).

Combining the above, we get

P(Xn+1 = xn+1, . . . , Xn+` = xn+` | (X0, . . . , Xn) = (x0, . . . , xn))

P(Xn+1 = xn+1, . . . , Xn+` = xn+` |Xn = xn)).

Summing over all disjoint points (xn+1, . . . , xn+`) ∈ A then proves the first assertion.

P((Xn+1, . . . , Xn+`) ∈ A | (X0, . . . , Xn) = (x0, . . . , xn))

= P((Xn+1, . . . , Xn+`) ∈ A |Xn = xn).

For the second assertion, note that we showed above

P(Xn+1 = xn+1, . . . , Xn+` = xn+` |Xn = xn))

= P(Xn+` = xn+` |Xn+`−1 = xn+`−1)

·P(Xn+`−1 = xn+`−1 | Xn+`−2 = xn+`−2) · · ·P(Xn+1 = xn+1 |Xn = xn). (∗)
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Using the definition of the transition matrix P ,

P(Xn+` = xn+` |Xn+`−1 = xn+`−1)

·P(Xn+`−1 = xn+`−1 | Xn+`−2 = xn+`−2) · · ·P(Xn+1 = xn+1 |Xn = xn)

= P (xn+`−1, xn+`) · · ·P (xn, xn+1)

= P(X` = x` |X`−1 = xn+`−1)

·P(X`−1 = xn+`−1 | X`−2 = xn+`−2) · · ·P(X1 = xn+1 |X0 = xn)

Then, using equation (∗) for n = 0,

P(X` = x` |X`−1 = xn+`−1)

·P(X`−1 = xn+`−1 | X`−2 = xn+`−2) · · ·P(X1 = xn+1 |X0 = xn)

= P(X1 = xn+1, . . . , X` = xn+` |X0 = xn))

Combining these three equalities,

P(Xn+1 = xn+1, . . . , Xn+` = xn+` |Xn = xn)) = P(X1 = xn+1, . . . , X` = xn+` |X0 = xn)).

Summing over all disjoint points (xn+1, . . . , xn+`) ∈ A then completes the proof. �

Exercise 2.8. Suppose we have a Markov chain X0, X1, . . . with finite state space Ω. Let
y ∈ Ω. Define Ly := max{n ≥ 0: Xn = y}. Is Ly a stopping time? Prove your assertion.

Solution. No, Ly is not a stopping time. We argue by contradiction. Let Ω := {1, 2}. If L1

were a stopping time, then there exists B ⊆ Ω2 such that {L1 = 1} = {(X0, X1) ∈ B}. But
{L1 = 1} = {X1 = 1, 2 = X2 = X3 = X4 = · · · }. That is, the B as defined before does not
exist. �

Exercise 2.9. Let x, y be points in the state space of a finite Markov Chain (X0, X1, . . .).
Let Ty = min{n ≥ 1: Xn = y} be the first arrival time of y. Let j, k be positive integers.
Show that

Px(Ty > kj |Ty > (k − 1)j) ≤ max
z∈Ω

Pz(Ty > j).

(Hint: use Exercise 2.7)

Solution. We first suppose that x 6= y. From Exercise 2.7, if A ⊆ Ω` and if x0, . . . , xn ∈ Ω,

P((Xn+1, . . . , Xn+`) ∈ A | (X0, . . . , Xn) = (x0, . . . , xn)) = P((X1, . . . , X`) ∈ A |X0 = xn).

Multiplying both sides by P((X0, . . . , Xn) = (x0, . . . , xn)), we get

P((Xn+1, . . . , Xn+`) ∈ A, (X0, . . . , Xn) = (x0, . . . , xn))

= P((X1, . . . , X`) ∈ A |X0 = xn)P((X0, . . . , Xn) = (x0, . . . , xn))

≤ max
z∈Ω

P((X1, . . . , X`) ∈ A |X0 = z)P((X0, . . . , Xn) = (x0, . . . , xn))

Summing over all x1, . . . , xn 6= y, we get

P((Xn+1, . . . , Xn+`) ∈ A,X0 = x0, X1 6= y, . . . , Xn−1 6= y,Xn 6= y)

≤ max
z∈Ω

P((X1, . . . , X`) ∈ A |X0 = z)P(X0 = x0, X1 6= y, . . . , Xn−1 6= y,Xn 6= y).
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Dividing both sides by P(X0 = x0, X1 6= y, . . . , Xn 6= y),

P((Xn+1, . . . , Xn+`) ∈ A |X0 = x0, X1 6= y, . . . , Xn−1 6= y,Xn 6= y)

= max
z∈Ω

P((X1, . . . , X`) ∈ A |X0 = z).

Using Exercise 2.6, we can rewrite this as

Px0((Xn+1, . . . , Xn+`) ∈ A |X1 6= y, . . . , Xn−1 6= y,Xn 6= y)

= max
z∈Ω

Pz((X1, . . . , X`) ∈ A).

Or, written another way, and using A = {y}c × · · · × {y}c,
Px0((Ty > n+ ` |Ty > n) ≤ max

z∈Ω
Pz(Ty > `).

�

Exercise 2.10. Let x, y be points in the state space of a finite Markov Chain (X0, X1, . . .)
with transition matrix P . Let Ty = min{n ≥ 1: Xn = y} be the first arrival time of y. Let
j be a positive integer. Show that

P j(x, y) ≤ Px(Ty ≤ j)).

(Hint: can you induct on j?)

Solution. From the Chapman-Kolmogorov equation Proposition 3.24, P j(x, y) = P(Xj =
y |X0 = x) = Px(Xj = y). Since {Xj = y} ⊆ {Ty ≤ j}, we have Px(Xj = y) ≤ Px(Ty ≤ j),
as desired. �

Solution. In the case j = 1, we get equality. We now complete the inductive step. Assume
the inequality is true for j−1, and consider the case of j. Define T ′y = min{n ≥ 2: Xn = y}.
Then T ′y ≥ Ty, so {T ′y ≤ j} ⊆ {Ty ≤ j} for any j ≥ 1.

P j(x, y) = (PP j−1)(x, y) =
∑
z∈Ω

P (x, z)P j−1(z, y)

≤
∑
z∈Ω

P (x, z)Pz(Ty ≤ j − 1) , by the inductive hypothesis

=
∑
z∈Ω

P (x, z)P(Ty ≤ j − 1 |X0 = z) , by definition of Pz

=
∑
z∈Ω

P (x, z)P(T ′y ≤ j |X0 = x,X1 = z) , by Exercise 2.6

=
∑
z∈Ω

P(X0 = x,X1 = z)P(T ′y ≤ j |X0 = x,X1 = z),

= Px(T
′
y ≤ j) ≤ Px(Ty ≤ j).

The last equality used the Total Probability Theorem. Also, in our use of Exercise 2.6, we
let A ⊆ Ωj−1 be the set of points (x1, . . . , xj−1) such that xi = y for some 1 ≤ i ≤ j − 1.
Then

P(Ty ≤ j − 1 |X0 = z) = P((X1, . . . , Xj−1) ∈ A |X0 = z)

= P((X2, . . . , Xj) ∈ A |X0 = x,X1 = z) = P(T ′y ≤ j |X0 = x,X1 = z).
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�

Exercise 2.11. Let x, y be any states in a finite irreducible Markov chain. Show that
ExTy <∞. In particular, Py(Ty <∞) = 1, so all states are recurrent.

Solution. From Lemma 3.27 in the notes, there exists 0 < α < 1 and j > 0 such that, for any
x, y ∈ Ω and for any k > 0, Px(Ty > kj) ≤ αk. So, Px(Ty > kj) ≤ αk. So, using Remark
2.23 in the notes,

ExTy =
∞∑
i=1

P(Ty ≥ i) =
∞∑
j=1

∑
k(j−1)<i≤jk

P(Ty ≥ i)

≤
∞∑
j=1

kP(Ty ≥ k(j − 1)) ≤ k

∞∑
j=1

αj−1 = k/(1− α) <∞.

�

Exercise 2.12 (Simplified Monopoly). Let Ω = {1, 2, . . . , 10}. We consider Ω to be the
ten spaces of a circular game board. You move from one space to the next by rolling a fair
six-sided die. So, for example P (1, k) = 1/6 for every 2 ≤ k ≤ 7. More generally, for every
j ∈ Ω with j 6= 5, P (j, k) = 1/6 if k = (j+ i) mod 10 for some 1 ≤ i ≤ 6. Finally, the space 5
forces you to return to 1, so that P (5, 1) = 1. (Note that mod 10 denotes arithmetic modulo
10, so e.g. 7 + 5 = 2 mod 10.)

Using a computer, find the unique stationary distribution of this Markov chain. Which point
has the highest stationary probability? The lowest?

Compare this stationary distribution to the stationary distribution that arises from the
doubly stochastic matrix: for all j ∈ Ω, P (j, k) = 1/6 if k = (j + i) mod 10 for some
1 ≤ i ≤ 6.

Solution.

P =



0 1/6 1/6 1/6 1/6 1/6 1/6 0 0 0
0 0 1/6 1/6 1/6 1/6 1/6 1/6 0 0
0 0 0 1/6 1/6 1/6 1/6 1/6 1/6 0
0 0 0 0 1/6 1/6 1/6 1/6 1/6 1/6
1 0 0 0 0 0 0 0 0 0

1/6 1/6 0 0 0 0 1/6 1/6 1/6 1/6
1/6 1/6 1/6 0 0 0 0 1/6 1/6 1/6
1/6 1/6 1/6 1/6 0 0 0 0 1/6 1/6
1/6 1/6 1/6 1/6 1/6 0 0 0 0 1/6
1/6 1/6 1/6 1/6 1/6 1/6 0 0 0 0


.

By taking several powers of P on the computer, we know that the resulting matrix will
converge exponentially fast to a rank one matrix with identical rows. And any such row will
approximate the stationary distribution of the Markov chain. The computer outputs the
following distribution:

(0.1747, 0.0991, 0.1003, 0.1013, 0.1047, 0.0916, 0.0945, 0.0811, 0.0782, 0.0745).
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By comparison, when P is doubly stochastic, the stationary distribution has all entries .1.
�

3. Homework 3

Exercise 3.1 (Knight Moves). Consider a standard 8 × 8 chess board. Let V be a set of
vertices corresponding to each square on the board (so V has 64 elements). Any two vertices
x, y ∈ V are connected by an edge if and only if a knight can move from x to y. (The
knight chess piece moves in an L-shape, so that a single move constitutes two spaces moved
along the horizontal axis followed by one move along the vertical axis (or two spaces moved
along the vertical axis, followed by one move along the horizontal axis.) Consider the simple
random walk on this graph. This Markov chain then represents a knight randomly moving
around a chess board. For every space x on the chessboard, compute the expected return
time ExTx for that space. (It might be convenient to just draw the expected values on the
chessboard itself.)

Solution. By inspection, the Markov chain is irreducible. By Corollary 3.37, if π is the
unique solution to π = πP , then ExTx = 1/π(x). So, it suffices to find π(x) for any x ∈ Ω.
From Example 3.50 in the notes, π(x) = deg(x)/(2 |E|). (From a previous exercise, we know
that

∑
x∈V deg(x) = 2 |E|.) The following table depicts the degrees of each entry in the chess

board 

2 3 4 4 4 4 3 2
3 4 6 6 6 6 4 3
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
3 4 6 6 6 6 4 3
2 3 4 4 4 4 3 2


.

So, 336 =
∑

x∈V deg(x) = 2 |E|, so ExTx = 1/π(x) = (2 |E|)/deg(x) = 336/deg(x). So, the
following table depicts ExTx at each point on the chessboard

168 112 84 84 84 84 112 168
112 84 56 56 56 56 84 112
84 56 42 42 42 42 56 84
84 56 42 42 42 42 56 84
84 56 42 42 42 42 56 84
84 56 42 42 42 42 56 84
112 84 56 56 56 56 84 112
168 112 84 84 84 84 112 168


.

�

Exercise 3.2. Give an example of a Markov chain where there are at least two different
stationary distributions.
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Solution. Let P =

(
1 0
0 1

)
. Then (1, 0) and (0, 1) are both stationary distributions for this

transition matrix. �

Exercise 3.3. Is there a finite Markov chain where no stationary distribution exists? Either
find one, or prove that no such finite Markov chain exists.

(If you want to show that no such finite Markov chain exists, you are allowed to just prove
the weaker assertion that: for every stochastic matrix P , there always exists a nonzero vector
π with π = πP .)

Solution. Let P be an n× n stochastic matrix. Let x be the column vector with all entries
equal to 1. Since Px = x, we know that x is in the null space of P − I with x 6= 0. So, the
column rank and row rank of P−I are both less than n. So, there exists a linear combination
of the rows of P − I that is equal to the zero vector. That is, there must exist a row vector
π such that π(P − I) = 0, so that πP = P .

To get the stronger result that there is a probability distribution π with π = πP , we can use
Brouwer’s Fixed point Theorem (which is something not covered in this course). If P is an
n×n stochastic matrix, and if ν is any probability distribution, then νP is also a probability
distribution. So, if ∆n := {(x1, . . . , xn) ∈ Rn : xi ≥ 0 ∀ 1 ≤ i ≤ n,

∑n
i=1 xi = 1}, then ∆n

is a closed, bounded, and convex set, and the function T (x) := xP , x ∈ ∆n is a continuous
function T : ∆n → ∆n. So, Brouwer’s Fixed Point Theorem says there exists π ∈ ∆n such
that Tπ = π, i.e. πP = π. �

Exercise 3.4. Let P be the transition matrix for a finite Markov chain with state space Ω.
We say that the matrix P is doubly stochastic if the columns of P each sum to 1. (Since
P is a stochastic matrix, each of its rows already sum to 1.) Let π such that π(x) = 1/ |Ω|
for all x ∈ Ω. That is, π is uniform on Ω. Show that π = πP .

Solution.

(πP )(x) =
∑
y∈Ω

π(y)P (y, x) =
1

|Ω|
∑
y∈Ω

P (y, x) =
1

|Ω|
= π(x).

The penultimate equality used our assumption. �

Exercise 3.5. Give an example of a random walk on a graph that is not reversible.

Solution. Let P be any doubly stochastic matrix that is not symmetric, and such that the
Markov chain is irreducible. Then the Markov chain will not be reversible. By Exercise 3.4,
the (unique) stationary distribution is uniform, so reversibility reduces to P (x, y) = P (y, x)
for all x, y ∈ Ω. And this equality will not hold when P is not symmetric.

For example, let

P =

0 1 0
0 0 1
1 0 0

 .
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The (left) eigenvector of P corresponding to the eigenvalue 1 is (1, 1, 1). So the unique
stationary distribution satisfies π(1) = π(2) = π(3) = 1/3. But π(1)P (1, 2) = (1/3)(1) = 1/3
whereas π(2)P (2, 1) = (1/3)(0) = 0. �

Exercise 3.6. Let P be the transition matrix of a finite, irreducible, reversible Markov
chain with state space Ω and stationary distribution π. Let f, g ∈ R|Ω| be column vectors.
Consider the following bilinear function on f, g, which is referred to as an inner product (or
dot product):

〈f, g〉 :=
∑
x∈Ω

f(x)g(x)π(x).

Show that P is self-adjoint (i.e. symmetric) in the sense that

〈f, Pg〉 = 〈Pf, g〉.
In particular (for those that have taken 115A), the spectral theorem implies that all eigen-
values of P are real.

Finally, find a transition matrix P such that at least one eigenvalue of P is not real.

Solution. Applying the definitions of the inner product and matrix multiplication, then
switching the order of summation and using reversibility,

〈f, Pg〉 =
∑
x∈Ω

f(x)(Pg)(x)π(x) =
∑
x∈Ω

f(x)
∑
y∈Ω

π(x)P (x, y)g(y)

=
∑
y∈Ω

f(x)
∑
x∈Ω

π(x)P (x, y)g(y) =
∑
y∈Ω

g(y)
∑
x∈Ω

π(y)P (y, x)f(x)

=
∑
y∈Ω

g(y)(Pf)(y)π(y) = 〈Pf, g〉.

Finally, consider again the doubly stochastic matrix

P =

0 1 0
0 0 1
1 0 0

 .

The eigenvalues λ of this matrix satisfy λ3 = 1. So, two of the eigenvalues are not real,
namely e2π

√
−1/3 and e4π

√
−1/3. �

Exercise 3.7 (Ehrenfest Urn Model). Suppose we have two urns and n spheres. Each
sphere is in either of the first or the second urn. At each step of the Markov chain, one of
the spheres is chosen uniformly and random and moved from its current urn to the other
urn. Let Xn be the number of spheres in the first urn at time n. Then the transition matrix
defining the Markov chain is

P (j, k) =


n−j
n

, if k = j + 1
j
n

, if k = j − 1

0 , otherwise.

Show that the unique stationary distribution for this Markov chain is a binomial with pa-
rameters n and 1/2.
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Solution. Since any sphere is chosen uniformly at random, it is always possible to move
from one configuration of spheres to another configuration. That is, any desired sequence
of moves of spheres can occur, with some probability. So, this Markov chain is finite and
irreducible, and therefore the stationary distribution is unique, by Theorem 3.36 in the notes.
So, it suffices to show that the binomial is stationary. From Proposition 3.46 in the notes,
it suffices to show that this distribution is reversible. Indeed, for any 0 ≤ j < n, we have

π(j)P (j, j + 1) =

(
n

j

)
2−n

n− j
j

=
n!

(n− j)!j!
2−n

n− j
n

=
n!

(n− j − 1)!j!
2−n

1

n

=
n!

(n− j − 1)!(j + 1)!
2−n

j + 1

n
=

(
n

j + 1

)
2−n

j + 1

n
= π(j + 1)P (j + 1, j).

Since P (j, j + 1) and P (j + 1, j) with 0 ≤ j < n are the only nonzero entries of P , we have
verified that P is reversible, as desired. �

Exercise 3.8. Let V = {0, 1}n be a set of vertices. We construct a graph from V as follows.
Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ {0, 1}n. Then x and y are connected by an edge in
the graph if and only if

∑n
i=1 |xi − yi| = 1. That is, x and y are connected if and only if they

differ by a single coordinate.

For any x ∈ V , define f(x) =
∑n

i=1 xi, f : V → {0, 1, . . . , n}. Given x ∈ V , we identify
x with the state in the Ehrenfest urn model where the first urn has exactly f(x) spheres.
Show that the Ehrenfest urn model is a projection of the simple random walk on V in
the following sense. The probability that x ∈ V transitions to any state z ∈ V such that
y = f(z) is equal to: the probability that Ehrenfest model with state f(x) transitions to
state y.

Moreover, the unique stationary distribution for the simple random walk on V can be
projected to give the unique stationary distribution in the Ehrenfest model. That is, if
π is the unique stationary distribution for the simple random walk on V , and if for any
A ⊆ {0, 1, . . . , n}, we define µ(A) = π(f−1(A)), then µ is Binomial with parameters n and
1/2. (Here f−1(A) = {x ∈ V : f(x) ∈ A}.)

Solution. Let x ∈ V . The probability that x ∈ V transitions to any state z ∈ V such that
y = f(z) is equal to zero, unless y = f(x) + 1 or y = f(x) − 1. If f(x) < n, we consider
the case y = f(x) + 1. In this case, the number of z ∈ V such that f(z) = y is the number
of n-tuples (z1, . . . , zn) ∈ V that are obtained by changing a zero entry of x to a one. This
number is equal to n − f(x). Also, the degree of every point in V is n. So, the probability

that x ∈ V transitions to any state z ∈ V such that y = f(z) is n−f(x)
n

.

Similarly, the probability that Ehrenfest model with state f(x) transitions to state y is n−f(x)
n

,
by the definition of the Ehrenfest model, using y = f(x) + 1.

A similar argument applies in the case y = f(x)− 1.

Now, the simple random walk on V has stationary distribution π(x) = deg(x)/(2 |E|) =
n/(n2n) = 2−n, for any x ∈ V , by Example 3.50 in the notes. If t ∈ {0, 1, . . . , n}, then
µ(f−1(t)) is, by definition of π, 2−n times the number of n-tupes (z1, . . . , zn) ∈ V such that
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z1 + · · · + zn = t. That is, µ(f−1(t)) = 2−n
(
n
t

)
. That is, µ(f−1(·)) is a binomial with

parameters n and 1/2. �

Exercise 3.9 (Birth-and-Death Chains). A birth-and-death chain can model the size
of some population of organisms. Fix a positive integer k. Consider the state space Ω =
{0, 1, 2, . . . , k}. The current state is the current size of the population, and at each step the
size can increase or decrease by at most 1. We define {(pn, rn, qn)}kn=0 such that pn+rn+qn =
1 for each n, and

• P (n, n+ 1) = pn > 0 for every 0 ≤ n < k.
• P (n, n− 1) = qn > 0 for every 0 < n ≤ k.
• P (n, n) = rn ≥ 0 for every 0 ≤ n ≤ k.
• q0 = pk = 0.

Show that the birth-and-death chain is reversible.

Solution. We first try to define ν(n) for any 0 ≤ n < k so that ν(n)P (n, n+1) = ν(n+1)P (n+
1, n). Suppose we have defined ν(0) := 1. We then define ν(1) := ν(0)P (0, 1)/P (1, 0) =
ν(0)p0/q1. We then inductively define ν(n+1) := ν(n)P (n, n+1)/P (n+1, n) = ν(n)pn/qn+1,
for any 0 ≤ n < k. In this case, ν(n) is well-defined for any 0 ≤ n ≤ k. By construction,
ν satisfies the reversibility condition. Since ν may not be a probability distribution, we
therefore define π(n) := ν(n)/

∑
0≤j≤n ν(j). Then π satisfies the reversibility condition, and

π is a probability distribution. �

Exercise 3.10. Give an explicit example of a Markov chain where every state has period
100.

Solution. Let Ω = {1, . . . , 100}. Define P so that P (n, n + 1) = 1 for every 1 ≤ n < 100,
and P (100, 1) = 1. Then P 100k(n, n) = 1 for every n ∈ Ω, and for every k ≥ 1, while
P j(n, n) = 0 for any positive integer j that is not a multiple of 100. So, every n ∈ N satisfies
N (n) = {100, 200, 300, . . .}, so that every state in the Markov chain has period 100. �

4. Homework 4

Exercise 4.1. Let µ, ν be probability distributions on a finite state space Ω. Then

||µ− ν||TV =
1

2

∑
x∈Ω

|µ(x)− ν(x)| .

(Hint: consider the set A = {x ∈ Ω: µ(x) ≥ ν(x)}.)

Solution. Let A = {x ∈ Ω: µ(x) ≥ ν(x)}. Then by definition of the total variation distance,

||µ− ν||TV ≥ |µ(A)− ν(A)| = µ(A)− ν(A)

=
∑

x∈Ω: µ(x)≥ν(x)

(µ(x)− ν(x)) =
∑

x∈Ω: µ(x)≥ν(x)

|µ(x)− ν(x)| .
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Similarly, if A′ = {x ∈ Ω: µ(x) ≤ ν(x)}, then

||µ− ν||TV ≥
∑

x∈Ω: µ(x)≤ν(x)

|µ(x)− ν(x)| .

Adding the two inequalities,

2 ||µ− ν||TV ≥
∑

x∈Ω: µ(x)≥ν(x)

|µ(x)− ν(x)|+
∑

x∈Ω: µ(x)≤ν(x)

|µ(x)− ν(x)|

=
∑
x∈Ω

|µ(x)− ν(x)| .

On the other hand, if B ⊆ Ω, then without loss of generality, µ(B) ≥ ν(B). Let C := {b ∈
B : µ(b) > ν(b)}. Then

|µ(B)− ν(B)| = µ(B)− ν(B) ≤ µ(C)− ν(C) = |µ(C)− ν(C)| .

Since µ, ν are probability distributions,

|µ(Cc)− ν(Cc)| = |1− µ(C)− (1− ν(C))| = |µ(C)− ν(C)| .

That is,

|µ(B)− ν(B)| ≤ |µ(Cc)− ν(Cc)| .
Adding the two inequalities, we get

2 |µ(B)− ν(B)| ≤ |µ(C)− ν(C)|+ |µ(Cc)− ν(Cc)| =
∑
x∈Ω

|µ(x)− ν(x)| .

�

Exercise 4.2. Let (X0, X1, . . .) be the simple random walk on Z. Show that P0(Xn = 0)
decays like 1/

√
n as n→∞. That is, show

lim
n→∞

√
2nP0(X2n = 0) =

√
2

π
.

Also, show the upper bound

P0(Xn = k) ≤ 10√
n
, ∀n ≥ 0, k ∈ Z.

(Hint 1: first consider the case n = 2r for r ∈ Z. It may be helpful to show that
(

2r
r+j

)
is

maximized when j = 0. To eventually deal with k odd, just condition on the first step of
the walk.)

(Hint 2: you can freely use Stirling’s formula:

lim
n→∞

n!√
2πn(n/e)n

= 1.

Or, there is a more precise estimate: for any n ≥ 3, there exists 1/(12n+ 1) ≤ εn ≤ 1/(12n)
such that

n! =
√

2πe−nnn+1/2eεn .)
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Solution. The event X2n = 0 occurs when 2n fair coin flips result in n heads and n tails.
That is,

P0(X2n = 0) = 2−2n

(
2n

n

)
= 2−2n (2n)!

(n!)2
.

Using the precise version of Stirling’s formula,

P0(X2n = 0) = 2−2n

(
2n

n

)
= 2−2n

√
2πe−2n(2n)2n+1/2eε2n

2πe−2nn2n+1e2εn
=

√
2√

2π
√
n

eε2n

e2εn
=

1√
π
√
n

eε2n

e2εn
.

Letting n→∞, we then get

lim
n→∞

√
2nP0(X2n = 0) =

√
2/π.

We now show the upper bound. We claim that
(

2r
r+j

)
is maximized for 0 ≤ j ≤ r such that

j = 0. To see this, note that
(

2r
r+j

)
= (2r)!

(r−j)!(r+j)! , and (r−j)!(r+j)!
(r−j−1)!(r+j+1)!

= r−j
r+j+1

< 1. That is,
1

(r−j)!(r+j)! >
1

(r−j)−1!(r+j+1)!
. That is, (2r)!

(r−j)!(r+j)! increases as j ≥ 0 decreases. That is,
(

2r
r+j

)
is maximized for 0 ≤ j ≤ r when j = 0. So, if n = 2r is even, and if 0 ≤ k ≤ n with k even,

P0(X2r = k) = 2−2r

(
2r

k

)
≤ 2−2r

(
2r

r

)
= 2−2r

(
2r

r

)
=

1√
π
√
r

eε2r

e2εr
≤ 5√

r
.

The last equality was shown above. If k is odd, then this probability is zero.

It remains to check X2r+1 with k odd. In this case, by conditioning on X0,

P0(X2r+1 = k) =
1

2
P1(X2r = k) +

1

2
P−1(X2r = k).

Then, using the Markov property,

P0(X2r+1 = k) =
1

2
P0(X2r = k − 1) +

1

2
P0(X2r = k + 1). ≤ 1

2

5√
r

+ ≤ 1

2

5√
r
≤ 10√

r
.

�

Exercise 4.3. Show that every state in the simple random walk on Z is recurrent. (You
should show this statement for any starting location of the Markov chain.)

Then, find a nearest-neighbor random walk on Z such that every state is transient.

Solution. Let k, r > 0. Then Pk(T0 > r) ≤ 20k√
r

from Theorem 3.66 in the notes. Since

{T0 =∞} ⊆ {T0 > r} for any r > 0, we have

Pk(T0 =∞) ≤ 20k√
r
, ∀r > 0.

Letting r → ∞, we conclude that Pk(T0 = ∞) = 0. That is, 0 is recurrent as long as
k > 0. Since these random walks are symmetric with respect to reflection across 0, we have
Pk(T0 > r) = P−k(T0 > r) for any k.r > 0. So, we similarly conclude that Pk(T0 =∞) = 0
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for any k < 0. Finally, P0(T0 =∞) = 0, since, if we condition on the first step of the simple
random walk and use Exercise 2.7, then

P0(T0 =∞) = P0(T0 =∞|X1 = 1)P(X1 = 1) + P0(T0 =∞|X1 = −1)P(X1 = −1)

=
1

2
P1(T0 =∞) +

1

2
P−1(T0 =∞) = 0.

So, the state 0 is recurrent, no matter where the random walk starts. Let j, k ∈ Z. Using
translation invariance of the Markov chain,

Pj(Tk =∞) = Pj(X1 6= k,X2 6= k, . . .)

= Pj−k(X1 6= 0, X2 6= 0, . . . = Pj−k(T0 =∞) = 0.

So, all states are recurrent.

Finally, define a random walk on Z such that P (n, n + 1) = 1 for all n ∈ Z. Then for
any r > 0, P r(n, n + r) = 1. That is, P r(n, n) = 0 for all r ≥ 1 and for all n ∈ Z. So,
Pn(Tn <∞) = 0 for every n ∈ Z. That is, every state is transient �

Exercise 4.4. For the simple random walk on Z, show that E0T0 =∞. Conclude that, for
any x, y ∈ Z, ExTy =∞.

Solution. From Lemma 3.69 in the notes, P1(T0 > r) = P0(−1 < Xr ≤ 1) ≥ P0(Xr = 0).

From Exercise 4.2, limn→∞
√

2nP0(X2n = 0) =
√

2
π
. That is, there exists m ≥ 0 and a

constant c > 0 such that, for all n ≥ m, P0(X2n = 0) ≥ cn−1/2. Combining our inequalities,

P1(T0 > 2n) ≥ cn−1/2.

So,

E1T0 =
∞∑
n=0

P1(T0 > n) ≥
∞∑
n=0

P1(T0 > 2n) ≥
∞∑
n=0

cn−1/2 =∞.

Let j ∈ Z. From the Total Expectation Theorem,

EjT0 = Ej(T0 |X1 = j + 1)P(X1 = j + 1) + E0(T0 |X1 = j − 1)P(X1 = j − 1).

And from Exercise 2.7

Ej(T0 |X1 = j + 1) =
∞∑
n=0

P(T0 > n |X0 = j,X1 = j + 1)

=
∞∑
n=0

P(T0 > n |X1 = j + 1) = Ej+1(T0).

Therefore, EjT0 ≥ 1
2
Ej+1T0 and EjT0 ≥ 1

2
Ej−1T0. Iteratively applying these inequalities |j|

times, we get
EjT0 ≥ 2−jE1T0 =∞.

Let j, k ∈ Z, r > 0. Using translation invariance of the Markov chain,

Pj(Tk > r) = Pj(X1 6= k, . . . , Xr 6= k)

= Pj−k(X1 6= 0, . . . , Xr 6= 0) = Pj−k(T0 > r).
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Therefore, EjTk = Ej−kT0 =∞, as desired. �

Exercise 4.5. Let (X0, X1, . . .) be the “corner walk” on Z2. The transitions are described
as follows. From any point (x, y) ∈ Z2, the Markov chain adds any of the following four
vector to (x, y) each with probability 1/4: {(1, 1, ), (1,−1), (−1, 1), (−1,−1)}. Using that
the coordinates of this walk are each independent simple random walks on Z, conclude that
there exists c > 0 such that

lim
n→∞

nP(0,0)(X2n = (0, 0)) = c.

That is, P(0,0)(X2n = (0, 0)) is about c/n, when n is large.

Now, note that the usual nearest-neighbor simple random walk on Z2 is a rotation of the
corner walk by an angle of π/4. So, the above limiting statement also holds for the simple
random walk on Z2.

Solution. Let W0,W1, . . . and let Y0, Y1, . . . be independent simple random walks on Z such
that W0 = Y0 = 0. By construction, the stochastic process (W0, Y0), (W1, Y1), . . . is the
corner walk. So, using independence,

P(0,0)(X2n = (0, 0)) = P(0,0)(W2n,Y2n)=(0,0) = P0(W2n = 0)P0(Y2n = 0)

From Exercise 4.2, limn→∞
√

2nP0(W2n = 0) =
√

2
π
. Therefore,

lim
n→∞

nP(0,0)(X2n = (0, 0)) =
(

lim
n→∞

√
nP0(W2n = 0)

)(
lim
n→∞

√
nP0(W2n = 0)

)
=

1

π
.

Finally, the simple random walk on Z2 can be identified with the corner walk by the iden-
tification (x, y) 7→ (x − y, x + y), x, y ∈ Z. That is, if (A1, B1), (A2, B2), . . . is the simple
random walk on Z2, then (A1 − B1, A1 + B1), (A2 − B2, A2 + B2), . . . is the corner walk on
Z2. (The latter stochastic process is translation invariant, and each step of the walk moves
with probability 1/4 by any increment: {(1, 1, ), (1,−1), (−1, 1), (−1,−1)}.) �

Exercise 4.6. Let S0, S1, . . . be a random walk with S0 = 0. Let Y be the number of times
the random walk takes the value 0. Let T0 := min{n ≥ 1: Sn = 0}.

• Y is a geometric random variable with success probability P(T0 =∞).
• EY = 1

P(T0=∞)
. (Here we interpret 1/0 as ∞.)

(Hint: {Y = k} = {T (k−1)
0 <∞, T (k)

0 =∞} = {T (k−1)
0 <∞, T (k)

0 − T (k−1)
0 =∞}.)

Exercise 4.7. Let (X0, X1, . . .) be a finite, irreducible Markov chain with transition matrix
P and state space Ω. For any x, y ∈ Ω, define

G(x, y) := Ex

∞∑
n=0

1{Xn=y} =
∞∑
n=0

Pn(x, y)

to be the expected number of visits to y starting from x. Show that the following are
equivalent:

(i) G(x, x) =∞ for some x ∈ Ω.
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(ii) G(x, y) =∞ for all x, y ∈ Ω.
(iii) Px(Tx <∞) for some x ∈ Ω.
(iii) Px(Ty <∞) for all x, y ∈ Ω.

So, in an irreducible finite Markov chain, a single state is recurrent if and only if all states
are recurrent.

Exercise 4.8. Show that if the Simple Random Walk on Zd is recurrent, then this random
walk takes every value in Zd infinitely many times (with probability 1). And if the Simple
Random Walk on Zd is transient, then this random walk takes any fixed value in Zd only
finitely many times (with probability 1).

Solution. We claim that any neighbor of a recurrent state is a recurrent state for the simple
random walk on Zd. To see this, suppose w is a recurrent state, so that the random walk
visits w infinitely many times with probability 1. Each time the random walk takes the value
w, it moves to any neighbor of w with equal probability. So, the random walk visits any
neighbor of w infinitely many times with probability 1. It follows that either all states are
recurrent, or none of them are.

The exercise follows from this statement. If the Simple Random Walk on Zd is recurrent,
then the random walk visits 0 infinitely many times with probability 1. So, the random walk
visits all states in Zd infinitely many times with probability 1.

If the Simple Random Walk on Zd is transient, then all states of Zd are transient. So, the
random walk takes any fixed value in Zd only finitely many times with probability 1. �

Exercise 4.9. Let 0 < p < 1. Consider the random walk on Z such that P(X1 = 1) = p
and P(X1 = −1) = 1− p. Show that the corresponding random walk S0, S1, . . . is transient
when p 6= 1/2.

Solution. Since (Sn + n)/2 has binomial distribution with parameters n and p, (S2n/2) + n
has binomial distribution with parameters 2n and p, and {S2n = 0} = {S2n/2 + n = n}, so

P(S2n = 0) =

(
2n

n

)
pn(1− p)n.

Using Stirling’s formula in the form n! ∼
√

2πn(n/e)n, we have

P(S2n = 0) =
(2n)!

(n!)2
pn(1− p)n ∼ 1√

2π

√
2

n

(2n)2n

n2n
pn(1− p)n =

1√
2πn

(4p(1− p))n.

Since p 6= 1/2, 4p(1− p) < 1, so this quantity decays exponentially in n, i.e.
∞∑
n=0

P(S2n = 0) <∞.

So, the random walk is transient by Theorem 3.78. �

Exercise 4.10. Let S0, S1, . . . and S ′0, S
′
1, . . . be independent simple random walks on Zd.

Let N :=
∑

n,m≥0 1Sn=S′m be the number of pairs of intersections of these two random walks.

For any y ∈ Rd, let φ(y) := Eei〈y,X1〉.
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• Show EN = lims→1−
∫

[−π,π]d
1

|1−sφ(y)|2
dy

(2π)d
. (Hint: consider Eei〈y,(Sn−S

′
m)〉.)

• For what d ≥ 1 is EN <∞?
• Let C := {Sn : n ≥ 0} ∩ {S ′n : n ≥ 0} be the intersection set of the two independent

random walks. Let |C| denote the cardinality of C. Show that if the simple random
walk on Zd is transient, then P(N = ∞) = 1 if and only if P(|C| = ∞) = 1. (Hint:
N =

∑
x∈C NxN

′
x where Nx :=

∑
n≥0 1Sn=x is the number of visits of the first random

walk to x.) In the recurrent case d = 1, 2, Exercise 4.8 implies that P(|C| =∞) = 1.
For any d ≥ 1, note that N < ∞ implies |C| < ∞. It can also be shown that
P(N < ∞) ∈ {0, 1}, P(|C| = ∞) ∈ {0, 1}, and that P(N < ∞) = 1 if and only if
EN < ∞ (you don’t have to show these things). In summary, P(|C| = ∞) = 1 if
and only if EN =∞.
• Hypothesize what happens to EN when we instead consider the tuples of intersections

of k > 2 independent simple random walks in Rd. (You don’t have to prove your
hypothesis.)

5. Homework 5

Exercise 5.1. Using the Optional Stopping Theorem, prove Wald’s equations:

Let X1, X2, . . . : C → R be i.i.d. Let N be a stopping time. Let S0, S1, . . . be the correspond-
ing random walk with S0 := 0.

• If EN <∞, and E |X1| <∞, then ESN = EX1EN .
• If EX1 = 0,EX2

1 <∞ and EN <∞, then ES2
N = EX2

1EN .

Exercise 5.2. Let 1/2 < p < 1. Consider the random walk on Z such that P(X1 = 1) = p
and P(X1 = −1) = 1−p. Let S0, S1, . . . be the corresponding random walk with S0 := 0. Let
N := min{n ≥ 1: Sn > 0}. Using Wald’s equation for min(N, n) and then letting n → ∞,
show that EN = 1/EX1 = 1/(2p− 1).

Solution. Since N is a stopping time, if n > 1 is fixed, min(N, n) is a stopping time with
E min(N, n) ≤ n < ∞. Also, E |X1| ≤ 1 < ∞. Note that EX1 = p − (1− p) = 2p− 1. So,
from Wald’s equation,

ESmin(N,n) = EX1E min(N, n) = (2p− 1)E min(N, n). (∗)

Recall that EX1 = p − (1 − p) = 2p − 1 > 0 since p > 1/2. Using Markov’s inequality for
the fourth moment, ∃ c = c(p) > 0 such that, for all n ≥ 1,

P(Sn ≤ 0) ≤ P

(∣∣∣∣Sn − nEX1

n

∣∣∣∣ > EX1

2

)
≤ c

n2
. (∗∗)

In particular, P(N =∞) = 0, so the right side of (∗) converges monotonically to (2p−1)EN
as n→∞, by the Monotone Convergence Theorem. Meanwhile, by the definition of N , the
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left side of (∗) can be estimated as

1 ≥ ESmin(N,n) = ESmin(N,n)(1N≤n + 1N>n) = ESN1N≤n + ESn1N>n

= E1N≤n + ESn1N>n = P(N ≤ n) + ESn1N>n ≥ P(N ≤ n)− nP(N > n)

= 1− (n+ 1)P(N > n).

(We always have Sn ≥ −n.) By definition of N , we have P(N > n) ≤ P(Sn ≤ 0). So, from
(∗∗) and the Squeeze Theorem, we conclude that limn→∞ESmin(N,n) = 1, so that (∗) says
1 = (2p− 1)EN , as desired. �

Exercise 5.3. Let X0 = 0. Let (X0, X1, . . .) such that P(Xi = 1) = P(Xi = −1) = 1/2 for
all i ≥ 1. For any n ≥ 0, let Yn = X0 + · · · + Xn. So, (Y0, Y1, . . .) is a symmetric simple
random walk on Z. Show that Y 2

n − n is a martingale (with respect to (X0, X1, . . .)).

Solution. Let m0, x0, . . . , xn ∈ Z. Then

E(Y 2
n+1 − (n+ 1)− [Y 2

n − n] |Xn = xn, . . . , X0 = x0, Y
2

0 = m0)

= E((Xn+1 + xn + · · ·+ x0)2 − (xn + · · ·+ x0)2 − 1)

= E(X2
n+1 − 1) + E(Xn+1)(xn + · · ·+ x0) = 0 + 0 = 0.

�

Exercise 5.4. Let 1/2 < p < 1. Let (X0, X1, . . .) such that P(Xi = 1) = p and P(Xi =
−1) = 1−p for all i ≥ 1. For any n ≥ 0, let Yn = X0+· · ·+Xn. Let T0 = min{n ≥ 1: Yn = 0}.
Prove that P1(T0 =∞) > 0. Then, deduce that P0(T0 =∞) > 0. That is, there is a positive
probability that the biased random walk never returns to 0, even though it started at 0.

Solution. Let X0 := 1. From Example 4.12 in the notes, if q := 1 − p, then (q/p)Yn is
a martingale. Since 1/2 < p < 1, q/p < 1, and by definition of T0, Yn∧T0 ≥ 0 for all
n ≥ 0, so that 0 ≤ (q/p)Yn∧T0 ≤ 1 for all n ≥ 0. If P1(T0 = ∞) = 0, then the Optional
Stopping Theorem, Version 2, implies that E(q/p)Y0 = E(q/p)YT0 . But E(q/p)Y0 = q/p and
E(q/p)YT = 1. Therefore P1(T0 = ∞) > 0. Finally P0(T0 = ∞) = P0(T0 = ∞|X1 =
1)P(X1 = 1) + P0(T0 = ∞|X1 = −1)P(X1 = −1) ≥ pP0(T0 = ∞|X1 = 1) = pP1(T0 =
∞) > 0. �

Solution. Let m ≥ 1. From the multiplication rule, (Proposition 2.8 in the notes),

P1(T2m < T0) =
m∏
i=1

P1(T2i < T2i−1 |T2i−1 < T0). (∗)

For any fixed i ≥ 1, let T := min{n ≥ 1: Xn = 0 or Xn = 2i−1}. From the Strong Markov
Property (Theorem 3.16 in the notes),

P1(XT+1 > 0, . . . , XT+k > 0, Xt+k+1 = 2i |T = j, (X0, . . . , Xj) = (x0, . . . , xj−1, 2
i−1))

= P2i−1(Xj+1 > 0, . . . , Xj+k > 0, Xj+k+1 = 2i).

Summing over all possibilities for x1, . . . , xj−1 ∈ Z and j, k ≥ 1, and using the Total proba-
bility Theorem,

P1(T2i < T0 |T2i−1 < T0) = P2i−1(T2i < T0)P1(T <∞).
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As shown in class (Example 4.28 for the Gambler’s Ruin problem),

P2i−1(T2i < T0) =
32i−1 − 32i

1− 32i
≥ 32i − 32i−1

32i
= 1− 3−2i−1

.

For any 0 < t < 1/2, 1− t ≥ e−3t. So, P2i−1(T2i < T0) ≥ e−31−2i−1

. Substituting into (∗), and
using P1(T <∞) = 1 (which follows since the Markov chain restricted to {0, 1, 2, . . . , 2i−1}
is finite and irreducible, so all states are recurrent.),

P1(T2m < T0) ≥
m∏
i=1

e−3−2i−1

= e−
∑m
i=1 31−2i−1

≥ e−
∑∞
i=1 31−2i−1

≥ e−
∑∞
i=1 31−i = e−3/2 > 0.

Note that T2m ≥ 2m for every m ≥ 1, so {T0 = ∞} = ∩∞m=1{T0 ≥ T2m}. And the sets
{T0 ≥ T2m}, {T0 ≥ T2m+1}, . . . are decreasing. So, using continuity of the probability law,

P1(T0 =∞) = lim
m→∞

P1(T0 ≥ T2m) ≥ e−3/2.

That is, P1(T0 =∞) ≥ e−3/2 > 0, as desired. �

Exercise 5.5 (Ballot Theorem). Let a, b be positive integers. Suppose there are c votes
cast by c people in an election. Candidate 1 gets a votes and candidate 2 gets b votes. (So
c = a + b.) Assume a > b. The votes are counted one by one. The votes are counted in a
uniformly random ordering, and we would like to keep a running tally of who is currently
winning. (News agencies seem to enjoy reporting about this number.) Suppose the first
candidate eventually wins the election. We ask: with what probability will candidate 1
always be ahead in the running tally of who is currently winning the election? As we will
see, the answer is a−b

a+b
.

To prove this, for any positive integer k, let Sk be the number of votes for candidate 1,
minus the number of votes for candidate 2, after k votes have been counted. Then, define
Xk := Sc−k/(c − k). Show that X0, X1, . . . is a martingale. Then, let T such that T =
min{0 ≤ k ≤ c : Xk = 0}, or T = c − 1 if no such k exists. Apply the Optional Stopping
theorem to XT to deduce the result.

Solution.

E(Xk+1 −Xk |Sc−k = sc−k, . . . , Sc = sc, X0 = x0)

= E

(
Sc−k−1

c− k − 1
− sc−k
c− k

|Sc−k = sc−k, . . . , Sc = sc, X0 = x0

)
= E

(
Sc−k−1 − Sc−k + sc−k

c− k − 1
− sc−k
c− k

|Sc−k = sc−k, . . . , Sc = sc, X0 = x0

)
Given that Sc−k = sc−k, c − k votes have been counted, and there are sc−k more votes for
candidate 1 than candidate 2, among the first c−k counted votes. So, if there are x votes for
candidate 1 after c− k votes have been counted, then there are c− k−x votes for candidate
2. And we know x = sc−k + (c − k − x) by definition of sc−k, so 2x = sc−k + c − k, and
x = (1/2)(sc−k + c− k).
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Given that Sc−k = sc−k, the expected value of Sc−k−1 − Sc−k is the change in the vote tally,
with all c−k votes equally likely to be chosen. (That is, we can think of counting the ballots
“in reverse.” Given the value of Sc−k, we can think of c − k votes as sitting in a pile of
“counted” votes. Then Sc−k−1 − Sc−k can be found by choosing any of these c − k votes
uniformly at random, and placing this vote into the pile of “uncounted” votes.) That is, this
(conditional) expected value of Sc−k−1 − Sc−k is

(−1) · x

c− k
+ (1)

c− k − x
c− k

=
−2x+ c− k

c− k
= − sc−k

c− k
.

Therefore,

E(Xk+1 −Xk |Sc−k = sc−k, . . . , Sc = sc, X0 = x0)

= E

(
− sc−k

c−k + sc−k

c− k − 1
− sc−k
c− k

|Sc−k = sc−k, . . . , Sc = sc, X0 = x0

)

= sc−k

(
− 1
c−k + 1

c− k − 1
− 1

c− k

)
= sc−k

( (
c−k−1
c−k

)
c− k − 1

− 1

c− k

)
= 0.

We conclude that X1, X2, . . . is a martingale. Then

P(candidate 1 always leads the vote tally) = EXT = EX0 = ESc/c =
a− b
a+ b

.

(Since a > b, if the first vote is counted for candidate 2, then Xt will be zero for some t. So,
XT = 1 if and only if Sk > 0 for all 1 ≤ k ≤ c. And XT = 0 otherwise. So, EXT = P(Sk > 0)
for all 1 ≤ k ≤ c. That is, EXT is the probability that candidate 1 always leads the vote
tally.) �

Exercise 5.6. Let X1, X2, . . . be i.i.d. random variables with EXi = 0 for every i ≥ 1.
Suppose there exists σ > 0 such that Var(Xi) = σ2 for all i ≥ 1. For any n ≥ 1, let
Sn = X1 + · · · + Xn. Show that S2

n − nσ2 is a martingale with respect to X1, X2, . . .. (We
let X0 = 0.)

Let a > 0. Let T = min{n ≥ 1: |Sn| ≥ a}. Using the Optional Stopping Theorem, show
that ET ≥ a2/σ2. Observe that a simple random walk on Z has σ2 = 1 and ET = a2 when
a ∈ Z.

(When applying the Optional Stopping Theorem, you do not have to show that the martin-
gale is bounded.)

Solution.

E(Sn+1 − Sn |Xn = xn, . . . , X0 = x0, S0 = s0)

= E((Xn+1 + x1 + · · ·+ xn)2 − (n+ 1)σ2 − (x1 + · · ·+ xn)2 + nσ2 |Xn = xn)

= EX2
n+1 − 2(x1 + · · ·+ xn)EXn+1 − σ2EX2

n+1 − σ2 = 0.

From the Optional Stopping Theorem,

0 = ES0 − 0 = ES2
T − ETσ2.
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(Note that P(T <∞) = 1 by the Central Limit Theorem) Since S2
T ≥ a2, we have

ET = σ−2ES2
T ≥ σ−2a2.

So, if P(Xi = 1) = P(Xi = −1) = 1/2 for all i ≥ 1, we have σ2 = 1, and we recover the
simple random walk on Z. And when a ∈ Z, we have S2

T = a2, so the above argument shows
ET = a2. Alternatively, we showed in Example 4.31 in the notes that ET = a2 when a ∈ Z.

�

Exercise 5.7 (Azuma’s Inequality). In this exercise, we prove a generalization of the
Hoeffding inequality to martingales. Let c1, c2, . . . > 0. Let (X0, X1, . . .) be a martingale.
Assume that |Xn −Xn−1| ≤ cn for all n ≥ 1. Then for any t > 0,

P(|Xn −X0| > t) ≤ 2e
− t2

2
∑n
i=1

c2
i .

Prove this inequality using the following steps.

• Let α > 0. Show that Eeα(Xn−X0) = E[eα(Xn−1−X0)E(eα(Xn−Xn−1)|Fn−1)]. (When Y
is a random variable, we denote E(Y |Fn) := g(X0, . . . , Xn) where g(x0, . . . , xn) :=
E(Y |X0 = x0, . . . , Xn = xn) for any x0, . . . , xn ∈ R.)
• For any y ∈ [−1, 1], show that eαcny ≤ 1+y

2
eαcn + 1−y

2
e−αcn .

• Take the conditional expectation of this inequality when y = (Xn −Xn−1)/cn.
• Now argue as in Hoeffding’s inequality.

Using Azuma’s inequality, deduce McDiarmid’s Inequality. Let X1, . . . , Xn be indepen-
dent real-valued random variables. Let c1, c2, . . . > 0. Let f : Rn → R be a measurable
function such that, for any 1 ≤ m ≤ n,

sup
x1,...,xm−1,xm,x′m,xm+1,...,xn∈R

|f(x1, . . . , xn)− f(x1, . . . , xm−1, x
′
m, xm+1, . . . , xn)| ≤ cm.

Then, for any t > 0,

P(|f(X1, . . . , Xn)− Ef(X1, . . . , Xn)| > t) ≤ 2e
− t2

2
∑n
i=1

c2
i .

(Note that a linear function f recovers Hoeffding’s inequality.)

Solution. We write eα(Xn−X0) = eα(Xn−Xn−1)eα(Xn−1−X0). Conditioning on X0, . . . , Xn−1 gives

E[eα(Xn−X0) |Xn−1 = xn−1, . . . , X0 = x0]

= E[eα(Xn−Xn−1)eα(Xn−1−X0) |Xn−1 = xn−1, . . . , X0 = x0]

= eα(Xn−1−X0)E[eα(Xn−Xn−1) |Xn−1 = xn−1, . . . , X0 = x0].

Taking the expected value of both sides,

E[eα(Xn−X0) =
∑

x0,...,xn−1∈R

E[eα(Xn−X0) |Xn−1 = xn−1, . . . , X0 = x0]P(Xn−1 = xn−1, . . . , X0 = x0)

=
∑

x0,...,xn−1∈R

eα(Xn−Xn−1)E[eα(Xn−1−X0) |Xn−1 = xn−1, . . . , X0 = x0]P(Xn−1 = xn−1, . . . , X0 = x0)

= Eeα(Xn−1−X0)E[eα(Xn−Xn−1) | Fn−1].
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Since y 7→ eαcny is convex, we have

eαcny = e
αcn

(
1+y
2

(1)+ 1−y
2

(−1)

)
≤ 1 + y

2
eαcn +

1− y
2

e−αcn .

Taking the conditional expectation of both sides with y = (Xn −Xn−1)/cn,

E[eα(Xn−Xn−1) | Fn−1] = E[eαcny | Fn−1]

≤ E[
1 + y

2
eαcn +

1− y
2

e−αcn | Fn−1]

=
1

2
[eαcn + e−αcn ] = cosh(αcn) ≤ eα

2c2n/2.

That is,

Eeα(Xn−X0) ≤ eα
2c2n/2Eeα(Xn−1−X0).

Now iterate in n and argue as in Hoeffding’s inequality. �

6. Homework 6

Exercise 6.1. Let λ > 0. Let τ1, τ2, . . . be independent exponential random variables with
parameter λ. For any n ≥ 1, let Tn = τ1 + · · ·+ τn. Fix positive integers nk > · · · > n1 and
positive real numbers tk > · · · > t1. Then

fTnk ,...,Tn1 (tk, . . . , t1) = fT(nk−nk−1)
(tk − tk−1) · · · fT(n2−n1)(t2 − t1)fTn1 (t1).

(Hint: just try to case k = 2 first, and use a conditional density function.)

Solution. In the case k = 2, if we are given Tn1 = t1, then we write Tn2 = (Tn2 − Tn1) +
Tn1 = (Tn2 − Tn1) + t1. And Tn1 is independent of Tn2 − Tn1 . So, if Tn2 = t2, and if we
condition on Tn1 = t1, then Tn2 − Tn1 = t2 − t1, and this event is independent of Tn1 . So,
fTn2 |Tn1 (t2|t1) = fTn2−Tn1 (t2 − t1). Then

P(Tn2 ≤ t2, Tn1 ≤ t1) =

∫ t2

−∞

∫ t1

−∞
fTn2 ,Tn1 (t2, t1)dt2dt1

=

∫ t1

−∞

∫ t2

−∞
fTn2 |Tn1 (t2|t1)dt2fTn1 (t1)dt1

=

∫ t1

−∞

∫ t2

−∞
fTn2−Tn1 (t2 − t1)dt2fTn1 (t1)dt1

=

∫ t1

−∞

∫ t2

−∞
fTn2−n1 (t2 − t1)dt2fTn1 (t1)dt1.

In the last line, we used that Tn2 − Tn1 = τn2 + τn2−1 + · · · + τn1 has the same distribution
function as Tn2−n1 . The case when k = 2 is therefore complete. We now consider the case
when k is larger.
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As before, fTnk |Tnk−1
,...,Tn1

(tk|tk−1, . . . , t1) = fTnk−Tnk−1
(tk − tk−1) = fTnk−nk−1

(tk − tk−1), so

P(Tnk ≤ tk, . . . , Tn1 ≤ t1)

=

∫ tk

−∞
· · ·
∫ t1

−∞
fTnk ,...,Tn1 (tk, . . . , t1)dtk · · · dt1

=

∫ tk

−∞
· · ·
∫ t1

−∞
fTnk |Tnk−1

,...,Tn1
(tk, . . . , t1)fTnk−1

,...,Tn1
(tk−1, . . . , t1)dtk · · · dt1

=

∫ t1

−∞

∫ t2

−∞
fTnk−nk−1

(tk − tk−1)fTnk−1
,...,Tn1

(tk−1, . . . , t1)dt1.

That is, for any t1, . . . , tk ∈ R,

fTnk ,...,Tn1 (tk, . . . , t1) = fTnk−nk−1
(tk − tk−1)fTnk−1

,...,Tn1
(tk−1, . . . , t1).

Iterating this equality k − 1 more times proves the assertion. �

Exercise 6.2. Let s, t > 0 and let m,n be nonnegative integers. Let 0 < tm < tm+1 <
tm+n < tm+n+1, and define (using the notation of Exercise 6.1),

g(tm, tm+1, tm+n, tm+n+1) := fT1(tm+n+1 − tm+n)fTn−1(tm+n − tm+1)fT1(tm+1 − tm)fTm(tm).

Let {N(s)}s≥0 be a Poisson Process with parameter λ > 0. Show that

P(N(s+ t) = m+ n, N(s) = m)

=

∫ s

0

(∫ s+t

s

(∫ s+t

tm+1

(∫ ∞
s+t

g(tm, tm+1, tm+n, tm+n+1)dtm+n+1

)
dtm+n

)
dtm+1

)
dtm.

(Hint: use the joint density, and then use Exercise 6.1.)

Solution. By definition of the Poisson Process, N(s) := max{n ≥ 0: Tn ≤ s} for any s ≥ 0.
Using this definition and Exercise 6.1 with k = 4 and n4 = m+n+1, n3 = m+n, n2 = m+1,
n1 = m, we get

P(N(s+ t) = m+ n, N(s) = m)

= P(Tm+n+1 > s+ t, Tm+n ≤ s+ t, Tm+1 > s, Tm ≤ s, )

=

∫ s

0

∫ s+t

s

∫ s+t

tm+1

∫ ∞
s+t

fT1(tm+n+1 − tm+n)fTn−1(tm+n − tm+1)fT1(tm+1 − tm)

· fTm(tm)dtm+n+1dtm+ndtm+1dtm∫ s

0

(∫ s+t

s

(∫ s+t

tm+1

(∫ ∞
s+t

g(tm, tm+1, tm+n, tm+n+1)dtm+n+1

)
dtm+n

)
dtm+1

)
dtm.

�

Exercise 6.3. Suppose you are running a (busy) car wash. The number of red cars that
come to the car wash between time 0 and time s > 0 is a Poisson poisson with rate 2. The
number of blue cars that come to car wash between time 0 and time s > 0 is a Poisson
poisson with rate 3. Both Poisson processes are independent of each other. All cars are
either red or blue. With what probability will five blue cars arrive, before three red cars
have arrived?
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Solution. By Theorem 5.19 in the notes, the sum of the two poisson processes is a Poisson
process with rate 5. We label this process as {N(s)}s≥0 (so N(s) is the total number of cars
that have arrived by time s.) Let Y1, Y2, . . . be independent identically distributed random
variables with P(Yi = 1) = 2/5 and P(Yi = 2) = 3/5 for all i ≥ 1. Let N1(s) be the number
of integers j ≤ s such that Y1 = j, and let N2(s) be the number of integers j ≤ s such that
Y2 = j. Then {N1(s)}s≥0 and {N2(s)}s≥0 are independent Poisson processes with rates 2
and 3, respectively.

We are asked to find the probability that there are at least 5 blue cars among the first 7 that
arrive. As shown in the proof of Theorem 5.17, if 7 = n1 + n2, then

P(N1(s) = n1, N2(s) = n2 |N(s) = 7) =
7!

n1!n2!
(2/5)n1(3/5)n2 .

We therefore sum this probability over (n1, n2) ∈ {(2, 5), (1, 6), (0, 7)}. That is, our desired
probability is

7∑
j=5

P(N1(s) = 7− j, N2(s) = j |N(s) = 7) =
7∑
j=5

7!

(7− j)!j!
(2/5)7−j(3/5)j

=
7!

57

7∑
j=5

1

(7− j)!j!
(2)7−j(3)j =

1

57
(3522(7)(3) + 36(2)(7) + 37) =

32805

78125
=

962

2291
.

�

Exercise 6.4. Let m be a positive integer and let P be an m×m real matrix.

• Show that the sum
∞∑
k=0

P k

k!

converges. That is, eP is well-defined.
• Show that

eP+I = eP eI .

• Find m×m matrices P,Q such that eP+Q 6= eP eQ.

Solution. Let ||P ||∞ denote the largest element of the entries of P in absolute value. It

follows by induction that
∣∣∣∣P k

∣∣∣∣
∞ ≤ mk ||P ||k∞ for any integer k ≥ 1. So, for any j ≥ 1, we

have ∣∣∣∣∣
∣∣∣∣∣
∞∑
k=j

P k

k!

∣∣∣∣∣
∣∣∣∣∣
∞

≤
∞∑
k=j

∣∣∣∣P k
∣∣∣∣
∞

k!
≤

∞∑
k=j

[m ||P ||∞]k

k!
.

The last quantity goes to zero as j →∞, since em||P ||∞ is well-defined.
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∞∑
k=0

(P + I)k

k!
=
∞∑
k=0

∑k
j=0

(
k
j

)
P j

k!
=
∞∑
j=0

P j

∞∑
k=j

(
k

j

)
1

k!
=
∞∑
j=0

P j

∞∑
k=j

1

j!(k − j)!

=
∞∑
j=0

P j

j!

∞∑
k=j

1

(k − j)!
=
∞∑
j=0

P j

j!

∞∑
`=0

1

`!
= eP eI .

Finally, we choose P,Q to be real 2 × 2 matrices that do not commute. Let Q =

(
1 1
0 0

)
,

P =

(
0 1
0 1

)
. Then PQ = 0, so

eP+Q =
∞∑
k=0

(P +Q)k

k!
=
∞∑
k=0

P k +Qk

k!
= eP + eQ.

Meanwhile, Qk = Q and P k = P for all k ≥ 1. So,

eP =
∞∑
k=0

P k

k!
= P

∞∑
k=0

1

k!
= e · P

Similarly, eQ = e ·Q. So,

eP+Q = eP + eQ = e · (P +Q) = e ·
(

1 2
0 1

)
6= e2

(
0 0
0 0

)
= e2 · PQ = eP eQ.

�

Exercise 6.5. Let m be a positive integer and let P be an m × m real matrix. Denote
Ht := et(P−I) for all t ≥ 0. Let f ∈ Rm be a column vector. Then Htf denotes multiplying
the matrix Ht against the vector f . Show the following:

• H0 = I.
• Hs+t = HsHt for all s, t ≥ 0. (This identity is an analogue of the Chapman-

Kolmogorov equation.)
• Ht1 = 1 for all t ≥ 0. (Moreover, Ht is a stochastic matrix, for all t ≥ 0. Here 1

denotes the vector of all ones.)
• d

dt
|t=0Ht = limt→0+

Ht−H0

t
= (P − I).

• For any f ∈ Rm, we have

d

dt
Htf = (P − I)Htf, ∀ t ≥ 0.

Exercise 6.6 (Markov Property, Continuous-Time). Show that a (finite) continuous-
time Markov chain satisfies the following Markov property: for all x, y ∈ Ω, for any n ≥ 1,
t > 0 and for any s > sn−1 > · · · > s0 > 0 and for all events Hn−1 of the form Hn−1 =
∩n−1
k=0{Xsk = xk}, where xk ∈ Ω for all 0 ≤ k ≤ n − 1, such that P(Hn−1 ∩ {Xs = x}) > 0,

we have

P(Xt+s = y |Hn−1 ∩ {Xs = x}) = P(Xt = y |X0 = x).
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Exercise 6.7. Prove the following discrete-time version the above spectral gap inequality
from class.

Let P be the transition matrix of a finite, irreducible, reversible Markov chain, with state
space Ω and with (unique) stationary distribution π. Let

γ∗ := 1−max{|λ| : λ is an eigenvalue of P with λ 6= 1}

be the absolute spectral gap of P . Then, for any f ∈ RΩ and for any integer k ≥ 1,

Varπ(P kf) ≤ (1− γ∗)2kVarπf.

Exercise 6.8 (Scaling Invariance). Let a > 0. Let {B(t)}t≥0 be a standard Brownian
motion. For any t > 0, define X(t) := 1√

a
B(at). Then {X(t)}t≥0 is also a standard Brownian

motion.

Solution. It suffices to check properties (i),(ii) and (iii) of standard Brownian motion. Prop-
erties (i) and (iii) follow immediately. To verify property (ii), let 0 < s < t. Then X(t) −
X(s) = a−1/2(B(at)−B(as)). Since {B(t)}t≥0 is a standard Brownian motion, B(at)−B(as)
is a Gaussian random variable with mean zero and variance a(t−s). So, a−1/2(B(at)−B(as))
is a Gaussian random variable with mean zero and variance (a−1/2)2a(t−s) = t−s, as desired.

�

Exercise 6.9. Let x1, . . . , xn ∈ R, and if tn > · · · > t1 > 0. Using the independent increment
property, show that the event

{B(t1) = x1, . . . , B(tn) = xn}

has a multivariate normal distribution. That is, the joint density of (B(t1), . . . , B(tn)) is

f(x1, . . . , xn) = ft1(x1)ft2−t1(x2 − x1) · · · ftn−tn−1(xn − xn−1)

where

ft(x) =
1√
2πt

e−x
2/(2t), ∀x ∈ R, t > 0.

Solution. In the case n = 2, if we are given B(t1) = x1, then we write B(t2) = (B(t2) −
B(t1)) + B(t1) = (B(t2) − B(t1)) + x1. If B(t2) = x2, then B(t2) − B(t1) = x2 − x1. And
B(t1) is independent of B(t2)−B(t1), so

fB(t2)|B(t1)(x2|x1) = f[B(t2)−B(t1)+B(t1)] |B(t1)(x2|x1) = f[B(t2)−B(t1)+x1] |B(t1)(x2|x1)

= f[B(t2)−B(t1)] |B(t1)(x2 − x1|x1) = fB(t2)−B(t1)(x2 − x1).

By property (ii) of Brownian motion (in Definition 7.1 in the notes), B(t2− t1) is a Gaussian
random variable with mean zero and variance t2 − t1. So, fB(t2)−B(t1)(x) = ft2−t1(x) for any
x ∈ R. So, using the definition of conditional density, for any x1, x2 ∈ R,

fB(t1),B(t2)(x1, x2) = fB(t2)|B(t1)(x2|x1)fB(t1)(x1) = ft2−t1(x2 − x1)ft1(x1).

We now consider more general n > 2. As before, for any x1, . . . , xn ∈ R,

fB(tn)|B(tn−1),...,B(t1)(xn|x1, . . . , xn−1) = fB(tn)−B(tn−1)(xn − xn−1) = ftn−tn−1(xn − xn−1).
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So,

fB(t1),...,B(tn)(x1, . . . , xn) = fB(tn)|B(t1),...,B(tn−1)(xn|x1, . . . , xn−1)fB(t1),...,B(tn−1)(x1, . . . , xn−1)

= ftn−tn−1(xn − xn−1)fB(t1),...,B(tn−1)(x1, . . . , xn−1).

Iterating this equality n− 1 more times proves the assertion. �

7. Homework 7

Exercise 7.1. Let {B(t)}t≥0 be a standard Brownian motion. Then {(B(t))2 − t}t≥0 is a
(continuous-time) martingale in the following sense: it t > s > 0, and if s > sn > · · · > s1 >
0, and x1, . . . , xn ∈ R, then

E((B(t))2 − t− ((B(s))2 − s) |B(sn) = xn, . . . , B(s1) = x1) = 0.

More generally, for any α ∈ R, let Y (t) := eαB(t)−α2t/2. Show that {Y (t)}t≥0 is a martingale.

Then, using the power series expansion of the exponential function, we have Y (t) =
∑∞

n=0
αn

n!
Mn(t)

for some random variables M1(t),M2(t), . . ., for any α ∈ R. It follows that {M1(t)}t≥0 is a
martingale, {M2(t)}t≥0 is a martingale, etc. (Starting with the following sentence, you do
not have to prove anything.) It turns out that

Mn(t) = tn/2pn(B(t)/
√
t), ∀ t ∈ R, ∀n ≥ 1,

where pn is the nth Hermite polynomial, so that

pn(x) = ex
2/2(−1)n

dn

dxn
e−x

2/2, ∀x ∈ R, ∀n ≥ 1.

For example, using n = 3, we know that {(B(t))3 − 3B(t)}t≥0 is a martingale.

Solution. The martingale property is shown in Exercise 7.4 below with σ = 1 and µ = 0.
That is, for any t > s > sn > · · ·+ s1 > 0 and for any xn, . . . , x1 ∈ R,

E(Y (t)− Y (s) |B(sn) = xn, . . . , B(s1) = x1) = 0.

Suppose we then expand Y as a power series in α. Then there exists M0(t),M1(t), . . . such
that

eB(t)α−α2t/2 =
∞∑
n=0

αn

n!
Mn(t).

Then

0 = E(Y (t)− Y (s) |B(sn) = xn, . . . , B(s1) = x1)

=
∞∑
n=0

αn

n!
E(Mn(t)−Mn(s) |B(sn) = xn, . . . , B(s1) = x1).

Since this expression is zero for any α ∈ R, we conclude that all of the coefficients in the
power series on the right are zero. That is, for any n ≥ 0,

E(Mn(t)−Mn(s) |B(sn) = xn, . . . , B(s1) = x1) = 0.

That is, each of the coefficients M0(t),M1(t), . . . is a martingale.
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To determine the coefficients Mn(t), note that M0 = 1,

M1(t) =
∂

∂α
|α=0e

B(t)α−α2t/2 = B(t).

M2(t) =
∂2

∂α2
|α=0e

B(t)α−α2t/2 = (B(t))2 − t.

M3(t) =
∂3

∂α3
|α=0e

B(t)α−α2t/2 = ((B(t))2 − t)B(t)− 2tB(t) = (B(t))3 − 3tB(t).

The more general statement about Hermite polynomials follows by the generating function
definition of Hermite polynomials. We have

exs−s
2/2 =

∞∑
n=0

sn

n!
pn(x), ∀x, s ∈ R.

So, using x = B(t)/
√
t, and s =

√
tα, we get

eB(t)α−α2t/2 = e
B(t)√
t

(
√
tα)−(

√
tα)2/2

=
∞∑
n=0

(
√
tα)n

n!
pn

(
B(t)√
t

)
=
∞∑
n=0

αn

n!
tn/2pn

(
B(t)√
t

)
.

So, by the definition of Mn, we have Mn(t) = tn/2pn(B(t)/
√
t) for all t ≥ 0, n ≥ 1. �

Exercise 7.2. Let {B(t)}t≥0 be a standard Brownian motion.

• Given that B(1) = 10, what is the expected length of time after t = 1 until B(t) hits
either 8 or 12?
• Now, let σ = 2, and µ = −5. Suppose a commodity has price X(t) = σB(t) + µt for

any time t ≥ 0. Given that the price of the commodity is 4 at time t = 8, what is
the probability that the price is below 1 at time t = 9?
• Suppose a stock has a price S(t) = 4eB(t) for any t ≥ 0. That is, the stock moves

according to Geometric Brownian Motion. What is the probability that the stock
reaches a price of 7 before it reaches a price of 2?

Solution. Let T := inf{t ≥ 1: B(t) = 8 or B(t) = 12}. From the independent increment
property, {B(t+ 1)−B(1)}t≥0 is a standard Brownian motion that is independent of B(1).
So, given that B(1) = 10, T := inf{t ≥ 0: B(t+1)−B(1) = −2 or B(t+1)−B(1) = 2}. So,
if {Z(t)}t≥0 is a standard Brownian motion and if S := inf{t ≥ 0: Z(t) = −2 or Z(t) = 2},
we have

E(T |B(1) = 10) = ES.

From Proposition 7.13 in the notes, ES = 4. So, E(T |B(1) = 10) = 4.

We now answer the second question. It is given that X(8) = 4. That is, σB(8) + 8µ = 4, so
B(8) = (4− 8µ)/σ. We want to find the probability that X(9) < 1, i.e. σB(9) + 9µ < 1, i.e.
B(9) < (1− 9µ)/σ. That is, we want to compute the probability that B(9)−B(8) +B(8) <
(1 − 9µ)/σ. By the independent increment property, B(9) − B(8) is a standard Gaussian
random variable which is independent of B(8). So, we need to compute the probability that
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B(9) − B(8) < (1 − 9µ)/σ + (8µ − 4)/σ. So, if Y is a standard Gaussian random variable,
we need to compute

P

(
Y <

−3− µ
σ

)
=

∫ (−3−µ)/σ

−∞
e−t

2/2 dt√
2π
.

We now answer the third question. If S(t) = 7 then B(t) = log(7/4), and if S(t) = 2, then
B(t) = log(1/2). So, for any a ∈ R let Ta := inf{t ≥ 0: B(t) = a}. We are asked to compute
P(Tlog(7/4) < Tlog(1/2)). From Proposition 7.11, P(Tlog(7/4) < Tlog(1/2)) = log 2

log(7/4)+log 2
. �

Exercise 7.3. Fix x > 0

• Show the bound P(−x < B(t) < x) ≥ x
20
√
t

holds for all t > x2.

• Show that ETx = ∞. (Recall we observed something similar for the simple random
walk on Z.)

Solution.

Let x > 0 and let t > 0. Since B(t) is a Brownian motion, B(t) has density e−y
2/(2t) 1√

2πt
. If

t > x2, and if y ∈ [−x, x], then t > y2, y2/t < 1 and −y2/(2t) > −1/2. So,

P(−x < B(t) < x) =

∫ x

−x
e−y

2/(2t) dy√
2πt
≥ e−1/2

∫ x

−x
dy

1√
2πt

= 2xe−1/2(2πt)−1/2 ≥ x

20
√
t
.

Now, from the Reflection principle, Proposition 7.15 in the notes,

P(Tx > t) = P(−x < B(t) < x) ≥ x

20
√
t
.

So, ETx =
∫∞

0
P(Tx > t)dt ≥ x

20

∫∞
x2
t−1/2dt =∞. �

Exercise 7.4. Let {X(t)}t≥0 = {σB(t) + µt}t≥0 be a standard Brownian motion with

variance σ2 > 0 and drift µ ∈ R. Fix λ ∈ R. Then {Y (t)}t≥0 = {eλX(t)−(λµ+λ2σ2/2)t}t≥0

is a (continuous-time) martingale in the following sense: it t > s > 0, and if s > sn > · · · >
s1 > 0, and x1, . . . , xn ∈ R, then

E(Y (t)− Y (s) |B(sn) = xn, . . . , B(s1) = x1) = 0.

Solution. As a preliminary calculation, we let α > 0 and we compute EeZ when Z is a
Gaussian random variable with mean zero and variance β2 > 0 with β > 0.

EeZ =

∫ ∞
−∞

eze
− z2

2β2
dz√
2πβ

=

∫ ∞
−∞

eβze−
z2

2
dz√
2π

, changing variables

= eβ
2/2

∫ ∞
−∞

e−
(z−β)2

2
dz√
2π

= eβ
2/2.
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Now, using the independent increment property and the stationary property of Brownian
motion,

E(Y (t)− Y (s) |B(sn) = xn, . . . , B(s1) = x1)

= E(eλX(t)−(λµ+λ2σ2/2)t − eλX(s)−(λµ+λ2σ2/2)s) |B(sn) = xn, . . . , B(s1) = x1)

= E(eλσ(B(t)−B(s)+B(s)−B(sn)+B(sn))+λµt−(λµ+λ2σ2/2)t − eλσ(B(s)−B(sn)+B(sn))+λµs−(λµ+λ2σ2/2)s)

|B(sn) = xn, . . . , B(s1) = x1)

= eλµt−(λµ+λ2σ2/2)tE(eλσ(B(t)−B(s)+B(s)−B(sn)+xn) |B(sn) = xn)

− eλµs−(λµ+λ2σ2/2)sE(eλσ(B(s)−B(sn)+B(sn))+λµs |B(sn) = xn))

= eλµt−(λµ+λ2σ2/2)tE(eλσ(B(t)−B(s)))E(eλσ(B(s)−xn))eλσxn

− eλµs−(λµ+λ2σ2/2)sE(eλσ(B(s)−xn))eλσxn

Now, λσ(B(t)−B(s)) is a Gaussian random variable with mean zero and variance λ2σ2(t−s).
So

E(Y (t)− Y (s) |B(sn) = xn, . . . , B(s1) = x1)

= eλµt−(λµ+λ2σ2/2)teλ
2σ2(t−s)/2E(eλσ(B(s)−xn))eλσxn

− eλµs−(λµ+λ2σ2/2)sE(eλσ(B(s)−xn))eλσxn = 0.

�

Exercise 7.5. Let {X(t)}t≥0 = {σB(t) + µt}t≥0 be a standard Brownian motion with
variance σ2 > 0 and negative drift µ < 0. Let a < 0 < b. Let T := inf{t ≥ 0: X(t) ∈ {a, b}}.
Let α := 2 |µ| /σ2. Show that

ET =
1

µ
· b(1− e

αa) + a(eαb − 1)

eαb − eαa
.

Solution. Since X(t) − µt is a martingale, E(X(T ) − µT ) = 0, so ET = 1
µ
EX(T ) by the

Optional Stopping Theorem. Let p be the probability that X(t) takes the value b before

taking the value a. From Proposition 7.22 in the notes, p = 1−eαb
eαb−eαa . So,

ET =
1

µ
EX(T ) =

1

µ
(bp+ a(1− p)) =

1

µ

(
b

1− eαb

eαb − eαa
+ a

1− eαa

eαb − eαa

)
.

(Unfortunately {X(t ∧ T ) − µt ∧ T}t≥0 is not bounded. So, strictly speaking, we cannot
apply an analogue of the Optional Stopping Theorem Version 2. But, we can still verify
that P(T < ∞) = 1. Note that P(T < ∞) ≥ P(Ta < ∞), and if Ta < ∞, then a =
X(Ta) = σB(Ta) + µTa ≤ σB(Ta). So, if we define T ′a := inf{t ≥ 0: B(t) = a/σ}, then
Ta < ∞ implies T ′a < ∞, by property (i) of Brownian motion. So, P(T < ∞) ≥ P(Ta <
∞) ≥ P(T ′a < ∞), and P(T ′a < ∞) = 1 by the Reflection Principle, since P(T ′a < ∞) =

1− lims→∞
∫ a/σ
−a/σ e

− y
2

2s
ds√
2πs

= 1.) �
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Exercise 7.6. Let {X(t)}t≥0 = {σB(t) + µt}t≥0 be a standard Brownian motion with
variance σ2 > 0 and negative drift µ < 0. Let a < 0. Let Ta := inf{t ≥ 0: X(t) = a}.
Let α := 2 |µ| /σ2. Show that

ETa =
a

µ
.

Solution. Since X(t)− µt is a martingale, E(X(Ta)− µTa) = 0, so ETa = 1
µ
EX(Ta) = a

µ
by

the Optional Stopping Theorem.

(Unfortunately {X(t∧T )−µt∧T}t≥0 is not bounded. So, strictly speaking, we cannot apply
an analogue of the Optional Stopping Theorem, Version 2. But we have verified above that
P(Ta <∞) = 1.) �

Exercise 7.7 (Optional). Write a computer program to simulate standard Brownian motion.
More specifically, the program should simulate a random walk on Z with some small step
size such as .002. (That is, simulate Bk(t) when k = 5002 and, say, 0 ≤ t ≤ 1.)

Solution. Here is a program that plots sample paths of Bk(t) with 0 ≤ t ≤ 1, which allows
several paths to occur on the same plot, each colored with a randomly chosen color.

k=500^2;

length=1;

numpts=length*k;

t=linspace(0,length,numpts);

jumps=2*ceil(2*rand(1,numpts)-1)-1;

y=zeros(1,numpts);

for i=2:numpts

y(i)=y(i-1)+jumps(i);

end

plot(t,y/sqrt(k),’Color’,rand(1,3));

hold on;

�

Exercise 7.8 (Optional). The following exercise assumes familiarity with Matlab and is
derived from Cleve Moler’s book, Numerical Computing with Matlab.

The file brownian.m plots the evolution of a cloud of particles that starts at the origin and
diffuses in a two-dimensional random walk, modeling the Brownian motion of gas molecules.

(a) Modify brownian.m to keep track of both the average and the maximum particle distance
from the origin. Using loglog axes, plot both sets of distances as functions of n, the number
of steps. You should observe that, on the log-log scale, both plots are nearly linear. Fit both
sets of distances with functions of the form cn1/2. Plot the observed distances and the fits,
using linear axes.

(b) Modify brownian.m to model a random walk in three dimensions. Do the distances
behave like n1/2?
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The program below answers part (a). We find experimentally that (1/4)n1/2 matches the
average displacement, and (3/5)n1/2 matches the maximum displacement.

delta = .002;

x = zeros(100,2);

axis([-1 1 -1 1])

axis square

numpts=10000;

for i=1:numpts

x = x + delta*randn(size(x));

maxdist(i)=max(sqrt((x(:,1)).^2 +(x(:,2)).^2));

avedist(i)=mean(sqrt((x(:,1)).^2 +(x(:,2)).^2));

end

t=linspace(0,1,numpts);

loglog(t,avedist,t,(1/4)*sqrt(t)); title(’Average Displacement’);

figure; loglog(t,maxdist,t,(3/5)*sqrt(t)); title(’Maximum Displacement’);

The program below answers part (b). We find experimentally that (1/3)n1/2 matches the
average displacement, and (7/10)n1/2 matches the maximum displacement.

delta = .002;

x = zeros(100,3);

axis([-1 1 -1 1])

axis square
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numpts=10000;

for i=1:numpts

x = x + delta*randn(size(x));

maxdist(i)=max(sqrt((x(:,1)).^2 +(x(:,2)).^2 +(x(:,3)).^2));

avedist(i)=mean(sqrt((x(:,1)).^2 +(x(:,2)).^2 +(x(:,3)).^2));

end

t=linspace(0,1,numpts);

loglog(t,avedist,t,(1/3)*sqrt(t)); title(’Average Displacement’);

loglog(t,maxdist,t,((7/10)*sqrt(t))); title(’Maximum Displacement’);

Exercise 7.9 (Binomial Option Pricing Model). Let u, d > 0. Let 0 < p < 1. Let
(X1, X2, . . .) be independent random variables such that P(Xn = log u) =: p and P(Xn =
log d) = 1 − p ∀ n ≥ 1. Let X0 be a fixed constant. Let Yn := X0 + · · · + Xn, and let
Sn := eYn ∀ n ≥ 1. In general, S0, S1, . . . will not be a martingale, but we can still compute
ESn, by modifying S0, S1, . . . to be a martingale.

First, note that if n ≥ 1, then Yn has a binomial distribution, in the sense that

P(Yn = X0 + i log u+ (n− i) log d) =

(
n

i

)
pi(1− p)n−i, ∀ 0 ≤ i ≤ n.

Now define
r := p(u− d)− 1 + d.

Here we chose r so that p = 1+r−d
u−d . For any n ≥ 1, define

Mn := (1 + r)−nSn.

Show that M0,M1, . . . is a martingale with respect to X0, X1, . . .. Consequently,

(1 + r)−nESn = ES0, ∀n ≥ 0.

(This presentation might be a bit backwards from the financial perspective. Typically, r is
a fixed interest rate, and then you choose p such that p = 1+r−d

u−d . That is, you adjust how
the random variables behave in order to get a martingale.)

Solution.

E(Mn+1 −Mn |M0 = m0, X0 = x0, . . . , Xn = xn)

= (1 + r)−nE((1 + r)−1Sn+1 − Sn |M0 = m0, X0 = x0, . . . , Xn = xn)

= (1 + r)−nE((1 + r)−1eXn+1+x0+···+xn − ex0+···+xn |M0 = m0, X0 = x0, . . . , Xn = xn)

= (1 + r)−nex0+···+xnE((1 + r)−1eXn+1 − 1)

= (1 + r)−nex0+···+xn [(1 + r)−1(pu+ (1− p)d)− 1]

= (1 + r)−nex0+···+xn [(1 + r)−1(1 + r)− 1] = 0.

In the last line, we used the definition of r. �

Exercise 7.10. There are many ways to try to value an American Put Option. One way is
to emulate the formula for a European Put Option which is exercised at time 0 ≤ t ≤ t0:

e−(µ+σ2/2)tE max(k − S(t), 0)
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We would like to simply take the maximum of the above quantity over all t ∈ [0, t0]. However,
this would be equivalent to knowing the future price of the stock at all times, which is
unrealistic. So, we instead consider replacing the variable t by a stopping time. Suppose
T is a stopping time. That is, T (t) ≥ 0 is only allowed to depend on values of S(t′) where
t′ < t. Then we could try to maximize the quantity

Ee−(µ+σ2/2)T max(k − S(T ), 0)

over all stopping times T where 0 ≤ T ≤ t0. To approximate that quantity, let 0 ≤ t1 ≤ t0
and just consider stopping times T of the form T = inf{t1 ≤ t ≤ t0 : S(t) < S(t′)∀ 0 ≤ t′ ≤
(3/4)t1}, or T = t0 if the set of t inside the infimum is empty. Then, using a computer,
compute the maximum over all 0 ≤ t1 ≤ t0 of

Ee−(µ+σ2/2)T max(k − S(T ), 0)

when µ = 0, = σ = t0 = S0 = 1 and k = 2.

This procedure is analogous to the solution of the Secretary Problem.

In order to compute the expected value, use a Monte Carlo simulation of Brownian motion,
and take the average value over many runs of the simulation.

The following Matlab problem estimated the price to be .17

%Using a bunch of inefficient for-loops, we compute the value of the option

k=500; % spacing between points is 1/k

numpts=k;

t1index=k/2; %this is the index of t_1

mu=0;

sigma=1;

Szero=1;

K=2;

for t1index=1:numpts

for j=1:1000 % average over this many runs

x=zeros(1,numpts); % path of the brownian motion

for i=1:(numpts-1) %iteratively create the path

x(i+1) = x(i) + (k^(-1/2))*(1+2*floor(rand - 1/2));

end

minval=min(x(1:t1index)); %the minimum of x before t_1

Stprime= x((t1index+1):numpts); % values of x after t_1

T=min(find(Stprime<minval))+t1index;

if isempty(T)

T=k;

end

output(j) =(exp((-(mu+ (sigma^2)/2))*(T/numpts)))*max(K-(Szero)*exp(x(T)),0);

end

https://en.wikipedia.org/wiki/Secretary_problem
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expectedvalue(t1index)=mean(output); %average of many runs of output

end

finalanswer=max(expectedvalue) %maximum of the expected value over t_1

Exercise 7.11. In each of the following examples, choose a few parameters (e.g. use µ = 0,
σ = S0 = t = 1 and k = 2.), and value the option using several runs of a Monte Carlo
simulation of Brownian motion. In each case, we multiply by an exponential term in order
to emulate the Black-Scholes formula.

(i) (Asian Call Option) The value of an Asian option with strike price k > 0 at time
t > 0 is computed using the average value of the stock from time 0 to time t. That
is, if the option is exercised at time t > 0, then its value is

e−(µ+σ2/2)tE max

((1

t

∫ t

0

S(r)dr
)
− k, 0

)
.

(ii) (Lookback Call Option) The value of a lookback call option with strike price k > 0
at time t > 0 is computed using the maximum value of the stock between time 0 and
time t. That is, if the option is exercised at time t > 0, then its value is

e−(µ+σ2/2)tE max

(
max
0≤r≤t

S(r)− k, 0
)
.

In other words, you can “look back” over the past behavior of the stock, and choose
the best price possible over the past.

(iii) (Lookback Put Option) The value of a lookback put option with strike price k > 0
at time t > 0 is computed using the minimum value of the stock between time 0 and
time t. That is, if the option is exercised at time t > 0, then its value is

e−(µ+σ2/2)tE max

(
k − min

0≤r≤t
S(r), 0

)
.

Finally, using a Corollary from the notes (which gives the CDF of the maximum of Brownian
motion), give an exact formula for the value of the Lookback Call Option. (And check that
this formula agrees with the results of your simulation.)

Can you also give an explicit formula for the value of the Lookback Put Option?

The following program estimates the value of the Asian call option with µ = σ = S0 = t = 1
and k = 2 to be about .14.

k=5000; % spacing between points is 1/k

numpts=k;

t1index=k/2; %this is the index of t_1

mu=0;

sigma=1;

Szero=1;

K=2;
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for j=1:10000 % average over this many runs

x=zeros(1,numpts); % path of the brownian motion

for i=1:(numpts-1) %iteratively create the path

x(i+1) = x(i) + (k^(-1/2))*(1+2*floor(rand - 1/2));

end

output(j) =(exp((-(mu+ (sigma^2)/2))))*max(sum(Szero*exp(x))/k -K,0);

end

expectedvalue=mean(output) %average of many runs of output

To value the lookback call option, we only change the corresponding line to

output(j) =(exp((-(mu+ (sigma^2)/2))))*max(max(Szero*exp(x)) -K,0);

The value is estimated at about .667

To value the lookback put option, we only change the corresponding line to

output(j) =(exp((-(mu+ (sigma^2)/2))))*max(K-min(Szero*exp(x)) ,0);

The value is estimated at about .89

From an exercise from the notes, P(max0≤s≤tB(s) ≥ x) = 1 −
∫ x
−x e

− y
2

2t
dy√
2πt

. So, Z :=

max0≤s≤tB(s) has density

fZ(x) = 2e−x
2/(2t) 1√

2πt
, x > 0

(This next part of the question was unintentionally difficult. Below, for simplicity, we assume
that µ = 0. More generally, if µ 6= 0 and if Y := max0≤s≤t(σB(s) + µs), then for any y ≥ 0,

P(Y ≤ y) = Φ
(y − µt
σ
√
t

)
− e2µy/σ2

Φ
(−y − µt

σ
√
t

)
.

This can be used to price the lookback call option in full generality, but we will not do so
below.)

Since max0≤s≤t e
B(s) = emax0≤s≤tB(s), the lookback call option (with µ = 0) is valued at

e−σ
2t/2E max

(
max
0≤r≤t

S(r)− k, 0
)

= 2e−σ
2t/2

∫ ∞
0

max(S0e
σx − k, 0)e−x

2/(2t) 1√
2πt

dx

Choosing k = 2, µ = 0, σ = t = S0 = 1, we get

2e−1/2

∫ ∞
0

max(ex − 2, 0)e−x
2/2 1√

2π
dx

This evaluates numerically to about .6488. In fact, we can get a formula similar to the
Black-Scholes formula as follows.
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∫ ∞
0

max(S0e
σx − k, 0)e−x

2/(2t) 1√
2πt

dx

=
1√
2πt

∫ ∞
max(

log(k/S0)
σ

,0)

(S0e
σx − k)e−x

2/(2t)dx

=
1√
2πt

∫ ∞
max(

log(k/S0)
σ

,0)

S0e
σxe−x

2/(2t)dx− k√
2πt

∫ ∞
max(

log(k/S0)
σ

,0)

e−x
2/(2t)dx

=
S0√
2π

∫ ∞
√
tmax(

log(k/S0)
σ

,0)

eyσ
√
te−y

2/2dy − k√
2π

∫ ∞
√
tmax(

log(k/S0)
σ

,0)

e−y
2/2dy

=
S0e

tσ2/2

√
2π

∫ ∞
√
tmax(

log(k/S0)
σ

,0)

e−(y−σ
√
t)2/2dz − k

(
1− Φ

(√
tmax(

log(k/S0)

σ
, 0)

))
=
S0e

σ2t/2

√
2π

∫ ∞
√
tmax(

log(k/S0)
σ

,0)−σ
√
t

e−z
2/2dy − kΦ

(
−
√
tmax(

log(k/S0)

σ
, 0)

)
= S0e

σ2t/2

(
1− Φ

(√
tmax(

log(k/S0)

σ
, 0)− σ

√
t

))
− kΦ

(
−
√
tmax(

log(k/S0)

σ
, 0)

)
= S0e

σ2t/2Φ

(
−
√
tmax(

log(k/S0)

σ
, 0) + σ

√
t

)
− kΦ

(
−
√
tmax(

log(k/S0)

σ
, 0)

)
.

So, the price of the option is

2S0Φ

(
−
√
tmax(

log(k/S0)

σ
, 0) + σ

√
t

)
− 2ke−σ

2t/2Φ

(
−
√
tmax(

log(k/S0)

σ
, 0)

)
.

Choosing k = 2, µ = 0, σ = t = S0 = 1, we get

2Φ(− log(2) + 1)− 4e−1/2Φ(− log(2)) ≈ .6488.

We now consider the lookback put option. Since P(max0≤s≤tB(s) ≥ x) = 1−
∫ x
−x e

− y
2

2t
dy√
2πt

,

multiplying the inequality by −1 and using that −B(s) has the same distribution as B(s),

P( min
0≤s≤t

B(s) ≤ −x) = 1−
∫ x

−x
e−

y2

2t
dy√
2πt

, x > 0.

So, Z := min0≤s≤tB(s) has density

fZ(x) = 2e−x
2/(2t) 1√

2πt
, x < 0

Since min0≤s≤t e
B(s) = emin0≤s≤tB(s), the lookback put option (with µ = 0) is valued at

e−σ
2t/2E max

(
k − min

0≤r≤t
S(r), 0

)
= 2e−σ

2t/2

∫ 0

−∞
max(k − S0e

σx, 0)e−x
2/(2t) 1√

2πt
dx.

And a formula similar to the Black-Scholes formula can once again be derived.
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∫ 0

−∞
max(k − S0e

σx, 0)e−x
2/(2t) 1√

2πt
dx

=
1√
2πt

∫ min(
log(k/S0)

σ
,0)

−∞
(S0e

σx − k)e−x
2/(2t)dx

=
1√
2πt

∫ min(
log(k/S0)

σ
,0)

−∞
S0e

σxe−x
2/(2t)dx− k√

2πt

∫ min(
log(k/S0)

σ
,0)

−∞
e−x

2/(2t)dx

=
S0√
2π

∫ √tmin(
log(k/S0)

σ
,0)

−∞
eyσ
√
te−y

2/2dy − k√
2π

∫ √tmin(
log(k/S0)

σ
,0)

−∞
e−y

2/2dy

=
S0e

tσ2/2

√
2π

∫ √tmin(
log(k/S0)

σ
,0)

−∞
e−(y−σ

√
t)2/2dz − kΦ

(√
tmin(

log(k/S0)

σ
, 0)

)
=
S0e

tσ2/2

√
2π

∫ √tmin(
log(k/S0)

σ
,0)−σ

√
t

−∞
e−z

2/2dy − kΦ

(√
tmin(

log(k/S0)

σ
, 0)

)
= S0e

tσ2/2Φ

(√
tmin(

log(k/S0)

σ
, 0)− σ

√
t

)
− kΦ

(√
tmin(

log(k/S0)

σ
, 0)

)
.

So, the price of the option is

2S0Φ

(√
tmin(

log(k/S0)

σ
, 0)− σ

√
t

)
− 2ke−tσ

2/2Φ

(√
tmin(

log(k/S0)

σ
, 0)

)
.

EXERCISES BELOW ARE OPTIONAL

Exercise 7.12. In the discrete binomial model, we can find a price for an American put
option using dynamic programming.

Recall this model. Let u, d > 0. Let 0 < p < 1. Let (X1, X2, . . .) be independent random
variables such that P(Xn = log u) =: p and P(Xn = log d) = 1 − p ∀ n ≥ 1. Let X0 be a
fixed constant. Let Yn := X0 + · · ·+Xn, and let Sn := eYn ∀ n ≥ 1. Let r := p(u−d)−1+d.
For any n ≥ 1, define Mn := (1 + r)−nSn. Recall that M0,M1, . . . is a martingale.

Note that, at time n, the random variable Sn has n + 1 possible values. Label these values
as Sn,1 ≤ · · · ≤ Sn,m. Let k > 0. Let Vn,m be the value of the American put option at time
n > 0 with strike price k, when Sn has its mth value. Then

Vn,m = max
(

max(k−Sn,m, 0) , (1 + r)−1(pVn+1,m+1 + (1−p)Vn+1,m)
)
, ∀ 1 ≤ m ≤ n+ 1.

This recursion formula holds since, at step n, you can either exercise the option at time n,
or you can wait and see what happens at time n+ 1. The quantity max(k− Sn,m, 0) is your
revenue from exercising at time n, and the second quantity (1+r)−1(pVn+1,m+1+(1−p)Vn+1,m)
is your expected revenue from waiting until time n+ 1 to exercise the option. So, at time n,
you choose the maximum of these two quantities.

Let’s solve this recursion in the following example. Suppose S0 = 8, p = 1/2, u = 2,
d = 1/2 (so that r = 1/4), and k = 10. And suppose the option expires at time n = 3 (so
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that V3,m = max(k − S3,m, 0) is known for each 1 ≤ m ≤ 4.) Then, working backwards,
eventually find V0,1, the price of the option.

Compare your result in this example with the price of the European put option with the
same parameters. (It should be smaller.)

Solution. When n = 3, Sn can take four possible values: S0u
3, S0u

2d, S0u
1d2 and S0d

3. That
is, S3,1 = 1, S3,2 = 4, S3,3 = 16 and S3,4 = 64. The recursion above can be written as

Vn,m = max
(

max(10− Sn,m, 0) , (2/5)(Vn+1,m+1 + Vn+1,m)
)
, ∀ 1 ≤ m ≤ n+ 1.

We solve this recursion by slowly filling out a tree of values, as follows. Each entry in the
matrix is (Sn,m, Vn,m). (Entries are labeled red when the first quantity in the recursion
exceeds the second.)

(64, 0)
? (16, 0)

? ? (4, 6)
? ? ? (1, 9)

 ,


(64, 0)

(32, 0) (16, 0)
? (8, 12/5) (4, 6)

? ? (2, 8) (1, 9)




(64, 0)
(32, 0) (16, 0)

(16, 24/25) (8, 12/5) (4, 6)
(8, 348/125) (4, 6) (2, 8) (1, 9)


So, the value of the put option is 348/125. By contrast, the American call option has price

(1 + r)−3E max(S3 − 10, 0)

= (1 + r)−3
((3

0

)
(1− p)3 max(10− 8d3, 0) +

(
3

1

)
p(1− p)2 max(10− 8ud2, 0)

+

(
3

2

)
p2(1− p) max(10− 8u2d, 0) +

(
3

3

)
p3 max(10− 8u3, 0)

)
= (4/5)3

(
(1/8)(9) + 3(1/8)(6)

)
= (4/5)3(27/8) = 216/125.

�

Exercise 7.13. Let {B(t)}t≥0 be a standard Brownian motion. Let f : R → R. Assume
that

∫
R |f(x)| dx <∞ and

∫
R f(x)dx = 1. For any s > 0, define

X(s) :=
1√
s

∫ s

0

f(B(t))dt.

Show that lims→∞EX(s) =
√

2/π. Then, for an optional challenge, show that lims→∞E(X(s))2 =
1. (Hint: for the second part, look up the formula for a multivariate normal random variable.)

Solution. First, recall that B(t) has mean zero, variance t, so it has density (2πt)−1/2e−x
2/(2t).

Then

EX(s) =
1√
s

∫ s

0

∫
R
f(x)(2πt)−1/2e−x

2/(2t)dxdt.
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Changing variables to u = t/s so that du = dt/s, we get

EX(s) = (2π)−1/2

∫ 1

0

u−1/2

∫
R
f(x)e−x

2/(2us)dxdu.

Note that lims→∞ e
−x2/(2us) = 1, so that

lim
s→∞

EX(s) = (2π)−1/2

∫ 1

0

u−1/2

∫
R
f(x)dxdu = (2π)−1/2

∫ 1

0

u−1/2du

∫
R
f(x)dx =

√
2

π
.

Now, if t, u > 0, then (B(t), B(u)) is a two-dimensional Gaussian random variable such that
EB(t)B(u) = min(t, u). That is, (B(t), B(u)) has the following multivariate normal density

1

2π

√∣∣∣∣det

(
t min(t, u)

min(t, u) u

)∣∣∣∣
exp

(
−1

2
(x, y)

(
t min(t, u)

min(t, u) u

)−1

(x, y)T

)

=
1

2π
√
|tu− [min(t, u)]2|

exp

−(x, y)

(
u −min(t, u)

−min(t, u) t

)
(x, y)T

2(tu− [min(t, u)]2)


=

1

2π
√
|tu− [min(t, u)]2|

exp

(
−(ux2 + ty2 − 2xymin(t, u))

2(tu− [min(t, u)]2)

)

E(X(s))2 = E
1

s

∫ s

0

f(B(t))dt

∫ s

0

f(B(u))du

=
1

s

∫
R

∫
R

∫ s

0

∫ s

0

f(x)f(y)

2π
√
|tu− [min(t, u)]2|

e
− (ux2+ty2−2xymin(t,u))

2(tu−[min(t,u)]2) dtdudxdy.

Changing variables to a = t/s, b = u/s, we get

E(X(s))2

= s

∫
R

∫
R

∫ 1

0

∫ 1

0

f(x)f(y)

2π
√
|abs2 − [min(as, bs)]2|

e
− (bx2s+ay2s−2xymin(as,bs))

2(abs2−[min(as,bs)]2) dadbdxdy

=

∫
R

∫
R

∫ 1

0

∫ 1

0

f(x)f(y)

2π
√
|ab− [min(a, b)]2|

e
− 1
s
(bx2+ay2−2xymin(a,b))

2(ab−[min(a,b)]2) dadbdxdy.

Letting s→∞, and using
∫
R f(x)dx = 1, we get

lim
s→∞

E(X(s))2 =

∫
R

∫
R

∫ 1

0

∫ 1

0

f(x)f(y)

2π
√
|ab− [min(a, b)]2|

dadbdxdy

=

∫ 1

0

∫ 1

0

1

2π
√
|ab− [min(a, b)]2|

dadb = 2

∫ b=1

b=0

∫ a=b

a=0

1

2π
√
ab− a2

dadb = 1.
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More specifically, using the change of variables c = (b/2) sin θ, so that dc = (b/2) cos θ,∫ a=b

a=0

1√
ab− a2

da =

∫ a=b

a=0

1√
−(a− b/2)2 + b2/4

da =

∫ c=b/2

c=−b/2

1√
−c2 + b2/4

dc

=

∫ θ=π/2

θ=−π/2

2

b
√
− sin2 θ + 1

(b/2) cos θdθ =

∫ θ=π/2

θ=−π/2
dθ = π.

�

Exercise 7.14. Let t > 0 and let {B(s)}s≥0 be a standard Brownian motion. Compute the
mean and variance of ∫ t

0

B(s)dB(s).

(Hint: start with the Riemann sum, then take a limit.)

Solution. For any n ≥ 1, consider the Riemann sum on [0, t]:

Xn :=
n−1∑
i=0

B

(
ti

n

)(
B

(
t(i+ 1)

n

)
−B

(
ti

n

))
.

From the independent increment property of Brownian motion, each term in the sum is the
product of two independent random variables, so

EXn =
n−1∑
i=0

EB

(
ti

n

)
· E
(
B

(
t(i+ 1)

n

)
−B

(
ti

n

))
= 0.

Each expected value term on the right is zero, since they are each the expected value of a
mean zero Gaussian random variable. We now compute the variance.

EX2
n = E

(
n−1∑
i=0

B

(
ti

n

)(
B

(
t(i+ 1)

n

)
−B

(
ti

n

)))2

= E
n−1∑
i,j=0

B

(
ti

n

)(
B

(
t(i+ 1)

n

)
−B

(
ti

n

))
B

(
tj

n

)(
B

(
t(j + 1)

n

)
−B

(
tj

n

))

= E
n−1∑
i=0

B

(
ti

n

)2(
B

(
t(i+ 1)

n

)
−B

(
ti

n

))2

+ 2E
∑
i<j

B

(
ti

n

)(
B

(
t(i+ 1)

n

)
−B

(
ti

n

))
B

(
tj

n

)(
B

(
t(j + 1)

n

)
−B

(
tj

n

))
.

From the independent increment property, the last term is zero, and

EX2
n = E

n−1∑
i=0

B

(
ti

n

)2(
B

(
t(i+ 1)

n

)
−B

(
ti

n

))2

=
n−1∑
i=0

(ti/n)(t/n) =
t2

n2

n−1∑
i=0

i =
t2

n2

n(n− 1)

2
.
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So, limn→∞EX2
n = 1

2
t2.

Alternatively, by Ito’s Formula,
∫ t

0
B(s)dB(s) = 1

2
(B(t))2 − 1

2
t. So,

E

∫ t

0

B(s)dB(s) = E
1

2
(B(t))2 − 1

2
t = 0.

E

(∫ t

0

B(s)dB(s)

)2

= E

(
1

2
(B(t))2 − 1

2
t

)2

=
1

4
(E(B(t))4 − 2tE(B(t))2 + t2)

=
1

4
(3− 2 + 1)t2 =

1

2
t2.

�

Exercise 7.15. Let f : R → R be a function. Let t > 0 and let {B(s)}s≥0 be a standard
Brownian motion. Find the distribution of∫ t

0

f(s)dB(s).

That is, find the CDF of
∫ t

0
f(s)dB(s). (Hint: use Exercise ??.)

Solution. For any n ≥ 1, consider the Riemann sum on [0, t]:

Xn :=
n−1∑
i=0

f

(
ti

n

)(
B

(
t(i+ 1)

n

)
−B

(
ti

n

))
.

From Exercise ??, Xn is a sum of independent mean zero Gaussian random variables. So,
Xn is a mean zero Gaussian random variable with variance

n−1∑
i=0

[f(ti/n)]2(t/n).

Letting n→∞, and realizing this sum as a Riemann sum, we then see that
∫ t

0
f(s)dB(s) is

a mean zero Gaussian random variable with variance∫ t

0

(f(s))2ds.

�

Exercise 7.16. Using Itô’s formula, write an expression for
∫ 1

0
(B(s))2dB(s).

Solution. For any x ∈ R, let f(x) = x3. Then, Itô’s formula says, for any b > 0, we have

(B(b))3 = (B(b))3 − (B(0))3 =

∫ b

0

3(B(s))2dB(s) + 3

∫ b

0

B(s)ds.

That is, ∫ 1

0

(B(s))2dB(s) =
1

3
(B(1))3 −

∫ 1

0

B(s)ds.

�
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Exercise 7.17. Let b > 0. We know from calculus that
∫ b

0
esds = eb − 1.

Use f(x) = ex, x ∈ R, in Itô’s formula to find a similar expression for
∫ b

0
eB(s)dB(s). (Note

that eB(s) is a Geometric Brownian motion, so now we know how to take the stochastic
integral of Geometric Brownian motion.)

Solution. Itô’s formula says, for any b > 0,

eB(b) − 1 = eB(b) − eB(0) =

∫ b

0

eB(s)dB(s) +
1

2

∫ b

0

eB(s)ds.

That is, ∫ b

0

eB(s)dB(s) = eB(b) − 1− 1

2

∫ b

0

eB(s)ds.

�

Exercise 7.18 (MFE Sample Question, from an old exam). Let {Z(t)}t≥0 be a standard
Brownian motion. You are given:

(i) U(t) := 2Z(t)− 2, for all t ≥ 0.
(ii) V (t) := (Z(t))2 − t, for all t ≥ 0.

(iii) W (t) := t2Z(t)− 2
∫ t

0
sZ(s)ds, for all t ≥ 0.

Which of the processes defined above has/have zero drift? (A stochastic process {U(t)}t≥0

has zero drift if dU(t) = f(Z(t), t)dZ(t) for some function f : R2 → R.)

Solution. Let f(x) = 2x− 2 for any x ∈ R. Then Itô’s formula says

dU(t) = df(Z(t)) = 2dZ(t).

So, item (i) has zero drift. Now, let f(x, y) = y2 − x for any x, y ∈ R. Then Itô’s formula
Version 2 says

dV (t) = df(Z(t)) = 2Z(t)dZ(t)− dt+ dt = 2Z(t)dZ(t).

So, item (ii) has zero drift. Finally, let f(x, y) = x2y for any x, y ∈ R. Then Itô’s formula
Version 2 says

df(Z(t)) = t2dZ(t) + 2tZ(t)dt.

That is, d[t2Z(t)− 2
∫ t

0
sZ(s)ds] = t2dZ(t). So, item (iii) also has zero drift. (Note that we

have used the usual Fundamental Theorem of Calculus here, to deduce that d
∫ t

0
sZ(s)ds =

tZ(t)dt. However, the Fundamental Theorem generally does NOT hold for the stochas-

tic integral. We can rewrite Itô’s Lemma as
∫ t

0
g′(Z(s))dZ(s) = g(Z(t)) − g(Z(0)) −

1
2

∫ t
0
g′′(Z(s))ds. So, we cannot “differentiate both sides in t” and have both sides be equal,

as in the usual Fundamental Theorem of Calculus.) �

Exercise 7.19. Let f : R × [0,∞) → R. We write f = f(x, t), where (x, t) ∈ R × [0,∞).
Let g : R→ R be a continuous and bounded function with

∫
R |g(x)| dx <∞. We say that f

satisfies the one-dimensional heat equation if

∂f

∂t
(x, t) =

∂2f

∂x2
(x, t), ∀ (x, t) ∈ R× [0,∞),
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f(x, 0) = g(x), ∀x ∈ R.
Show that f defined by

f(x, t) :=
1√
4πt

∫
R
e−

(x−y)2
4t g(y)dy = E(g(2B(t) + x)), ∀ (x, t) ∈ R× [0,∞),

satisfies the heat equation. (Just check the first condition. You do not have to show that
limt→0+ f(x, t) = g(x) for all x ∈ R.)

Using a computer, plot the function f(x, t) as a function of x for several different values of

t > 0, using g = 1[0,1]. Lastly, verify that
∫
R

1√
4πt
e−x

2/(4t)dx = 1 for any t > 0.

Solution.

∂

∂t

1√
4πt

∫
R
e−

(x−y)2
4t g(y)dy = − 1

2t
√

4πt

∫
R
e−

(x−y)2
4t g(y)dy +

1√
4πt

∫
R

(x− y)2

4t2
e−

(x−y)2
4t g(y)dy.

∂

∂x

1√
4πt

∫
R
e−

(x−y)2
4t g(y)dy =

1√
4πt

∫
R

(
−(x− y)

2t

)
e−

(x−y)2
4t g(y)dy.

∂2

∂x2

1√
4πt

∫
R
e−

(x−y)2
4t g(y)dy

=
1√
4πt

∫
R

(
− 1

2t

)
e−

(x−y)2
4t g(y)dy +

1√
4πt

∫
R

(
(x− y)2

4t2

)
e−

(x−y)2
4t g(y)dy.

So,
∂f

∂t
(x, t) =

∂2f

∂x2
(x, t).

numxpts=100;

for t= [.001,.01,.1,1,10]

for j=1:numxpts

x=-5+j*10/numxpts;

y(j)=quad( @(y) exp(-(x-y).^2 ./(4*t)),0,1);

end

figure;

plot(10*(1:numxpts)/numxpts -5, y);

title(strcat(’t=’,num2str(t)));

end

�

Exercise 7.20. Let f : R× [0,∞)→ R. We write f = f(x, t), where (x, t) ∈ R× [0,∞). Let
g : R→ R be a continuous and bounded function. We say that f satisfies the one-dimensional
heat equation with forcing term h : R× [0,∞)→ R if

∂f

∂t
(x, t) =

∂2f

∂x2
(x, t) + h(x, t), ∀ (x, t) ∈ R× [0,∞),

f(x, 0) = g(x), ∀x ∈ R.
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Figure 1. f(x, .001) for x ∈ [−5, 5]
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Figure 2. f(x, .01) for x ∈ [−5, 5]
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Figure 3. f(x, .1) for x ∈ [−5, 5]

For any (x, t) ∈ R× [0,∞), define f(x, t) so that

f(x, t) :=
1√
4πt

∫
R
e−

(x−y)2
4t g(y)dy +

∫ t

0

1√
4π(t− s)

∫
R
e−

(x−y)2
4(t−s) h(y, s)dyds.

Show that f satisfies the heat equation with forcing term h. (Just check the first condition.)



48 STEVEN HEILMAN
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Figure 4. f(x, 1) for x ∈ [−5, 5]

Solution. From the previous exercise, we know that the first term in the definition of f(x, t)
satisfies the heat equation (with no forcing term). So, it suffices to show that the second
term in the definition of f(x, t) satisfies the heat equation with forcing term.

First, as a Lemma, consider an integral of the form
∫ t

0
g(s, t)ds. To take the derivative with

respect to t, we note that∫ t+h

0

g(s, t+ h)ds−
∫ t

0

g(s, t)ds

=

∫ t+h

0

g(s, t+ h)ds−
∫ t+h

0

g(s, t)ds+

∫ t+h

0

g(s, t)ds−
∫ t

0

g(s, t)ds

=

∫ t+h

0

[g(s, t+ h)− g(s, t)]ds+

∫ t+h

t

g(s, t)ds.

So, dividing this equality by h and letting h→ 0, we get

d

dt

∫ t

0

g(s, t)ds =

∫ t

0

d

dt
g(s, t)ds+ g(t, t).

So,

∂

∂t

∫ t

0

1√
4π(t− s)

∫
R
e−

(x−y)2
4(t−s) h(y, s)dyds

= lim
s→t

1√
4π(t− s)

∫
R
e−

(x−y)2
4(t−s) h(y, s)dy +

∫ t

0

∫
R

∂

∂t

1√
4π(t− s)

e−
(x−y)2
4(t−s) h(y, s)dyds.

From the previous exercise, the first term is h(x, t). Also from the previous exercise, the
second term is ∫ t

0

∫
R

∂2

∂x2

1√
4π(t− s)

e−
(x−y)2
4(t−s) h(y, s)dyds.

�

Exercise 7.21. Let t0 > 0. Let V : R× [0, t0]→ R. We write V = V (s, t), s ∈ R, t ∈ [0, t0].
Let F : R→ R. Let r ∈ R, let σ > 0. We say that V satisfies the Black-Scholes equation
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if V (s, t0) = F (s) for all s ∈ R, and if

∂V

∂t
+ rs

∂V

∂s
+
σ2s2

2

∂2V

∂s2
− rV = 0.

Show that a solution of this equation is

V (s, t) :=
e−r(t0−t)√

2πσ2(t0 − t)

∫ ∞
0

1

z
e
− (log(s/z)+(r−σ2/2)(t0−t))

2

2σ2(t0−t) F (z)dz.

(This formula should be nearly identical to the Black-Scholes Option Pricing formula from
a remark in the notes, where we take F (z) := max(S0z − k, 0).) Instead of differentiating V
directly, use the following strategy.

First, show that the Black-Scholes equation reduces to the one-dimensional heat equation

∂U

∂τ
=
∂2U

∂x2
,

where V (s, t) = eax+bτU(x, τ), x = log s, τ = (σ2/2)(t0 − t), a = (1/2) − r/σ2, and b =
−(1/2 + r/σ2)2, and U satisfies the initial condition U(x, 0) = e−axF (ex) for all x ∈ R.
(Start by differentiating V with respect to s and t, etc.) That is, the Black-Scholes equation
is the heat equation, run backwards in time.

Finally, use the formula for U using Exercise 7.20.

Solution. Note that V (s, t) = ea log s+b(σ2/2)(t0−t)U(log s, (σ2/2)(t0 − t)). So,

∂

∂t
V (s, t) = −b(σ2/2)V (s, t) + (−σ2/2)eax+bτ ∂U

∂τ
(x, τ).

∂

∂s
V (s, t) =

a

s
V (s, t) +

1

s
eax+bτ ∂U

∂x
(x, τ).

∂2

∂s2
V (s, t) = −as−2V (s, t) +

a2

s2
V (s, t) +

a

s2
eax+bτ ∂U

∂x
(x, τ)

− 1

s2
eax+bτ ∂U

∂x
(x, τ) +

a

s2
eax+bτ ∂U

∂x
(x, τ)

+
1

s2
eax+bτ ∂

2U

∂x2
(x, τ).
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0 =
∂V

∂t
+ rs

∂V

∂s
+
σ2s2

2

∂2V

∂s2
− rV

= −b(σ2/2)V (s, t) + (−σ2/2)eax+bτ ∂U

∂τ
(x, τ)

+ arV (s, t) + reax+bτ ∂U

∂x
(x, τ)

− a(σ2/2)V (s, t) + (a2σ2/2)V (s, t) + (aσ2/2)eax+bτ ∂U

∂x
(x, τ)

− (σ2/2)eax+bτ ∂U

∂x
(x, τ) + (aσ2/2)eax+bτ ∂U

∂x
(x, τ)

+ (σ2/2)eax+bτ ∂
2U

∂x2
(x, τ)− rV (s, t).

ar − r + (a2 − b− a)(σ2/2) = ar − r + ((1/2) + 2r2/σ4 − a)(σ2/2)

= ar − r + (2r2/σ4 + r/σ2)(σ2/2)

= ar − r + (r2/σ2 + r/2) = r[a+ r/σ2 − 1/2] = 0.

So, the sum of the V (s, t) terms is zero.

We now examine the ∂U/∂x terms.

r + aσ2 − σ2/2 = r + σ2/2− r − σ2/2 = 0.

So, the sum of all of the ∂U/∂x terms is zero.

In summary,

0 = (−σ2/2)eax+bτ ∂U

∂τ
(x, τ) + (σ2/2)eax+bτ ∂

2U

∂x2
(x, τ).

That is, −∂U
∂τ

(x, τ) + ∂2U
∂x2

(x, τ) = 0. And F (s) = V (s, t0) = ea log sU(log s, 0) = eaxU(x, 0).
That is, U(x, 0) = e−axF (ex).

So, using Exercise 7.20, we have

U(x, τ) :=
1√
4πτ

∫
R
e−

(x−y)2
4τ e−ayF (ey)dy.
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Going back to the relation between U and V , we have

V (s, t) = ea log s+b(σ2/2)(t0−t)U(log s, (σ2/2)(t0 − t))

= ea log s+b(σ2/2)(t0−t) 1√
4π(σ2/2)(t0 − t)

∫
R
e
− (log s−y)2

4(σ2/2)(t0−t) e−ayF (ey)dy

= ea log s+b(σ2/2)(t0−t) 1√
2πσ2(t0 − t)

∫ ∞
0

1

z
e
− (log s−log z)2

4(σ2/2)(t0−t) e−a log zF (z)dz

= eb(σ
2/2)(t0−t) 1√

2πσ2(t0 − t)

∫ ∞
0

1

z
e
− (log(s/z))2

2σ2(t0−t) ea log(s/z)F (z)dz

=
e−r(t0−t)√

2πσ2(t0 − t)

∫ ∞
0

1

z
e
−

(log(s/z)+(r−σ2/2)(t0−t))
2

2σ2(t0−t) F (z)dz

Above we used r + bσ2/2 = (r − σ2/2)2/(2σ2)

�

Exercise 7.22. Let a, b, σ > 0. Let f : R → R satisfying the Vasicek stochastic differential
equation for any t ∈ R.

df(t) = a(b− f(t))dt+ σdB(t).

Show that, for any t > 0,

Ef(t) = b+ e−at(f(0)− b), var(f(t)) =
σ2

2a
(1− e−2at).

More generally, for any s, t > 0, show that

cov(f(t), f(u)) = E
(
(f(t)− Ef(t))(f(u)− Ef(u))

)
=
σ2

2a
(e−a|t−u| − e−a(t+u)).

Conclude that limt→∞Ef(t) = b and limt→∞ var(f(t)) = σ2

2a
.

Solution. From the notes, we have

f(t) = b+ e−at(f(0)− b) + σ

∫ t

0

ea(s−t)dB(s)

By Exercise 7.15, the last term is a mean zero Gaussian random variable with variance

σ2

∫ t

0

e2a(s−t)ds = σ2 1

2a
[e2a(s−t)]s=ts=0 = σ2 1

2a
[1− e−2at].

Therefore,

Ef(t) = b+ e−at(f(0)− b), var(f(t)) =
σ2

2a
(1− e−2at).
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More generally, using the independent increment property of Brownian motion,

cov(f(t), f(u)) = Ef(t)f(u) = σ2E

∫ t

0

ea(s−t)dB(s)

∫ u

0

ea(s−u)dB(s)

= σ2e−a(t+u)E

(∫ min(t,u)

0

easdB(s)

)2

= σ2e−a(t+u)

∫ min(t,u)

0

e2asds

=
σ2

2a
e−a(t+u)(−1 + e2amin(t,u)) =

σ2

2a
(e−a|t−u| − e−a(t+u)).

�

Exercise 7.23. Using a Monte Carlo simulation, plot several sample paths of the Vasicek
stochastic differential equation, with a = b = σ = f(0) = 1.

figure;

hold on;

for j=1:5

k=500^2;

length=4;

numpts=length*k;

t=linspace(0,length,numpts);

jumps=(1/sqrt(k))*randn(numpts,1);

y=zeros(1,numpts);

y(1)=1;

for i=2:numpts

y(i)=y(i-1)+(1-y(i-1))*(1/k)+sqrt(y(i-1))*jumps(i);

end

plot(t,y,’Color’,rand(1,3));

end
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0

0.5
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Figure 5. Sample Paths of the CIR model with a = b = σ = f(0) = 1. The
horizontal axis is the t-axis.
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Exercise 7.24 (Cox-Ingersoll-Ross (CIR) model). Let a, b, σ > 0. Let {B(t)}t≥0 be a
standard Brownian motion. The Cox-Ingersoll-Ross model models an interest rate as a
(random) function f : R→ R satisfying the following stochastic differential equation for any
t > 0:

df(t) = a(b− f(t))dt+
√
f(t)σdB(t).

(Since f is a random function, f is also a function of the sample space, but we omit this
dependence from our notation here and below.)

A priori, this stochastic differential equation is not rigorously defined, since
√
f(t) will not

be a real number when f(t) < 0. In this exercise, we ignore this issue. (In actuality, if
f(0) > 0, then f(t) < 0 occurs with probability 0.)

Unlike the Vasicek model, we might not be able to get a closed form solution of this equation.
Nevertheless, we can still run a Monte Carlo simulation of this stochastic differential equation
as follows. Let f(0) = 1. Let i, n > 0 be integers. Suppose we have inductively determined
f(i/n) using a Monte Carlo simulation, and we would like the determine f((i+ 1)/n). The
stochastic differential equation then suggests that

f((i+ 1)/n) ≈ f(i/n) + a(b− f(i/n))(i/n) +
√
f(i/n)σ(B((i+ 1)/n)−B(i/n)).

This approximation is known as a finite difference scheme.

Using this approximation, plot several sample paths of the CIR model with a = b = f(0) =
σ = 1.

What would be the corresponding finite difference scheme for the Vasicek model?

figure;

hold on;

for j=1:5

k=500^2;

length=4;

numpts=length*k;

t=linspace(0,length,numpts);

jumps=(1/sqrt(k))*randn(numpts,1);

y=zeros(1,numpts);

y(1)=1;

for i=2:numpts

y(i)=y(i-1)+(1-y(i-1))*(1/k)+jumps(i);

end

plot(t,y,’Color’,rand(1,3));

end

Exercise 7.25. Let {Z(x, t)}x∈R,t≥0 be a set of independent, standard Gaussian random
variables. Suppose f : R× [0,∞)→ R satisfies the stochastic heat equation.

∂f

∂t
(x, t) =

∂2f

∂x2
(x, t) + h(x, t), ∀ (x, t) ∈ R× [0,∞),

f(x, 0) = 0, ∀x ∈ R.
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We can explicitly solve this equation by its analogy with Exercise 7.20. That is,

f(x, t) :=

∫ t

0

1√
4π(t− s)

∫
R
e−

(x−y)2
4(t−s) Z(y, s)dyds, ∀ (x, t) ∈ R× [0,∞),

satisfies the stochastic heat equation. Show that f has the following covariance for any
s, t > 0:

E[f(0, s)f(0, t)] =
1

2
√
π

(|s+ t|1/2 − |s− t|1/2).

Solution.

E[f(0, s)f(0, t)]

= E

∫ s

0

1√
4π(s− v)

∫
R
e−

y2

4(s−v)Z(y, s)dydv

∫ t

0

1√
4π(t− u)

∫
R
e−

z2

4(t−u)Z(z, u)dzdu

=

∫ s

0

1√
4π(s− v)

∫
R
e−

y2

4(s−v)dydv

∫ t

0

1√
4π(t− u)

∫
R
e−

z2

4(t−u) 1{v=u}1{y=z}dzdu

=

∫ min(s,t)

0

1

4π
√
s− v

√
t− v

∫
R
e−

y2

4(s−v)−
y2

4(t−v)dydv

=

∫ min(s,t)

0

1

4π
√
s− v

√
t− v

∫
R
e−y

2 (t+s−2v)
4(s−v)(t−v)dydv

=

∫ min(s,t)

0

1

2
√
π
√
s− v

√
t− v

√
(s− v)(t− v)√
t+ s− 2v

dv =

∫ min(s,t)

0

1

2
√
π

1√
t+ s− 2v

dv

=
1

2
√
π

[−(t+ s− 2v)1/2]
v=min(s,t)
v=0 =

1

2
√
π

(
√
t+ s−

√
t+ s− 2 min(s, t))

=
1

2
√
π

(|t+ s|1/2 − |t− s|1/2).
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