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1. Review of Measure Theory

1.1. Measurable Spaces. Measure theory is the foundation of probability theory. Proba-
bility theory deals with measures such that the measure of the universal set is 1. Measure
theory then allows us to assign probabilities to events that could possibly occur, so that the
probability of a set is the measure of that set. Unfortunately, it is impossible in general
to have a measure on all subsets of a set. For this reason, measure theory is a nontrivial
endeavor.

Let us recall some definitions from measure theory. An algebra of sets F is a set of
subsets of a set Ω such that ∅,Ω ∈ F and such that F is closed under finite union and
complement. That is, (i) if A,B ∈ F , then A ∪ B ∈ F and (ii) If A ∈ F then Ac ∈ F . One
can check that F is then closed with respect to finite intersection (since A∩B = (Ac ∪Bc)c,
difference (since ArB = A∩Bc), and symmetric difference (sinceA∆B = (ArB)∪(BrA).

Definition 1.1 (σ-algebra, Measurable space). A σ-algebra F in Ω (or σ-field) is
an algebra closed under countable union. So, if A1, A2, . . . ∈ F , then ∪∞i=1Ai ∈ F . A
measurable space is a pair (Ω,F) where Ω is a set and F is a σ-algebra in Ω. Elements
of F are called measurable sets in the measurable space (Ω,F).

If F ,F ′ are two σ-algebras in F , we say that F is coarser than F ′ (or F ′ is finer than
F) if F ⊆ F ′, so that every set in F is in F ′.

Remark 1.2. From De Morgan’s Laws, if F is a σ-algebra, and if A1, A2, . . . ∈ F , then
∩∞i=1Ai ∈ F .

In probability theory, the σ-algebra represents all things that could possibly happen. For
this reason, sets in F are called events. And below we will assign probabilities to events.

Example 1.3. If Ω is any set then {∅,Ω} is a σ-algebra. And {∅,Ω} is the coarsest σ-algebra
on Ω.

Example 1.4. If Ω is any set then 2Ω = {A : A ⊆ Ω} is a σ-algebra. And 2Ω is the finest
σ-algebra on Ω. We sometimes call 2Ω the discrete σ-algebra.

Example 1.5 (Generated σ-algebra). It follows from Definition 1.1 that if {Fi}i∈I is a
collection of σ-algebras on Ω, then ∩i∈IFi is also a σ-algebra on Ω. If A is a collection
of subsets of Ω, we then define the σ-algebra generated by A, denoted σ(A), to be the
intersection of all σ-algebras containing A. (This intersection is nonempty, since 2Ω contains
A.) Equivalently, σ(A) is the coarsest σ-algebra such that every set in A is measurable.
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Example 1.6 (Borel σ-algebra). Let n ≥ 1 and let Ω := Rn or Ω := Cn. The Borel
σ-algebra is the σ-algebra generated by the open sets of Ω. Measurable subsets in the Borel
σ-algebra are called Borel sets. Unfortunately, some subsets of Rn are not Borel sets.

More generally, we could define the Borel sets on any any locally compact, Hausdorff,
σ-compact topological space Ω. (A σ-compact space Ω can be written as a countable union
of compact sets.)

Exercise 1.7. This exercises gives a strategy for proving a property for a generated σ-
algebra.

Let A be a collection of subsets of a set Ω, and let p(A) be a property of subsets A of Ω,
so that p(A) is true or false for each A ∈ Ω. Assume the following:

• p(∅) is true.
• p(A) is true for all A ∈ A.
• If A ⊆ Ω is such that p(A) is true, then p(Ac) is also true.
• If A1, A2, . . . ⊆ Ω are such that p(Ai) is true for all i ≥ 1, then p(∪∞i=1Ai) is true.

Show that p(A) is true for all A ∈ σ(A). (Hint: what can one say about {A ⊆ Ω :
p(A) is true}?

Example 1.8 (Product σ-algebra). Let (Ωi,Fi)i∈I be a collection of measurable spaces.
We define the product σ-algeba, denoted

∏
i∈I Fi, on the product space

∏
i∈I Ωi, to be the

σ-algebra generated by the basic cylinder sets. If j ∈ I is fixed, then a basic cylinder set is
a set of the form

{(xi)i∈I ∈
∏
i∈I

Ωi : xj ∈ Aj for some fixed Aj ∈ Fj}.

So, if I = {1, 2}, then F1 ×F2 is generated by sets of the form A1 × Ω2 and Ω1 ×A2 where
A1 ∈ F1 and A2 ∈ F2.

It turns out that F1×F2 is also generated by the sets A1×A2 where A1 ∈ F1 and A2 ∈ F2,
but this is no longer true when I is uncountable.

Exercise 1.9. Let n ≥ 1. Show that the Borel σ-algebra on Rn is generated by sets of the
form A1 × · · · × An where Ai ⊆ R is a Borel set for every 1 ≤ i ≤ n.

1.2. Measurable Functions.

Definition 1.10 (Random Variable). A function X : Ω → S between two measurable
spaces (Ω,F), (S,B) is said to be measurable if X−1(B) ∈ F for every B ∈ B. (Recall that
X−1(B) = {ω ∈ Ω: X(ω) ∈ B}.) A measurable function X is sometimes called a random
variable.

If n ≥ 1 and if (S,B) is Rn with the Borel σ-algebra, then X is sometimes called a random
vector. Some authors refer to a random variable only as a function X : Ω → [−∞,∞],
where [−∞,∞] has the Borel σ-algebra.

Remark 1.11. The composition of measurable functions is measurable.

Exercise 1.12. Let n,m ≥ 1. Let f : Rn → Rm be a continuous function. Show that f is
measurable (if Rn,Rm each have the Borel σ-algebra.)
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Exercise 1.13. Let X1 : Ω→ S1, . . . , Xn : Ω→ Sn be measurable functions. Show that the
joint function (X1, . . . , Xn) : Ω→ S1 × · · · × Sn defined by

(X1, . . . , Xn)(ω) := (X1(ω), . . . , Xn(ω)), ∀ω ∈ Ω

is measurable.

Remark 1.14. So, if F : S1×· · ·×Sn → S is measurable, then F (X1, . . . , Xn) is measurable.
In particular, if X1, X2 are two real-valued random variables, then X1 + X2 is a random
variable, X1 ·X2 is a random variable, etc.

1.3. Measures.

Definition 1.15 (Probability Space). Let (Ω,F) be a measurable space. A measure µ
is a function µ : F → [0,∞] such that

• µ(∅) = 0.
• If A1, A2, . . . ∈ F are disjoint, then

µ(∪∞i=1Ai) =
∞∑
i=1

µ(Ai).

A probability measure on Ω is a measure µ such that µ(Ω) = 1. A probability space is
a triple (Ω,F , µ) where µ is a probability measure on the measurable space (Ω,F).

Some property p(ω) that holds for all ω ∈ Ω except for a set of measure zero is said to
hold almost everywhere (abbreviated a.e.) or almost surely (abbreviate a.s.) or for
almost every ω.

We will typically use the notation P for a probability measure.

Example 1.16 (Discrete Probability Space). Let Ω be a finite or countably infinite set.
For any ω ∈ Ω let aω ≥ 0. Assume that

∑
ω∈Ω aω = 1. For any A ⊆ Ω, define

P(A) :=
∑
ω∈A

aω.

Then P is a probability measure on (Ω, 2Ω).

Example 1.17 (Lebesgue Measure). Let Ω = R. Then there exists a unique measure m
on the Borel σ-algebra of R such that m([a, b]) = b − a for every −∞ ≤ a ≤ b ≤ ∞. This
measure m is called Lebesgue measure (restricted to the Borel σ-algebra). (Recall that
Lebesgue measure is typically defined on a σ-algebra that is larger than the Borel σ-algebra.)

More generally, for any n ≥ 1, there exists a unique measure mn on the Borel σ-algebra
of Rn such that

mn([a1, b1]× · · · × [an, bn]) = (b1 − a1) · · · (bn − an),

for all −∞ ≤ a1 ≤ b1 ≤ ∞, . . . ,−∞ ≤ an ≤ bn ≤ ∞. Lebesgue measure and other
commonly encountered measures are proven to exist by the following Theorem.

Recall that a nonnegative completely additive set function ν : F → [0,∞] on an algebra F
of sets satisfies ν(∪∞i=1Ai) =

∑∞
i=1 ν(Ai) whenever A1, A2, . . . ∈ F are disjoint and ∪∞i=1Ai ∈

F . Also we say ν is σ-finite if Ω satisfies Ω = ∪∞i=1Ai for some A1, A2, . . . ∈ F such that
ν(Ai) <∞ for all i ≥ 1.
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Theorem 1.18 (Carathéodory Extension Theorem). Let F be an algebra of subsets of
a nonempty set Ω, and let ν be a nonnegative completely additive set function on F that is
σ-finite. Then there exists a measure µ on σ(F) such that µ(A) = ν(A) for all A ∈ F .

Proof Sketch. Let F be an algebra, ν a nonnegative completely additive set function on F
with ν(Ω) < ∞. Let U be the class of all countable unions of sets in F , and let K be the
class of countable intersections of sets in F . We want to define an “outer measure” and
“inner measure” from ν on subsets of Ω. This can be done unambiguously for any E ⊆ Ω:

µ∗(E) := inf
U⊇E,U∈U

µ∗(U) and µ∗(E) := sup
K⊆E,K∈K

µ∗(K),

where µ∗(U) := limn→∞ ν(An), where ∪∞n=1An = U and A1 ⊆ A2 ⊆ · · · , An ∈ F ∀ n ≥ 1,
and µ∗(K) := limn→∞ ν(Cn) where ∩∞n=1Cn = K and C1 ⊇ C2 ⊇ · · · , Cn ∈ F ∀ n ≥ 1.

We then define B to be the set of subsets where µ∗ and µ∗ agree (in general, we only have
µ∗(E) ≤ µ∗(E) for a subset E ⊆ Ω). It turns out that B is a σ-algebra, containing U and
K (and F). Moreover, µ∗ is a measure on B. Therefore, B contains the smallest σ-algebra
σ(F) containing F , and µ∗ is a measure on σ(F). This proves existence. Uniqueness follows
since any other extension µ′ has to agree with µ∗ on U and K (by definition of U ,K). Thus,
for any E ∈ B and for any K ⊆ E ⊆ U such that K ∈ K and U ∈ U , we have

µ∗(K) = µ′(K) ≤ µ′(E) ≤ µ′(U) = µ∗(U).

So, taking supK∈K : K⊆E and infU∈U : E⊆U (and using the definition of B ⊇ σ(F)) gives our
desired result (with our special hypothesis ν(Ω) <∞).

To handle the σ-finite case, one writes Ω = ∪∞i=1Ai with ν(Ai) < ∞ and Ai ∈ F for all
i ≥ 1. The above results applies to each of A1, A2, . . ., and a “piecing together” argument
concludes the proof. �

Exercise 1.19. Let µ be a measure on a measurable space (Ω,F). Using the axioms for a
measure, show:

• (Monotonicity) If A ⊆ B are measurable, then µ(A) ≤ µ(B).
• (Subadditivity) If A1, A2, . . . are measurable (but not necessarily disjoint), then

µ(∪∞n=1An) ≤
∞∑
n=1

µ(An).

• (Continuity from below) If A1 ⊆ A2 ⊆ · · · are measurable, then µ(∪∞n=1An) =
limn→∞ µ(An).
• (Continuity from above) If A1 ⊇ A2 ⊇ · · · are measurable and if µ(A1) < ∞, then
µ(∩∞n=1An) = limn→∞ µ(An). Then, find a measurable space (Ω,F) and measurable
subsets B1 ⊇ B2 ⊇ · · · such that µ(∩∞n=1Bn) 6= limn→∞ µ(Bn).

Exercise 1.20. Let (Ω,F) be a measurable space. Let [−∞,∞] have the Borel σ-algebra.

• Let X : Ω → [−∞,∞]. Show that X is measurable if and only if the sets {ω ∈
Ω: X(ω) ≤ t} are measurable for all t ∈ [−∞,∞].
• Let X, Y : Ω → [−∞,∞]. Show that X = Y if and only if {ω ∈ Ω: X(ω) ≤ t} =
{ω ∈ Ω: Y (ω) ≤ t} for all t ∈ [−∞,∞].
• Let X1, X2, . . . : Ω → [−∞,∞] be measurable. Show that supn≥1Xn, infn≥1Xn,

lim supn→∞Xn, and lim infn→∞Xn are all measurable.
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Definition 1.21 (Almost Sure Convergence). Let (Ω,F ,P) be a probability space. Let
X1, X2, . . . : Ω → [−∞,∞] be measurable. We say that X1, X2, . . . converges almost
surely if

lim inf
n→∞

Xn = lim sup
n→∞

Xn

almost surely. In this case, we define limn→∞Xn by

lim
n→∞

Xn := lim inf
n→∞

Xn = lim sup
n→∞

Xn.

Note that limn→∞Xn is well defined except on a set of measure 0.

Exercise 1.22. Let µ be a probability measure on R, where R has the Borel σ-algebra.
(Then µ is a Stieltjes measure.) Define the distribution function F : R→ [0, 1] associated
to µ by

F (t) := µ((−∞, t]) = µ({x ∈ R : −∞ < x ≤ t}), ∀ t ∈ R.
Show the following properties of F :

• F is nondecreasing.
• limt→−∞ F (t) = 0 and limt→∞ F (t) = 1.
• F is right continuous, i.e. F (t) = lims→t+ F (s) for all t ∈ R.

Remark 1.23. The converse of Exercise 1.22 holds. That is if F : R → [0, 1] satisfies the
three properties from Exercise 1.22, then there exists a unique probability measure µ on R
such that F is the distribution function of µ.

If a distribution function is given, a random variable exists with that given distribution
function.

Corollary 1.24 (Construction of a Random Variable). Let F : R → [0, 1] satisfy the
three properties from Exercise 1.22. Then there exists a random variable X on a probability
space (Ω,F ,P) such that

F (t) = P(X ≤ t) = P({ω ∈ Ω: X(ω) ≤ t}), ∀ t ∈ R.
Proof. Use Ω = R with the Borel σ-algebra, and let P be the probability measure on R
associated to F known to exist by Remark 1.23. Let X : R → R so that X(t) = t for all
t ∈ R. Then by the definitions of X and F , P(X ≤ t) = P((−∞, t]) = F (t), ∀ t ∈ R. �

Exercise 1.25. Let F : R → [0, 1] satisfy the three properties from Exercise 1.22. Show
that there exists a random variable X on (0, 1) with the Borel σ-algebra such that

F (t) = P(X ≤ t), ∀ t ∈ R.
Here P is Lebesgue measure on (0, 1). (Hint: consider X(t) := sup{y ∈ R : F (y) < t}. Then
X is an inverse of F .)

Definition 1.26 (Cumulative Distribution Function). Let (Ω,F ,P) be a probability
space. Let X : Ω → R be a random variable. The cumulative distribution function of
X, denoted F : R→ [0, 1], is the function

F (t) := P(X ≤ t), ∀ t ∈ R.
In the more general setting X : Ω → S, the distribution of X (or the law of X) is the
probability measure µX defined for any measurable A ⊆ S by

µX(A) := P(X ∈ A) = P({ω ∈ Ω: X(ω) ∈ A}).
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From Exercise 1.22 applied to µX when X : Ω→ R, the cumulative distribution function
of X satisfies the three properties of Exercise 1.22.

In many interesting cases, the distribution of X is absolutely continuous with respect to
Lebesgue measure. In this case, by Lebesgue’s Fundamental Theorem of Calculus, there
exists a Lebesgue integrable function f : R → [0,∞), called the density function of X,

such that F (t) =
∫ t
−∞ f(x)dx for all t ∈ R. Moreover, f is the derivative of F almost

everywhere (with respect to Lebesgue measure on R). By Exercise 1.22,
∫∞
−∞ f(x)dx = 1.

Example 1.27. Let −∞ < a < b < ∞. We say that X is uniformly distributed in
[a, b] if X has density function f such that f(x) = 1/(b − a) for all x ∈ [a, b] and f(x) = 0
otherwise. Then X has the following cumulative distribution function.

F (t) =


0 , if t < a

(t− a)/(b− a) , if a ≤ t ≤ b

1 , if t > b.

Example 1.28. We say that X is a standard Gaussian (or standard normal) if X has

density f(x) = e−x
2/2/
√

2π, ∀ x ∈ R.

Definition 1.29. We say two random variables X : Ω → R, Y : S → R are equal in dis-

tribution, denoted X
d
= Y , if X, Y have the same cumulative distribution function.

Exercise 1.30. Let X be a random variable with cumulative distribution function F : R→
[0, 1]. Show:

• P(X < t) = lims→t− F (s).
• P(X = t) = F (t)− lims→t− F (s).

So, P(X = t) = 0 for all t ∈ R if and only if F is continuous.

Example 1.31. Let X be a random variable such that P(X = 0) = 1. Then F (t) = 0 when
t < 0 and F (t) = 1 when t ≥ 0.

Exercise 1.32. Let µ be a probability measure on Rn, where Rn has the Borel σ-algebra.
Define the distribution function F : Rn → [0, 1] associated to µ by

F (t1, . . . , tn) := µ((−∞, t1]× · · · × (−∞, tn])

= µ({(x1, . . . , xn) ∈ Rn : −∞ < xi ≤ ti, ∀ 1 ≤ i ≤ n}), ∀ t1, . . . , tn ∈ R.
Show the following properties of F :

• F is nondecreasing. (F (t1, . . . , tn) ≤ F (t′1, . . . , t
′
n) whenever ti ≤ t′i ∀ 1 ≤ i ≤ n.)

• limt1,...,tn→−∞ F (t1, . . . , tn) = 0 and limt1,...,tn→∞ F (t1, . . . , tn) = 1.
• F is right continuous, i.e. F (t1, . . . , tn) = lim(s1,...,sn)→(t1,...,tn)+ F (s1, . . . , sn) for all
t1, . . . , tn ∈ R, where the limit restricts that si ≥ ti ∀ 1 ≤ i ≤ n.
• If ti,0 ≤ ti,1 ∀ 1 ≤ i ≤ n, then∑

(ω1,...,ωn)∈{0,1}n
(−1)ω1+···+ωn+nF (t1,ω1 , . . . , tn,ωn) ≥ 0.

Remark 1.33. The converse of Exercise 1.32 holds. That is if F : Rn → [0, 1] satisfies the
four properties from Exercise 1.32, then there exists a probability measure µ on Rn such
that F is the distribution function of µ.
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Corollary 1.34 (Construction of Several Random Variables). Let F : Rn → [0, 1]
satisfy the four properties from Exercise 1.32. Then there exist random variables X1, . . . , Xn

on a measurable space (Ω,F) such that

F (t1, . . . , tn) = P(X1 ≤ t1, . . . , Xn ≤ tn), ∀ t1, . . . , tn ∈ R.
1.4. Expected Value, Integration. If A ⊆ Ω is a measurable subset of a measurable
space, we define the indicator function of A, denoted 1A : Ω→ {0, 1} by

1A(ω) :=

{
1 , if ω ∈ A
0 , if ω /∈ A.

Definition 1.35 (Expected Value). Let X : Ω → [0,∞] be a random variable on a
probability space (Ω,F ,P). We say X is an unsigned simple function if ∃ m ≥ 1, ∃
a1, . . . , am ∈ [0,∞] and ∃ disjoint measurable A1, . . . , Am ⊆ Ω such that X =

∑m
i=1 ai1Ai .

We define the expected value of X (or the mean of X), denoted EX, by

EX :=
m∑
i=1

aiP(Ai).

If X : Ω→ [0,∞] is any random variable, we define the expected value of X to be

EX := sup
m≥1

sup
0≤Y (ω)≤X(ω), ∀ω∈Ω

Y=
∑m
i=1 ai1Ai unsigned simple

EY.

If X : Ω→ [−∞,∞] satisfies E |X| <∞, we define the expected value of X to be

EX := E max(X, 0)− E max(−X, 0).

If X : Ω→ C satisfies E |X| <∞, we define the expected value of X to be

EX := ERe(X) +
√
−1EIm(X).

If E |X| < ∞, we say that X is absolutely integrable. When EX exists we sometimes
write EX =

∫
Ω
XdP to match analytic notation and emphasize dependence of EX on P.

Exercise 1.36. Let (Ω,F ,P) be a finite or countable probability space. If X : Ω → [0,∞]
is a random variable with E |X| <∞, show that

EX =
∑
ω∈Ω

X(ω)P(ω).

Exercise 1.37. Let X, Y be random variables such that X, Y ≥ 0 or E |X| ,E |Y | <∞. For
any a ∈ [−∞,∞], define 0 · a := 0. Show:

• E(X + Y ) = EX + EY and if c ∈ R, then E(cX) = cEX.
• If P(X = Y ) = 1, then EX = EY .
• E |X| ≥ 0 with equality only when X = 0 almost surely.
• If X ≤ Y almost surely, then EX ≤ EY .

Exercise 1.38 (Inclusion-Exclusion Formula). Let A1, . . . , An ⊆ Ω be events. Then:

P(∪ni=1Ai) =
n∑
i=1

P(Ai)−
∑

1≤i<j≤n

P(Ai ∩ Aj) +
∑

1≤i<j<k≤n

P(Ai ∩ Aj ∩ Ak)

· · ·+ (−1)n+1P(A1 ∩ · · · ∩ An).

8



To prove this formula, show that 1∪ni=1Ai
= 1−

∏n
i=1(1− 1Ai) and then take expected values

of both sides.

1.5. Inequalities.

Exercise 1.39. Let φ : R → R. We say that φ is convex if, for any x, y ∈ R and for any
t ∈ [0, 1], we have

φ(tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y).

Let φ : R→ R. Show that φ is convex if and only if: for any y ∈ R, there exists a constant
a and there exists a function L : R→ R defined by L(x) = a(x− y) +φ(y), x ∈ R, such that
L(y) = φ(y) and such that L(x) ≤ φ(x) for all x ∈ R. (In the case that φ is differentiable,
the latter condition says that φ lies above all of its tangent lines.)

(Hint: Suppose φ is convex. If x is fixed and y varies, show that φ(y)−φ(x)
y−x increases as y

increases. Draw a picture. What slope a should L have at x?)

Exercise 1.40 (Jensen’s Inequality). Let X : Ω → [−∞,∞] be a random variable. Let
φ : R→ R be convex. Assume that E |X| <∞ and E |φ(X)| <∞. Then

φ(EX) ≤ Eφ(X).

(Hint: use Exercise 1.39 with y := EX.) Deduce the triangle inequality:

|EX| ≤ E |X| .
Exercise 1.41 (Markov’s Inequality). Let X : Ω→ [−∞,∞] be a random variable. Then

P(|X| ≥ t) ≤ E |X|
t

, ∀ t > 0.

(Hint: multiply both sides by t and use monotonicity of E.)

Corollary 1.42. If n is a positive integer, then

P(|X| ≥ t) ≤ E |X|n

tn
, ∀ t > 0.

Proof. From Markov’s Inequality, Exercise 1.41,

P(|X| ≥ t) = P(|X|n ≥ tn) ≤ E |X|n

tn
, ∀ t > 0.

�

We refer to E |X|n as the nth moment of X.

Definition 1.43 (Variance). Let X : Ω→ [−∞,∞] be a random variable with E |X| <∞
and EX2 <∞. We define the variance of X, denoted var(X), to be

var(X) := E(X − EX)2 = EX2 − (EX)2.

Exercise 1.44. Combining Jensen’s Inequality with the Monotone Convergence Theorem
below, Theorem 1.54, show that if EX2 <∞, then E |X| <∞, so EX ∈ R.

Exercise 1.45. Let a, b ∈ R and let X : Ω→ [−∞,∞] be a random variable with EX2 <∞.
Show that

var(aX + b) = a2var(X).

Then, let X be a standard Gaussian. Show that EX = 0 and var(X) = 1.
Finally, show that the quantity E(X − t)2 is minimized for t ∈ R uniquely when t = EX.
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Replacing X by X − EX and taking n = 2 in Corollary 1.42 gives:

Corollary 1.46 (Chebyshev’s Inequality). Let X : Ω → [−∞,∞] be a random variable
with EX2 <∞. Then

P(|X − EX| ≥ t) ≤ var(X)

t2
, ∀ t > 0.

(By Exercise 1.44, EX ∈ R.)

Corollary 1.42 shows that, if large moments of X are finite, then P(X > t) decays rapidly.
Sometimes, we can even get exponential decay on P(X > t), if we make the rather strong
assumption that EerX is finite for some r > 0. Note that, by the power series expansion of
the exponential, EerX <∞ assumes that an infinite sum of the moments of X is finite.

Exercise 1.47 (The Chernoff Bound). Let X : Ω → [−∞,∞] be a random variable.
Show that, for any r, t > 0,

P(X > t) ≤ e−rtEerX .

If 1 ≤ p <∞, and if X : Ω→ [−∞,∞] is a random variable, denote the Lp-norm of X as
‖X‖p := (E |X|p)1/p and denote the L∞-norm ofX as ‖X‖∞ := inf{c > 0: P(|X| ≤ c) = 1}.

Theorem 1.48 (Hölder’s Inequality). Let X, Y : Ω → R be random variables. Let 1 ≤
p ≤ ∞, and let q be dual to p (so 1/p+ 1/q = 1). Then

E |XY | ≤ ‖X‖p ‖Y ‖q .
In particular, the case p = q = 2 recovers the Cauchy-Schwarz inequality:

E |XY | ≤ (EX2)1/2(EY 2)1/2.

Proof. By scaling, we may assume ‖X‖p = ‖Y ‖q = 1 (zeros and infinities being trivial).
Also, the case p = 1, q = ∞ follows from the triangle inequality, so we assume 1 < p < ∞.
From concavity of the log function, we have the pointwise inequality

|X(ω)Y (ω)| = (|X(ω)|p)1/p(|Y (ω)|q)1/q ≤ 1

p
|X(ω)|p +

1

q
|Y (ω)|q , ∀ω ∈ Ω

which upon integration gives the result. �

Theorem 1.49 (Triangle Inequality). Let X, Y : Ω → R be random variables. Let 1 ≤
p ≤ ∞. Then

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p , 1 ≤ p ≤ ∞

Proof. The case p = ∞ follows from the scalar triangle inequality, so assume 1 ≤ p < ∞.
By scaling, we may assume ‖X‖p = 1− t, ‖Y ‖p = t, for some t ∈ (0, 1) (zeros and infinities

being trivial). Define V := X/(1− t), W := Y/t. Then by convexity of x 7→ |x|p on R,

|(1− t)V (ω) + tW (ω)|p ≤ (1− t) |V (ω)|p + t |W (ω)|p , ∀ω ∈ Ω

which upon integration completes the proof. �

Exercise 1.50. Let X, Y : Ω → R be random variables. Let 0 < p < 1 and let ‖X‖p :=

(E |X|p)1/p. Show that there exists c(p) > 0 such that ‖X + Y ‖p ≤ c(p)(‖X‖p + ‖Y ‖p). In

particular, it suffices to choose c(p) = 21/p. (Hint: a pointwise inequality should imply that
‖X + Y ‖pp ≤ ‖X‖

p
p + ‖Y ‖pp.)
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Exercise 1.51. Let X : Ω → [−∞,∞] be a random variable. Show that the function
p 7→ ‖X‖p is nondecreasing on the domain p ∈ (0,∞]. So, if ‖X‖p is finite for some value

of p, then it is finite for all smaller values of p. (Hint: approximate X by bounded random
variables, and then by apply the Monotone Convergence Theorem.)

Exercise 1.52 (Paley-Zygmund Inequality). Let X be a nonnegative random variable
with EX2 <∞. Let 0 ≤ t ≤ 1. Then

P(X > tEX) ≥ (1− t)2 (EX)2

EX2
.

(Hint: Apply the Cauchy-Schwarz inequality to X1{X>tEX}.)

Exercise 1.53 (Logarithmic Convexity of Lp-Norms). Let X be a real-valued random
variable. Let 0 < p1 < p < p2 ≤ ∞, and define 0 ≤ t ≤ 1 by 1

p
= 1−t

p1
+ t

p2
. Then

‖X‖p ≤ ‖X‖
(1−t)
p1
‖X‖tp2 .

1.6. Integral Convergence Theorems.

Theorem 1.54 (Monotone Convergence Theorem). Let 0 ≤ X1 ≤ X2 ≤ · · · be a
monotone increasing sequence of functions on a probability space (Ω,F ,P). Then

E lim
n→∞

Xn = lim
n→∞

EXn.

(By monotonicity, limn→∞Xn(ω) ∈ [0,∞] exists for every ω ∈ Ω.)

Lemma 1.55 (Borel-Cantelli Lemma). Let A1, A2, . . . be events with
∑∞

n=1 P(An) <∞.
Let B := {

∑∞
n=1 1An = ∞}, so that B is the event that infinitely many of the events occur.

Then P(B) = 0.

Proof. From the Monotone Convergence Theorem, Theorem 1.54,

E
∞∑
n=1

1An = E lim
m→∞

m∑
n=1

1An = lim
m→∞

m∑
n=1

E1An =
∞∑
n=1

P(An) <∞.

So, from Continuity of the Probability Law, Exercise 1.19, and Markov’s Inequality,

0 ≤ P(B) = P

(
∞∑
n=1

1An =∞

)
= lim

t→∞
P

(
∞∑
n=1

1An ≥ t

)
≤ lim

t→∞

∑∞
n=1 P(An)

t
= 0.

(Note that B is measurable by Exercise 1.20) �

Theorem 1.56 (Fatou’s Lemma). Let X1, X2, . . . be nonnegative random variables on a
probability space (Ω,F ,P). Then

E lim inf
n→∞

Xn ≤ lim inf
n→∞

EXn

In particular, if X := limn→∞Xn exists almost surely, then

EX ≤ lim inf
n→∞

EXn.

Theorem 1.57 (Dominated Convergence Theorem). Let X1, X2, . . . : Ω → C be ran-
dom variables on a probability space (Ω,F ,P) that converge almost surely. Assume that Y
is a nonnegative random variable with EY <∞ and |Xn| ≤ Y almost surely, ∀ n ≥ 1. Then

E lim
n→∞

Xn = lim
n→∞

EXn.
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Corollary 1.58 (Bounded Convergence Theorem). Let X1, X2, . . . : Ω→ C be random
variables on a probability space (Ω,F ,P) that converge almost surely. Let c > 0. Assume
that |Xn| ≤ c almost surely, for every n ≥ 1. Then

E lim
n→∞

Xn = lim
n→∞

EXn.

Theorem 1.59 (Convergence Theorem with Bounded Moment). Let X1, X2, . . . : Ω→
C be random variables on a probability space (Ω,F ,P) that converge almost surely to a ran-
dom variable X. Assume ∃ 0 < ε, c <∞ such that E |Xn|1+ε ≤ c, ∀ n ≥ 1. Then

EX = lim
n→∞

EXn.

Proof. Let t > 0. Define X
(t)
n := Xn1|Xn|≤t and X(t) := X1|X|≤t. Then X

(t)
1 , X

(t)
2 , . . . con-

verges almost surely to X(t), so the Bounded Convergence Theorem, Corollary 1.58 implies

lim
n→∞

EX(t)
n = EX(t).

Also, using the inequality |x− t| ≤ |x/t|ε |x| valid for any x > t or using the inequality
|x− (−t)| ≤ |x/t|ε |x| valid for any x < −t,∣∣Xn −X(t)

n

∣∣ ≤ t−ε |Xn|1+ε .

So, taking expected values and applying the triangle inequality,∣∣EXn − EX(t)
n

∣∣ ≤ E
∣∣Xn −X(t)

n

∣∣ ≤ t−εE |Xn|1+ε ≤ t−εc.

Applying similar reasoning to X and using Fatou’s Lemma, Theorem 1.56,∣∣EX − EX(t)
∣∣ ≤ E

∣∣X −X(t)
∣∣ ≤ t−εE |X|1+ε ≤ t−εc.

Combining the above with the scalar triangle inequality,

|EX − EXn| ≤
∣∣EX − EX(t)

∣∣+
∣∣EX(t) − EX(t)

n

∣∣+
∣∣EX(t)

n − EXn

∣∣ .
lim sup
n→∞

|EX − EXn| ≤ 2t−εc.

Letting t→∞ concludes the result. �

Theorem 1.60 (Change of Variables). Let X : Ω→ S be a random variable. Let f : S →
C be measurable (where C has the Borel σ-algebra). Assume f ≥ 0 or E |f(X)| <∞. Then

Ef(X) =

∫
S

f(x)dµX(x).

Remark 1.61. In particular, if S = R, and if 0 < p <∞, then

E |X| =
∫
R
|x| dµX(x), E |X|p =

∫
R
|x|p dµX(x).

And if X ≥ 0 or E |X| <∞, then

EX =

∫
R
xdµX(x).

So, computing expected values can reduce to computing integrals on the real line. That is,
we can change variables to integrate over R, where dµX emulates the Jacobian factor from
the usual change of variables formula.
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Proof. Suppose there exists A ⊆ S measurable such that f = 1A. Then by Definition 1.26

Ef(X) = P(X ∈ A) = µX(A) =

∫
S

1A(x)dµX(x).

So, the Theorem holds for f = 1A. The Theorem then holds for simple functions by linearity.
Then, given any f : S → [0,∞), and given any n ≥ 1, let fn : S → R so that fn(s) is f(s)
rounded down to the largest multiple of 1/n less than f(s) and n. Then f1, f2, . . . increases
monotonically to f , so the Theorem then holds for f by the Monotone Convergence Theorem,
Theorem 1.54. When f : S → R satisfies E |f(X)| < ∞, we have E max(f(X), 0) < ∞ and
E max(−f(X), 0) < ∞. And the Theorem holds for max(f(X), 0) and max(−f(X), 0).
Subtracting these identities,

Ef(X) = E max(f(X), 0)− E max(−f(X), 0)

=

∫
S

(max(f(x), 0)−max(−f(x), 0))dµX(x) =

∫
S

f(x)dµX(x).

The case f : S → C follows from the case f : S → R by taking real and imaginary parts. �

Remark 1.62. If µX is absolutely continuous with respect to Lebesgue measure, then X
has density g : R → [0,∞) and dµX(x) = g(x)dx. If additionally S = R, the Change of
Variables formula becomes

Ef(X) =

∫
R
f(x)g(x)dx.

Example 1.63. Let X be a uniformly distributed random variable in [0, 1]. If 0 < p <∞,

EXp =

∫ 1

0

xpdx =
1

p+ 1
.

Exercise 1.64 (Stein Identity). Let X be a standard Gaussian random variable, so that

X has density x 7→ e−x
2/2/
√

2π, ∀ x ∈ R. Let g : R → R be a continuously differentiable
function such that g and g′ have polynomial volume growth. That is, ∃ a, b > 0 such that
|g(x)| , |g′(x)| ≤ a(1 + |x|)b, ∀ x ∈ R. Prove the Stein identity

EXg(X) = Eg′(X).

Using this identity, recursively compute EXk for any positive integer k.
Alternatively, for any t > 0, show that EetX = et

2/2, i.e. compute the moment generat-

ing function of X. Then, using dk

dtk
|t=0Ee

tX = EXk and using the power series expansion

of the exponential, compute EXk directly from the identity EetX = et
2/2.

1.7. Product Measures, Independence.

Exercise 1.65 (Finite Product Measure). Let (Ωi,Fi, µi) be probability spaces for any
1 ≤ i ≤ n. Show that there exists a unique probability measure, denoted

∏n
i=1 µi on

(
∏n

i=1 Ωi,
∏n

i=1Fi) (where the latter measurable space is defined in Example 1.8) such that( n∏
i=1

µi

)( n∏
i=1

Ai

)
=

n∏
i=1

µi(Ai), ∀A1 ∈ F1, . . . , An ∈ Fn.
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Theorem 1.66 (Fubini’s Theorem). Let (Ω1,F1, µ1), (Ω2,F2, µ2) be probability spaces.
Let (Ω1 × Ω1,F1 × F2, µ1 × µ2) be the product measure space, defined in Example 1.8. Let
f be a measurable function on Ω1 × Ω2 such that either (i) f : Ω1 × Ω2 → [0,∞] or (ii)
f : Ω1 × Ω2 → C and

∫
Ω1×Ω2

|f | d(µ1 × µ2) <∞. Then∫
Ω1×Ω2

fd(µ1 × µ2) =

∫
Ω1

(∫
Ω2

f(ω1, ω2)dµ2(ω2)
)
dµ1(ω1)

=

∫
Ω2

(∫
Ω1

f(ω1, ω2)dµ1(ω1)
)
dµ2(ω2).

In particular, the function ω1 7→ f(ω1, ω2) is measurable for all ω2 ∈ Ω2, the function
ω1 7→

∫
Ω2
f(ω1, ω2)dµ2(ω2) is measurable for all ω2 ∈ Ω2, the function ω2 7→ f(ω1, ω2) is

measurable for all ω1 ∈ Ω2, and the function ω1 7→
∫

Ω2
f(ω1, ω2)dµ2(ω2) is measurable for

all ω2 ∈ Ω2. And if
∫

Ω1×Ω2
|f | d(µ1 × µ2) < ∞, the previous four functions are absolutely

integrable almost everywhere.

The Fubini Theorem can be proven via the Monotone Class Lemma.

Definition 1.67 (Monotone Class). A collection F of subsets of Ω is called a monotone
class when

• If A1 ⊆ A2 ⊆ · · · are sets in F , then ∪∞i=1Ai ∈ F .
• If A1 ⊇ A2 ⊇ · · · are sets in F , then ∩∞i=1Ai ∈ F .

Lemma 1.68 (Monotone Class Lemma). Let F be an algebra of sets on Ω. Then σ(F)
is the smallest monotone class containing F .

Definition 1.69 (Independent Random Variables). We say a collection
(
Xi : Ω →

Si
)
i∈I of random variables is independent if the distribution of (Xi)i∈I is the product of

the distributions of the Xi. That is, for any finite J ⊆ I and for any measurable sets Ai ⊆ Si,
i ∈ J , we have

P
(⋂
i∈J

{Xi ∈ Ai}
)

=
∏
i∈J

P(Xi ∈ Ai).

Remark 1.70. In order for the definition of independence to make sense, the random vari-
ables must have the same domain.

Remark 1.71. It follows from the above definition that a finite set of random variables
X1 : Ω → S1, . . . , Xm : Ω → Sm is independent if, for any measurable sets Ai ⊆ Si, where
1 ≤ i ≤ m, we have

P
( m⋂
i=1

{Xi ∈ Ai}
)

=
m∏
i=1

P(Xi ∈ Ai).

If (Xi : Ω → Si)i∈I is a collection of independent random variables, and if for any finite
K ⊆ I we denote XK := (Xi)i∈K , then for any finite disjoint subsets K1, . . . , Kn ⊆ I and for
any measurable sets Bi ⊆

∏
j∈Ki Sj where 1 ≤ i ≤ n, we have

P
( n⋂
i=1

{XKi ∈ Bi}
)

=
n∏
i=1

P(XKi ∈ Bi).
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That is, the random variables XK1 , . . . , XKn are independent. So, if Fi :
∏

j∈Ki Sj → Ti
are measurable for all 1 ≤ i ≤ n, then the random variables F1(XK1), . . . , Fn(XKn) are
independent.

For example, if X1, X2, X3 are independent, then F1(X1, X2) and F2(X3) are independent.

Proposition 1.72. Let X, Y : Ω→ C be independent random variables. If either condition
X, Y ≥ 0 or E |XY | <∞ or E |X| ,E |Y | <∞ holds, then

E(XY ) = EXEY.

More generally, if X, Y : Ω → S are independent random variables, if F,G : S → C are
measurable, and if either F (X), G(Y ) ≥ 0 or E |F (X)G(Y )| <∞ or E |F (X)| ,E |G(Y )| <
∞, then

E(F (X)G(Y )) = EF (X)EG(Y ).

Proof. By Theorem 1.60 for the random variable (X, Y ), Definition 1.69, and Theorem 1.66,

EF (X)G(Y ) =

∫
S×S

F (x)G(y)dµX,Y (x, y) =

∫
S×S

F (x)G(y)dµX(x)dµY (y)

=

∫
S

(∫
S

F (x)G(y)dµX(x)
)
dµY (y) =

∫
S

F (x)dµX(x) ·
∫
S

G(y)dµY (y) = EF (X) · EG(Y ).

In the last line, we used Theorem 1.60. Fubini’s Theorem was justified when F (X), G(Y ) ≥ 0
or E |F (X)G(Y )| < ∞. In the case E |F (X)| ,E |G(Y )| < ∞, the above equality ap-
plied to |F | and |G| shows that E |F (X)G(Y )| = E |F (X)|E |G(Y )| < ∞. So, when
E |F (X)| ,E |G(Y )| < ∞ the application of Fubini’s Theorem in the above equalities also
holds for F and G themselves. �

Exercise 1.73. Let X : Ω→ R be a random variable (as usual R has the Borel σ-algebra).
Show that X is independent of itself if and only if X is almost surely constant.

Also, show that a constant random variable is independent of any other random variable.

Exercise 1.74. Let X1, . . . , Xn be discrete random variables (i.e. they take values in finite
or countable spaces S1, . . . , Sn with their discrete σ-algebras). Show that X1, . . . , Xn are
independent if and only if:

P
( n⋂
i=1

{Xi = xi}
)

=
n∏
i=1

P(Xi = xi), ∀x1 ∈ S1, . . . , xn ∈ Sn.

Exercise 1.75. Show that X1, . . . , Xn : Ω→ R are independent if and only if:

P
( n⋂
i=1

{Xi ≤ xi}
)

=
n∏
i=1

P(Xi ≤ xi), ∀x1, . . . , xn ∈ R.

Exercise 1.76. Let V be a finite-dimensional vector space over a finite field F. Let X be
a random variable uniformly distributed in V . Let 〈·, ·〉 : V × V → F be a non-degenerate
bilinear form on V (if v ∈ V satisfies 〈v, w〉 = 0 for all w ∈ V , then v = 0.). Let v1, . . . , vn be
non-zero vectors in V . Show that the random variables 〈X, v1〉, . . . , 〈X, vn〉 are independent
if and only if the vectors v1, . . . , vn are linearly independent.

Exercise 1.77. Give an example of three random variables X, Y, Z : Ω → [−∞,∞] that
are pairwise independent (any two of the random variables X, Y, Z are independent of each
other), but such that X, Y, Z are not independent. (Hint: Exercise 1.76 might be helpful.)
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Exercise 1.78. Let X : Ω → Rn be a random variable with the standard Gaussian dis-
tribution:

P(X ∈ A) :=

∫
A

e−(x21+···+x2n)/2dx(2π)−n/2, ∀A ⊆ Rn measurable.

Let v1, . . . , vm be vectors in Rn. Let 〈·, ·〉 : Rn×Rn → R be the standard inner product on
Rn, so that 〈x, y〉 :=

∑n
i=1 xiyi for any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. Show that the

random variables 〈X, v1〉, . . . , 〈X, vm〉 are independent if and only if the vectors v1, . . . , vm
are pairwise orthogonal.

We say that a family of events (Ai)i∈I are independent if their indicator random variables
(1Ai)i∈I are independent. One can show this is equivalent to: for any finite subset J ⊆ I,

P
(⋂
i∈J

Ai
)

=
∏
i∈J

P(Ai).

Exercise 1.79.

• Show that two events A,B are independent if and only if P(A ∩B) = P(A)P(B)
• Find events A,B,C such that P(A∩B∩C) = P(A)P(B)P(C), but such that A,B,C

are not independent.
• Find events A,B,C that are pairwise independent (so that any two of A,B,C are

independent), but such that A,B,C are not independent.

From Corollary 1.24, if X1 : Ω1 → R, . . . , Xn : Ωn → R are random variables, then there
exists a single probability space Rn with the Borel σ-algebra and with probability measure∏n

i=1 µXi where the random variables X1, . . . , Xn can be realized as independent random
variables. In particular, for any 1 ≤ i ≤ n, define

Yi(ω1, . . . , ωn) := ωi, ∀ (ω1, . . . , ωn) ∈ Rn.

Note that µXi = µYi , P(Xi ≤ t) = P(Yi ≤ t) for all 1 ≤ i ≤ n and for all t ∈ R, and
Y1, . . . , Yn are independent by Definition 1.69. Unfortunately, the sample space Rn depends
on n, which is undesirable since we will often consider sums of sequences of random variables
as n → ∞. That is, in order to construct an infinite sequence of independent random
variables, we should have a single sample space such that all of the random variables have
that sample space as their domain. Such a sample space, and a measure, are constructed in
the following Theorem.

Theorem 1.80 (Kolmogorov Extension Theorem, Special Case). For any n ≥ 1,
suppose we are given µn a probability measure on Rn with the Borel σ-algebra such that

µn+1

(
(a1, b1]× · · · × (an, bn]× R

)
= µn((a1, b1]× · · · × (an, bn]), ∀ a1 ≤ b1, . . . , an ≤ bn.

Then there exists a unique probability measure µ∞ on RN (with the product σ-algebra defined
in Example 1.8) such that

µ∞
(
(ωi)i∈N : ωi ∈ (ai, bi], ∀ 1 ≤ i ≤ n

)
= µn((a1, b1]× · · · × (an, bn]), ∀ a1 ≤ b1, . . . , an ≤ bn.

Corollary 1.81 (Existence of Independent Random Variables). Let X1 : Ω1 → R,
X2 : Ω2 → R, . . . be a sequence of random variables. Then, there exists a probability space
(Ω,F , µ∞) and there exists a sequence of random variables Y1, Y2, . . . on Ω such that Y1, Y2, . . .
are independent, and such that µXi = µYi for all i ≥ 1.
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Proof. From Theorem 1.80, we use Ω := RN and µn :=
∏n

i=1 µXi for any n ≥ 1. For any
i ≥ 1, define Yi : Ω→ R by

Yi(ω1, ω2, . . .) := ωi, ∀ (ω1, ω2, . . .) ∈ RN.

Then for any j ≥ 1 and t ∈ R, the definition of µYj says

µYj((−∞, t]) = µ∞(Yj ≤ t) = µ∞
(
(ωi)i∈N : ωj ≤ t

)
=
( j∏
i=1

µXi

)
(Rn−1 × (−∞, t]) = µXj((−∞, t]).

So, µYj and µXj agree on half open intervals. It follows that µXj = µYj by Exercise 1.7.
Finally, to see the independence, note that if n ≥ 1 and if A1, . . . , An ⊆ R are measurable,
then by Theorem 1.80, the definition of Y1, . . . , Yn, and the definition of µn,

µY1,...,Yn(
n∏
i=1

Ai) = µ∞(Y1 ∈ A1, . . . , Yn ∈ An) = µn(Y1 ∈ A1, . . . , Yn ∈ An)

= µn(ω1 ∈ A1, . . . , ωn ∈ An) = µn(
n∏
i=1

Ai) =
n∏
i=1

µXi(Ai) =
n∏
i=1

µYi(Ai).

�

In certain situations, e.g. when we want to construct a sequence of non-independent
random variables, we may not be able to change the sample space of the given random
variables in this way. That is, we may just need to construct a measure on an arbitrary
product of measure spaces. Unfortunately, this is not always possible. In order for the
measure to exist, we need an additional assumption on each of the measure spaces in the
product.

Definition 1.82 (Standard Borel Space). A measurable space (Ω,F) is a standard
Borel space if it is isomorphic as a measurable space to [0, 1] with the Borel σ-algebra.
That is, ∃ a bijection f : Ω→ [0, 1] such that f and f−1 are measurable.

Theorem 1.83 (Kolmogorov Extension Theorem). Let (Ωi,Fi, µi)i∈I be a collection of
probability spaces such that (Ωi,Fi)i∈I are standard Borel spaces. For any J,K such that
K ⊆ J ⊆ I, let πJ→K :

∏
i∈J Ωi →

∏
i∈K Ωi be the usual coordinate projection. For any

finite J ⊆ I, let µJ be a probability measure on (
∏

i∈J Ωi,
∏

i∈J Fi) such that the following
compatibility condition holds for any K ⊆ J

µJ(π−1
J→K(AK)) = µK(AK), ∀AK ∈

∏
i∈K

Fi.

Then there exists a unique probability measure µI on the measurable space (
∏

i∈I Ωi,
∏

i∈I Fi)
such that, for all finite J ⊆ I,

µI(π
−1
I→J(AJ)) = µJ(AJ), ∀AJ ∈

∏
i∈J

Fi.

Thankfully, a large class of standard Borel spaces exists, so that we can apply Theorem
1.83 without difficulty.
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Lemma 1.84. Let (S, d) be a complete separable metric space with metric d : S×S → [0,∞).
(So S has a countable dense set.) Let Ω be a Borel subset of S. Then Ω with the Borel σ-
algebra is a standard Borel space.

For a proof and related discussion, see e.g. here.

Exercise 1.85. Let ε1, ε2, · · · ∈ {0, 1} be random variables that are independent and iden-
tically distributed copies of the Bernoulli random variable with expectation 1/2, so that
P(εn = 1) = P(εn = 0) = 1/2 for all n ≥ 1.

• Show that the random variable
∑∞

n=1 2−nεn is uniformly distributed on the unit
interval [0, 1].
• Show that the random variable

∑∞
n=1 2·3−nεn is uniformly distributed on the standard

middle third Cantor set (where the Cantor set’s center is 1/2.)
• Let µ be a probability measure on R. The Fourier Transform of µ at ξ ∈ R is defined

by µ̂(ξ) :=
∫
R e

ixξdµ(x). where i =
√
−1. For example, if µ is uniform on [−1/2, 1/2],

then

µ̂(ξ) =

∫ 1/2

−1/2

eixξdx =
eiξ/2 − e−iξ/2

iξ
=

2 sin(ξ/2)

ξ
, ∀ ξ 6= 0.

Using the first item, find an expression for sin(ξ)/ξ in terms of an infinite product of
cosines. (Hint: if a random variable X has distribution µX , then µ̂X(ξ) = EeiXξ for
any ξ ∈ R. So the Fourier transform of the sum of independent random variables is
the product of the Fourier transforms.) Similarly, find an expression for the Fourier
transform of the uniform measure on the middle third Cantor set (when the Cantor
set’s center is 0 ∈ R) in terms of an infinite product of cosines.

Theorem 1.60 reduces computing expected values of functions f of a random variable
X : Ω→ R to integrating on the real line with respect to µX . If the function f is absolutely
continuous, then we can change Theorem 1.60 by “integrating by parts” as follows.

Theorem 1.86 (Integration by parts). Let X : Ω → [0,∞) be a random variable. Let
f : R → [0,∞) be an absolutely continuous function (with respect to Lebesgue measure on
R) with f(0) = 0. Then f has an almost everywhere derivative (with respect to Lebesgue
measure). Assume f ′ ≥ 0 almost everywhere. Then

Ef(X) =

∫ ∞
0

f ′(t)P(X > t)dt.

18

http://www.math.ucla.edu/~biskup/275b.1.14w/PDFs/Standard-Borel-Spaces.pdf


Proof.

Ef(X) =

∫ ∞
0

f(x)dµX(x), by Theorem 1.60,

=

∫ ∞
0

∫ x

0

f ′(t)dtdµX(x), by Lebesgue’s Fundamental Theorem of Calculus

=

∫ ∞
0

∫ ∞
0

1[0,x)(t)f
′(t)dtdµX(x)

=

∫ ∞
0

∫ ∞
0

1(t,∞)(x)dµX(x)f ′(t)dt, by Fubini’s Theorem, Theorem 1.66

=

∫ ∞
0

f ′(t)P(X > t)dt.

�

Example 1.87. Let X : Ω→ R be a random variable. Let 0 < p <∞. Then

E |X|p =

∫ ∞
0

ptp−1P(X > t)dt.

Exercise 1.88. Let X be a random variable taking nonnegative integer values. Show that

EX =
∞∑
n=1

P(X ≥ n).

Exercise 1.89 (MAX-CUT). The probabilistic method is a very useful way to prove the
existence of something satisfying some properties. This method is based upon the following
elementary statement: If α ∈ R and if a random variable X : Ω→ R satisfies EX ≥ α, then
there exists some ω ∈ Ω such that X(ω) ≥ α. We will demonstrate this principle in this
exercise.

Let G = (V,E) be an undirected graph on the vertices V = {1, . . . , n} so that the edge
set E is a subset of unordered pairs {i, j} such that i, j ∈ V and i 6= j. Let S ⊆ V and
denote Sc := V rS. We refer to (S, Sc) as a cut of the graph G. The goal of the MAX-CUT
problem is to maximize the number of edges going between S and Sc over all cuts of the
graph G.

Prove that there exists a cut (S, Sc) of the graph such that the number of edges going
between S and Sc is at least |E| /2. (Hint: define a random S ⊆ V such that, for every
i ∈ V , P(i ∈ S) = 1/2, and the events 1 ∈ S, 2 ∈ S, . . . , n ∈ S are all independent. If
{i, j} ∈ E, show that P(i ∈ S, j /∈ S) = 1/4. So, what is the expected number of edges
{i, j} ∈ E such that i ∈ S and j /∈ S?)

1.8. Kolmogorov’s Zero-One Law.

Definition 1.90 (σ-algebra generated by a random variable). Let X : (Ω,F)→ (S,B)
be a random variable. Define the σ-algebra generated by X, denoted σ(X), to be the
σ-algebra generated by

{X ∈ B : B ∈ B} = {X−1(B) : B ∈ B} = {{ω ∈ Ω: X(ω) ∈ B} : B ∈ B}.
Equivalently, σ(X) is the smallest (coarsest) σ-algebra such that X is measurable. More
generally, given a collection of random variables (Xi)i∈I : (Ω,F)→ (S,B), define σ((Xi)i∈I)
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to be the σ-algebra generated by the sets

{X−1
i (B) : B ∈ B, i ∈ I}

Equivalently, σ((Xi)i∈I) is the smallest (coarsest) σ-algebra such that all of the random
variables (Xi)i∈I are measurable.

Exercise 1.91. Let X1, X2, . . . : Ω→ S be random variables. Show that

σ(X1, X2, . . .) = σ(∪∞i=1σ(X1, . . . , Xi)).

Definition 1.92. Let (Ω,F ,P) be a probability space. A collection of σ-algebras {Fi}i∈I ⊆
F are independent if, for any finite J ⊆ I, all of the sets {Ai : i ∈ J,Ai ∈ Fi} are
independent. That is, for any finite J ⊆ I, and for any sets {Ai : i ∈ J,Ai ∈ Fi},

P
(⋂
i∈J

Ai
)

=
∏
i∈J

P(Ai).

Exercise 1.93. Let (Xi)i∈I be a collection of independent random variables. Show that
(Xi)i∈I are independent if and only if (σ(Xi))i∈I are independent σ-algebras. (Hint: Let
i ∈ I and let J ⊆ I r {i} be finite. Are the sets in σ(Xi) that are independent of (σ(Xj))j∈J
a monotone class?)

Exercise 1.94. Let X1, X2, . . . be random variables. Show that X1, X2, . . . are independent
if and only if: for every i ≥ 1, σ(Xi+1) is independent of σ(X1, . . . , Xi). And the previous
cases occur if and only if: for every i ≥ 1, σ(Xi+1, Xi+2, . . .) is independent of σ(X1, . . . , Xi)

We define the tail σ-algebra of random variables X1, X2, . . . to be

T :=
∞⋂
i=1

σ(Xi, Xi+1, . . .).

Theorem 1.95 (Kolmogorov’s Zero-One Law). Let X1, X2, . . . be independent random
variables. Let A ∈ T . Then P(A) ∈ {0, 1}.

Proof. For any i ≥ 1, σ(X1, . . . , Xi) is independent of σ(Xi+1, Xi+2, . . .) by Exercise 1.94.
So for any i ≥ 1, by its definition, T is independent of σ(X1, . . . , Xi). Fix C ∈ T . Let
A := {A ∈ σ(X1, X2, . . .) : A is independent of C}. As just mentioned, A ⊇ σ(X1, . . . , Xi)
for every i ≥ 1, so that A ⊇ ∪∞i=1σ(X1, . . . , Xi). (Note that F := ∪∞i=1σ(X1, . . . , Xi) is
an algebra.) We claim that A is a monotone class. Given this claim, the Monotone Class
Lemma, Theorem 1.68 and Exercise 1.91, we conclude that A ⊇ σ(F) = σ(X1, X2, . . .) so
that C is independent of σ(X1, X2, . . .). By the definition of C ∈ T , C ∈ σ(X1, X2, . . .), so
that C is independent of itself. The only events A independent of themselves have probability
0 or 1, since P(A) = P(A)2. So, given the claim, we are done.

We now prove the above claim. Note that ∅,Ω ∈ A. Let A,B ∈ A with A ⊆ B. Then
(B r A) ∩ C = (B ∩ C) r (A ∩ C), so

P((B r A) ∩ C) = P(B ∩ C)−P(A ∩ C) = P(B)P(C)−P(A)P(C)

= (P(B)−P(A))P(C) = P(B r A)P(C).

Therefore, BrA ∈ A. In particular, ΩrA = Ac ∈ A. Since A is closed under complements,
it remains to show that A is closed under increasing unions. Let A1 ⊆ A2 ⊆ · · · be sets in
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A. Using Exercise 1.19 twice,

P((∪∞m=1Am) ∩ C) = P(∪∞m=1(Am ∩ C)) = lim
m→∞

P(Am ∩ C)

= lim
m→∞

P(Am)P(C) = P(∪∞m=1Am)P(C).

So, (∪∞m=1Am) ∈ A. That is, A is a monotone class, as desired. �

Remark 1.96. Let X1, X2, . . . : Ω→ R be a sequence of independent random variables. Let
t ∈ [−∞,∞]. It follows by the definition of T that the following events are in T

{ lim
n→∞

Xn exists}, {lim sup
n→∞

Xn > t}, {lim inf
n→∞

Xn > t}.

From Kolmogorov’s Zero-One Law, Theorem 1.95, all of these events therefore have proba-
bility 1 or 0. So, there must exist a, b ∈ [−∞,∞] such that lim infn→∞Xn = a almost surely
and lim supn→∞Xn = b almost surely. In the case a = b, X1, X2, . . . converges to a = b
almost surely, and P({limn→∞Xn exists}) = 1. And in the case a 6= b, X1, X2, . . . almost
surely does not converge and P({limn→∞Xn exists}) = 0.

Exercise 1.97. Let X1, X2, . . . : Ω → R be a sequence of independent random variables.
For any n ≥ 1, let Sn := X1 + · · ·+Xn. Show the following:

• {limn→∞ Sn exists} ∈ T .
• If t ∈ [−∞,∞], then it can occur that {lim supn→∞ Sn > t} /∈ T .
• If t ∈ [−∞,∞] and if c1 ≤ c2 ≤ · · · is a sequence of real numbers such that

limn→∞ cn =∞, then

{lim sup
n→∞

Sn
cn

> t} ∈ T .

It follows from Exercise 1.97 that lim supn→∞
Sn
n

will be almost surely constant, and

lim infn→∞
Sn
n

will be almost surely constant, if X1, X2, . . . is a sequence of independent
random variables.

1.9. Additional Comments. The foundations of measure theory were developed in the late
1800s and early 1900s by several mathematicians. In the 1930s, Kolmogorov provided an
axiomatic foundation of probability theory via measure theory. Probability theory was often
not considered a “serious” subject, perhaps due to its historical affiliation with gambling.
Since the 1930s and continuing to the present, more and more subjects embrace probabilistic
thinking. Within mathematics itself, analysis, number theory, algebra, combinatorics, etc.
all use increasing amounts of probability theory. Randomized algorithms are also used more
and more by computer scientists.

2. Laws of Large Numbers

The Laws of Large Numbers and Central Limit Theorem provide limiting statements for
sequences of random variables. The exact notions of convergence will depend on the limit
theorem. The general goal is to obtain the strongest possible convergence with the weakest
possible assumption. Sometimes, the convergence can be upgraded to a stronger notion, but
other times this is impossible.
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2.1. Modes of Convergence. Below are a few of the most commonly encountered notions
of convergence of random variables.

Definition 2.1 (Almost Sure Convergence). We say random variables Y1, Y2, . . . : Ω→ R
converge almost surely (or with probability one) to a random variable Y : Ω→ R if

P( lim
n→∞

Yn = Y ) = 1.

That is, P({ω ∈ Ω: limn→∞ Yn(ω) = Y (ω)}) = 1

Definition 2.2 (Convergence in Probability). We say that a sequence of random vari-
ables Y1, Y2, . . . : Ω→ R converges in probability to a random variable Y : Ω→ R if: for
all ε > 0,

lim
n→∞

P(|Yn − Y | > ε) = 0.

That is, ∀ ε > 0, limn→∞P(ω ∈ Ω: |Yn(ω)− Y (ω)| > ε) = 0.

Definition 2.3 (Convergence in Distribution). We say that real-valued random variables
Y1, Y2, . . . converge in distribution to a real-valued random variable Y if, for any t ∈ R
such that s 7→ P(Y ≤ s) is continuous at s = t,

lim
n→∞

P(Yn ≤ t) = P(Y ≤ t).

Note that the random variables are allowed to have different domains.

Definition 2.4 (Convergence in Lp). Let 0 < p ≤ ∞. We say that random variables
Y1, Y2, . . . : Ω→ R converge in Lp to Y : Ω→ R if ‖Y ‖p <∞ and

lim
n→∞

‖Yn − Y ‖p = 0.

(Recall that ‖Y ‖p := (E |Y |p)1/p if 0 < p <∞ and ‖X‖∞ := inf{c > 0: P(|X| ≤ c) = 1}.)

Exercise 2.5. Let Y1, Y2, . . . : Ω → R be random variables that converge almost surely to
a random variable Y : Ω → R. Show that Y1, Y2, . . . converges in probability to Y in the
following way.

• For any ε > 0 and for any positive integer n, let

An,ε :=
∞⋃
m=n

{ω ∈ Ω: |Ym(ω)− Y (ω)| > ε}.

Show that An,ε ⊇ An+1,ε ⊇ An+2,ε ⊇ · · · .
• Show that P(∩∞n=1An,ε) = 0.
• Using Continuity of the Probability Law, deduce that limn→∞P(An,ε) = 0.

Now, show that the converse is false. That is, find random variables Y1, Y2, . . . that con-
verge in probability to Y , but where Y1, Y2, . . . do not converge to Y almost surely.

Exercise 2.6. Let 0 < p ≤ ∞. Show that, if Y1, Y2, . . . : Ω → R converge to Y : Ω → R in
Lp, then Y1, Y2, . . . converges to Y in probability.

Then, show that the converse is false.

Exercise 2.7. Suppose random variables Y1, Y2, . . . : Ω → R converge in probability to a
random variable Y : Ω→ R. Prove that Y1, Y2, . . . converge in distribution to Y .

Then, show that the converse is false.
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Exercise 2.8. Prove the following statement. Almost sure convergence does not imply
convergence in L2, and convergence in L2 does not imply almost sure convergence. That
is, find random variables that converge in L2 but not almost surely. Then, find random
variables that converge almost surely but not in L2.

Remark 2.9. The following table summarizes our different notions of convergence of random
variables, i.e. the following table summarizes the implications of Exercises 2.6, 2.7 and 2.5.

Almost sure
convergence

2.5

"*
Convergence
in probability

2.7 +3 Convergence
in distribution

Convergence
in Lp

2.6

4<

Exercise 2.10. Let X,X1, X2, . . . : Ω→ R.

(i) Suppose that
∑∞

i=1 P(|Xi −X| > ε) < ∞ for all ε > 0. Show that X1, X2, . . .
converges to X almost surely. Show that the converse does not hold in general.

(ii) Suppose X1, X2, . . . converges to X in probability. Show there is a subsequence
Xi1 , Xi2 , . . . of X1, X2, . . . such that Xi1 , Xi2 , . . . converges to X almost surely. (Here
i1 < i2 < · · · )

(iii) (Urysohn subsequence principle) Suppose that every subsequence Xi1 , Xi2 , . . . of
X1, X2, . . . has a further subsequence Xij1

, Xij2
, . . . that converges to X in proba-

bility. Show that X1, X2, . . . also converges to X in probability.
(iv) Suppose X1, X2, . . . converges in probability. Let F : R → R be continuous. Show

that F (X1), F (X2), . . . converges in probability to F (X). More generally, suppose ∀
1 ≤ j ≤ k, X

(j)
1 , X

(j)
2 , . . . : Ω → R is a sequence of random variables that converge

in probability to X(j). Let F : Rk → R be continuous. Show that F (X
(1)
i , . . . , X

(k)
i )

converges in probability to F (X(1), . . . , X(k)). For example, if k = 2, then X
(1)
1 +

X
(2)
1 , X

(2)
1 + X

(2)
2 , . . . converges in probability to X(1) + X(2), and X

(1)
1 · X

(2)
1 , X

(2)
1 ·

X
(2)
2 , . . . converges in probability to X(1) ·X(2).

(v) (Fatou’s lemma for convergence in probability) If X1, X2, . . . : Ω→ [0,∞) converges
in probability to X, show that EX ≤ lim infn→∞EXn.

(vi) (Dominated convergence in probability) If X1, X2, . . . converge in probability to X,
and there exists a random variable Y : Ω→ [0,∞) such that, for any n ≥ 1, |Xn| ≤ Y
and EY <∞, then limn→∞EXn = EX.

2.2. Limit Theorems with Extra Hypotheses. In this Section, we prove our first limit
theorems under rather strong hypotheses.

We say random variables X1, X2, . . . : Ω→ R are uncorrelated if EXiXj = EXiEXj for
any i, j ≥ 1 with i 6= j. Recall from Proposition 1.72 that independent random variables are
uncorrelated.
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Exercise 2.11. Let X1, . . . , Xn : Ω → R be uncorrelated random variables with EX2
i < ∞

for any 1 ≤ i ≤ n. Show that

var(
n∑
i=1

Xi) =
n∑
i=1

var(Xi)

Exercise 2.12 (L2 Weak Law). Let µ, c ∈ R. Let X1, X2, . . . : Ω → R be uncorrelated
random variables with EXi = µ and var(Xi) ≤ c for all i ≥ 1. Then X1+···+Xn

n
converges to

µ in L2 as n→∞. So, X1+···+Xn
n

converges to µ in probability as n→∞.

Definition 2.13 (Identically Distributed). Let X, Y : Ω → R be random variables. We
say X, Y are identically distributed if X and Y have the same distribution, that is
µX = µY . We sometimes refer to independent and identically distributed random variables
X1, X2, . . . with the abbreviation i.i.d.

Proposition 2.14 (Strong Law of Large Numbers with Finite Fourth Moment). Let
X1, X2, . . . : Ω → R be a sequence of independent identically distributed random variables.
Let µ ∈ R. Assume that µ = EX1 and EX4

1 <∞. Then

P

(
lim
n→∞

X1 + · · ·+Xn

n
= µ

)
= 1.

Proof. For any j ≥ 1, let Yj := Xj−µ. We are required to show P
(
limn→∞

Y1+···+Yn
n

= 0
)

= 1.
Note that Y1, Y2, . . . are independent identically distributed random variables with EY1 = 0
and EY 4

1 <∞. We compute

E(Y1 + · · ·+ Yn)4 =
∑

1≤i,j,k,`≤n

EYiYjYkY`.

By independence, terms with i 6= j = k = ` vanish, since they become EYiYjYkY` =
EYiEY

3
j = 0. Terms with i, j, k, ` distinct also vanish, since EYiYjYkY` = EYiEYjEYkEY` =

0. The remaining nonvanishing terms are i = j = k = ` and the six permutations of
i = j 6= k = `. That is,

E(Y1 + · · ·+ Yn)4 = nEY 4
1 + 6[n(n− 1)/2](EY 2

1 )2.

By Jensen’s Inequality, Exercise 1.40,

E(Y1 + · · ·+ Yn)4 ≤ nEY 4
1 + 3n(n− 1)EY 4

1 ≤ 4n2EY 4
1 . (∗)

By Markov’s Inequality, Exercise 1.41, for any t > 0,

P
(∣∣∣Y1 + · · ·+ Yn

n

∣∣∣ > t
)
≤ E(Y1 + · · ·+ Yn)4

t4n4

(∗)
≤ 4EY 4

1

t4n2
.

So
∑∞

n=1 P(
∣∣Y1+···+Yn

n

∣∣ > t) <∞ and by the Borel-Cantelli Lemma 1.55, ∀ t > 0,

P
(∣∣∣Y1 + · · ·+ Yn

n

∣∣∣ > t for infinitely manyn ≥ 1
)

= 0.

Since this holds for any t > 0, we conclude that Y1+···+Yn
n

converges almost surely to 0. �
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2.3. Weak Law of Large Numbers. From the previous section, we see that the weak and
strong laws of large numbers follow if we know the random variables have finite second and
fourth moments, respectively. In order to weaken these hypotheses, we truncate the random
variables. Then, the truncated random variables will automatically have finite moments.
And if we do the truncation carefully enough, it will have a negligible effect on the limit
theorem in question.

We first state a version of the Weak Law of Large Numbers, where the random variables
are allowed to change.

Theorem 2.15 (Weak Law of Large Numbers for Triangular Arrays). For any n ≥ 1,
let Xn,1, . . . , Xn,n : Ω → R be independent random variables. Let b1, b2, . . . be a sequence of
positive numbers with limn→∞ bn = ∞. For any 1 ≤ k ≤ n, define Xn,k := Xn,k1|Xn,k|≤bn.

Assume that

(i) limn→∞
∑n

k=1 P(|Xn,k| > bn) = 0, and

(ii) limn→∞ b
−2
n

∑n
k=1 EX

2

n,k = 0.

Then b−1
n

∑n
k=1(Xn,k − EXn,k) converges to 0 in probability as n→∞.

Proof. For any n ≥ 1, let Sn :=
∑n

k=1 Xn,k, Sn :=
∑n

k=1Xn,k and let an :=
∑n

k=1 EXn,k.
Let ε > 0. Using P(A) = P(A ∩B) + P(A ∩Bc) ≤ P(B) + P(A ∩Bc) for any events A,B,

P(b−1
n |Sn − an| > ε) ≤ P(Sn 6= Sn) + P(b−1

n

∣∣Sn − an∣∣ > ε)

The first term is estimated via the union bound (i.e. subadditivity in Exercise 1.19),

P(Sn 6= Sn) ≤ P(∪nk=1{Xn,k 6= Xn,k}) ≤
n∑
k=1

P(Xn,k 6= Xn,k) =
n∑
k=1

P(|Xn,k| > bn).

So, from assumption (i), limn→∞P(Sn 6= Sn) = 0. We bound the second term by Chebyshev’s
inequality, Corollary 1.46, as in the L2 Weak Law, Exercise 2.12.

P(b−1
n

∣∣Sn − an∣∣ > ε) ≤ 1

ε2b2
n

var(Sn) =
1

ε2b2
n

n∑
k=1

var(Xn,k) ≤
1

ε2b2
n

n∑
k=1

EX
2

n,k.

We also used Exercise 1.45 twice and Exercise 2.11 (since Xn,1, . . . , Xn,n are independent,
Xn,1, . . . , Xn,n are independent by Remark 1.71). Then limn→∞P(b−1

n

∣∣Sn − an∣∣ > ε) = 0 by
assumption (ii), concluding the proof. �

Theorem 2.16 (Weak Law of Large Numbers). Let X1, X2, . . . : Ω→ R be i.i.d.

• Suppose limx→∞ xP(|X1| > x) = 0. For any n ≥ 1, let µn := E(X11|X1|≤n). Then
1
n
(X1 + · · ·+Xn)− µn converges to 0 in probability as n→∞.

• Suppose E |X1| < ∞. Then (X1 + · · · + Xn)/n converges to EX1 in probability as
n→∞.

Proof. We apply Theorem 2.15 for Xn,k := Xk for any 1 ≤ k ≤ n and bn := n. Assumption
(i) holds since

n∑
k=1

P(|Xn,k| > bn) =
n∑
k=1

P(|Xk| > n) = nP(|X1| > n).
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The last quantity converges to 0 as n→∞ by the present Theorem’s assumption. Assump-
tion (ii) holds since Theorem 1.86 gives

EX
2

n,k =

∫ ∞
0

2tP(
∣∣Xn,k

∣∣ > t)dt =

∫ n

0

2tP(|Xk| > t)dt = n2

∫ 1

0

2sP(|X1| > sn)ds.

b−2
n

n∑
k=1

EX
2

n,k =

∫ 1

0

2snP(|X1| > sn)ds.

As n → ∞, the last quantity goes to zero, by e.g. the Bounded Convergence Theorem,
Theorem 1.58. The first assertion follows. The second assertion now follows from the first.
By the Dominated Convergence Theorem, Theorem 1.57,

lim
x→∞

xP(|X1| > x) ≤ lim
x→∞

E(|X1| 1|X1|>x) = 0.

lim
n→∞

µn = lim
n→∞

E(X11|X1|≤n) = EX1.

So, by the first assertion, 1
n
(X1 + · · ·+Xn)−µn converges to 0 in probability. And µn−EX1

converges to 0 in probability, so 1
n
(X1 + · · · + Xn) − EX1 converges to 0 in probability by

Exercise 2.10(iv). �

Remark 2.17. There exists a random variable X : Ω→ [0,∞) such that limx→∞ xP(|X| >
x) = 0 but E |X| =∞. So, the second assertion does not imply the first assertion.

Exercise 2.18. A random variable X : Ω→ R is said to be in weak L1 if

sup
t>0

tP(|X| > t) <∞.

For example, a Cauchy distributed random variable X has density f(x) = 1
π(1+x2)

for any

x ∈ R, and X is in weak L1 while E |X| =∞.
Show that, if X1, X2, . . . : Ω → (0,∞) are i.i.d. such that X1 is in weak L1, then there

exist real numbers a1, a2, . . . such that limn→∞ an =∞ such that 1
an

(X1 + · · ·+Xn) converges
in probability to 1.

(Hint: If you want to build up your intuition, assume P(X1 > t) = 1/t for all t > 2, and
use bn := n log n in the Weak Law for Triangular Arrays.)

(Hint: Let f(s) := EX11X1≤s for any s > 0. Note that f(s)/s =
∫ s

0
(1/s)P(X > t)dt =∫ 1

0
P(X > sx)dx → 0 as s → ∞ by the Bounded Convergence Theorem. Choose b1 ≤

b2 ≤ · · · going to infinity such that nf(bn) ≤ bn for all large n ≥ 1 as follows. When
n is fixed and large, nf(s)/s is larger than 1, and it converges to 0 as s → ∞. Also,
nf(s)/s is right continuous in s, so let bn := inf{s > 0: nf(s)/s ≤ 1}. Assume EX1 =

∞. Note that lims→∞
f(s)

sP(X1>s)
= ∞, so ∞ = limn→∞

f(bn)
bnP(X1>bn)

= limn→∞
1

nP(X1>bn)
, i.e.

limn→∞ nP(X1 > bn) = 0. Now, use the Weak Law for Triangular arrays. Note that
limn→∞

bn
n

= limn→∞ f(bn) = lims→∞ f(s) =∞, using EX1 =∞.)

Exercise 2.19 (Triangular Arrays). For any n ≥ 1, let Xn,1, . . . , Xn,n : Ω→ R be a collection
of independent random variables, and let Sn = Xn,1 + · · ·+Xn,n. Let µ ∈ R.

(i) (Weak law) If EXn,i = µ for all 1 ≤ i ≤ n and supi,n E |Xn,i|2 <∞, show that Sn/n
converges in probability to µ as n→∞.

(ii) (Strong law) If EXn,i = µ for all 1 ≤ i ≤ n and supi,n E |Xn,i|4 <∞, show that Sn/n
converges almost surely to µ as n→∞.
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Exercise 2.20. For any natural number n and a parameter 0 < p < 1, define an Erdös-
Renyi graph on n vertices with parameter p to be a random graph (V,E) on a (deterministic)
vertex set V of n vertices (thus (V,E) is a random variable taking values in the discrete space

of all 2(n2) possible undirected graphs one can place on V ) such that the events {i, j} ∈ E
for unordered pairs with i, j ∈ V are independent and each occur with probability p.

For each n ≥ 1, let (Vn, En) be an Erdös-Renyi graph on n vertices with parameter p = 1/2
(we do not require the graphs to be independent of each other).

(i) Let |En| be the number of edges in (Vn, En). Show that |En| /
(
n
2

)
converges almost

surely to 1/2 (Hint: use Exercise 2.19.)
(ii) Let |Tn| be the number of triangles in (Vn, En) (i.e. the set of unordered triples {i, j, k}

with i, j, k ∈ Vn such that {i, j}, {i, k}, {j, k} ∈ En), show that |Tn| /
(
n
3

)
converges in

probability to 1/8. (Note: there is not quite enough joint here to directly apply the
law of large numbers, so try using the second moment method directly.)

(iii) Show in fact that |Tn| /
(
n
3

)
converges almost surely to 1/8. (Note: you don’t need to

compute the fourth moment here.)

Exercise 2.21. For each n ≥ 1, let An = (aij,n)1≤i,j≤n be a random n × n matrix (i.e. a
random variable taking values in the space Rn×n or Cn×n of n × n matrices) such that the
entries aij,n of An are independent in i, j and take values in {−1, 1} with a probability of
1/2 each. We do not assume any independence for the sequence A1, A2, . . ..

(i) Show that the random variables TrAnA
∗
n/n

2 are equal to the constant 1, where A∗n
denotes the matrix adjoint (which, in this case, is also the transpose) of An and Tr
denotes the trace (or sum of the diagonal entries) of a matrix.

(ii) Show that for any natural number k ≥ 1, the quantities ETr(AnA
∗
n)k/nk+1 are

bounded uniformly in n ≥ 1 (i.e. they are bounded by a quantity Ck that can
depend on k but not on n). (It may be helpful to first try k = 2 and k = 3.)

(iii) Let ‖An‖ denote the operator norm of An, and let ε > 0. Show that ‖An‖/n1/2+ε con-
verges almost surely to zero, and that ‖An‖/n1/2−ε diverges almost surely to infinity.
(Hint: use the spectral theorem to relate ‖An‖ with the quantities Tr(AnA

∗
n)k.

Exercise 2.22. The Cramér random model for the primes is a random subset P of the
natural numbers such that 1 /∈ P , 2 ∈ P , and the events n ∈ P for n = 3, 4, . . . are
independent with P(n ∈ P) := 1

logn
. Here we used the restriction n ≥ 3 so that 1

logn
< 1.

This random set of integers P gives a reasonable way to model the primes 2, 3, 5, 7, . . ., since
by the Prime Number Theorem, the number of primes less than n is approximately n/ log n,
so the probability of n being a prime should be about 1/ log n. The Cramér random model
can provide heuristic confirmations for many conjectures in analytic number theory:

• (Probabilistic prime number theorem) Show that 1
x/ log x

|{n ≤ x : n ∈ P}| converges

almost surely to one as x→∞.
• (Probabilistic Riemann hypothesis) Let ε > 0. Show that

1

x1/2+ε

(
|{n ≤ x : n ∈ P}| −

∫ x

2

dt

log t

)
converges almost surely to zero as x→∞.
• (Probabilistic twin prime conjecture) Show that almost surely, there are an infinite

number of elements p of P such that p+ 2 also lies in P .
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• (Probabilistic Goldbach conjecture) Show that almost surely, all but finitely many
natural numbers n are expressible as the sum of two elements of P .

Exercise 2.23. This exercise proves the Hardy-Ramanujan Theorem. This theorem, with
probabilistic proof due to Turán, says that a typical large n ∈ N has about log log n distinct
prime factors. Unlike the previous exercise, the probabilistic proof here proves a rigorous
result about primes.

Let P ⊆ N denote the set of prime numbers (in this exercise P is deterministic, not
random). When p ∈ P and n ∈ N, we use the notation p|n to denote “p divides n,” i.e. n/p
is a positive integer. Let x ≥ 100 with x ∈ N (so that log log x ≥ 1), and let N be a natural
number that is uniformly distributed in {1, 2, . . . , x}. Assume Mertens’ theorem∑

p∈P : p≤x

1

p
= log log x+O(1).

• Show that the random variable
∑

p∈P : p≤x1/10 1p|N has mean log log x + O(1) and

variance O(log log x). (Hint: up to reasonable errors, compute the means, variances
and covariances of the random variables 1p|N .)
• For any n ∈ N, let f(n) denote the number of distinct prime factors of n. Show

that f(N)
log logN

converges to 1 in probability as x→∞. (Hint: first show that f(N) =∑
p∈P : p≤x1/10 1p|N +O(1).) More precisely, show that

f(N)− log logN

g(N)
√

log logN

converges in probability to zero as x → ∞, whenever g : N → R is any function
satisfying limn→∞ g(n) =∞.

2.4. Strong Law of Large Numbers. From Chebyshev’s Inequality, Corollary 1.46, and
Exercise 2.11, if X1, . . . , Xn : Ω→ R are independent random variables with mean zero, then
for any t > 0,

P(|X1 + · · ·+Xn| > t) ≤ t−2var(X1 + · · ·+Xn) = t−2(var(X1) + · · ·+ var(Xn))

We used this inequality in our proof of the L2 Weak Law, Exercise 2.12, and Theorem 2.15.
To prove the Strong Law of Large Numbers, we use the following stronger version of this
inequality, where a maximum appears on the left side.

Theorem 2.24 (Kolmogorov Maximal Inequality). Let X1, X2, . . . : Ω → R be inde-
pendent random variables with EXi = 0 and EX2

i < ∞ for all i ≥ 1. Then for any t > 0,
and for any k > 0,

P

(
max

1≤n≤k
|X1 + · · ·+Xn| ≥ t

)
≤ var(X1) + · · ·+ var(Xk)

t2
.

Proof. Let t > 0. For any n ≥ 1, define Sn := X1 + · · · + Xn. For any n ≥ 1, let
An be the event that |Sn| ≥ t and |Sj| < t for all 1 ≤ j < n. Then A1, . . . , Ak are

disjoint, and ∪kn=1An = {max1≤n≤k |Sn| ≥ t}. So, using P(∪kn=1An) ≤
∑k

n=1 P(An) and∑k
n=1 var(Xn) = ES2

k , it suffices to show that

k∑
n=1

P(An) ≤ ES2
k

t2
. (∗)
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When An occurs, we have 1 ≤ 1
t2
S2
n. Therefore,

P(An) = E1An ≤ E1An
1

t2
S2
n, ∀ 1 ≤ n ≤ k.

Below, we will show that

E1AnS
2
n ≤ E1AnS

2
k , ∀ 1 ≤ n ≤ k. (∗∗)

Then (∗∗) implies (∗), since the disjointness of the sets A1, . . . , Ak implies
∑k

n=1 1An ≤ 1, so

k∑
n=1

P(An) ≤
k∑

n=1

E1An
1

t2
S2
n

(∗∗)
≤ 1

t2
E

k∑
n=1

1AnS
2
k ≤

1

t2
ES2

k .

We now prove (∗∗). Let 1 ≤ n ≤ k. Then, squaring both sides of Sk = Sn + (Sk − Sn),

S2
k = S2

n + (Xn+1 + · · ·+Xk)
2 + 2Sn(Xn+1 + · · ·+Xk)

≥ S2
n + 2Sn(Xn+1 + · · ·+Xk).

Multiplying by 1An and taking expected values,

ES2
k1An ≥ ES2

n1An + 2E[1AnSn(Xn+1 + · · ·+Xk)].

So, (∗∗) follows by showing the last term is zero. Note that Xn+1, . . . , Xk are independent
of Sn, and Xn+1, . . . , Xk are independent of 1An , since 1An only depends on X1, . . . , Xn.
Therefore, by Proposition 1.72,

E[1AnSn(Xn+1 + · · ·+Xk)] = E(1AnSn) · E(Xn+1 + · · ·+Xk) = 0.

The proof of (∗∗) is therefore complete. The Theorem follows. �

Theorem 2.25 (Convergence of Random Series). Let X1, X2, . . . : Ω→ R be indepen-
dent random variables with EXi = 0 and EX2

i <∞ for all i ≥ 1. Assume that

∞∑
i=1

var(Xi) <∞.

Then
∑n

i=1Xi converges almost surely as n→∞.

Proof. From the Kolmogorov Maximal Inequality, Theorem 2.24, and continuity of P, Exer-
cise 1.19,

P

(
sup

m<n<∞
|Xm+1 + · · ·+Xn| ≥ t

)
≤
∑∞

n=m+1 var(Xn)

t2
, ∀ t > 0.

For any n ≥ 1, let Sn :=
∑n

i=1Xi. We have shown

P

(
sup

m<n<∞
|Sn − Sm| ≥ t

)
≤
∑∞

n=m+1 var(Xn)

t2
, ∀ t > 0.

Let A be the event: supn>m |Sn − Sm| ≥ t ∀m ≥ 1. Then, A can be written as the decreasing
intersection A = ∩∞m=1{supn>m |Sn − Sm| ≥ t}. So, by continuity of P, Exercise 1.19,

P(A) = lim
m→∞

P

(
sup
n>m
|Sn − Sm| ≥ t

)
≤ lim

m→∞

∑∞
n=m+1 var(Xn)

t2
= 0.
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Since P(A) = 0, P(Ac) = 1. That is, with probability 1, for any t > 0, there exists m ≥ 1
such that supn>m |Sn − Sm| < t. That is, with probability 1, the sequence S1, S2, . . . is a
Cauchy sequence, so that limn→∞ Sn exists. �

Theorem 2.26 (Strong Law of Large Numbers). Let X1, X2, . . . : Ω → R be i.i.d.
random variables with E |X1| < ∞. Then X1+···+Xn

n
converges almost surely to EX1 as

n→∞.

Proof. For any j ≥ 1, let Yj := Xj − EXj. Note that Y1, Y2, . . . are i.i.d. and EY1 = 0.
We are required to show that Y1+···+Yn

n
converges to 0 almost surely. Since Y1, Y2, . . . are

identically distributed, Theorem 1.86 gives
∞∑
n=1

P(|Yn| > n) =
∞∑
n=1

P(|Y1| > n) ≤
∫ ∞

0

P(|Y1| > t)dt = E |Y1| <∞.

So, the Borel-Cantelli Lemma, Lemma 1.55, says that |Yn| > n for infinitely many n ≥ 1
occurs with probability 0. For any n ≥ 1, let Sn :=

∑n
m=1 Ym and Sn :=

∑n
m=1 Ym1|Ym|≤m.

Then Sn/n − Sn/n = 1
n

∑n
m=1 Ym1|Ym|>m goes to zero almost surely as n → ∞, since on

a set of probability 1, the sum
∑n

m=1 Ym1|Ym|>m has only a finite number of nonzero terms
(regardless of what n is).

So, it suffices to show that Sn/n converges to 0 almost surely. Instead of showing this
directly, we first show that a decaying (harmonic) average of the terms Ym1|Ym|≤m is finite.
And in order to apply Theorem 2.25, we need to subtract the mean from these random vari-
ables. For any m ≥ 1, let Zm := Ym1|Ym|≤m−EYm1|Ym|≤m. Then Z1, Z2, . . . are independent,
mean zero random variables (since Y1, Y2, . . . are independent), and using Exercise 1.45,

∞∑
m=1

var(Zm/m) =
∞∑
m=1

m−2var(Zm) ≤
∞∑
m=1

m−2EY 2
m1|Ym|≤m = E

(
Y 2

1

∞∑
m=1

m−21|Y1|≤m

)
= E

(
Y 2

1

∑
m≥|Y1|

m−2
)
≤ E

(
Y 2

1

10

|Y1|

)
= 10 E |Y1| <∞.

In the pentultimate inequality we used integral comparison in the form
∑∞

m≥y
1
m2 ≤ 10

y
, ∀ y >

0. So, by Theorem 2.25,
∑∞

m=1 Zm/m converges almost surely. By Kronecker’s Lemma, Exer-

cise 2.27 below, limn→∞
1
n

∑n
m=1 Zm = 0 almost surely. That is, Sn/n− 1

n

∑n
m=1 EYm1|Ym|≤m

converges to 0 almost surely, as n→∞. Recalling that EYm = 0 for any m ≥ 1, we have

1

n

n∑
m=1

EYm1|Ym|≤m = − 1

n

n∑
m=1

EYm1|Ym|>m = −E
(
Y1

1

n

n∑
m=1

1|Y1|>m

)
.

The last quantity goes to 0 as n → ∞ by the Dominated Convergence Theorem, Theorem
1.57. In conclusion, Sn/n converges to 0 almost surely. �

Exercise 2.27 (Kronecker’s Lemma). Let y1, y2, . . . be a sequence of real numbers. Let
0 < b1 ≤ b2 ≤ · · · be a sequence of real numbers that goes to infinity. Assume that
limn→∞

∑n
m=1 ym exists. Then limn→∞

1
bn

∑n
m=1 bmym = 0. (Hint: if sn :=

∑n
m=1 ym, then

the summation by parts formula implies that 1
bn

∑n
m=1 bmym = sn− 1

bn

∑n−1
m=1(bm+1− bm)sm.)

Remark 2.28. The Strong Law of Large Numbers implies the Weak Law of Large Numbers
by Exercise 2.5.
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Remark 2.29. A Monte Carlo simulation takes n independent samples from some random
distribution and then sums the sample results and divides by n. The Strong Law of Large
Numbers guarantees that this averaging procedure converges to the average value as n be-
comes large. Similarly, if we independently sample a population with a poll, this corresponds
to randomly sampling some distribution. The Strong Law of Large Numbers guarantees that
the average poll results converges to the average value as n becomes large, regardless of the
population size.

Exercise 2.30 (Renewal Theory). Let t1, t2, . . . be positive, independent identically dis-
tributed random variables. Let µ ∈ R. Assume Et1 = µ. For any positive integer j, we
interpret tj as the lifetime of the jth lightbulb (before burning out, at which point it is re-
placed by the (j + 1)st lightbulb). For any n ≥ 1, let Tn := t1 + · · ·+ tn be the total lifetime
of the first n lightbulbs. For any positive integer t, let Nt := min{n ≥ 1: Tn ≥ t} be the
number of lightbulbs that have been used up until time t. Show that Nt/t converges almost
surely to 1/µ as t → ∞. (Hint: if c, t are positive integers, then {Nt ≤ ct} = {Tct ≥ t}.
Apply the Strong Law to Tct.)

Exercise 2.31 (Playing Monopoly Forever). Let t1, t2, . . . be independent random vari-
ables, all of which are uniform on {1, 2, 3, 4, 5, 6}. For any positive integer j, we think of tj
as the result of rolling a single fair six-sided die. For any n ≥ 1, let Tn = t1 + · · ·+ tn be the
total number of spaces that have been moved after the nth roll. (We think of each roll as
the amount of moves forward of a game piece on a very large Monopoly game board.) For
any positive integer t, let Nt := min{n ≥ 1: Tn ≥ t} be the number of rolls needed to get t
spaces away from the start. Using Exercise 2.30, show that Nt/t converges almost surely to
2/7 as t→∞.

Exercise 2.32 (Random Numbers are Normal). Let X be a uniformly distributed
random variable on (0, 1). Let X1 be the first digit in the decimal expansion of X. Let X2

be the second digit in the decimal expansion of X. And so on.

• Show that the random variables X1, X2, . . . are uniform on {0, 1, 2, . . . , 9} and inde-
pendent.
• Fix m ∈ {0, 1, 2, . . . , 9}. Using the Strong Law of Large Numbers, show that with

probability one, the fraction of appearances of the number m in the first n digits of
X converges to 1/10 as n→∞.

(Optional): Show that for any ordered finite set of digits of length k, the fraction of appear-
ances of this set of digits in the first n digits of X converges to 10−k as n→∞. (You already
proved the case k = 1 above.) That is, a randomly chosen number in (0, 1) is normal. On
the other hand, if we just pick some number such that

√
2 − 1, then it may not be easy to

say whether or not that number is normal.
(As an optional exercise, try to explicitly write down a normal number. This may not be

so easy to do, even though a random number in (0, 1) satisfies this property!)

Exercise 2.33 (Cheap Law of the Iterated Logarithm). Let X1, X2, . . . : Ω → R be
independent random variables with mean zero and variance one. The Strong Law of Large
Numbers says that 1

n
(X1 + · · ·+Xn) converges almost surely to zero (if the random variables

are also identically distributed). The Central Limit Theorem says that 1√
n
(X1 + · · · + Xn)

converges in distribution to a standard Gaussian random variable (if the random variables
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are also identically distributed). But what happens if we divide by some function of n in
between n1/2 and n ? This Exercise gives a partial answer to this question.

Let ε > 0. Show that
X1 + · · ·+Xn

n1/2(log n)(1/2)+ε

converges to zero almost surely as n → ∞. (Hint: Re-do the proof of the Strong Law of
Large Numbers, but divide by n1/2(log n)(1/2)+ε instead of n. You don’t need to do any
truncation.)

Exercise 2.34. Let X1, X2, . . . : Ω→ R be i.i.d. random variables with E |X1| <∞. Then
X1+···+Xn

n
converges in L1 to EX1.

(Hint: From the Strong Law, we already know that X1+···+Xn
n

converges almost surely to
EX1. So, conclude using the Vitali Convergence Theorem, Theorem 6.44.)

2.5. Concentration for Product Measures. In certain cases, we can make rather strong
conclusions about the distribution of sums of i.i.d. random variables, improving upon the
laws of large numbers.

Theorem 2.35 (Hoeffding Inequality/ Large Deviation Estimate). Let X1, X2, . . . be
independent identically distributed random variables with P(X1 = 1) = P(X1 = −1) = 1/2.
Let a1, a2, . . . ∈ R. Then, for any n ≥ 1,

P
( n∑
i=1

aiXi ≥ t
)
≤ e

− t2

2
∑n
i=1

a2
i , ∀ t ≥ 0.

Consequently,

P
(∣∣∣ n∑

i=1

aiXi

∣∣∣ ≥ t
)
≤ 2e

− t2

2
∑n
i=1

a2
i , ∀ t ≥ 0.

Proof. By dividing a1, . . . , an by a constant, we may assume
∑n

i=1 a
2
i = 1. Let α > 0. Using

the (exponential) moment method as in Markov’s inequality, Corollary 1.42, and αt ≥ 0,

P(
n∑
i=1

aiXi ≥ t) = P(eα
∑n
i=1 aiXi ≥ eαt) ≤ e−αtEeα

∑n
i=1 aiXi = e−αt

n∏
i=1

EeαaiXi .

The last equality used independence of X1, X2, . . . and Proposition 1.72. Using an explicit
computation and Exercise 2.36,

EeαaiXi = (1/2)(eαai + e−αai) = cosh(αai) ≤ eα
2a2i /2, ∀ i ≥ 1.

In summary, for any t ≥ 0

P(
n∑
i=1

aiXi ≥ t) ≤ e−αteα
2
∑n
i=1 a

2
i /2 = e−αt+α

2/2.

Since α > 0 is arbitrary, we choose α to minimize the right side. This minimum occurs when
α = t, so that −αt+ α2/2 = −t2/2, giving the first desired bound. The final bound follows
by writing P(|

∑n
i=1 aiXi| ≥ t) = P(

∑n
i=1 aiXi ≥ t) + P(−

∑n
i=1 aiXi ≥ t) and then applying

the first inequality twice. �

Exercise 2.36. Show that cosh(x) ≤ ex
2/2, ∀ x ∈ R.
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In particular, Hoeffding’s inequality implies that

P
( 1

n

∣∣∣ n∑
i=1

Xi

∣∣∣ ≥ t
)
≤ 2e−nt

2/2, ∀ t ≥ 0.

This inequality is much stronger than either Markov’s or Cheyshev’s inequality, since they
only respectively imply that

P
( 1

n

∣∣∣ n∑
i=1

Xi

∣∣∣ ≥ t
)
≤ 1

t
, P

( 1

n

∣∣∣ n∑
i=1

Xi

∣∣∣ ≥ t
)
≤ 1

nt2
, ∀ t ≥ 0.

Note also that Hoeffding’s inequality gives a quantitative bound for any fixed n ≥ 1, unlike
the (non-quantitative) limit theorems which only hold as n→∞.

Exercise 2.37 (Chernoff Inequality). Let 0 < p < 1. Let X1, X2, . . . be independent
identically distributed random variables with P(X1 = 1) = p and P(X1 = 0) = 1− p for any
i ≥ 1. Then for any n ≥ 1

P
( 1

n

n∑
i=1

Xi ≥ t
)
≤ e−np

(ep
t

)tn
, ∀ t ≥ p.

Prove the same estimate for P( 1
n

∑n
i=1Xi ≤ t) for any t ≤ p. (Hint: 1 + x ≤ ex for any

x ∈ R, so 1 + (eα − 1)p ≤ e(eα−1)p.)

Exercise 2.38. We return to the Erdös-Renyi random graph G = (V,E) on n vertices with
parameter 0 < p < 1 from Exercise 2.20. Define d := p(n− 1).

• Show that d is the expected degree of each vertex in G. (The degree of a vertex
v ∈ V is the number of vertices connected to v by an edge in E.)
• Show that there exists a constant c > 0 such that the following holds. Assume
p ≥ c logn

n
. Then with probability larger than .9, all vertices of G have degrees in the

range (.9d, 1.1d). (Hint: first consider a single vertex, then use the union bound over
all vertices.)

Exercise 2.39 (Khintchine Inequality). Let 0 < p < ∞. Then there exist constants
Ap, Bp ∈ (0,∞) such that the following holds.

Let X1, X2, . . . be independent identically distributed random variables with P(X1 = 1) =
P(X1 = −1) = 1/2. Let a1, a2, . . . ∈ R. Then

Ap

∥∥∥∥∥
n∑
i=1

aiXi

∥∥∥∥∥
p

≤

∥∥∥∥∥
n∑
i=1

aiXi

∥∥∥∥∥
2

= (
n∑
i=1

a2
i )

1/2 ≤ Bp

∥∥∥∥∥
n∑
i=1

aiXi

∥∥∥∥∥
p

.

So, all Lp (quasi)-norms of
∑n

i=1 aiXi are comparable.
(In Banach space terminology, there is an isomorphic copy of the Banach space `2 inside

any space Lp[0, 1]; e.g. we can use Xi(t) := sign sin(2iπt) for any t ∈ [0, 1], i ≥ 1.)
(Hint: For the Ap inequality, use Hoeffding’s inequality and “Integration by Parts,”

Theorem 1.86, obtaining Ap ≤
√
pA for some fixed A > 0. For the Bp inequality with

0 < p < 2, apply Logarithmic Convexity of Lp norms, Exercise 1.53, in the form ‖X‖2
2 ≤

‖X‖2(1−θ)
p ‖X‖2θ

4 , then apply the A4 inequality to get ‖X‖2(1−θ)
2 ≤ Ap ‖X‖2(1−θ)

p .)
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2.6. Additional Comments. A version of the Law of Large Numbers was stated as early
as the 1500s. In the 1700s and 1800s, various laws of large numbers were proved with weaker
and weaker hypotheses. For example, the L2 Weak Law was known to Chebyshev in 1867.
The Strong Law of Large Numbers might have first been proven in 1930 by Kolmogorov.

If the random variables have infinite mean, then the Strong Law cannot hold.

Exercise 2.40. Let X1, X2, . . . : Ω → R be i.i.d. with E |X1| = ∞. Then P(|Xn| >
n for infinitely many n ≥ 1) = 1. And P(limn→∞

X1+···+Xn
n

∈ (−∞,∞)) = 0. (Hint: show∑∞
n=1 P(|Xn| > n) = ∞, then apply the second Borel-Cantelli Lemma. Write Sn

n
− Sn+1

n+1
=

Sn
n(n+1)

− Xn+1

n+1
, and consider what happens to both sides on the set where limn→∞

Sn
n
∈ R.)

Also, unfortunately the strong law cannot hold for triangular arrays.

Exercise 2.41. Let X be a random variable taking values in the natural numbers with
P(X = n) = 1

ζ(3)
1
n3 , where ζ(3) :=

∑∞
m=1

1
m3 .

• Show that X is absolutely integrable.
• For any n ≥ 1, let Xn,1, . . . , Xn,n : Ω→ R be independent copies of X. Show that the

random variables Xn,1+···+Xn,n
n

are almost surely unbounded. (Hint: for any constant

c, show that Xn,1+···+Xn,n
n

> c occurs with probability at least ε/n for some ε > 0
depending on c. Then use the second Borel-Cantelli lemma.)

Exercise 2.42 (Second Borel-Cantelli Lemma). Let A1, A2, . . . be independent events
with

∑∞
n=1 P(An) = ∞. Then P(An occurs for infinitely many n ≥ 1) = 1. (Hint: using

1− x ≤ e−x for any x ∈ R, show P(∩tn=sA
c
n) ≤ exp(−

∑t
n=s P(An)), let t→∞ to conclude

P(∪∞n=sAn) = 1 for all s ≥ 1, then let s→∞.)

The above proof of the Strong Law of Large Numbers follows a general philosophy in
analysis and probability. If one desires an almost sure convergence result, then one needs
to prove a maximal inequality. In fact, in certain cases this is an equivalence, formalized as
Nikishin’s Theorem. For example, Nikishin’s Theorem implies the following.

Let T := R/2πZ. Let P denote the uniform probability law on T. For any 1 ≤ p ≤ ∞, we
denote Lp(T) := {f : T → R : E |f |p < ∞}. We also recall that any f ∈ Lp(T) has an asso-

ciated Fourier series
∑

n∈Z f̂(n)e−inθ where θ ∈ T, i =
√
−1 and f̂(n) := 1

2π

∫ 2π

0
f(x)einxdx.

Theorem 2.43 (A Corollary of Nikishin’s Theorem). Let 1 ≤ p ≤ 2. Then the
following are equivalent

(i) For every f ∈ Lp(T), limm→∞
∑m

n=−m f̂(n)e−inθ = f almost surely.

(ii) For every f ∈ Lp(T), supm>0 |
∑m

n=−m f̂(n)e−inθ| <∞ almost surely.

(iii) The map f 7→ T (f) := supm>0 |
∑m

n=−m f̂(n)e−inθ| is of weak type (p, p). (There
exists a constant c > 0 such that P(Tf > t) ≤ ct−pE |f |p, ∀ f ∈ Lp(T) and ∀ t > 0.)

The famous Carleson-Hunt Theorem showed that (i),(ii),(iii) are true for any 1 < p ≤ 2,
and it was known already to Kolmogorov in 1926 that (i),(ii),(iii) are false when p = 1. Note
that Kolmogorov’s Maximal Inequality, Theorem 2.24, is in some sense, of weak type (2, 2).

Exercise 2.33 was a weak version of the following.
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Theorem 2.44 (Law of the Iterated Logarithm). Let X1, X2, . . . : Ω → R be i.i.d.
random variables with mean zero and variance one. Then, almost surely,

lim sup
n→∞

X1 + · · ·+Xn√
2n log log n

= 1.

Concentration of measure, Section 2.5, will be revisited in Section 7 for non-product
measures.

3. Central Limit Theorems

In Section 2.5 we made some conclusions about the distribution of sums of specific i.i.d.
random variables. In this section, we will try to investigate the distribution of general sums
of i.i.d. random variables as the number of terms in the sum becomes large. Our effort will
culminate in three different proofs of the so-called Central Limit Theorem. This Theorem
was apparently called “Central” since it is so fundamental to probability and statistics, and
mathematics more generally. We first try to guess how to get a limiting distribution from a
sum of i.i.d. random variables.

Let X1, X2, . . . : Ω → R be i.i.d. random variables with mean zero and variance 1. From
the Strong Laws of Large Numbers, 1

n
(X1 + · · · + Xn) converges to 0 almost surely (and in

probability). Also, as shown in Exercise 2.33, for any ε > 0, 1√
n(logn)(1/2)+ε

(X1 + · · · + Xn)

converges to 0 almost surely (and in probability). From these results, it is still unclear what
value X1 + · · ·+Xn “typically” takes. For example, if P(X1 = 1) = P(X1 = −1) = 1/2, then
limn→∞P(X1+· · ·+Xn = 0) = 0. (What is the exact probability that P(X1+· · ·+Xn = 0)?)
In order to see what values X1 + · · ·+Xn “typically” takes, we need to divide by a constant
smaller than

√
n log n

Consider 1√
n
(X1 + · · · + Xn). Dividing by

√
n is quite natural since 1√

n
(X1 + · · · + Xn)

has mean zero and variance 1 by Exercise 2.11. So, we expect that the most typical values
of X1 + · · ·+Xn occur in some range (−a

√
n, a
√
n) for some a > 0.

Dividing by anything other than
√
n will not work correctly. For example, if g : N→ (0,∞)

satisfies limn→∞ g(n) =∞, then it follows from Chebyshev’s inequality, Corollary 1.46, that
1

g(n)
√
n
(X1 + · · · + Xn) converges to 0 in probability. And if E |X1|4 <∞, we showed in the

proof of Proposition 2.14 that

E
( 1√

n
(X1 + · · ·+Xn)

)4

= 3 +O(EX4
1/n).

The Paley-Zygmund Inequality, Exercise 1.52 then implies that, for any 0 < ε < 1,

P
( ∣∣∣∣X1 + · · ·+Xn√

n

∣∣∣∣ > ε
)

= P
( ∣∣∣∣X1 + · · ·+Xn√

n

∣∣∣∣2 > ε2
)
≥ (1− ε2)2 1

3 +O(EX4
1/n)

.

In particular, g(n)√
n

(X1 + · · · + Xn) does not converge in any sensible way as n → ∞. In

summary, in order to see what values X1 + · · ·+Xn typically takes, we must divide by
√
n.

Unfortunately, we cannot hope for 1√
n
(X1 + · · · + Xn) to converge almost surely or in

probability. So, we have to look for a different notion of convergence.

Proposition 3.1. Let X1, X2, . . . : Ω→ R be i.i.d. random variables with mean zero, vari-
ance 1 and EX4

1 <∞. Then as n→∞, 1√
n
(X1 + · · ·+Xn) does not converge almost surely
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or in probability to any random variable; moreover no subsequence of 1√
n
(X1 + · · · + Xn)

converges almost surely or in probability as n→∞.

Proof. We argue by contradiction. For any n ≥ 1, let Sn := X1 + · · · + Xn. For the sake
of contradiction, suppose there exists a subsequence Snj/

√
nj that converges almost surely

or in probability to a random variable Y : Ω → R. By taking a further subsequence, we
may assume that Snjk/

√
njk converges almost surely to Y , by Exercise 2.10(ii). Note that

Snjk/
√
njk has mean zero and variance 1. Also, as shown in Proposition 2.14, the fourth

moment of Snjk/
√
njk is uniformly bounded as k → ∞. So, Theorem 1.59 implies that

Y also has mean zero and variance 1. But as shown in Exercise 1.97, Y is measurable
in the tail σ-field T , so that Y is almost surely constant. Therefore, Y has variance 0, a
contradiction. �

Despite the failure of convergence almost surely or in probability, it turns out that 1√
n
(X1+

· · · + Xn) does converge in distribution to a Gaussian random variable. Before stating the
Central Limit Theorem, we discuss convergence in distribution. First, note that convergence
in distribution only involves the cumulative distribution functions of the random variables.
So, we can discuss convergence in distribution for random variables on different sample
spaces. We begin by presenting convergence in distribution in a general context.

3.1. Convergence in Distribution.

Definition 3.2 (Vague Convergence of Measures). Let µ, µ1, µ2, . . . be a sequence of
finite measures on R (i.e. µ(R), µn(R) <∞ for all n ≥ 1). We say that µ1, µ2, . . . converges
vaguely (or converges weakly, or converges in the weak∗ topology) to µ if, for any
continuous compactly supported function g : R→ R,

lim
n→∞

∫
R
g(x)dµn(x) =

∫
R
g(x)dµ(x).

In functional analysis, there is a subtle but important distinction between weak and weak∗

convergence, though this difference of terminology seems to be ignored in the probability
literature.

As we will show below, convergence in distribution of random variables X1, X2, . . . to a
random variable X is equivalent to µX1 , µX2 , . . . converging vaguely to µX .

Proposition 3.3. Let X,X1, X2, . . . be random variables with values in R. Then the follow-
ing are equivalent

• X1, X2, . . . converges in distribution to X.
• µX1 , µX2 , . . . converges vaguely to µX .

Proof. Assume that X1, X2, . . . converges in distribution to X. Let g : R→ R be a continuous
compactly supported function. Then g is uniformly continuous. So, if ε > 0, there exist t1 <
· · · < tm and c1, . . . , cm ∈ R such that gε(t) :=

∑m−1
i=1 ci1(ti,ti+1](t) satisfies |gε(t)− g(t)| < ε

for all t ∈ R. Since FX : R → [0, 1] is monotone increasing and bounded, any point of
discontinuity of FX is a jump discontinuity. So, FX has at most a countable set of points of
discontinuity. Therefore, t1 < · · · < tm can be chosen to all be points of continuity of FX .
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By Theorem 1.86,∣∣∣∣∣Eg(X)−
m−1∑
i=1

ci

(
FX(ti+1)− FX(ti)

)∣∣∣∣∣ = |Eg(X)− Egε(X)| ≤ E |g(X)− gε(X)| ≤ ε.

The same holds replacing X with any of X1, X2, . . .. So, applying the triangle inequality,

lim sup
n→∞

|Eg(Xn)− Eg(X)|

≤ lim sup
n→∞

|Eg(Xn)− Egε(Xn)|+ |Egε(Xn)− Egε(X)|+ |Egε(X)− Eg(X)|

≤ 2ε+ lim sup
n→∞

m−1∑
i=1

|ci| |FXn(ti+1)− FX(ti+1)− [FXn(ti)− FX(ti)]| = 2ε.

Since ε > 0 is arbitrary limn→∞Eg(Xn) = Eg(X) as desired.
Now, suppose for any continuous, compactly supported g : R → R, limn→∞Eg(Xn) =

Eg(X). Let t ∈ R be a point of continuity of FX . Then, for any ε > 0, there exists δ > 0
such that if |s− t| < 2δ, then |FX(s)− FX(t)| < ε. By continuity of the probability law,
let m > 0 such that P(|X| > m) < ε. By choice of δ, ε we have P(|X − t| < δ) < ε. Let
g : R → [0, 1] so that g = 0 on (−∞,−2m], g = 1 on (−m, t − δ], g = 0 on (t,∞) and g is
linear otherwise. Then

Eg(X) = Eg(X)(1−2m<X≤−m + 1−m<X≤t−δ + 1t−δ<X≤t)

= O(ε) + FX(t− δ) +O(ε) = FX(t) +O(ε).

Since limn→∞Eg(Xn) = Eg(X), there exists n0 = n0(ε) > 0 such that, for all n > n0,
Eg(Xn) = FX(t) +O(ε). By the definition of g,

P(Xn ≤ t) ≥ Eg(Xn) ≥ FX(t)−O(ε), ∀n > n0(ε).

Repeating the above with g where g = 1 on (t+ δ,m] and g = 0 on (−∞, t] ∪ [2m,∞) gives

P(Xn > t) ≥ 1− FX(t)−O(ε), ∀n > n0(ε).

Combining these inequalities gives

FXn(t) = FX(t) +O(ε), ∀n > n0(ε).

Letting ε→ 0+ concludes the proof. �

Proposition 3.3 avoids a subtle technical issue. A sequence of probability measures on
R can converge to a measure µ on R that is not a probability measure. For example, if
µn(A) := 1 if n ∈ A and µn(A) := 0 if n /∈ A, then µ1, µ2, . . . are probability measures that
converge vaguely to the measure µ such that µ(R) = 0. That is, some mass can be “lost”
in the limit as n→∞. Still, any sequence of probability measures does have a subsequence
that converges vaguely to some measure µ with µ(R) ≤ 1. This is guaranteed by some
general theorems from analysis. Below we denote Cc(R) as the set of continuous compactly
supported functions f : R→ R.

Theorem 3.4 (Riesz Representation Theorem). Let ` be a positive linear functional on
Cc(R) (so that `(f) ≥ 0 for any f ∈ Cc(R) with f ≥ 0, and supf∈Cc(R) : |f(x)|≤1, ∀x∈R |`(f)| <
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∞). Then there exists a unique regular Borel measure µ on R such that

`(f) =

∫
R
fdµ, ∀ f ∈ Cc(R).

That is, the dual Cc(R)∗ of Cc(R) is the space of finite signed measures on R.

Theorem 3.5 (Alaoglu Theorem/ Banach-Alaoglu). Let X be a normed linear space.
Then the unit ball BX∗ = {x∗ ∈ X∗ : ‖x∗‖ ≤ 1} of X∗ is weak∗ compact. (That is, any
sequence in BX∗ has a subsequence that converges in the weak∗ topology. Here X∗ is the set
of linear functions x∗ : X → R with ‖x∗‖ <∞ and ‖x∗‖ := supx∈X : ‖x‖≤1 |x∗(x)|)

The combination of Alaoglu’s Theorem (proven in Theorem 8.3) and the Riesz Represen-
tation Theorem gives Helly’s selection theorem.

Theorem 3.6 (Helly’s Selection Theorem). Let µ1, µ2, . . . be a sequence of probability
measures on R. Then there exists a subsequence µn1 , µn2 , . . . that vaguely converges to a
measure µ on R with µ(R) ≤ 1.

As mentioned above, some mass can “escape” to infinity, in which case µ(R) can be strictly
less than 1. The next Lemma shows that mass “escaping” to infinity is the only obstruction
to a sequence of probability measures converging vaguely to another probability measure.

Lemma 3.7. Let µ1, µ2, . . . be a sequence of probability measures on R. Then any subse-
quential limit of the sequence (with respect to vague convergence) is a probability measure if
and only if µ1, µ2, . . . is tight: ∀ ε > 0, ∃ m = m(ε) > 0 such that

lim sup
n→∞

(1− µn([−m,m])) ≤ ε.

Exercise 3.8. Let X,X1, X2, . . . and let Y, Y1, Y2, . . . be random variables with values in R.

(i) Assume that X is constant almost surely. Show that X1, X2, . . . converges to X in
distribution if and only if X1, X2, . . . converges to X in probability.

(ii) Prove Lemma 3.7.
(iii) Suppose that X1, X2, . . . converges in distribution to X. Show there exist random

variables Z,Z1, Z2, . . . : Ω → R such that µZ = µX , µZn = µXn for any n ≥ 1,
and such that Z1, Z2, . . . converges almost surely to Z. (Hint: use the sample space
Ω = [0, 1] and argue as in Exercise 1.25.)

(iv) (Slutsky’s Theorem) Suppose X1, X2, . . . converges in distribution to X and Y1, Y2, . . .
converges in probability to Y . Assume Y is constant almost surely. Show that
X1+Y1, X2+Y2, . . . converges in distribution to X+Y . Show also that X1Y1, X2Y2, . . .
converges in distribution to XY . (Hint: either use (iii) or use (ii) to control error
terms.) What happens if Y is not constant almost surely?

(v) (Fatou’s lemma) If g : R → [0,∞) is continuous, and if X1, X2, . . . converges in dis-
tribution to X, show that lim infn→∞Eg(Xn) ≥ Eg(X).

(vi) (Bounded convergence) If g : R → C is continuous and bounded, and if X1, X2, . . .
converges in distribution to X, show that limn→∞Eg(Xn) = Eg(X).

(vii) (Dominated convergence) If X1, X2, . . . : Ω→ R converges in distribution to X, and
if there exists a random variable Y : Ω → [0,∞) with |Xn| ≤ Y for all n ≥ 1 and
EY <∞, show that limn→∞EXn = EX.
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Exercise 3.9 (Portmanteau Theorem). Show that the two properties in Proposition 3.3
are also equivalent to the following three statements:

• For any closed K ⊆ R, lim supn→∞P(Xn ∈ K) ≤ P(X ∈ K).
• For any open U ⊆ R, lim infn→∞P(Xn ∈ U) ≤ P(X ∈ U).
• For any Borel set E ⊆ R whose topological boundary ∂E satisfies P(X ∈ ∂E) = 0,

limn→∞P(Xn ∈ E) = P(X ∈ E).

(Hint: Urysohn’s Lemma might be helpful.)

3.2. Independent Sums and Convolution. Proposition 3.12 shows that the sum of i.i.d.
random variables with density reduces to the repeated convolution of the density function
with itself. This interpretation is explored further in Exercise 3.14.

Definition 3.10 (Convolution). Let g, h : R → R be measurable functions. The convo-
lution of g and h, denoted g ∗ h, is the function g ∗ h : R→ R defined by

(g ∗ h)(t) :=

∫ ∞
−∞

g(x)h(t− x)dx, ∀ t ∈ R.

In order for this quantity to be well-defined almost surely (with respect to Lebesgue measure
on R), we assume that

∫
R |g(x)| dx <∞ and

∫
R |h(x)| dx <∞.

Exercise 3.11. Let f, g, h : R → R be measurable functions. Assume that
∫
R |f(x)| dx,∫

R |g(x)| dx < ∞ and
∫
R |h(x)| dx < ∞. Show that

∫∞
−∞ |(g ∗ h)(t)| dt < ∞. Consequently,

(g ∗ h)(t) ∈ R almost surely for t ∈ R (with respect to Lebesgue measure on R).
Then, show that convolution is associative and commutative. That is, g ∗ h = h ∗ g and

f ∗ (g ∗ h) = (f ∗ g) ∗ h almost surely.

Proposition 3.12. Let X, Y : Ω → R be two independent random variables with densities
fX , fY : R → [0,∞), respectively. (Recall that

∫
R fX(x)dx = 1 < ∞ and

∫
R fY (y)dy = 1 <

∞). Then X + Y has density f : R→ [0,∞) given by

f(t) = (fX ∗ fY )(t), ∀ t ∈ R.

Proof. Let t ∈ R. Using independence and Fubini’s Theorem, Theorem 1.66

P(X + Y ≤ t) =

∫
{(x,y)∈R2 : x+y≤t}

dµX,Y (x, y) =

∫
{(x,y)∈R2 : x+y≤t}

dµX(x)dµY (y)

=

∫
{(x,y)∈R2 : x+y≤t}

fX(x)fY (y)dxdy =

∫ x=∞

x=−∞

∫ y=t−x

y=−∞
fX(x)fY (y)dydx.

Changing variables and using Fubini’s Theorem again,

P(X + Y ≤ t) =

∫ x=∞

x=−∞

(∫ z=t

z=−∞
fY (z − x)dz

)
fX(x)dx

=

∫ z=t

z=−∞

(∫ x=∞

x=−∞
fY (z − x)fX(x)dx

)
dz =

∫ z=t

z=−∞
(fX ∗ fY )(z)dz.

From Definition 1.26, X + Y has density fX ∗ fY , as desired. �

Exercise 3.13. Using convolution, show that if X, Y are standard Gaussian random vari-
ables, then aX + bY is a Gaussian random variable with mean 0 and variance a2 + b2.
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Exercise 3.14. Let X, Y, Z be independent and uniformly distributed on [0, 1]. Note that
fX is not a continuous function.

Using convolution, compute fX+Y . Draw fX+Y . Note that fX+Y is a continuous function,
but it is not differentiable at some points.

Using convolution, compute fX+Y+Z . Draw fX+Y+Z . Note that fX+Y+Z is a differentiable
function, but it does not have a second derivative at some points.

Make a conjecture about how many derivatives fX1+···+Xn has, where X1, . . . , Xn are in-
dependent and uniformly distributed on [0, 1]. You do not have to prove this conjecture.
The idea of this exercise is that convolution is a kind of average of functions. And the more
averaging you do, the more derivatives fX1+···+Xn has. Lastly, fX1+···+Xn should resemble a
Gaussian density when n becomes large. So, we should be able to guess at a formulation of
the Central Limit Theorem, at least for i.i.d. random variables with density.

Exercise 3.15. Construct two random variables X, Y such that X and Y are each uniformly
distributed on [0, 1], and such that P(X + Y = 1) = 1.

Then construct two random variables W,Z such that W and Z are each uniformly dis-
tributed on [0, 1], and such that W + Z is uniformly distributed on [0, 2].

(Hint: there is a way to do each of the above problems with about one line of work. That
is, there is a way to solve each problem without working very hard.)

3.3. Fourier Transform/ Characteristic Function. The quickest way to prove the Cen-
tral Limit Theorem is to take the Fourier transform of the distribution function of the sum
of i.i.d. random variables. We now develop the tools needed for such a proof.

Definition 3.16 (Fourier Transform/ Characteristic Function). Let µ be a probability
measure on R. Let i :=

√
−1. The Fourier Transform of µ at t ∈ R is defined by

µ̂(t) :=

∫
R
eixtdµ(x).

If X : Ω → R is a random variable, we define the characteristic function of X, or the
Fourier transform of µX , denoted φX : R→ R, by

φX(t) := EeitX =

∫
R
eitxdµX(x) = µ̂X(t), ∀ t ∈ R.

In particular, if X has density f : R → [0,∞), then φX(t) =
∫
R e

itxf(x)dx is the Fourier
transform of the function f .

Note that φX(t) exists for every t ∈ R since |eitx| ≤ 1 for all x, t ∈ R.
From the power series expansion of the exponential, we have the following formal power

series expansion for φX :

φX(t) ∼
∞∑
n=0

(it)n

n!
EXn.

φX is actually equal to this power series expansion in the following settings.

Exercise 3.17. Let k ≥ 1 be an integer. Let X : Ω → R be a random variable with finite
kth moment: E |X|k <∞. Show that φX(t) is k-times continuously differentiable in t, and

dk

dtk
|t=0φX(t) = ikEXk.
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In particular, we get the Taylor expansion

φX(t) =
k∑

n=0

(it)n

n!
EXn + o(|t|k), ∀ t ∈ R.

Let f, g : R→ R. We use the notation f(t) = o(g(t)), ∀ t ∈ R to denote limt→0

∣∣f(t)
g(t)

∣∣ = 0.

Exercise 3.18. Assume that X : Ω→ R is a subgaussian random variable, i.e. ∃ a, b > 0
such that

P(|X| > t) ≤ ae−bt
2

, ∀ t ∈ R.
Show that φX is equal to its Taylor series:

φX(t) =
∞∑
n=0

(it)n

n!
EXn, ∀ t ∈ R.

Also, show that the Taylor series converges uniformly on any closed interval.

The Fourier transform converts convolution to multiplication (see Proposition 8.6(d)).
Likewise, the characteristic function transforms sums of independent random variables into
products of characteristic functions.

Exercise 3.19. Let X, Y : Ω→ R be independent random variables. Show that

φX+Y (t) = φX(t)φY (t), ∀ t ∈ R.

The following Theorem allows us to restate the Central Limit Theorem in terms of con-
vergence of characteristic functions.

Theorem 3.20 (Lévy Continuity Theorem, Special Case). Let X,X1, X2, . . . be real-
valued random variables (possibly on different sample spaces). The following are equivalent.

• For every t ∈ R, limn→∞ φXn(t) = φX(t).
• X1, X2, . . . converges in distribution to X.

Proof. The second condition implies the first by Exercise 3.8(vi).
Now, assume the first condition holds. Let g : R → R be a Schwartz function (for any

integers j, k ≥ 1, g is k times continuously differentiable and there exists cj,k ∈ R such that
|g(k)(x)| ≤ cjk

1+|x|j , ∀x ∈ R.) The Fourier Inversion Formula, Theorem 8.9, implies that

g(Xn) =
1

2π

∫
R
e−iXnyĝ(y)dy.

where ĝ(y) =
∫
R e

ixyg(x)dx for all y ∈ R. From the Fubini Theorem 1.66,

Eg(Xn) =
1

2π

∫
R

Ee−iXnyĝ(y)dy =
1

2π

∫
R
φXn(−y)ĝ(y)dy.

Similarly, Eg(X) = 1
2π

∫
R φX(−y)ĝ(y)dy. So, limn→∞Eg(Xn) = Eg(X) by the Dominated

Convergence Theorem, Theorem 1.57 (and Proposition 8.7(c)). Since any continuous, com-
pactly supported function g can be uniformly approximated by Schwartz functions in the
L∞ norm (by e.g. replacing g with g ∗ φε, where φε(x) = ε−1e−x

2/(2ε2)/
√

2π, letting ε→ 0+

and applying Proposition 8.5(d)), the identity limn→∞Eg(Xn) = Eg(X) holds for any con-
tinuous, compactly supported g : R→ R. We then conclude by Proposition 3.3. �
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Remark 3.21. In particular, if Y = X1 = X2 = · · · , the above Theorem implies that if
φX(t) = φY (t) for all t ∈ R, then µX = µY .

Exercise 3.22 (Lévy Continuity Theorem). Let X,X1, X2, . . . be real-valued random
variables (possibly on different sample spaces). Assume that, ∀ t ∈ R, φ(t) := limn→∞ φXn(t)
exists. Then the following are equivalent.

(i) φ is continuous at 0.
(ii) µX1 , µX2 , . . . is tight. (∀ ε > 0, ∃ m = m(ε) > 0 such that lim supn→∞(1 −

µXn([−m,m])) ≤ ε.)
(iii) There exists a random variable X such that φX = φ.
(iv) X1, X2, . . . converges in distribution to X.

(Hint: Use Lemma 3.7 to get from (ii) to other conditions.)

3.4. Three Proofs of the Central Limit Theorem. From Exercise 3.14, we could guess
that the Central Limit Theorem could be true, since the repeated convolution of the same
function looks more and more like a Gaussian density. Also, as we have seen from Charac-
teristic Functions in Exercise 3.19, they transform convolution into multiplication (see also
Proposition 8.6(d)). Since multiplication is easier to understand than convolution itself,
it is then natural to examine the characteristic functions of sums of independent random
variables.

Theorem 3.23 (Central Limit Theorem). Let X1, X2, . . . be real-valued, independent,
identically distributed random variables. Let Z be a standard Gaussian random variable.
Let µ, σ ∈ R with σ > 0. Assume that EX1 = µ and var(X1) = σ2. Then, as n → ∞,
X1+···+Xn−nµ

σ
√
n

converges in distribution to Z. That is, for any t ∈ R,

lim
n→∞

P

(
X1 + · · ·+Xn − nµ

σ
√
n

≤ t

)
=

∫ t

−∞
e−x

2/2 dx√
2π
.

Remark 3.24. The random variable X1+···+Xn−nµ
σ
√
n

has mean zero and variance 1, just like the

standard Gaussian Z. So, the normalizations of X1 + · · ·+Xn we have chosen are sensible.

Exercise 3.25. Let f, g, h : R → C. We use the notation f(s) = o(g(s)) ∀ s ∈ R to

denote lims→0

∣∣f(s)
g(s)

∣∣ = 0. For example, if f(s) = s3 ∀ s ∈ R, then f(s) = o(s2), since

lims→0 |f(s)
s2
| = lims→0 |s| = 0. Show: (i) if f(s) = o(g(s)) and if h(s) = o(g(s)), then

(f + h)(s) = o(g(s)). (ii) If c is any nonzero constant, then o(cg(s)) = o(g(s)). (iii)
lims→0 g(s)o(1/g(s)) = 0. (iv) lims→0 o(g(s))/g(s) = 0. (v) o(g(s) + o(g(s))) = o(g(s)).

Proof using Fourier Transform. For any j ≥ 1, let Yj := (Xj − µ)/σ. Then Y1, Y2, . . . are
independent and identically distributed by Remark 1.71, EYj = 0 and EY 2

j = 1, ∀ j ≥ 1.

We will show that limn→∞P(Y1+···+Yn√
n
≤ t) = P(Z ≤ t), ∀ t ∈ R. From Theorem 3.20 and

Proposition 8.7, it suffices to show:

lim
n→∞

Ee
it
Y1+···+Yn√

n = EeitZ = e−t
2/2, ∀ t ∈ R.

From Exercise 3.19,

Ee
it
Y1+···+Yn√

n =
n∏
j=1

EeitYj/
√
n = (EeitY1/

√
n)n.

42



By Exercise 3.17 with k = 2, and using EY1 = 0 and EY 2
1 = 1,

EeitY1/
√
n = 1 +

it√
n

EY1 −
t2

2n
EY 2

1 + o(t2/n) = 1− t2

2n
+ o

(
t2

n

)
.

Therefore,

Ee
it
Y1+···+Yn√

n =

(
1− t2

2n
+ o

(
t2

n

))n
.

Taking logarithms, using log(1 + x) = x+ o(x) for −1 < x < 1, and using Exercise 3.25,

log Ee
it
Y1+···+Yn√

n = n log

(
1− t2

2n
+ o

(
t2

n

))
= −t

2

2
+ n · o

(
t2

n

)
.

Letting n→∞ and using Exercise 3.25(iii) completes the proof. �

Proof using Lindeberg replacement, assuming finite third moment. As in the proof above, we
may assume EX1 = 0 and EX2

1 = 1. Let g : R → R be a Schwartz function. Fix n ≥ 1.
Consider Eg((X1 + · · ·+Xn)/

√
n). We will show this quantity is close to Eg(Z) by replacing

one term of X1, . . . , Xn at a time with an independent standard Gaussian. Let Z1, Z2, . . .
be independent standard Gaussian random variables, independent of X1, X2, . . .. Note that
(Z1 + · · ·+ Zn)/

√
n is a standard Gaussian by Exercise 3.13. We write a telescoping sum:∣∣∣∣Eg(X1 + · · ·+Xn√

n

)
− Eg(Z)

∣∣∣∣ =

∣∣∣∣Eg(X1 + · · ·+Xn√
n

)
− Eg

(Z1 + · · ·+ Zn√
n

)∣∣∣∣
=

∣∣∣∣∣
n∑
j=1

(
Eg
(X1 + · · ·+Xj + Zj+1 + · · ·+ Zn√

n

)
− Eg

(X1 + · · ·+Xj−1 + Zj + · · ·+ Zn√
n

))∣∣∣∣∣
≤

n∑
j=1

∣∣∣∣Eg(X1 + · · ·+Xj + Zj+1 + · · ·+ Zn√
n

)
− Eg

(X1 + · · ·+Xj−1 + Zj + · · ·+ Zn√
n

)∣∣∣∣ .(∗)
We control each term in the sum separately. Write g in its third order Taylor expansion as
g(y+ t) = g(y) + tg′(y) + t2g′′(y)/2 +O(|t|3). Fix 1 ≤ j ≤ n. Using Y := (X1 + · · ·+Xj−1 +
Zj+1 + · · ·+ Zn)/

√
n, and T1 = Xj/

√
n and also T2 = Zj/

√
n, then taking expected values,∣∣∣∣Eg(X1 + · · ·+Xj + Zj+1 + · · ·+ Zn√

n

)
− Eg

(X1 + · · ·+Xj−1 + Zj + · · ·+ Zn√
n

)∣∣∣∣
= |Eg(Y + T1)− Eg(Y + T2)|

=

∣∣∣∣∣EXjg
′(Y )√
n

− EZjg
′(Y )√
n

+
1

2n
(EX2

j g
′′(Y )− EZ2

j g
′′(Y )) +O

(
E
|Xj|3

n3/2

)
+O

(
E
|Zj|3

n3/2

)∣∣∣∣∣ .
Since Xj is independent of Y , Proposition 1.72 implies that EXjg

′(Y ) = EXjEg
′(Y ) = 0.

Similarly, EZjg
′(Y ) = 0. The next terms also cancel since EX2

j = EZ2
j = 1. In summary,∣∣∣∣Eg(X1 + · · ·+Xj + Zj+1 + · · ·+ Zn√

n

)
− Eg

(X1 + · · ·+Xj−1 + Zj + · · ·+ Zn√
n

)∣∣∣∣
≤ O

(1 + E |X1|3

n3/2

)
.
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Substituting this back into (∗), we get∣∣∣∣Eg(X1 + · · ·+Xn√
n

)
− Eg(Z)

∣∣∣∣ ≤ O
(1 + E |X1|3√

n

)
, ∀n ≥ 1.

Letting n→∞ shows that limn→∞Eg(X1+···+Xn√
n

) = Eg(Z). Since this holds for any Schwartz

function g : R → R, it then holds for any continuous compactly supported function g. We
then conclude by Proposition 3.3. �

Remark 3.26. The Lindeberg argument has the advantage of providing a quantitative
bound for the convergence that occurs in the Central Limit Theorem. In particular, we
showed that, there exists an absolute constant c > 0 such that, if X1, X2, . . . are i.i.d. with
mean zero, variance 1 and E |X1|3 <∞, then for any three times continuously differentiable
compactly supported function g : R→ R,∣∣∣∣Eg(X1 + · · ·+Xn√

n

)
− Eg(Z)

∣∣∣∣ ≤ c · sup
x∈R
|g′′′(x)|

(1 + E |X1|3√
n

)
Exercise 3.27 (Weak Berry-Esséen theorem). LetX,X1, X2, . . . be i.i.d. real-valued random
variables with mean zero, variance 1 and with E |X|3 < ∞. Let Z be a standard Gaussian
random variable.

(i) Show that for any compactly supported g : R→ R with three continuous derivatives,
and for any n ≥ 1,

Eg
(X1 + · · ·+Xn√

n

)
= Eg(Z) +O(n−1/2 sup

x∈R
|g′′′(x)|E|X|3),

where the implied constant does not depend on g, n or on any of the random variables
X,X1, X2, . . ..

(ii) Show that, for any n ≥ 1, and for any t ∈ R

P
(X1 + · · ·+Xn√

n
≤ t
)

= P(Z ≤ t) +O(n−1/2E|X|3)1/4,

where the implied constant does not depend on n, t or on any of the random variables
X,X1, X2, . . ..

(Hint: for the second item, consider g = 1[−∞,t] ∗ φε, where φ(x) = e−x
2/2/
√

2π and φε(x) =
ε−1φ(x/ε) for any x ∈ R and for appropriately chosen ε > 0.)

Recall from Exercise 1.64 that a Schwartz function g : R→ R and a standard Gaussian Z
satisfy EZg(Z) = Eg′(Z). The next theorem shows that this equality can characterize how
far a random variable is from being a standard Gaussian.

Theorem 3.28 (Stein Continuity Theorem). Let X1, X2, . . . be a sequence of real-valued
random variables with supn≥1 E |Xn|2 <∞. Let Z be a standard Gaussian random variable.
Then the following are equivalent.

(i) For any differentiable function g : R→ R such that g and g′ are bounded and contin-
uous,

lim
n→∞

E(Xng(Xn)− g′(Xn)) = 0.

(ii) X1, X2, . . . converges in distribution to Z.
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Proof. First, assume (ii) occurs. Since g′ is bounded, limn→∞Eg′(Xn) = Eg′(Z) by Exercise
3.8(vi). To prove (i), it then suffices by Exercise 1.64 to show that limn→∞EXng(Xn) =
EZg(Z). For the purpose of proving this equality, we may assume by Theorem 1.60 and
Exercise 3.8(iii) that X1, X2, . . . converges almost surely to Z. By assumption,

sup
n≥1

E |Xng(Xn)|2 ≤ sup
n≥1

EX2
n · sup

x∈R
|g(x)|2 <∞.

Theorem 1.59 then implies that limn→∞EXng(Xn) = EZg(Z), proving (i).
Now, assume (i). By Proposition 3.3, it suffices to show that limn→∞Eφ(Xn)−Eφ(Z) = 0

for any continuous compactly supported φ : R→ R. It further suffices to assume that φ is a
Schwartz function bounded by 1 in absolute value. We now claim it suffices to find a function
g : R→ R with both g, g′ bounded such that g satisfies the ODE

φ(x)− Eφ(Z) = g′(x)− xg(x), ∀x ∈ R. (∗)

To see that this implies (ii), let x = Xn, take expected values, then let n→∞ to get

lim
n→∞

Eφ(Xn)− Eφ(Z) = lim
n→∞

E(g′(Xn)−Xng(Xn))
(i)
= 0.

In order to solve the ODE (∗), we use the method of integrating factors to get

g(x) = ex
2/2

∫ x

−∞
e−y

2/2(φ(y)−Eφ(Z))dy = −ex2/2
∫ ∞
x

e−y
2/2(φ(y)−Eφ(Z))dy, ∀x ∈ R. (∗∗)

The last equality follows since
∫∞
−∞ e

−y2/2(φ(y) − Eφ(Z))dy/
√

2π = 0. It remains to show
that g, g′ are bounded. If x, y ∈ R we write

e−y
2/2 = e−(y−x+x)2/2 = e−x

2/2e−(y−x)2/2e−x(y−x) ≤ e−x
2/2e−x(y−x). (‡)

Using (‡) when y > x and x > 1, the second equality of (∗∗) implies that |g(x)| ≤ 2/ |x| since∫∞
x
e−x(y−x)dy =

∫∞
0
e−xydy = 1/x. Using (‡) with y < x and x < −1, the first equality of

(∗∗) implies that |g(x)| ≤ 2/ |x|. Either equality of (∗) implies |g(x)| ≤ 5 when −1 < x < 1.
In summary,

|g(x)| ≤ 10

1 + |x|
, ∀x ∈ R.

So, by (∗), g′ and g are bounded by 20 in absolute value, as desired. �

Remark 3.29. Changing variables in (∗∗) shows that, for any x ∈ R,

g(x) = −ex2/2
∫ ∞

0

e−(y+x)2/2(φ(y+ x)−Eφ(Z))dy = −
∫ ∞

0

e−y
2/2e−yx(φ(y+ x)−Eφ(Z))dy.

Differentiating in x and repeating the above argument (using supy∈R |ye−y
2/2| ≤ 1) gives

|g′(x)| ≤ 10 ·
1 + supy∈R |φ′(y)|

1 + |x|
, ∀x ∈ R.

Proof of Central Limit Theorem using Stein’s Method. As in the proofs above, we may as-
sume EX1 = 0 and EX2

1 = 1. Let φ : R → [−1, 1] be a Schwartz function. Let Z be
a standard Gaussian. We additionally assume that E |X1|3 < ∞. For any n ≥ 1, let
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Yn := (X1 + · · · + Xn)/
√
n. We will show the following Berry-Esseén type quantitative

estimate for any n ≥ 1:

Eφ(Yn) = Eφ(Z) +O(E |X1|3 /
√
n) · (1 + sup

y∈R
|φ′(y)|).

Beginning with (∗) from the proof of Theorem 3.28, we get

Eφ(Yn)− Eφ(Z) = E
(
g′(Yn)− Yng(Yn)

)
.

We write Yng(Yn) = 1√
n

∑n
i=1 Xig(Yn), and we consider each individual term in the sum. For

any n ≥ 1, let Yn,i := Yn −Xi/
√
n. By the fundamental theorem of calculus applied to g,

EXig(Yn) = E
(
Xig(Yn,i) +

1√
n
X2
i g
′(Yn,i +

T√
n
Xi)
)
, (∗∗)

where T is uniformly distributed in [0, 1] and independent of X1, . . . , Xn. By independence
E[Xig(Yn,i)] = EXiEg(Yn,i) = 0. Combining the above,

Eφ(Yn)− Eφ(Z) = E
(
g′(Yn)− Yng(Yn)

)
=

1

n

n∑
i=1

E
(
g′(Yn)−

√
nXig(Yn)

)
(∗∗)
=

1

n

n∑
i=1

E
(
g′(Yn)−X2

i g
′(Yn,i +

T√
n
Xi)
)

=
1

n

n∑
i=1

E
(
g′(Yn)− g′(Yn,i)−X2

i

[
g′(Yn,i +

T√
n
Xi)− g′(Yn,i)

])
. (∗ ∗ ∗)

In the last line, we used independence to get Eg′(Yn,i) = EX2
i Eg

′(Yn,i) = EX2
i g
′(Yn,i). Using

now Remark 3.29, and defining c := 10(1 + supy∈R |φ′(y)|), we have |(xg(x))′| ≤ 2c for all
x ∈ R. Differentiating (∗), we get |g′′(x)| ≤ 3c for all x ∈ R. So, (∗ ∗ ∗) can be rewritten as

Eφ(Yn)− Eφ(Z) =
1

n

n∑
i=1

1√
n

EO(c |Xi|+ c |Xi|3) =
c√
n
O(E |X1|3),

using the Fundamental Theorem of Calculus. �

Exercise 3.30. Let φ : R → R be a Schwartz function. Let Z be a standard Gaussian
random variable. In applications of Stein’s method, it is sometimes more convenient to take
another derivative of Stein’s identity, resulting in the following Ornstein-Uhlenbeck identities.

• E[φ′′(Z)− Zφ′(Z)] = 0.
• If h : R→ R is a Schwartz function, then the function

g(x) :=

∫ 1

0

1

2t
[Eh(x

√
t+ Z

√
1− t)− Eh(Z)]dt, ∀x ∈ R,

is a solution of the differential equation

h(x)− Eh(Z) = g′′(x)− xg′(x), ∀x ∈ R.

Exercise 3.31. Using the Central Limit Theorem, prove the Weak Law of Large Numbers
(assume the random variables have mean zero and variance one).
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The Lindeberg replacement argument and Stein’s Method make quantitative estimates for
the distributions of nonlinear functions of independent random variables. For this reason,
these methods have gained renewed interest in the last two decades. For example, if we
consider a matrix of i.i.d. random variables, then one is naturally led to consider nonlinear
functions of the matrix entries when considering e.g. the eigenvalues (or singular values) of
the matrix.

The Fourier analytic proof of the Central limit Theorem, though rather elegant, seems
only able to analyze the distribution of linear functions of independent random variables.

3.5. Additional Comments. The Central Limit Theorem was described by de Moivre in
1733 and again by Laplace in 1785 and 1812, where the Fourier Transform was used. In 1901,
Lyapunov proved the Central Limit Theorem under an assumption similar to E |X1|2+ε <∞
for some ε > 0. The Central Limit Theorem under the assumption of a finite (truncated)
second moment was proven by Lindeberg in 1920. This result was extended by Feller in
1935, also with contributions by Lévy in the same year.

Theorem 3.32 (Lindeberg Central Limit Theorem for Triangular Arrays). Let
j1, j2, . . . be a sequence of natural numbers with limn→∞ jn = ∞. For any n ≥ 1, let
Xn,1, . . . , Xn,n : Ωn → R be independent with mean zero and finite variance. (Note e.g.
that X3,1 and X2,2 might not be independent, and the sample space is allowed to change as
n changes.) Define

σ2
n :=

jn∑
k=1

Var(Xn,k), ∀n ≥ 1.

Assume that σn > 0 for all n ≥ 1. If, for any ε > 0, we have

lim
n→∞

1

σ2
n

jn∑
k=1

E(|Xn,k|21|Xn,k|>εσn) = 0, (∗)

then the random variables Xn,1+···+Xn,n
σn

converge in distribution to a standard Gaussian ran-
dom variable.

The Lindeberg condition (∗) implies the Feller condition

lim
n→∞

1

σ2
n

max
1≤k≤n

E|Xn,k|2 = 0.

It was shown by Feller that if the above assumptions hold (without (∗)) and if the Feller

condition holds, then the Lindeberg condition (∗) is necessary and sufficient for Xn,1+···+Xn,n
σn

to converge in distribution to a standard Gaussian random variable. The combined result is
sometimes known as the Lindeberg-Feller theorem.

Berry and Esseén separately gave an error bound for the Central Limit Theorem in the
early 1940s. Above, we only proved weaker versions of this theorem, though the methods
discussed above can be used to prove the stronger statement below.

Theorem 3.33 (Berry-Esseén). There exists c > 0 such that the following holds. Let
X1, X2, . . . be i.i.d. real-valued random variables with mean zero, variance 1 and E |X1|3 <
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∞. Let Z be a standard Gaussian random variable. Then for any n ≥ 1,

sup
t∈R

∣∣P(X1 + · · ·+Xn/
√
n < t)−P(Z < t)

∣∣ ≤ c · E |X1|3√
n

.

With the assumption of more bounded moments, an asymptotic expansion can be written,
with explicit dependence on t, for the difference |P(X1 + · · ·+Xn/

√
n < t)−P(Z < t)|.

This expansion is called the Edgeworth Expansion; see Feller, Vol. 2, XVI.4.(4.1).
One may ask for general conditions under which the average of any i.i.d. random variables

have a limiting distribution, with moment assumptions different than the Central Limit
Theorem. Necessary and sufficient conditions are described in the following Theorem.

Theorem 3.34. Let X1, X2, . . . be i.i.d. real-valued random variables. Assume there exists
a function h : [0,∞) → (0,∞) such that, for any x > 0, limx→∞ L(tx)/L(x) = 1. Assume
also there exists θ ∈ [0, 1] and α ∈ (0, 2)such that

• limx→∞P(X1 > x)/P(|X1| > x) = θ,
• P(|X1| > x) = x−αL(x), ∀ x > 0.

For any n ≥ 1, define

an := inf{x > 0: P (|X1| > x) ≤ 1/n}, bn := E(X11|X1|≤an).

Then X1+···+Xn−an
bn

converges in distribution to a random variable Y as n→∞

Exercise 3.35. Show that there exists a nonzero random variable X such that, if X1, X2, . . .
are i.i.d. copies of X, then X1+···+Xn

n
is equal in distribution to X, for any n ≥ 1. (Optional:

can you write out an explicit formula for the density of X?) (Hint: take the Fourier trans-
form.)

Show that there exists a nonzero random variable X such that, if X1, X2, . . . are i.i.d.
copies of X, then X1+···+Xn

n2 is equal in distribution to X, for any n ≥ 1.

By projection the random variables onto one-dimensional lines, the following Central Limit
Theorem in Rd can be proven from the corresponding result in R.

Theorem 3.36 (Central Limit Theorem in Rd). Let X(1), X(2), . . . be i.i.d. Rd-valued
random variables. Let µ ∈ Rd. (We write a random variable in its components as X(n) =

(X
(n)
1 , . . . , X

(n)
d ) ∈ Rd.) Assume EX(n) = µ for all n ≥ 1, and for any 1 ≤ i, j ≤ d, all of

the covariances

aij := E((X
(1)
i − EX

(1)
i )(X

(1)
j − EX

(1)
j )).

are finite. Then as n → ∞, X(1)+···+X(n)−nµ√
n

converges weakly to a Gaussian random vector

Z = (Z1, . . . , Zd) ∈ Rd with covariance matrix (aij)1≤i,j≤d.

Remark 3.37. By definition, a random vector Z = (Z1, . . . , Zd) ∈ Rd is Gaussian if, for any

v1, . . . , vd ∈ R, the random variable
∑d

i=1 viZi is a Gaussian random variable. Equivalently,
for any v ∈ Rd, the random variable 〈v, Z〉 is a Gaussian random variable. The covariance
matrix (aij)1≤i,j≤d of Z is defined by

aij := E((Zi − EZi)(Zj − EZj)).

Exercise 3.38. Let Z = (Z1, . . . , Zd) ∈ Rd be a Gaussian random vector.
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• Show that the covariance matrix (aij)1≤i,j≤d of Z is symmetric, positive semidefinite.
That is, for any v ∈ Rd, we have

vTav =
d∑

i,j=1

vivjaij ≥ 0.

• Given any symmetric positive semidefinite matrix (bij)1≤i,j≤d, show that there exists a
Gaussian random vector Z such that the covariance matrix of Z is (bij)1≤i,j≤d. (Hint:
write the matrix b in its Cholesky decomposition b = rr∗, where r is a d × d real
matrix. Let e(1), . . . , e(d) be the rows of r. Let X1, . . . , Xd be independent standard
Gaussian random variables. Let X := (X1, . . . , Xd). Define Zi := 〈X, e(i)〉 for any
1 ≤ i ≤ d.)

Both Stein’s Method and the Lindeberg Replacement argument have gained renewed inter-
est in the last two decades. For a survey on Stein’s Method, see Chatterjee06 or Chatterjee14.
For some general results using the Lindeberg replacement method, see MOO05, Chatterjee07
or TaoVu12.

4. Random Walks

In the Strong Law of Large Numbers and Central Limit Theorem, we investigated the
distribution of a sum of i.i.d. random variables X1, X2, . . .. In this section, we change our
perspective and investigate what values the sum takes. For example, a basic question is, “
Is X1 + · · ·+Xn = 0 for finitely many n ≥ 1? ”

Our first result in this direction is a generalization of Kolmogorov’s Zero-One Law, The-
orem 1.95. For technical reasons, we use an explicit construction of the sample space Ω in
this section.

Definition 4.1 (Random Walk). Let N := {1, 2, 3, . . .} and let d ≥ 1. Let Ω := (Rd)N. Let
X : Rd → Rd be a random variable. We construct i.i.d. copies of X using Theorem 1.80 and
Corollary 1.81. The probability measure

∏∞
j=1 µX exists on Ω. So, for any (ω1, ω2, . . .) ∈ Ω,

let Xj(ω1, ω2, . . .) := ωj. Then X1, X2, . . . are i.i.d. copies of X.
Let x ∈ Rd. Let X0 := x. For any n ≥ 0, let Sn := X0 + · · · + Xn. We call the sequence

of random variables S0, S1, . . . a random walk on Rd started at x.

4.1. Limiting Behavior.

Definition 4.2 (Exchangeable σ-algebra). A finite permutation of N is a bijective map
π : N → N such that π(j) 6= j for only finitely many j ∈ N. For any ω = (ω1, ω2, . . .) ∈ Ω,
we define πω ∈ Ω so that (πω)j := ωπ(j) for any j ∈ N. For any A ⊆ Ω, we define
π−1A := {ω ∈ Ω: πω ∈ A}. An event A ⊆ Ω is permutable if, for any finite permutation
π, we have π−1A = A. The collection of all permutable events, denoted E , is a σ-algebra
referred to as the exchangeable σ-algebra of X1, X2, . . ..

As usual, we equip Ω with the product σ-algebra defined in Example 1.8. So, an event
A ⊆ Ω is defined to be an element of this σ-algebra. Note that the product σ-algebra is
equal to σ(X1, X2, . . .), by the definition of X1, X2, . . ..

Since Xj(ω) = ωj for any j ∈ N, and for any ω ∈ Ω, note that

Xj(πω) = ωπ(j) = Xπ(j)(ω).
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In this way, applying π to Ω permutes the random variables X1, X2, . . .. So, an event A ⊆ Ω
is permutable if it is not affected by a finite permutation of the random variables X1, X2, . . ..

Example 4.3. Let B be a measurable subset of Rd. Let c1 < c2 < · · · . Consider the events

{ω ∈ Ω: Sn(ω) ∈ B for infinitely many n ≥ 1}.

{ω ∈ Ω: lim sup
n→∞

Sn(ω)/cn ≥ 1}.

If π is a finite permutation, then there exists n ∈ N such that π(j) = j for all j ≥ n, so that
Sj(πω) = Sj(ω) for all j ≥ n, and for all ω ∈ Ω. So, both of the above events are in E .

Proposition 4.4. The exchangeable σ-algebra strictly contains the tail σ-algebra: E ) T .

Proof. Let A ∈ T and let π be a finite permutation. Let n ≥ 1 so that π(j) = j for all
j ≥ n. By definition of T , A ∈ σ(Xn, Xn+1, . . .). By the definition of n, π−1B = B for any
B ∈ σ(Xn, Xn+1, . . .). Therefore, π−1A = A, so that A ∈ E . Strict containment follows since
the second event of Example 4.3 is not in T by Exercise 1.97 using cn = 1 for all n ≥ 1.
(The first event of Example 4.3 is also not in E .) �

Since E ⊇ T , Theorem 4.5 generalizes Kolmogorov’s Zero-One Law, Theorem 1.95.

Theorem 4.5 (Hewitt-Savage Zero-One Law). Let X1, X2, . . . : Ω → Rd be i.i.d. Let
A ∈ E. Then P(A) ∈ {0, 1}.

Proof. Let A ∈ E . As in Kolmogorov’s Zero-One Law, Theorem 1.95, we will show A is
independent of itself.

Note that A ∈ σ(X1, X2, . . .). From Exercise 1.91 and recalling the sketched proof of the
Extension Theorem, Theorem 1.18, for any n ≥ 1 there exists An ∈ σ(X1, . . . , Xn) such that

lim
n→∞

P(An∆A) = 0. (∗)

By the definition of Ω, ∀ n ≥ 1, ∃ a measurable set Bn ⊆ (Rd)n such that An = {ω ∈
Ω: (ω1, . . . ωn) ∈ Bn}. Fix n ≥ 1 and let π = πn : N→ N be the finite permutation

π(j) :=


j + n , if 1 ≤ j ≤ n

j − n , if n+ 1 ≤ j ≤ 2n

j , if j ≥ 2n+ 1.

Since X1, X2, . . . are i.i.d., P is permutation invariant, so that

P(ω ∈ Ω: ω ∈ An∆A) = P(ω ∈ Ω: πω ∈ An∆A). (∗∗)

We rewrite the last event. Since A is permutable, {ω ∈ Ω: πω ∈ A} = {ω ∈ Ω: ω ∈ A}.
Also, by the definition of Bn and π, {ω ∈ Ω: πω ∈ An} = {ω ∈ Ω: (ωn+1, . . . , ω2n) ∈ Bn} =:
A′n. Combining these observations, (∗∗) becomes

P(An∆A) = P(A′n∆A). (∗ ∗ ∗)

For any event C, we have |P(C)−P(A)| ≤ P(C∆A), so (∗) and (∗ ∗ ∗) imply that
limn→∞P(An) = limn→∞P(A′n) = P(A). So, since An, A

′
n are independent,

lim
n→∞

P(An ∩ A′n) = lim
n→∞

P(An)P(A′n) = P(A)2. (‡)
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We now investigate the left side. For any events B,C, we have BrC ⊆ (BrA)∪ (ArC),
with a similar containment for CrB, together implying that B∆C ⊆ (B∆A)∪ (A∆C). So,
by subadditivity of P,

P(An∆A)+P(A∆A′n) ≥ P(An∆A′n) = P(An∪A′n)−P(An∩A′n) ≥ P(An)−P(An∩A′n) ≥ 0.

Letting n→∞, (∗) and (∗ ∗ ∗) imply that the left side tends to zero. So,

lim
n→∞

P(An ∩ A′n) = lim
n→∞

P(An)
(∗)
= P(A).

So, (‡) says that P(A) = P(A)2, as desired. �

Theorem 4.6. Let S0, S1, . . . be a random walk on R with S0 = 0. Exactly one of the
following four conditions holds with probability one.

(i) Sn = 0 for all n ≥ 1.
(ii) limn→∞ Sn =∞.

(iii) limn→∞ Sn = −∞.
(iv) −∞ = lim infn→∞ Sn and lim supn→∞ Sn =∞.

Proof. From Example 4.3 and Theorem 4.5, ∃ c ∈ [−∞,∞] such that, with probability one,
lim supn→∞ Sn = c. For any n ≥ 1, define S ′n := Sn−X1. Then S ′2, S

′
3, . . . each have the same

distribution as S1, S2, . . . so with probability one, lim supn→∞ S
′
n = c. That is, c = c−X1 with

probability 1. If P(X1 = 0) = 1, then (i) occurs. From now on, we assume P(X1 = 0) < 1,
so that c =∞ or c = −∞. Arguing similarly for c′ := lim infn→∞ Sn ∈ {−∞,∞}, there are
four possible values of the ordered pair (c, c′), though c′ ≤ c eliminates the case c′ =∞ and
c = −∞. The remaining three cases are (ii),(iii) and (iv). �

Exercise 4.7. Let X1, X2, . . . : Ω → R be i.i.d. In each of the cases below, show that with
probability one, −∞ = lim infn→∞ Sn and lim supn→∞ Sn =∞.

• The distribution µX1 is symmetric about 0 (i.e. µ−X1 = µX1) and P(X1 = 0) < 1.
• EX1 = 0 and EX2

1 ∈ (0,∞). (Hint: use the Central Limit Theorem.)

For example, when P(X1 = 1) = P(X1 = −1) = 1/2 and S0 = 0, show that with probability
one, S0, S1, . . . takes every integer value infinitely many times.

4.2. Stopping Times.

Definition 4.8 (Stopping Time). Let S0, S1, . . . be a random walk on Rd. Let F0 :=
{∅,Ω}. For any n ≥ 1, denote Fn := σ(X1, . . . , Xn). We say that N : Ω→ {0, 1, . . .} ∪ {∞}
is a stopping time if, for any n ∈ {0, 1, . . .}, {N = n} ∈ Fn.

For example, if the stopping time takes the value 3, then the event {N = 3} only uses
“information” about X1, X2, X3. From our definition, {N = 0} ∈ {∅,Ω}.

The stopping time N depends on the random walk, but this dependence should be clear
in a given example, so we de-emphasize this dependence in the notation for N .

For a real-world example of a stopping time, suppose S0, S1, . . . is a random walk that
describes the price of a stock. Suppose the starting price S0 of the stock is $100 and you
instruct your stock broker to sell the stock when its price reaches either $110 or $90. That is,
define the stopping time N = min{n ≥ 1: Sn ≥ 110 or Sn ≤ 90}. Then N is a stopping time.
(We define min(∅) :=∞.) So, we can intuitively think of a stopping time as a stock-trading
strategy, since selling the stock at time n can only use information up to time n.
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More generally, if A is a measurable subset of Rd, the hitting time of A is defined as

N := min{n ≥ 1: Sn ∈ A}.
And N is a stopping time since, for any n ≥ 1,

{N = n} = {S1 ∈ Ac, . . . , Sn−1 ∈ Ac, Sn ∈ A} ∈ Fn.

Exercise 4.9. Let M,N be stopping times for a random walk S0, S1, . . .. Show that
max(M,N) and min(M,N) are stopping times. In particular, if n ≥ 0 is fixed, then
max(M,n) and min(M,n) are stopping times

For any k ≥ 1, define the shift map θk : (Rd)N → (Rd)N by

(θkω)n := ωn+k, ∀ω = (ω1, ω2, . . .) ∈ (Rd)N.

Suppose T is a stopping time. Define T1 := T and for any n ≥ 2, inductively define
Tn : Ω→ N ∪ {∞} so that, ∀ω ∈ Ω = (Rd)N,

Tn(ω) :=

{
Tn−1(ω) + T (θTn−1ω) , ifTn−1(ω) <∞
∞ , ifTn−1(ω) =∞.

Example 4.10. Let T = T1 := min{n ≥ 1: Sn = 0} = min{n ≥ 1: ω1 + · · · + ωn = 0} be
the time of the first visit of the random walk to 0. Then

T (θT1ω) = min{n ≥ 1: (θT1ω)1 + · · ·+ (θT1ω)n = 0} = min{n ≥ 1: ωT1+1 + · · ·+ωT1+n = 0}.
T2(ω) = T1(ω) + T (θT1ω) = min{n > T1 : ω1 + · · ·+ ωn = 0}, ∀ω ∈ Ω = (Rd)N.

That is, T2 is the second time that the random walk returns to 0. More generally, for any
k ≥ 1, Tk is the kth time that the random walk returns to 0.

Lemma 4.11. Let T be a stopping time. For any n ≥ 1, P(Tn <∞) = [P(T <∞)]n.

Proof. The case {T = 0} = Ω is easy, so assume {T = 0} = ∅. We induct on n. The case
n = 1 follows since T = T1. Suppose the case n− 1 holds. By the definition of Tn,

P(Tn <∞) = P(Tn−1 <∞, T (θTn−1) <∞).

For any m ≥ 1, we have

P(Tn−1 = m,T (θTn−1) <∞) = P(Tn−1 = m,T (θm) <∞).

Since Tn−1 is a stopping time, {Tn−1 = m} ∈ Fm = σ(X1, . . . , Xm). Note that T (θm) is
measurable in σ(Xm+1, Xm+2, . . .) since T ≥ 1. So, these two events are independent, i.e.

P(Tn−1 = m,T (θTn−1) <∞) = P(Tn−1 = m)P(T (θm) <∞) = P(Tn−1 = m)P(T <∞).

The last equality used that P is invariant under the shift θm for any m ≥ 1, since X1, X2, . . .
are i.i.d. Summing over all m ≥ 1 gives

P(Tn <∞) = P(Tn−1 <∞, T (θTn−1) <∞) = P(Tn−1 <∞)P(T <∞).

Iterating this equality now concludes the proof. �

The reasoning of Lemma 4.11 implies the following.

Exercise 4.12. Let S0, S1, . . . be a random walk with S0 = 0. Let X be the number of times
the random walk takes the value 0. Let T := min{n ≥ 1: Sn = 0}.

• X is a geometric random variable with success probability P(T =∞).
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• EX = 1
P(T=∞)

. (Here we interpret 1/0 as ∞.)

(Hint: {X = k} = {Tk−1 <∞, Tk =∞} = {Tk−1 <∞, Tk − Tk−1 =∞}.)
Recall that a geometric random variable X with success probability 0 < p < 1 satisfies

P(X = k) = p(1− p)k−1 for any integer k ≥ 1, so by e.g. Theorem 1.60,

EX =
∞∑
k=1

kp(1− p)k−1 = −p d
dt

∣∣∣
t=p

∞∑
k=1

(1− t)k = −p d
dt

∣∣∣
t=p

1− t
t

= −p−t− (1− t)
t2

∣∣∣
t=p

=
p

p2
=

1

p
.

4.3. Recurrence and Transcience.

Definition 4.13. Let S0, S1, . . . be a random walk on Rd started at x ∈ Rd. Suppose X1 is
a discrete random variable. Let T (x) := min{n ≥ 1: Sn = x}. We say that x is recurrent if
P(T (x) <∞) = 1 and transient if P(T (x) <∞) < 1.

Theorem 4.14. Let S0, S1, . . . be a random walk in Rd started at x = 0. Let T := min{n ≥
1: Sn = 0}. Then the following are equivalent

(i) P(T <∞) = 1.
(ii) P(Sn = 0 for infinitely many n ≥ 1) = 1.

(iii)
∑∞

n=0 P(Sn = 0) =∞.

If additionally S1, S2, . . . only takes values in Zd, then (i),(ii),(iii) are equivalent to:

(iv)

∞ = lim
s→1−

∫
[−π,π]d

1

1− sφ(y)
dy.

Here i =
√
−1, φ(y) := Eei〈y,X1〉, ∀ y ∈ Rd, and for any x = (x1, . . . , xd), y = (y1, . . . , yd) ∈

Rd, we define 〈x, y〉 :=
∑d

j=1 xjyj.

Proof. Let X be the number of times the random walk takes the value 0. Then

X =
∞∑
n=0

1Sn=0 =
∞∑
n=0

1Tn<∞, T0 := 0,

EX =
∞∑
n=0

P(Sn = 0) =
∞∑
n=0

P(Tn <∞). (∗)

If (i) occurs, then P(Tn <∞) = 1 for every n ≥ 1 by Lemma 4.11, so that (ii) occurs. If (ii)
occurs, then P(Tn < ∞) = 1 for every n ≥ 1, so the second equality of (∗) shows that (iii)
occurs. If (iii) occurs, then (i) occurs by Exercise 4.12. So, (i),(ii),(iii) are equivalent.

By (∗), it remains to show that the right side of (iv) is equal to (2π)dEX. Recall that∫ π
−π e

imθdθ = 0 for any nonzero m ∈ Z, while
∫ π
−π e

i0θdθ = 2π. Therefore, for any n ≥ 0,

1Sn=0 =

∫
[−π,π]d

ei〈y,Sn〉
dy

(2π)d
.

Taking expected values of both sides,

P(Sn = 0) =

∫
[−π,π]d

Eei〈y,Sn〉
dy

(2π)d
. (∗∗)
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Recalling Sn = X1 + · · · + Xn and using that X1, . . . , Xn are i.i.d., we have Eei〈y,Sn〉 =∏n
j=1 Eei〈y,Xj〉 = (φ(y))n. So, multiplying both sides of (∗∗) by sn and summing over n ≥ 0,

∞∑
n=0

snP(Sn = 0) =

∫
[−π,π]d

∞∑
n=0

(sφ(y))n
dy

(2π)d
=

∫
[−π,π]d

1

1− sφ(y)

dy

(2π)d
.

(Since |φ(y)| ≤ 1 ∀ y ∈ Rd, if |s| < 1, then |sφ(y)| < 1 ∀ y ∈ Rd.) Letting s → 1−, the left
side increases monotonically to EX by (∗), so the limit of the right side exists as well. �

Definition 4.15 (Simple Random Walk). For any 1 ≤ j ≤ d, let ej ∈ Rd be the vector
with a 1 in the jth entry and zeros in all other entries, so that e1, . . . , ed is the standard
basis of Rd. Let X be a random variable so that P(X = ej) = P(X = −ej) = 1/(2d) for all
1 ≤ j ≤ d. Let X1, X2, . . . be i.i.d. copies of X. The random walk Sn := X1 + · · · + Xn, ∀
n ≥ 1 with S0 := 0 is called the simple random walk on Zd.

The Simple Random Walk is the most basic random walk. It may be surprising that
the transcience/recurrence of this random walk depends on d. Note that each point in the
integer grid Zd has 2d locations to move to at each step of the walk. And when d is large,
there are more ways for the random walk to wander away from the origin.

Theorem 4.16. Simple Random Walk is recurrent when d ≤ 2 and transient when d ≥ 3.

Proof. It suffices to check whether or not condition (iv) holds of Theorem 4.14. For any
y ∈ Rd, we have

φ(y) = Eei〈y,X1〉 =
1

2d

d∑
j=1

[eiyj + e−iyj ] =
1

d

d∑
j=1

cos(yj) = 1 +
1

d

d∑
j=1

[−1 + cos(yj)].

For any z ∈ [−π, π], we have z2/4 ≤ 1− cos(z) ≤ z2 by e.g. taking derivatives and using the
Fundamental Theorem of Calculus. Therefore, for any y ∈ Rd,

−1

d

d∑
j=1

y2
j ≤

1

d

d∑
j=1

[−1 + cos(yj)] ≤ −
1

4d

d∑
j=1

y2
j .

So, for any y ∈ Rd, and for any 0 < s < 1,

1− s+ s
1

4d

d∑
j=1

y2
j ≤ 1− sφ(y) ≤ 1− s+ s

1

d

d∑
j=1

y2
j .

Letting s → 1−, and noting that the integrand increases monotonically in a neighborhood
of y = 0 while remaining bounded outside this neighborhood,

(d/4)

∫
[−π,π]d

1∑d
j=1 y

2
j

dy ≤ lim
s→1−

∫
[−π,π]d

1

1− sφ(y)
dy ≤ d

∫
[−π,π]d

1∑d
j=1 y

2
j

dy.

And
∫

[−π,π]d
1∑d

j=1 y
2
j

dy =∞ if and only if d ≤ 2, by e.g. changing to polar coordinates. �

Exercise 4.17. Give a combinatorial proof that the simple random walk S0, S1, . . . on Zd is
recurrent for d ≤ 2. That is, estimate P(Sn = 0) ≈ n−d/2 when n is large and d ≤ 2, and
conclude

∑∞
n=0 P(Sn = 0) =∞ for d ≤ 2. (Hint: use Stirling’s Formula, Proposition 8.10)
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Exercise 4.18. Show that if the Simple Random Walk on Zd is recurrent, then this random
walk takes every value in Zd infinitely many times. And if the Simple Random Walk on Zd
is transient, then this random walk takes any fixed value in Zd only finitely many times.

Exercise 4.19. Let 0 < p < 1. Consider the random walk on Z such that P(X1 = 1) = p
and P(X1 = −1) = 1− p. Show that the corresponding random walk S0, S1, . . . is transient
when p 6= 1/2.

Exercise 4.20. Let S0, S1, . . . and S ′0, S
′
1, . . . be independent simple random walks on Zd.

Let N :=
∑

n,m≥0 1Sn=S′m be the number of pairs of intersections of these two random walks.

For any y ∈ Rd, let φ(y) := Eei〈y,X1〉.

• Show EN = lims→1−
∫

[−π,π]d
1

|1−sφ(y)|2
dy

(2π)d
. (Hint: consider Eei〈y,(Sn−S

′
m)〉.)

• For what d ≥ 1 is EN <∞?
• Let C := {Sn : n ≥ 0} ∩ {S ′n : n ≥ 0} be the intersection set of the two independent

random walks. Let |C| denote the cardinality of C. Show that if the simple random
walk on Zd is transient, then P(N = ∞) = 1 if and only if P(|C| = ∞) = 1. (Hint:
N =

∑
x∈C NxN

′
x where Nx :=

∑
n≥0 1Sn=x is the number of visits of the first random

walk to x.) In the recurrent case d = 1, 2, Exercise 4.18 implies that P(|C| =∞) = 1.
For any d ≥ 1, note that N < ∞ implies |C| < ∞. It can also be shown that
P(N < ∞) ∈ {0, 1}, P(|C| = ∞) ∈ {0, 1}, and that P(N < ∞) = 1 if and only if
EN < ∞ (you don’t have to show these things). In summary, P(|C| = ∞) = 1 if
and only if EN =∞.
• Hypothesize what happens to EN when we instead consider the tuples of intersections

of k > 2 independent simple random walks in Rd. (You don’t have to prove your
hypothesis.)

The following proposition will be derived from a more general result, Theorem 6.51 below.

Proposition 4.21 (Wald’s Equations). Let X1, X2, . . . : Ω → R be i.i.d. Let N be a
stopping time. Let S0, S1, . . . be the corresponding random walk with S0 := 0.

• If EN <∞, and E |X1| <∞, then ESN = EX1EN .
• If EX1 = 0,EX2

1 <∞ and EN <∞, then ES2
N = EX2

1EN .

Example 4.22. Suppose P(X1 = 1) = P(X1 = −1) = 1/2. Let a, b ∈ Z with a < 0 < b.
Let N := min{n ≥ 1: Sn /∈ (a, b)}. We first check that EN < ∞. If x ∈ Z ∩ (a, b) and if
Sn = x for some n ≥ 1, then with probability at least 2−(b−a), the random walk exits the
interval (a, b) in time b− a. That is, P(N > (b− a)) ≤ (1− 2−(b−a)). We claim that for any
n ≥ 1,

P(N > n(b− a)) ≤ (1− 2−(b−a))n. (∗)
If {X1 = x1, . . . , X(n−1)(b−a) = x(n−1)(b−a)} ⊆ {N > (n−1)(b−a)} for some x1, . . . , x(n−1)(b−a) ∈
Z, then by the above reasoning

P(N > n(b− a), X1 = x1, . . . , X(n−1)(b−a) = x(n−1)(b−a))

≤ (1− 2−(b−a))P(X1 = x1, . . . , X(n−1)(b−a) = x(n−1)(b−a)).

Summing over all x1, . . . , x(n−1)(b−a) such that {X1 = x1, . . . , X(n−1)(b−a) = x(n−1)(b−a)} ⊆
{N > (n− 1)(b− a)}, we get

P(N > n(b−a), N > (n−1)(b−a)) = P(N > n(b−a)) ≤ (1−2−(b−a))P(N > (n−1)(b−a)).
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Iterating this inequality proves (∗). Then (∗) implies EN <∞ by Theorem 1.86.
The first part of Proposition 4.21 says ESN = 0. Note that SN only takes two values, a

and b, so ESN is straightforward to compute directly. Let c := P(SN = a). Then

0 = ESN = ca+ (1− c)b.

Solving for c we get

c = P(SN = a) =
b

b− a
, P(SN = b) =

−a
b− a

.

The second part of Proposition 4.21 says ES2
N = EN . Once again, S2

N only takes two
values, so

EN = ES2
N = ca2 + (1− c)b2 =

a2b− ab2

b− a
= ab

a− b
b− a

= −ab.

Exercise 4.23. Let 1/2 < p < 1. Consider the random walk on Z such that P(X1 = 1) = p
and P(X1 = −1) = 1−p. Let S0, S1, . . . be the corresponding random walk with S0 := 0. Let
N := min{n ≥ 1: Sn > 0}. Using Wald’s equation for min(N, n) and then letting n → ∞,
show that EN = 1/EX1 = 1/(2p− 1).

4.4. Additional Comments. The term “random walk” was first proposed by Karl Pearson
in 1905 in a letter to Nature. In this letter, Pearson proposed model of mosquito infestation
of a forest. At each time step, a single mosquito moves a fixed length at a randomly chosen
angle. Pearson asked for the distribution of the mosquitoes in the forest after a long time
has passed. Rayleigh answered the letter, since he had solved a similar problem in 1880 for
the modeling of sound waves in a heterogeneous material. A sound wave traveling through a
material can be modeled as summing a sequence of vectors of constant amplitude but random
phase, i.e. a sum of the form

∑n
j=1 e

iYj , where Y1, Y2, . . . are real-valued and independent.
In 1900, Bachelier proposed random walks as a model for stock prices, and he also related

random walks to the continuous diffusion of heat. Apparently unaware of other related works,
around 1905 Einstein published his work on Brownian motion, i.e. the path of a dust particle
in the air pushed in random directions by collision with gas molecules. Einstein modeled this
behavior with a random walk. Smoluchowski published results similar to Einstein in 1906.

Random Walks are some of the most basic stochastic processes. They are used to model
random phenomena in many scientific fields. The Simple Random Walk is essentially a
discrete version of Brownian Motion.

Our presentation above focused on random walks where X1 is discrete. In the case that X1

is not discrete, if S0, S1, . . . is a random walk with S0 := 0, then x ∈ Rd is called a recurrent
value for the random walk if, for any ε > 0, P(‖Sn − x‖ < ε for infinitely many n ≥ 1) = 1.

Here ‖(x1, . . . , xd)‖ := (
∑d

j=1 x
2
j)

1/2. And x ∈ Rd is called a possible value for the random

walk if, for any ε > 0, ∃ n ≥ 0 such that P(‖Sn − x‖ < ε) > 0. The random walk is said to
be transient if it has no recurrent values. Otherwise, the random walk is called recurrent.
If the random walk is recurrent, it can be shown that the set of recurrent values is equal to
the set of possible values, as in Exercise 4.18.

Theorem 4.14 can then be generalized as follows.

Theorem 4.24. Let S0, S1, . . . be a random walk on Zd with S0 := 0. For any y ∈ Rd, let
φ(y) := Eei〈y,X1〉, where i =

√
−1.
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(a) The convergence (or divergence) of
∑

n≥0 P (‖Sn‖ < ε) for a single ε > 0 is sufficient
to prove transience (or recurrence) of the random walk.

(b) Let δ > 0. Then the random walk is recurrent if and only if

sup
0<s<1

∫
(−δ,δ)d

Re
1

1− sφ(y)
dy =∞.

5. Conditional Probability and Conditional Expectation

In elementary probability theory, conditional probability and conditional expectation allow
a rigorous notion for incorporating previously unknown information into a probability law.
If A,B are events and if P(B) > 0, we define the conditional probability of A given B,
denoted P(A|B), to be

P(A|B) := P(A ∩B)/P(B).

For example, if P is uniform on the sample space Ω = {1, 2, 3, 4, 5, 6}, and if B = {2, 4, 6},
then P({1}|B) = 0 and P({2}|B) = 1/3.

Let X : Ω → [−∞,∞] be a random variable with E |X| < ∞. Note that, if B is fixed,
then the function A 7→ P(A|B) is itself a probability law on Ω, so we can e.g. define the
conditional expectation of a random variable X given B, denoted E(X|B), to be the
usual expectation of X with respect to the probability law P(·|B).

E(X|B) := E(X1B)/P(B).

In case X ≥ 0, we have the equivalent definition E(X|B) =
∫∞

0
P(X > t|B)dt.

If Z is a discrete random variable, i.e. if Z takes at most countably many values, and
if P(Z = z) > 0 for some z ∈ R, we let B := {Z = z} in the above definition to define
E(X|Z = z). By splitting the sample space Ω into countably many disjoint sets B1, B2, . . .
such that ∪∞n=1Bn = Ω and P(Bn) > 0 for all n ≥ 1, we can write

P(A) =
∞∑
n=1

P(A ∩Bn) =
∞∑
n=1

P(A|Bn)P(Bn).

EX =
∞∑
n=1

E(X1Bn) =
∞∑
n=1

E(X|Bn)P(Bn). (∗)

By breaking up expected values or probabilities into pieces in this way, sometimes the quan-
tities on the right side are easier to compute, allowing computation of the left side.

Exercise 5.1. Prove Wald’s first equation. Let X1, X2, . . . : Ω → R be i.i.d. Let N be a
stopping time with EN <∞. Let S0 := 0 and for any n ≥ 1, let Sn := X1 + · · ·+Xn. Then
ESN = EX1EN . (Hint: condition on N taking fixed values.)

We now restate the identity on the right of (∗).

Definition 5.2. Let X : Ω→ R be a random variable on a probability space (Ω,F ,P). Let
G ⊆ F where G is the σ-algebra of Ω generated by the disjoint sets B1, B2, . . . such that
∪∞n=1Bn = Ω and P(Bn) > 0 for all n ≥ 1. Define the conditional expectation of X
given G, denoted E(X|G), to be the random variable on Ω that takes the value E(X|Bn)
on the set Bn for all n ≥ 1.
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Then E(X|G) takes the value E(X|Bn) with probability P(Bn) for all n ≥ 1, so we can
rewrite (∗) as

EX = E(E(X|G)).

Note that G consists of all disjoint unions of sets B1, B2, . . ., and E(X|G) is constant on each
of these sets. Moreover, for any n ≥ 1,

E(E(X|G)1Bn) = E(X|Bn)P(Bn) = E(X1Bn).

By linearity of E, we conclude that, for any B ∈ G, we have

E(E(X|G)1B) = E(X1B).

We can in fact turn this identity into a definition of E(X|G), for any σ-algebra G. Compared
to the definition above, the definition below does not require the nonempty sets in G to have
positive measure.

Definition 5.3 (Conditional Expectation). Let (Ω,F ,P) be a probability space, let
X : Ω → R be an F -measurable random variable with E |X| < ∞. Let G be a σ-algebra
with G ⊆ F (so that G is coarser than F). We define a conditional expectation of X
with respect to G to be any random variable Y : Ω→ R such that

• Y is measurable with respect to G. (For any measurable A ⊆ R, Y −1(A) ∈ G.)
• For any B ∈ G, E(Y 1B) = E(X1B).

In Proposition 5.5 below, we will show that a Y satisfying the above properties exists and
is unique up to measure zero changes to Y , and E |Y | < ∞. We therefore denote the
conditional expectation of X with respect to G as E(X|G).

Definition 5.4. Let µ, ν be measures on a measurable space (Ω,F). We say that ν is
absolutely continuous with respect to µ, denoted ν � µ, if whenever µ(A) = 0 for some
A ∈ F , we have ν(A) = 0.

Proposition 5.5. Let (Ω,F ,P) be a probability space, let X : Ω→ R be a random variable
with E |X| <∞. Let G be a σ-algebra with G ⊆ F . There exists a random variable Y that is
the conditional expectation of X given G. Moreover, if Y ′ is another conditional expectation
of X given G, then P(Y = Y ′) = 1.

Proof. We first show uniqueness. Let ε > 0. Let Bε := {Y − Y ′ > ε} ∈ G. Then

0 = E(Y 1Bε)− E(X1Bε) = E((Y − Y ′)1Bε) ≥ εP(Bε).

So, P(Bε) = 0. Letting ε→ 0+, we get P(Y − Y ′ > 0) = 0 by continuity of the probability
law. Interchanging the roles of Y, Y ′ show that P(Y ′ − Y > 0) = 0 as well.

We now show existence. Assume for now that X ≥ 0. Let µ denote the restriction of P to
the measurable space (Ω,G) and also define a measure ν on this space by ν(A) :=

∫
A
XdP

for any A ∈ G. Since
∫

Ω
|X| dP < ∞, ν(Ω) < ∞. Also, if µ(A) = 0 then P(A) = 0 so

ν(A) = 0, so ν is absolutely continuous with respect to µ. By the Radon-Nikodym Theorem,
Theorem 8.2, ∃ a nonnegative G-measurable random variable Y such that ν = Y µ. So, for
any A ∈ G,

EX1A =

∫
A

XdP = ν(A) =

∫
A

dν =

∫
A

Y dµ =

∫
A

Y dP = EY 1A.

So, Y is a conditional expectation of X with respect to G (and EY = E |Y | = ν(Ω) <∞.)
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We now consider the case of general X : Ω→ R. Write X = max(X, 0)−max(−X, 0) =:
X+−X−. The preceding argument gives Y+, Y− that are conditional expectations of X+, X−
respectively, so Y := Y+ − Y− satisfies E |Y | <∞, and for any A ∈ G,

EX1A = EX+1A − EX−1A = EY+1A − EY−1A = EY 1A.

�

Exercise 5.6. Let Ω = [0, 1]. Let P be the uniform probability law on Ω. Let X : [0, 1]→ R
be a random variable such that X(t) = t2 for all t ∈ [0, 1]. Let

G = σ{[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1]}.

Compute explicitly the function E(X|G). (It should be constant on each of the partition
elements.) Draw the function E(X|G) and compare it to a drawing of X itself.

Now, for every integer k > 1, let s = 2−k, and let Gk := {[0, s), [s, 2s), [2s, 3s), . . . , [1 −
2s, 1− s), [1− s, 1)}. Try to draw E(X|Gk). Prove that, for every t ∈ [0, 1],

lim
k→∞

E(X|Gk)(t) = X(t).

Exercise 5.7. Let X : Ω → R be a random variable with finite variance, and let t ∈ R.
Consider the function f : R→ R defined by f(t) = E(X − t)2. Show that the function f is
uniquely minimized when t = EX. That is, f(EX) < f(t) for all t ∈ R such that t 6= EX.
Put another way, setting t to be the mean of X minimizes the quantity E(X − t)2 uniquely.

The conditional expectation, being a piecewise version of taking an average, has a similar
property. Let B1, . . . , Bk ⊆ Ω such that Bi ∩ Bj = ∅ for all i, j ∈ {1, . . . , k} with i 6= j,
and ∪ki=1Bi = Ω. Write G = σ{B1, . . . , Bk}. Let Y be any other random variable such that,
for each 1 ≤ i ≤ k, Y is constant on Bi. Show that the quantity E(X − Y )2 is uniquely
minimized by such a Y only when Y = E(X|G).

Exercise 5.8. Let Ω = [0, 1]. Let P be the uniform probability law on Ω. Let X : [0, 1]→ R
be a random variable such that X(t) = t2 for all t ∈ [0, 1]. For every integer k > 1, let s =
2−k, let Gk := σ{[0, s), [s, 2s), [2s, 3s), . . . , [1− 2s, 1− s), [1− s, 1)}, and let Mk := E(X|Gk).
Show that the increments M2 −M1,M3 −M2, . . . are orthogonal in the following sense. For
any i, j ≥ 1 with i 6= j,

E(Mi+1 −Mi)(Mj+1 −Mj) = 0.

This property is sometimes called orthogonality of martingale increments.

Remark 5.9. In Definition 5.2, if Z : Ω → R is a discrete random variable, i.e. if Z only
takes countably many values z1, z2, . . . ∈ R, and if G = σ(Z) is the σ-algebra generated by
{ω ∈ Ω: Z(ω) = z1}, {ω ∈ Ω: Z(ω) = z2}, . . ., then the random variable E(X|G) is denoted
as E(X|Z). If we use Bi := {Z = zi} for all i ≥ 1 in equation (∗), we get

EX =
∞∑
i=1

E(X|Z = zi)P(Z = zi).

We can intuitively think of G as some amount of information that can change our knowledge
of a random variable X. As in the example below, if G is the coarsest possible σ-algebra,
then we know essentially nothing about X, and E(X|G) is constant almost surely. At the
other extreme, if X is G-measurable, then E(X|G) = X, i.e. we know everything about X.

59



Example 5.10. In Definition 5.3, suppose X is measurable with respect to G. We can then
use Y := X in Definition 5.3. By the uniqueness part of Proposition 5.5, we conclude that
E(X|G) = X.

In Definition 5.3, suppose G = {∅,Ω} is the coarsest possible σ-algebra on Ω. Then E(X|G)
must be constant almost everywhere, since constant functions are the only G-measurable
functions. Choosing B = Ω in Definition 5.3, we conclude that E(X|G) = EX.

Exercise 5.11. Let (Ω,F ,P) be a probability space, and let X : Ω → R be a random
variable with E |X| < ∞. Let G,H ⊆ F be σ-algebras. Let H be a σ-algebra that is
independent of σ(σ(X),G). Show that

E(X|σ(G,H)) = E(X|G).

In particular, if we choose G = {∅,Ω}, we get: if H is independent of σ(X), then E(X|H) =
EX.

(Hint: Let G ∈ G, H ∈ H, let Y := E(X|G). Compare E(X1G∩H) and E(Y 1G∩H). Is the
set of A ∈ σ(G,H) such that E(X1A) = E(Y 1A) a monotone class?)

Proposition 5.12. Let (Ω,F ,P) be a probability space, and let X : Ω → R be a random
variable with E |X| <∞. Let G ⊆ F be a σ-algebra. Then

• EX = E(E(X|G))
• If X ≥ 0 then E(X|G) ≥ 0 almost surely. And if X > 0 then E(X|G) > 0 almost

surely. And if

Proof. The first item follows by choosing B := Ω in Definition 5.3. Let Y := E(X|G). For
the second item, choose B := {ω ∈ Ω: Y ≤ 0} ∈ G in Definition 5.3 to get 0 ≤ E(X1B) =
E(Y 1B) ≤ 0. Therefore E(Y 1Y≤0) = 0 so that Y ≥ 0 almost surely. Also, for any ε > 0,
εP(X > ε, Y ≤ 0) ≤ E(X1X>ε1Y≤0) ≤ E(X1Y≤0) = 0, so P(X > 0, Y = 0) = 0, by
continuity of the probability law (as ε→ 0+). �

Proposition 5.13 (Linearity of Conditional Expectation). Let (Ω,F ,P) be a proba-
bility space, and let X, Y : Ω → R be random variables with E |X| ,E |Y | < ∞. Let G ⊆ F
be a σ-algebra. Then for any α ∈ R,

E(αX + Y |G) = αE(X|G) + E(Y |G).

Proof. Let V := E(X|G), W := E(Y |G). Note that E |αV +W | <∞, and for any B ∈ G,

E(αX + Y )1B = αE(X1B) + EY 1B = αEV 1B + EW1B = E(αV +W )1B.

�

Proposition 5.13 and the second part of Proposition 5.12 imply the following.

Corollary 5.14 (Monotonicity of Conditional Expectation). Let (Ω,F ,P) be a prob-
ability space, and let X, Y : Ω→ R be random variables with E |X| ,E |Y | <∞. Let G ⊆ F
be a σ-algebra. If X ≤ Y , then

E(X|G) ≤ E(Y |G).

Exercise 5.15. Prove Jensen’s inequality for the conditional expectation. Let X : Ω → R
be a random variable and let φ : R→ R be convex. Assume E |X| ,E |φ(X)| <∞. Then

φ(E(X|G)) ≤ E(φ(X)|G)
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Conclude that for any 1 ≤ p ≤ ∞ we have the following contractive inequality for conditional
expectation

‖E(X|G)‖p ≤ ‖X‖p .

Proposition 5.16. Let (Ω,F ,P) be a probability space, and let X, Y : Ω → R be random
variables with E |X| ,E |XY | < ∞. Let G ⊆ F be a σ-algebra. Suppose Y is G-measurable.
Then

E(XY |G) = YE(X|G).

Proof. Let Z := E(X|G). Note that Y Z is G-measurable, so we must check

E(XY 1B) = E(ZY 1B), (∗)

for any B ∈ G. If Y = 1A for some A ∈ G, then A ∩B ∈ G, so by definition of Z,

E(XY 1B) = E(X1A∩B) = E(Z1A∩B) = E(ZY 1B).

By linearity, (∗) holds when Y is a simple function. If X ≥ 0 then Z ≥ 0 by Propo-
sition 5.12, so (∗) holds for any nonnegative Y by the Monotone Convergence Theorem
1.54. More generally, write X = max(X, 0) −max(−X, 0)), Y = max(Y, 0) −max(−Y, 0)),
write |XY | = (max(X, 0) + max(−X, 0))(max(Y, 0) + max(−Y, 0)), and note that all four
products have finite expected value since E |XY | < ∞. Also by Corollary 5.14, Z =
E(max(X, 0)|G) − E(max(−X, 0)|G). So, the previous result applied to each of the four
products max(±X, 0) max(±Y, 0) concludes the proof. �

Exercise 5.17 (Tower Property). Let (Ω,F ,P) be a probability space, and let X : Ω→ R
be a random variable with E |X| < ∞. Let H ⊆ G ⊆ F be σ-algebras. Then E(X|H) =
E(E(X|G)|H).

Exercise 5.18 (Conditional Markov Inequality). Let p > 0. Let (Ω,F ,P) be a probability
space, and let X : Ω→ R be a random variable with E |X|p <∞. Let G ⊆ F be a σ-algebra.
For any A ∈ F , we denote P(A|G) := E(1A|G).

• Show that, almost surely,

E(|X|p |G) =

∫ ∞
0

ptp−1P(|X| > t|G)dt.

• Deduce a conditional version of Markov’s inequality: for any t > 0, almost surely,

P(|X| > t|G) ≤ E(|X|p |G)

tp
.

Exercise 5.19 (Conditional Hölder Inequality). Let p, q > 1 with 1
p

+ 1
q

= 1. Let (Ω,F ,P)

be a probability space, and let X, Y : Ω→ R be random variables with E |X|p ,E |Y |q <∞.
Let G ⊆ F be a σ-algebra. Show that, almost surely,

E(|XY | |G) ≤ [E(|X|p |G)]1/p[E(|Y |q |G)]1/q.
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5.1. Conditional Expectation as Hilbert Space Projection. Unlike other sections, in
this section capital letters will often not denote random variables.

Definition 5.20. A real Hilbert space H is a vector space over R equipped with a bilinear,
symmetric function 〈·, ·〉 : H ×H → R such that 〈h, h〉 ≥ 0 for all h ∈ H with equality only
when h = 0, and such that H is complete with respect to the metric d : H × H → [0,∞)
defined by d(g, h) := 〈g − h, g − h〉1/2 =: ‖g − h‖, ∀ g, h ∈ H. By complete, we mean:
for any sequence h1, h2, . . . ∈ H that is Cauchy (∀ ε > 0, ∃ n > 0 such that ∀ m ≥ n,
‖hm − hn‖ < ε), there exists h ∈ H such that limn→∞ ‖hn − h‖ = 0. The function 〈·, ·〉 is
called an inner product on H, and the function ‖·‖ is called the norm on H associated to
the inner product 〈·, ·〉.

Exercise 5.21. Let H be a Hilbert space. Let g, h ∈ H. Prove the Cauchy-Schwarz
inequality

|〈g, h〉| ≤ ‖g‖ ‖h‖ .
Show also the triangle inequality ‖g + h‖ ≤ ‖g‖+‖h‖, and the parallelogram law ‖g + h‖2 +
‖g − h‖2 = 2 ‖g‖2 + 2 ‖h‖2.

If X : Ω → R is a random variable on the probability space (Ω,F ,P), and if G ⊆ F is a
σ-algebra, then we can interpret E(X|G) as a Hilbert space projection. In the special case
that G is a σ-algebra generated by a countable set of disjoint sets, it follows immediately
from Definition 5.2 that the map X 7→ E(X|G) is a projection, i.e. E(E(X|G)|G) = E(X|G).
In the case of more general G, we will make a similar statement below.

Theorem 5.22 (Hilbert space projections). Let H be a Hilbert space, W ⊆ H a closed
convex set, M ⊆ H a closed subspace. Define M⊥ := {h ∈ H : 〈h,m〉 = 0,∀m ∈M}.

(a) ∃ v ∈ W such that ‖h− v‖ = infw∈W ‖h− w‖.
(b) Every h ∈ H can be uniquely written as h = v + p, for some v ∈ M , p ∈ M⊥. (We

therefore write H = M ⊕M⊥.)
(c) (M⊥)⊥ = M .

The map h 7→ v is called the linear projection of H onto M (choosing W := M above.)

Proof of (a). Let a := infw∈W ‖h− w‖. Let w1, w2, . . . ∈ W such that limn→∞ ‖h− wn‖ = a.
The parallelogram law says

‖2h− (wn + wm)‖2 + ‖wn − wm‖2 = 2(‖h− wm‖2 + ‖h− wn‖2)→ 4a2 (∗)

as m,n → ∞. But 1
2
(wn + wm) ∈ W , so 4

∥∥h− 1
2
(wn + wm)

∥∥2 ≥ 4a2, by definition of a.

Then from the left side of (∗), ‖wn − wm‖2 → 0 as m,n → ∞, so w1, w2, . . . is a Cauchy
sequence, i.e. v := limn→∞wn exists in H. Note that ‖h− v‖ ≥ a by definition of a. Also,
by the triangle inequality, ‖h− v‖ ≤ ‖h− wn‖ + ‖wn − v‖ for all n ≥ 1. Letting n → ∞
shows ‖h− v‖ ≤ a. Therefore, ‖h− v‖ = a.

Proof of (b). First observe that M⊥ is closed and M ∩M⊥ = {0} by definition of M⊥.
Uniqueness follows since M ∩ M⊥ = {0}, so if h = v + p = v′ + p′ with v, v′ ∈ M and
p, p′ ∈ M⊥, then v − v′ = p′ − p ∈ M ∩ M⊥ = {0}. To get existence, use part (a) to
find v ∈ W := M with ‖h− v‖ = infm∈M ‖h−m‖. Let m ∈ M with ‖m‖ = 1. Then
v + 〈h− v,m〉m ∈M , and by definition of v,

‖h− v‖2 ≤ ‖h− v − 〈h− v,m〉m‖2 = ‖h− v‖2 − |〈h− v,m〉|2
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Thus 〈h− v,m〉 = 0 for all m ∈M , i.e. p := h− v ∈M⊥, so h = v + (h− v) = v + p.
Proof of (c). By definition, M ⊆ M⊥⊥. For any h ∈ M⊥⊥, apply part (b) to get

h = m+m⊥, so 0 = m⊥+ (m− h), m⊥ ∈M⊥,m− h ∈M⊥⊥. Apply part (b) again to M⊥,
so H = M⊥ ⊕M⊥⊥. By uniqueness of this decomposition for 0 ∈ H, we conclude m⊥ = 0,
m− h = 0, so h = m ∈M , i.e. M⊥⊥ = M . �

Exercise 5.23. Let H be a Hilbert space, let M ⊆ H a closed subspace, and for any h ∈ H,
denote f(h) as the linear projection of H onto M . Show that h 7→ f(h) is actually a linear
projection. That is, verify that f(αg+h) = αf(g)+f(h) and f(f(h)) = f(h) for any α ∈ R,
g, h ∈ H.

Definition 5.24. Let (Ω,F ,P) be a probability space. We denote

L2(Ω,F ,P) := {X : Ω→ R : X is F−measurable and EX2 <∞}.
It is well known that L2(Ω,F ,P) equipped with the inner product 〈X, Y 〉 := EXY , ∀,
X, Y ∈ L2(Ω,F ,P), is a Hilbert space. Note that ‖X‖ = 〈X,X〉1/2 = (EX2)1/2. (Strictly
speaking, any two random variables X, Y : Ω→ R such that P(X = Y ) = 1 are identified as
the same element of L2(Ω,F ,P) if EX2 < ∞. That is, L2(Ω,F ,P) consists of equivalence
classes of random variables that are equal almost surely.)

Theorem 5.25 (Completeness of L2). Let (Ω,F ,P) be a probability space. Any Cauchy
sequence X1, X2, . . . in L2(Ω,F ,P) has a subsequence such that ‖Xkn −Xkm‖ ≤ cmin{m,n}
with

∑∞
n=1 cn < ∞. A subsequence with this property is then Cauchy pointwise almost

surely. If X denotes the a.e. limit of the subsequence, then the original sequence converges
to X in L2(Ω,F ,P).

Proof. Given any Cauchy sequence, we may take a rapidly convergence subsequence (so that,
e.g. ‖Xki−Xkj‖ ≤ 2−max (i,j)). For any n ≥ 1, let Yn := |X1|+

∑n
k=2 |Xk −Xk−1|, and define

Y := limn→∞ Yn. From our rapid convergence, we have ‖Yn‖ ≤ c < ∞ for all n ≥ 1, so the
Monotone Convergence Theorem, Theorem 1.54) gives ‖Y ‖ ≤ c. Thus, Y is finite almost
surely, and

∑∞
k=2 |Xk(ω)−Xk−1(ω)| converges in R for all ω ∈ Ω (after redefining Xk’s

on a P measure zero set). So the telescoping sum
∑∞

k=2(Xk(ω) − Xk−1(ω)) is absolutely
convergent, therefore convergent, therefore X := limn→∞Xn exists for every ω ∈ Ω, and the
Dominated Convergence Theorem, Theorem 1.57 (using |X −Xn| ≤ Y for all n ≥ 1) shows
limn→∞ ‖X −Xn‖ = 0. �

Proposition 5.26 (Conditional Expectation as Projection). Let (Ω,F ,P) be a prob-
ability space, let X : Ω → R be an F-measurable random variable with EX2 < ∞. Let G be
a σ-algebra with G ⊆ F . Define Z ∈ L2(Ω,G,P) by

E |X − Z|2 := inf
Y ∈L2(Ω,G,P)

E(X − Y )2. (∗)

Then Z satisfies (∗) if and only if E((X − Z)W ) = 0 for all W ∈ L2(Ω,G,P).
So, the map X 7→ E(X|G) is a linear projection from L2(Ω,F ,P) to L2(Ω,G,P). In

particular, E(X|G) exists and is unique.

Proof. L2(Ω,G,P) is itself a Hilbert space by Theorem 5.25. Since G ⊆ F , X ∈ L2(Ω,G,P)
implies X ∈ L2(Ω,F ,P). So, L2(Ω,G,P) is a closed vector subspace of L2(Ω,F ,P). Exis-
tence and uniqueness of Z follows from Theorem 5.22(a),(b). Let W ∈ L2(Ω,G,P) and let
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t ∈ R. By definition of Z,

0 ≤ ‖X − (Z + tW )‖2 − ‖X − Z‖2 = t2EW 2 − 2tE((X − Z)W ).

Since this holds ∀ t ∈ R, we must have E((X −Z)W ) = 0. Conversely, if E((X −Z)W ) = 0
for all W ∈ L2(Ω,G,P), then letting Y ∈ L2(Ω,G,P) and using W := Z − Y ,

‖X − Y ‖2 = ‖(X − Z) + (Z − Y )‖2

= ‖X − Z‖2 + 2E((X − Z)(Z − Y )) + ‖Z − Y ‖2 ≥ ‖X − Z‖2 .

So, Z must satisfy (∗). Finally, if we choose Y := 1A with A ∈ G, we have E((X−Z)1A) = 0,
so that Z = E(X|G). �

We observed the minimization property of conditional expectation discussed above in
Exercise 5.7. Similarly, we can generalize the orthogonality property from Exercise 5.8.

Exercise 5.27. Let (Ω,F ,P) be a probability space, let X : Ω → R be an F -measurable
random variable with EX2 < ∞. Let F1 ⊆ F2 ⊆ · · · ⊆ F . For any n ≥ 1, define
Mn := E(X|Fn). Show that, for any i, j ≥ 1 with i 6= j,

E(Mi+1 −Mi)(Mj+1 −Mj) = 0.

This property is sometimes called orthogonality of martingale increments. (Hint: what
do Hilbert space projections say about the random variables M1,M2, . . . and about the
differences Mn+1 −Mn?)

5.2. Conditional Expectation as Regular Conditional Distribution. There is yet
another way to interpret conditional expectation. We first demonstrate a special case of this
construction, and we then generalize the construction.

Suppose the random vector (X, Y ) ∈ R2 has density function fX,Y : R2 → [0,∞), so that∫
R2 fX,Y (x, y)dxdy = 1 and P((X, Y ) ∈ A) =

∫
A
fX,Y (x, y)dxdy for any measurable A ⊆ R2.

We demonstrate a way to construct the conditional expectation E(X|Y ) := E(X|σ(Y ))
directly from fX,Y .

For any x ∈ R, let fX(x) :=
∫
R fX,Y (x, y)dy be the marginal distribution of X, and for

any y ∈ R, let fY (y) :=
∫
R fX,Y (x, y)dy be the marginal distribution of Y . From Fubini’s

Theorem, Theorem 1.66, these functions are measurable. For any x, y ∈ R, define

fX|Y (x|y) :=

{
fX,Y (x,y)

fY (y)
, if fY (y) > 0

fX(x) , otherwise.

Then fX|Y (x|y) is a measurable function of x, ∀ y ∈ R, and
∫
R fX|Y (x|y)dx = 1, ∀ y ∈ R.

Proposition 5.28. Suppose the random vector (X, Y ) ∈ R2 has density function fX,Y : R2 →
[0,∞). Let g : R→ R be measurable with E |g(X)| <∞, and ∀ y ∈ R, define h : R→ R by

h(y) :=

{∫
R g(x)fX|Y (x|y)dx , if

∫
R |g(x)| fX|Y (x|y)dx <∞

0 , otherwise.

Then h(Y ) = E(g(X)|Y ).
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Proof. As in Fubini’s Theorem 1.66, h is measurable. Also, by Fubini’s Theorem 1.66, since
E |g(X)| < ∞, the set A = {y ∈ R :

∫
R |g(x)| fX,Y (x, y)dx < ∞} satisfies m(Ac) = 0,

where m denotes Lebesgue measure on R. (Recall that Eg(X) =
∫
R2 g(x)fX,Y (x, y)dxdy

by Theorem 1.60.) Since P(Y ∈ A) =
∫
A
fY (y)dy and m(Ac) = 0, we conclude that

P(Y ∈ A) = 1. By the definition of fX|Y , Fubini’s Theorem and Jensen’s inequality,

∞ > E |g(X)| =
∫
R
|g(x)| fX(x)dx ≥

∫
R

|g(x)|
(∫

A

fX|Y (x|y)fY (y)dy
)
dx

=

∫
A

(∫
R
|g(x)| fX|Y (x|y)dx

)
fY (y)dy ≥

∫
A

|h(y)| fY (y)dy = E |h(Y )| .

For any Borel measurable B ⊆ R, if we use the definition of h, Fubini’s Theorem, and the
definition of fX|Y ,

E(h(Y )1B(Y )) =

∫
B∩A

h(y)fY (y)dy =

∫
R

(∫
R
g(x)fX|Y (x|y)dx

)
1B∩A(y)fY (y)dy

=

∫
R2

g(x)1B∩A(y)fX,Y (x, y)dxdy = E(g(X)1B(Y )).

�

From the conditional density fX|Y , we have for any ω ∈ Ω a conditional probability measure
µX|Y (·, ω) defined for any Borel measurable B ⊆ R by µX|Y (B,ω) :=

∫
B
fX|Y (x|Y (ω))dx.

We observed above that E(g(X)|Y ) = h(Y ) =
∫
R g(x)fX|Y (x|Y )dx. The measure µX|Y (·, ω)

represents the distribution of X, if Y (ω) is fixed. So, using our intuition from Theorem 1.60,
we anticipate that E(g(X)|Y ) =

∫
R µX|Y (x, Y )g(x)dx. That is, conditional expectation can

be constructed by averaging the family of conditional probability measures µX|Y (·, ω). We
generalize this construction, replacing σ(Y ) by a more general σ-algebra G.

Definition 5.29 (Regular Conditional Distribution). Let X : Ω→ S be a measurable
function from (Ω,F) to (S,B). Let G ⊆ F be a σ-algebra. A function µX|G(·, ·) : B × Ω →
[0, 1] is called a regular conditional probability distribution of X given G if:

• µX|G(A, ·) = E(1X∈A|G) for every A ∈ B.
• For any ω ∈ Ω, the set function µX|G(·, ω) is a probability measure.

In the case S = Ω, B = F and X(ω) = ω for all ω ∈ Ω, we call µX|G a regular conditional
probability on F given G.

If a regular conditional probability exists, we can construct conditional expectation from
it, using a variant of the Change of Variables formula, Theorem 1.60.

Exercise 5.30. Let X be F -measurable and let Y be G-measurable, real-valued random
variables, where G ⊆ F . Let µX|G be a regular conditional probability of X given G. Let
h : R2 → R be a Borel measurable function with E |h(X, Y )| <∞. Then, almost surely with
respect to ω ∈ Ω,

E(h(X, Y )|G)(ω) =

∫
R
h(x, Y (ω))µX|G(x, ω)dx.

In particular, if Y is constant and if E |X| <∞,

E(X|G)(ω) =

∫
R
xµX|G(x, ω)dx.
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6. Martingales

The simple random walk, and certain functions of other random walks, can be generalized
to a class of stochastic processes called martingales. As in the case of random walks, we
define the “information known up to time n” using a sequence of σ-algebras known as a
filtration. For simplicity, we specialize to real-valued random variables below, though a
theory of vector-valued martingales could be given.

Definition 6.1 (Filtration). Let (Ω,F) be a measurable space. A filtration is a non-
decreasing sequence of σ-algebras F0 ⊆ F1 ⊆ · · · F .

Definition 6.2 (Adapted Random Variables). Let X0, X1, . . . be real-valued random
variables on a measurable space (Ω,F). Let F0 ⊆ F1 ⊆ · · · be a filtration. We say that
X0, X1, . . . is adapted to this filtration if, for every n ≥ 0, Xn is Fn-measurable (equivalently,
σ(Xn) ⊆ Fn).

Note that X0, X1, . . . is adapted to F0 ⊆ F1 ⊆ · · · if and only if σ(X0, X1, . . . , Xn) ⊆ Fn
for every n ≥ 1. Therefore,

Definition 6.3 (Canonical Filtration). Let X0, X1, . . . be real-valued random variables
on a measurable space (Ω,F). Let Fn := σ(X0, X1, . . . , Xn). Then F0 ⊆ F1 ⊆ · · · is the
smallest filtration such that X0, X1, . . . is adapted to this filtration. We therefore refer to
this filtration as the canonical filtration.

Definition 6.4 (Martingale). Let X0, X1, . . . be real-valued random variables on a mea-
surable space (Ω,F). Let F0 ⊆ F1 ⊆ · · · be a filtration. A martingale is a pair
((Xn)n≥0, (Fn)n≥0) such that X0, X1, . . . is adapted to F0 ⊆ F1 ⊆ · · · , such that E |Xn| <∞
for all n ≥ 0, and almost surely,

E(Xn+1|Fn) = Xn, ∀n ≥ 0.

Remark 6.5. Suppose ((Xn)n≥0, (Fn)n≥0) is a martingale. Let Gn ⊆ Fn for all n ≥ 0 be
σ-algebras. Assume that X0, X1, . . . is adapted to G0 ⊆ G1 ⊆ · · · . From the Tower Property,
Exercise 5.17, E(Xn+1|Gn) = E(E(Xn+1|Fn)|Gn) = E(Xn|Gn) = Xn, by the containment
σ(X0, X1, . . . , Xn) ⊆ Gn and by Example 5.10. So, ((Xn)n≥0, (Gn)n≥0) is a martingale. In
particular, if ((Xn)n≥0, (Fn)n≥0) is a martingale, then X0, X1, . . . is also a martingale with
respect to the canonical filtration. So, from now on, if we say that X0, X1, . . . is a martingale,
without explicitly mentioning a filtration, we mean that X0, X1, . . . is a martingale with
respect to the canonical filtration.

Remark 6.6. From Proposition 5.12, if X0, X1, . . . is a martingale, then EXn = EX0 for all
n ≥ 0. That is, the expected value of a martingale is constant in n ≥ 0.

Example 6.7 (Simple Random Walk). The Simple Random Walk on Z from Definition
4.15 is a martingale. Recall that X0 := 0, Y1, Y2, . . . are i.i.d. with such that P(Y1 = 1) =
P(Y1 = −1) = 1/2, and Xn := Y1 + · · · + Yn for any n ≥ 1. Then E |Xn| ≤ n < ∞ for
all n ≥ 0. Also, Yn+1 is independent of X0, . . . , Xn for any n ≥ 0, so Yn+1 is independent
of Fn := σ(X0, . . . , Xn) by Exercise 1.93. So, by the definition of Xn+1, Proposition 5.13,
Example 5.10 and Exercise 5.11,

E(Xn+1|Fn) = E(Xn + Yn+1|Fn) = E(Xn|Fn) + E(Yn+1|Fn) = Xn + E(Yn+1) = Xn.
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Example 6.8 (Gambler’s Ruin). Let 0 < p < 1. Suppose you are playing a game of
chance. For each round of the game, with probability p you win $1 and with probability
1−p you lose $1. Suppose you start with $50 and you decide to quit playing when you reach
either $0 or $100. With what probability will you end up with $100?

Later on, we will answer this question using Martingales and Stopping Times.
Let Y1, Y2, . . . be independent random variables such that P(Yn = 1) =: p and P(Yn =
−1) = 1 − p =: q ∀ n ≥ 1. Let Y0 := 50. Let Zn = Y0 + · · · + Yn, and let Xn := (q/p)Zn ∀
n ≥ 0. Then Zn denotes the amount of money you have at time n ≤ 50. For any n ≥ 1, let
Fn := σ(Y0, . . . , Yn). We claim thatX0, X1, . . . is a martingale with respect to F0 ⊆ F1 ⊆ · · · .
Indeed, Xn is Fn-measurable for any n ≥ 0, E |Xn| ≤ max((q/p)50+n, (q/p)50−n) <∞ for all
n ≥ 0. So, by Proposition 5.16 and Exercise 5.11,

E(Xn+1|Fn) = E((q/p)Zn+1 |Fn) = (q/p)ZnE((q/p)Yn+1|Fn) = (q/p)ZnE((q/p)Yn+1)

= (q/p)Zn(p(q/p) + q(q/p)−1) = (q/p)Zn(q + p) = (q/p)Zn = Xn.

Exercise 6.9 (Binomial Option Pricing Model). Let u, d > 0. Let 0 < p < 1. Let
Y1, Y2, . . . be independent random variables such that P(Yn = log u) =: p and P(Yn =
log d) = 1−p ∀ n ≥ 1. Let Z0 be a fixed constant. Let Zn := Y0 + · · ·+Yn, and let Vn := eZn

∀ n ≥ 1. In general, V0, V1, . . . will not be a martingale, but we can e.g. compute EVn, by
modifying V0, V1, . . . to be a martingale.

First, note that if n ≥ 1, then Zn has a binomial distribution, in the sense that

P(Zn = X0 + i log u+ (n− i) log d) =

(
n

i

)
pi(1− p)n−i, ∀ 0 ≤ i ≤ n.

For any n ≥ 1, let Fn := σ(Y0, . . . , Yn). Define

r := p(u− d)− 1 + d.

Here we chose r so that p = 1+r−d
u−d . For any n ≥ 0, define

Xn := (1 + r)−nVn.

Show that X0, X1, . . . is a martingale with respect to F0 ⊆ F1 ⊆ · · · . Consequently,

(1 + r)−nEVn = EV0, ∀n ≥ 0.

Exercise 6.10. Let M0,M1, . . . be a martingale with EM2
n < ∞ for all n ≥ 0. Show that

the increments M2−M1,M3−M2, . . . are orthogonal in the following sense. For any i, j ≥ 1
with i 6= j,

E(Mi+1 −Mi)(Mj+1 −Mj) = 0.

This property is sometimes called orthogonality of martingale increments.

Exercise 6.11. Let X be a real-valued random variable on a probability space (Ω,F ,P).
Assume E |X| < ∞. Let F0 ⊆ F1 ⊆ · · · F be σ-algebras. For any n ≥ 0, define Xn :=
E(X|Fn). Show that X0, X1, . . . is a martingale. (Optional challenge question: For any
martingale ((Xn)n≥0, (Fn)n≥0), is there a random variable X with E |X| < ∞ such that
Xn = E(X|Fn) for all n ≥ 0?)

The definition of stopping time for a random walk generalizes to martingales, with essen-
tially no change.
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Definition 6.12 (Stopping Time). Let X0, X1, . . . be a martingale with respect to a
filtration F0 ⊆ F1 ⊆ · · · . We say that N : Ω → {0, 1, 2, . . .} ∪ {∞} is a stopping time if,
for any n ∈ {0, 1, 2, . . .}, {N = n} ∈ Fn.

For random walks, we always assumed that X0 is constant almost surely, i.e. F0 = {∅,Ω}.

Exercise 6.13. Let M,N be stopping times for a martingale ((Xn)n≥0, (Fn)n≥0). Show
that max(M,N) and min(M,N) are stopping times. In particular, if n ≥ 0 is fixed, then
max(M,n) and min(M,n) are stopping times

Definition 6.14 (Submartingale, Supermartingale). Let X0, X1, . . . be real-valued ran-
dom variables on a measurable space (Ω,F). Let F0 ⊆ F1 ⊆ · · · be a filtration. A sub-
martingale is a pair ((Xn)n≥0, (Fn)n≥0) such that X0, X1, . . . is adapted to F0 ⊆ F1 ⊆ · · · ,
such that E |Xn| <∞ for all n ≥ 0, and almost surely,

E(Xn+1|Fn) ≥ Xn, ∀n ≥ 0.

A supermartingale is a pair ((Xn)n≥0, (Fn)n≥0) such that X0, X1, . . . is adapted to F0 ⊆
F1 ⊆ · · · , such that E |Xn| <∞ for all n ≥ 0, and almost surely,

E(Xn+1|Fn) ≤ Xn, ∀n ≥ 0.

Remark 6.15. If X0, X1, . . . is a submartingale, then −X0,−X1, . . . is a supermartingale.
So, any result about submartingales has a corresponding statement for supermartingales. For
this reason, we will specialize some statements below to one of these two cases. Moreover,
note that X0, X1, . . . is a martingale if and only if it is a supermartingale and a submartingale.
In particular, if some statement holds for submartingales, then it also holds for martingales.

Exercise 6.16. Let X0, X1, . . . and let Y0, Y1, . . . be submartingales adapted to the same
filtration F0 ⊆ F1 ⊆ · · · . Show that X0 + Y0, X1 + Y1, . . . is a submartingale adapted to the
filtration F0 ⊆ F1 ⊆ · · · . Consequently, a sum of supermartingales is a supermartingale,
and a sum of martingales is a martingale (when they are adapted to the same filtration).

Exercise 6.17.

(i) Let ((Xn)n≥0, (Fn)n≥0) be a submartingale. Show that, almost surely, E(Xn|Fm) ≥
Xm for any n > m. Consequently, n 7→ EXn is nondecreasing.

(ii) Let ((Xn)n≥0, (Fn)n≥0) be a supermartingale. Show that, almost surely, E(Xn|Fm) ≤
Xm for any n > m. Consequently, n 7→ EXn is nonincreasing.

(iii) Let ((Xn)n≥0, (Fn)n≥0) be a martingale. Let φ : R→ R be convex. Assume E |φ(Xn)| <
∞ for all n ≥ 1. Show that ((φ(Xn))n≥0, (Fn)n≥0) is a submartingale.

(iv) Let ((Xn)n≥0, (Fn)n≥0) be a submartingale. Let φ : R → R be convex and nonde-
creasing. Assume E |φ(Xn)| < ∞ for all n ≥ 1. Show that ((φ(Xn))n≥0, (Fn)n≥0) is
a submartingale.

Example 6.18. Let 1 ≤ p < ∞ and c ∈ R. Some convex functions φ : R → R applied to
the previous exercise include φ(x) := |x|p, φ(x) := max(x − c, 0), φ(x) := max(x, c), and
φ(x) := ex, ∀ x ∈ R. For example, if ((Xn)n≥0, (Fn)n≥0) is a submartingale, then ((max(Xn−
c, 0))n≥0, (Fn)n≥0) is a submartingale. For another example, if ((Xn)n≥0, (Fn)n≥0) is a super-
martingale, then ((min(Xn, c))n≥0, (Fn)n≥0) is a supermartingale, since ((−Xn)n≥0, (Fn)n≥0)
is a submartingale and −min(−x, c) = max(x,−c) is convex and nonincreasing.
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Exercise 6.19 (Azuma’s Inequality). In this exercise, we prove a generalization of the
Hoeffding inequality to martingales. Let c1, c2, . . . > 0. Let ((Xn)n≥0, (Fn)n≥0) be a martin-
gale. Assume that |Xn −Xn−1| ≤ cn for all n ≥ 1. Then for any t > 0,

P(|Xn −X0| > t) ≤ 2e
− t2

2
∑n
i=1

c2
i .

Prove this inequality using the following steps.

• Let α > 0. Show that Eeα(Xn−X0) = E[eα(Xn−1−X0)E(eα(Xn−Xn−1)|Fn−1)].
• For any y ∈ [−1, 1], show that eαcny ≤ 1+y

2
eαcn + 1−y

2
e−αcn .

• Take the conditional expectation of this inequality when y = (Xn −Xn−1)/cn.
• Now argue as in Hoeffding’s inequality.

Using Azuma’s inequality, deduce McDiarmid’s Inequality. Let X1, . . . , Xn be indepen-
dent real-valued random variables. Let c1, c2, . . . > 0. Let f : Rn → R be a measurable
function such that, for any 1 ≤ m ≤ n,

sup
x1,...,xm−1,xm,x′m,xm+1,...,xn∈R

|f(x1, . . . , xn)− f(x1, . . . , xm−1, x
′
m, xm+1, . . . , xn)| ≤ cm.

Then, for any t > 0,

P(|f(X1, . . . , Xn)− Ef(X1, . . . , Xn)| > t) ≤ 2e
− t2

2
∑n
i=1

c2
i .

(Note that a linear function f recovers Hoeffding’s inequality, Theorem 2.35.)

6.1. Gambling Strategies. Suppose you can bet any amount of money you want on a fair
coin flip. And the coin can be flipped any number of times, i.e. you can play this game any
number of times. If you bet $c with c > 0 and the coin lands heads, then you win $c, but
if the coin lands tails, then you lose $c. A näıve strategy to make money off of this game is
the following. Just keep doubling your bet until you win. For example, start by betting $1.
If you lose, bet $2. If you lose that, bet $4. Then let’s say you finally won, then in total you
won $4 and you lost $3, so you gained $1 in total. We know that the probability of losing
k > 0 rounds of this game in a row is 2−k, so it seems like this strategy must win money.
However, there are some caveats to this analysis.

First, if your starting bet is $1, and if you lose twenty rounds of the game in a row, you
will be betting over one million dollars. More generally, if you lose k times in a row, you will
have to bet $2k. So, when k ≥ 20, most people would not be able to continue playing the
game, i.e. they would lose all of their money.

Second, your expected gain from every round of the game is zero. At each round of the
game, no matter what your bet is, your expected earnings are zero. So, it is impossible to
win money in this game, in expectation. And indeed, the Law of Large Numbers assures
us that when the game is repeated many times, we will earn zero dollars on average, with
probability 1.

It turns out that, no matter what betting strategy is chosen in this game, there is still
no way to make any money. We will prove this using martingale methods. In fact, these
gambling strategies initiated the study of martingales in France in the 1700s.

Let Y1, Y2, . . . each be independent random variables such that P(Yn = 1) = P(Yn =
−1) = 1/2 for every n ≥ 0. For any n ≥ 1, let Xn := Y1 + · · ·+ Yn. Let X0 = 0. If someone
bets one dollar at every round of the game, then their profit is Xn after the nth round of
the game. Since EY1 = 0, Example 6.7 implies that X0, X1, . . . is a martingale. A gambling
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strategy for the nth round of the game can use any information from the previous rounds
of the game. Let Hn be the amount of money we bet in the nth round of the game. We
formalize our assumption about H1, H2, . . . using the filtration.

Definition 6.20 (Predictable). Let F0 ⊆ F1 ⊆ · · · be a filtration on a measurable space
(Ω,F). We say that a sequence of real-valued random variables H1, H2, . . . is predictable
(or previsible) if, for any n ≥ 1, Hn is Fn−1-measurable.

When the mth round of the game occurs, we earn Hm(Xm −Xm−1) dollars. In summary,
our wealth Wn at time n ≥ 1 is then

Wn :=
n∑

m=1

Hm(Xm −Xm−1), W0 := 0.

We will now prove that we cannot make money from this game.

Theorem 6.21. Let H1, H2, . . . be predictable for a filtration F0 ⊆ F1 ⊆ · · · .
• Let ((Xn)n≥0, (Fn)n≥0) be a martingale. If E |Wn| <∞ for all n ≥ 1, then ((Wn)n≥0,

(Fn)n≥0) is a martingale.
• Let ((Xn)n≥0, (Fn)n≥0) be a submartingale (or supermartingale). If E |Wn| <∞ and
Hn ≥ 0 for all n ≥ 1, then ((Wn)n≥0, (Fn)n≥0) is a submartingale (or supermartin-
gale).

In order to show that E |Wn| < ∞ for all n ≥ 1, it suffices in either case to have real
constants c1, c2, . . . such that |Hn| ≤ cn for all n ≥ 1, or ∃ p, q > 1 with 1

p
+ 1

q
= 1 such that

‖Hn‖q <∞ for all n ≥ 1 and ‖Xn‖p <∞ for all n ≥ 0.

Remark 6.22. The quantity
∑n

m=1 Hm(Xm−Xm−1) is a finite version of a stochastic inte-
gral. And in fact, there is a corresponding statement to be made about stochastic integrals,
namely that you cannot make money off of (continuous-time) supermartingales.

Remark 6.23. Allowing Hn < 0 would correspond to betting negative amounts on a super-
martingale, so that the gambler could assume the position of the “house.” So, Hn ≥ 0 is a
sensible constraint in the second item of Theorem 6.21.

Proof of Theorem 6.21. We first prove the last claim. From the triangle inequality and
Hölder’s inequality, Theorem 1.48,

E |Wn| ≤
n∑

m=1

‖Hn‖q (‖Xm‖p + ‖Xm−1‖p) <∞.

In the case q =∞, p = 1, note that X0, X1, . . . is a (super/sub)martingale, so that E |Xm| <
∞ for all m ≥ 0. Also, since X0, X1, . . . is adapted and H1, H2, . . . is predictable, for any
1 ≤ m ≤ k ≤ n, HmXk is Fk-measurable, hence Fn-measurable since k ≤ n, so that Wn is
Fn-measurable for any n ≥ 0.

Assume that X0, X1, . . . is a (sub)martingale. Observe that, for any n ≥ 0

Wn+1 −Wn = Hn+1(Xn+1 −Xn)

Since H1, H2, . . . is predictable, we have by Proposition 5.16, for any n ≥ 0,

E(Wn+1 −Wn|Fn) = E(Hn+1(Xn+1 −Xn)|Fn) = Hn+1E(Xn+1 −Xn|Fn) ≥ 0.

70



The last inequality follows since either X0, X1, . . . is a martingale, or it is a submartingale
and Hn+1 ≥ 0. Note also that E |Hn+1(Xn+1 −Xn)| = E |Wn+1 −Wn| <∞ by assumption,
so the assumption of Proposition 5.16 is justified. Finally, if X0, X1, . . . is a supermartingale,
we apply the above argument to the submartingale −X0,−X1, . . .. �

From Remark 6.6, a martingale satisfies EXn = EX0 for all n ≥ 0. In some cases, we can
replace n with a stopping time N in this equality. However, this cannot always hold.

Example 6.24. Let X0, X1, . . . be the simple random walk on Z. Note that EX0 = 0. As
shown in Example 6.7, X0, X1, . . . is a martingale. Let N := min{n ≥ 1: Xn = 1} be the
return time to 1. Then N is a stopping time and XN = 1, so EXN = 1 6= 0 = EX0.

Remark 6.25. Let a, b ∈ R. We use the notation a ∧ b := min(a, b).

Theorem 6.26 (Optional Stopping Theorem, Version 1). Let ((Xn)n≥0, (Fn)n≥0) be
a submartingale (or supermartingale, or martingale) and let T ≤ N be a stopping times for
(Fn)n≥0. Then X0∧N − X0∧T , X1∧N − X1∧T , . . . is a submartingale (or supermartingale, or
martingale) adapted to (Fn)n≥0.

Consequently, X0∧N , X1∧N , . . . is a submartingale (or supermartingale, or martingale)
adapted to (Fn)n≥0.

So, if X0, X1, . . . is a martingale, then EXn∧N = EX0 for all n ≥ 0.

Proof. We may assume that X0, X1, . . . is a submartingale, since if X0, X1, . . . is a super-
martingale we apply the submartingale case to −X0,−X1, . . ., and the martingale case fol-
lows by combining the submartingale and supermartingale cases. We first consider the case
T := 0. For any n ≥ 1, define Hn := 1N≥n = 1 − 1N≤n−1 = 1 −

∑n−1
m=0 1N=m. Since

N is a stopping time, if m ≤ n − 1, {N = m} ∈ Fm ⊆ Fn−1, so that Hn is Fn−1-
measurable. That is, H1, H2, . . . is predictable. Let W0 := 0 and for any n ≥ 1, define
Wn :=

∑n
m=1Hm(Xm − Xm−1). By Theorem 6.21, W0,W1, . . . is a submartingale. By the

definition of Hm,

Wn =
n∑

m=1

(1{N≥m})(Xm −Xm−1) =
n∑

m=1

(Xm∧N −X(m−1)∧N) = Xn∧N −X0. (∗)

In the case of general T , we let Hn := 1N≥n>T = 1N≥n−1T≥n for any n ≥ 1. Then H1, H2, . . .
is predictable, and for any n ≥ 1, Wn :=

∑n
m=1 Hm(Xm−Xm−1) = Xn∧N −Xn∧T (using (∗))

is a submartingale by Theorem 6.21.
Finally, in the case T = 0, since the constant random variableX0, X0, . . . is a submartingale

adapted to (Fn)n≥0, we add it to the submartingale from (∗) to conclude that X0∧N , X1∧N , . . .
is a submartingale by Exercise 6.16. �

6.2. Maximal Inequalities and Up-crossing. As discussed in Section 2.6 and Theorem
2.43, in order to prove pointwise convergence, one often needs a weak-type maximal inequal-
ity. Recall e.g. that we used Kolmogorov’s Maximal Inequality, Theorem 2.24, in the proof
of the Strong Law of Large Numbers. In the setting of martingales, we require a weak type
(1, 1) maximal inequality, known as Doob’s inequality.

Theorem 6.27 (Doob’s Maximal Inequality). Let X0, X1, . . . be a submartingale. Let
t > 0. Then for any integer n ≥ 0,

tP( max
0≤m≤n

Xm > t) ≤ EXn1{max0≤m≤nXm>t} ≤ E max(0, Xn).

71



Proof. Let A := {max0≤m≤nXm > t} and let N := min{m ≥ 0: Xm > t}. Then N is a
stopping time since {N = s} = {X0 ≤ t, . . . , Xs−1 ≤ t,Xs > t} for any s ≥ 0, so N ∧ n is a
stopping time by Exercise 6.13. Since XN∧n1A = XN1A ≥ t1A and XN∧n1Ac = Xn1Ac ,

EXN∧n = EXN∧n(1A + 1Ac) = EXN1A + EXn1Ac ≥ tP(A) + EXn1Ac .

By Theorem 6.26 for the stopping time N ∧ n and the constant stopping time n, X0∧n −
X0∧N , X1∧n −X1∧N , . . . is a submartingale, so that EXn − EXn∧N ≥ E(X0∧n −X0∧N) = 0.
In summary, EXn ≥ tP(A) + EXn1Ac , so that EXn1A ≥ tP(A), as desired. The second
inequality follows since X1B ≤ max(X, 0) for any real random variable X and for any
measurable set B. �

Remark 6.28. Doob’s maximal inequality implies Kolmogorov’s Maximal Inequality, The-
orem 2.24. Let Y1, Y2, . . . be independent mean zero real random variables with EY 2

n < ∞
for all n ≥ 1. Let X0 := 0 and let Xn := (Y1 + · · ·+ Yn)2 for any n ≥ 1. Then X0, X1, . . . is
a submartingale by Exercise 6.17(iii). So, Doob’s inequality says, for any t > 0,

P( max
1≤m≤n

|Y1 + · · ·+ Ym| > t) = P( max
1≤m≤n

Xm > t2) ≤ E max(Xn, 0)

t2

=
EXn

t2
=

Var(Y1) + · · ·+ Var(Yn)

t2
.

The weak-type (1, 1) inequality of Theorem 6.27 can be interpolated in a standard argu-
ment to strong Lp bounds when p > 1.

Corollary 6.29 (Lp Maximal Inequality). Let X0, X1, . . . be a submartingale. For any
x ∈ R, denote x+ := max(x, 0). Let p > 1. Then for any integer n ≥ 0,

‖( max
0≤m≤n

Xm)+‖p ≤
p

p− 1
‖(Xn)+‖p .

Consequently, if X0, X1, . . . is a martingale, then for any n ≥ 0, p > 1,

‖ max
0≤m≤n

|Xm| ‖p ≤
p

p− 1
‖Xn‖p .

Proof. Denote X∗n := max0≤m≤nXm. Using Theorem 1.86, Theorem 6.27, Fubini’s Theorem,
Theorem 1.66, and Hölder’s inequality, Theorem 1.48 with 1/p + 1/q = 1, so that q =
p/(p− 1),

E |(X∗n)+|p =

∫ ∞
0

ptp−1P(X∗n > t)dt ≤
∫ ∞

0

ptp−2EXn1X∗n>tdt = E
(
Xn

∫ ∞
0

ptp−21X∗n>tdt
)

= E
(
Xn

∫ (X∗n)+

0

ptp−2dt
)

=
p

p− 1
E(Xn(X∗n)p−1

+ ) ≤ p

p− 1
E(|Xn| (X∗n)p−1

+ )

≤ p

p− 1
(E |Xn|p)1/p(E(X∗n)p+)(p−1)/p

In the case that X∗n is bounded, we divide both sides by the right-most term to conclude.
The general case then follows by applying the bounded case to X∗n ∧ s, letting s→∞, and
using Monotone Convergence, Theorem 1.54. The final statement follows from the first since
|X0| , |X1| , . . . is a submartingale from Exercise 6.17(iii). �
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Exercise 6.30. In the Lp maximal inequality, the constant p
p−1

goes to infinity as p→ 1+.

So, one might guess that the Lp maximal inequality does not hold when p = 1. (If so, this
justifies the need to prove a weaker statement when p = 1, i.e. Doob’s inequality.) Using the
simple random walk on Z, show that the Lp maximal inequality does not hold when p = 1.
(Hint: use the probabilities from Example 4.22.)

Exercise 6.31. Show that the second part of the Lp maximal inequality cannot hold when
X0, X1, . . . is a submartingale. That is, for any n ≥ 1, find a submartingale X0, X1, . . . such
that, for any p > 1, ‖max0≤m≤n |Xm|‖p > 0 but such that ‖Xn‖p = 0. (Hint: just consider a

non-random sequence of numbers.)

In order to prove the almost sure convergence of martingales, we will bound the number
of up-crossings of the martingale.

Definition 6.32 (Up-crossing). Let X1, . . . , Xn : Ω → R be a sequence of random vari-
ables. Let a, b ∈ R with a < b. Define the number of up-crossings of the sequence X1, . . . , Xn

across the interval [a, b] to be Un[a, b] : Ω→ Z so that, for any ω ∈ Ω, Un[a, b](ω) is the largest
integer m > 0 such that there exist integers 0 ≤ s1 < t1 < · · · < sm < tm ≤ n such that
Xsi(ω) ≤ a and Xti(ω) ≥ b for all 1 ≤ i ≤ m.

If X1, X2, . . . is an infinite sequence of real-valued random variables, the sequence U1[a, b],
U2[a, b], . . . monotonically increases to a random variable denoted U [a, b]. We say U [a, b] is
the total number of up-crossings of the sequence X1, X2, . . . across [a, b].

Exercise 6.33. Let x1, x2, . . . be a sequence of real numbers. Show that total number of
up-crossings of the sequence across the interval [a, b] is finite for any a, b ∈ R with a < b
if and only if the sequence x1, x2, . . . converges to some x ∈ [−∞,∞]. (Here the random
variables in the definition of up-crossing are chosen to be constant Xm := xm for all m ≥ 0.)

The observation of Doob is that bounding up-crossings in expectation can also prove
almost sure convergence of certain (super)martingales.

Lemma 6.34 (Doob’s Up-crossing Inequality). Let X0, X1, . . . be a supermartingale.
Then for any a, b ∈ R with a < b,

(b− a)EUn[a, b] ≤ E max(a−Xn, 0)− E max(a−X0, 0).

Proof. Let N0 := −1 and for any integer k ≥ 1, define

N2k−1 := min{m > N2k−2 : Xm ≤ a}, N2k := min{m > N2k−1 : Xm ≥ b}.
Then N0, N1, . . . are stopping times and for any k ≥ 0,m ≥ 1, {N2k−1 < m ≤ N2k} =
{N2k−1 ≤ m− 1} ∩ {N2k ≤ m− 1}c ∈ Fm−1, so if we define

Hm := 1N2k−1<m≤N2k for some k≥0,

then H1, H2, . . . is predictable. Note that if n ≥ 1,

Wn :=
n∑

m=1

Hm(Xm−Xm−1) =
∑

m : N1<m≤N2
N3<m≤N4,···

(Xm−Xm−1) = XN2−XN1 +XN4−XN3 + · · · .

If k := Un[a, b], the last term in the sum is either XN2k
−XN2k−1

or Xn−XN2k+1
, the latter case

corresponding to N2k+1 < n < N2k+2, in which case Xn−XN2k+1
≥ Xn−a ≥ −max(a−Xn, 0)
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since XN2k+1
≤ a. Meanwhile, if X0 ≤ a, then N1 = 0, so XN2 − XN1 ≥ (b − X0) =

(b− a) + (a−X0). In any case, the first term is at least (b− a) + max(a−X0, 0). So,

Wn ≥ (b− a)Un[a, b] + max(a−X0, 0)−max(a−Xn, 0).

From Theorem 6.21, if W0 := 0, then W0,W1, . . . is a supermartingale, so that EWn ≤ 0. �

In the above proof, if we think of H1, H2, . . . as a gambling strategy, it corresponds to
buying low (when the price is below a) and selling high (when the price is above b).

Exercise 6.35. Below, we will use Lemma 6.34 to show that the U [a, b] is finite almost
surely for a nonnegative supermartingale. In this exercise, we derive Dubins’ up-crossing
inequality, an improvement to Doob’s result that gives exponential decay of P(U [a, b] > t).

Let ((X1
n)n≥0, (Fn)n≥0) and ((X2

n)n≥0, (Fn)n≥0) be supermartingales and let N be a stop-
ping time such that X1

N ≥ X2
N .

(i) (Switching Principle) For any n ≥ 0, define Yn := X1
n1N>n + X2

n1N≤n. Show
that ((Yn)n≥0, (Fn)n≥0) is a supermartingale. Show the same conclusion for Zn :=
X1
n1N≥n +X2

n1N<n.
That is, if we use N to “switch” from one supermartingale to another, the random

variables do not increase at the time of “switching”, then we still have a supermartin-
gale.

(ii) Let X0, X1, . . . be a supermartingale with Xn ≥ 0 for all n ≥ 0. Let a, b ∈ R with
b > a > 0. Let N0 := −1 and for any integer k ≥ 1, define

N2k−1 := min{m > N2k−2 : Xm ≤ a}, N2k := min{m > N2k−1 : Xm ≥ b}.

Define V0, V1, . . . such that Vn := 1 for all 0 ≤ n < N1, and for any k ≥ 1,

Vn :=

{
(b/a)k−1(Xn/a) , if N2k−1 ≤ n < N2k

(b/a)k , if N2k ≤ n < N2k+1.

Using the switching principle, show by induction on k that for any integer k ≥ 1,
V0∧Nk , V1∧Nk , . . . is a supermartingale.

(iii) (Dubins’ Inequality) Show that for any b > a > 0 and for any integer t ≥ 1,

P(U [a, b] ≥ t) ≤ (a/b)tE min(X0/a, 1).

6.3. Martingale Convergence. Let (Ω,F ,P) be a probability space. Let 1 ≤ p < ∞.
Recall that Lp is the set of (almost sure equivalence classes of) real-valued random variables
X with finite Lp norm: ‖X‖p := (E |X|p)1/p < ∞. Recall that a sequence of real-valued

random variables X1, X2, . . . converges in Lp to a real-valued random variable X if ‖X‖p <∞
and limn→∞ ‖Xn −X‖p = 0. Recall also that in Exercise 2.34 we showed that the Strong Law
of Large Numbers holds for convergence in L1. Below, we will investigate the L1 convergence
of martingales X0, X1, . . . as n → ∞. Since some random walks are martingales, and some
martingales are not random walks, the convergence of martingales is related to but distinct
from the Laws of Large Numbers.

Since martingales are defined to have finite L1 norm, it is natural to focus on the L1

convergence of martingales. That is, we will look for conditions on a martingale X0, X1, . . .
such that it converges in L1 to some real-valued random variable X with ‖X‖1 < ∞. By
Jensen’s inequality, if ∃ 1 < p <∞ such that X0, X1, . . . converges in Lp to some real-valued
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random variable X with ‖X‖p <∞, then X0, X1, . . . converges in Lq to X for all 1 ≤ q < p.
So, if we want to show convergence in L1, it suffices to show convergence in Lp for any p > 1.

Some martingales cannot converge in L1, or in any Lp space. Consider for example the
simple random walk S0, S1, . . . on Z. By Khintchine’s inequality, Exercise 2.39, for any
1 ≤ p < ∞ there exists c(p) > 0 such that ‖Sn‖p ≥ c(p) ·

√
n for all n ≥ 1. Therefore,

S0, S1, . . . cannot converge in Lp for any 1 ≤ p <∞.
On the other hand, some martingales will certainly converge in every Lp space where

1 ≤ p <∞.

Exercise 6.36. Let c1, c2, . . . be positive constants such that
∑∞

n=1 cn < ∞. Let Y1, Y2, . . .
be independent random variables such that ‖Yn‖∞ ≤ cn and EYn = 0 for all n ≥ 1, and
let Xn := Y1 + · · · + Yn for all n ≥ 1 with X0 := 0. Show that X0, X1, . . . is a martingale
that converges in every Lp space with 1 ≤ p < ∞. That is, show there exists a real-valued
random variable X such that limn→∞ ‖Xn −X‖p = 0.

We begin with an almost sure convergence result that makes an additional moment as-
sumption on the supermartingale (or submartingale).

Theorem 6.37 (Doob’s Convergence Theorem). Let X0, X1, . . . be a supermartingale
such that supn≥0 E max(−Xn, 0) < ∞. Then there exists a random variable X such that
X0, X1, . . . converges almost surely to X and E |X| ≤ lim infn→∞E |Xn| <∞.

Proof. Let a, b ∈ R with a < b. Then U1[a, b], U2[a, b], . . . monotonically increases to a
random variable denoted U [a, b]. By Monotone Convergence, Theorem 1.54, EU [a, b] =
supn≥0 EUn[a, b]. Using Lemma 6.34 and the inequality max(a − x, 0) ≤ |a| + max(−x, 0)
valid for any x ∈ R,

EUn[a, b] ≤ 1

b− a
E max(a−Xn, 0) ≤ 1

b− a
(|a|+ sup

m≥0
E max(−Xm, 0)).

So, by assumption, supn≥0 EUn[a, b] < ∞ so that EU [a, b] < ∞. In particular, U [a, b] is
finite almost surely. The event that X0, X1, . . . converges almost surely in [−∞,∞] is the
complement of ⋃

a,b∈Q : a<b

{lim inf
n→∞

Xn < a < b < lim sup
n→∞

Xn}.

We therefore show this event has probability zero. Since the union is countable, it suffices
to show that each such event has probability zero. Let a, b ∈ Q with a < b. Then U [a, b] is
finite almost surely, so indeed P(lim infn→∞Xn < a < b < lim supn→∞Xn) = 0 by Exercise
6.33. So, X0, X1, . . . converges almost surely to some X.

Using the equality |x| = x + 2 max(−x, 0) valid for all x ∈ R and the supermartingale
property, E |Xn| = EXn + 2E max(−Xn, 0) ≤ EX0 + 2E max(−Xn, 0). Since |X0| , |X1| , . . .
converges almost surely to |X|, we have by Fatou’s Lemma, Theorem 1.56,

E |X| ≤ lim inf
n→∞

E |Xn| ≤ E |X0|+ 2 sup
m≥0

E max(−Xm, 0) <∞.

�

If we make an additional bounded moment assumption on the martingale, then almost
sure and L1 convergence of the martingale follows from Corollary 6.29 and Theorem 6.37.
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Proposition 6.38 (Lp Convergence). Let X0, X1, . . . be a martingale. Let p > 1. Assume
supn≥0 E |Xn|p < ∞. Then X0, X1, . . . converges almost surely and in Lp. In particular,
X0, X1, . . . converges in L1.

Proof. Let n ≥ 0. Then (E max(Xn, 0))p ≤ (E |Xn|)p ≤ E |Xn|p by Jensen’s Inequality, so
supn≥0 E max(Xn, 0) <∞ by our assumption. Then Doob’s Convergence Theorem, Theorem
6.37 implies that X0, X1, . . . converges almost surely to a random variable X with E |X| <∞.

From the Lp Maximal Inequality, Corollary 6.29, and Monotone Convergence, Theorem
1.54, ‖ supn≥0 |Xn| ‖p < ∞. Since |X| ≤ supn≥0 |Xn|, we have ‖X‖p < ∞. From the tri-

angle inequality, for any n ≥ 0, |Xn −X|p ≤ (2 supm≥0Xm)p. So, Dominated Convergence,
Theorem 1.57, implies that limn→∞ ‖Xn −X‖p = 0. �

As we will show further below, the following condition is necessary and sufficient for the
convergence of a martingale in L1.

Definition 6.39 (Uniform Integrability). Let H be a collection of random variables on
a probability space (Ω,F ,P). We say that H is uniformly integrable if

lim
m→∞

sup
X∈H

E |X| 1|X|>m = 0.

That is, ∀ ε > 0, ∃ n = n(ε) > 0 such that, ∀ m ≥ n, supX∈H E |X| 1|X|>m < ε.

In Exercise 6.43 below, it is shown that the assumption of Proposition 6.38 implies that
the martingale {X0, X1, . . .} is uniformly integrable. So, the conclusion of L1 convergence in
Proposition 6.38 will be subsumed by the main theorem of the section, Theorem 6.47 below.

The following exercise shows that uniform integrability is a relaxed assumption for the
Dominated Convergence Theorem.

Exercise 6.40. Let H be a collection of random variables on a probability space (Ω,F ,P).
Let Y : Ω → [0,∞) with EY < ∞. Assume that, for all X ∈ H, |X| ≤ Y . Show that H is
uniformly integrable. In particular, if H is any finite set of random variables in L1, then H
is uniformly integrable.

Exercise 6.41. Let H be a collection of random variables on a probability space (Ω,F ,P).
Show that H is uniformly integrable if and only if the following two conditions hold.

(a) supX∈H E |X| <∞.
(b) For any ε > 0, there exists δ > 0 such that

sup{E |X| 1A : A ∈ F , P(A) < δ, X ∈ H} < ε.

(Hint: when X ∈ H is fixed, which A with P(A) < δ maximizes E |X| 1A? Also, to show
the first item, let ε = 1/2 in the definition of uniform integrability.)

Exercise 6.42. Let H be a collection of random variables on a probability space (Ω,F ,P).
The analytic definition of uniform integrability is just the second item of the above exercise.
That is, H is uniformly integrable in the analytic sense if and only if condition (b) holds in
Exercise 6.41. In the case that P is non-atomic, show that if condition (b) holds in Exercise
6.41, then condition (a) holds. In summary, if P is non-atomic, then the probabilistic and
analytic definitions of uniform integrability coincide. (We say that P is non-atomic if for
any A ∈ F with P(A) > 0 there exists B ∈ F with B ⊆ A such that P(A) > P(B) > 0.
An atom for P is a set A ∈ F such that, for any B ∈ F with B ⊆ A, if P(B) < P(A), then
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P(B) = 0. In a non-atomic probability space, the following holds and you do not have to
prove it: for any A ∈ F with P(A) > 0, and for any t ∈ R such that 0 < t < P(A), there
exists B ∈ F with B ⊆ A and P(B) = t.)

Exercise 6.43. Show that condition (a) of Exercise 6.41 is not sufficient to prove uniform
integrability. In fact, the unit ball {X ∈ L1 : ‖X‖1 ≤ 1} of L1 is not uniformly integrable, in
general. More specifically, find a set of random variables X1, X2, . . . on a probability space
(Ω,F ,P) with ‖Xn‖1 ≤ 1 for all n ≥ 1, but such that the collection H := {X1, X2, . . .} is not
uniformly integrable. (Hint: let Ω := {1, 2, 3, . . .} with the probability measure P defined
by P({n}) := 2−n for all n ≥ 1, and choose the Xn to have disjoint supports.)

Now, let p > 1. Show that the unit ball {X ∈ Lp : ‖X‖p ≤ 1} of Lp is uniformly integrable.

Theorem 6.44 (Vitali Convergence Theorem). Let X0, X1, . . . be real-valued random
variables that converge in probability to a random variable X. Then the following are equiv-
alent.

(i) The collection of random variables {X0, X1, . . .} is uniformly integrable.
(ii) X0, X1, . . . ∈ L1 converges in L1 to X ∈ L1.

(iii) X0, X1, . . . ∈ L1 and limn→∞ ‖Xn‖1 = ‖X‖1 <∞.

Proof. We first show that (i) implies (ii). Fix m > 0 and define φm : R→ R by

φm(x) :=


−m , if x < −m
x , if −m ≤ x ≤ m

m , if x > m.

Applying the triangle inequality and |φm(Y )− Y | = max(|Y | − m, 0) ≤ |Y | 1|Y |>m for the
random variables Y := Xn and Y := X,

E |Xn −X| ≤ E |Xn − φm(Xn)|+ E |φm(Xn)− φm(X)|+ E |φm(X)−X|
≤ E |Xn| 1|Xn|>m + E |φm(Xn)− φm(X)|+ E |X| 1|X|>m.

Let ε > 0. We can choosem > 0 such that supn≥0 E |Xn| 1|Xn|>m < ε/2 by assumption (i). By
Exercise 6.41(a), supn≥0 E |Xn| < ∞, so Fatou’s Lemma (Exercise 2.10(v)) implies E |X| <
∞, so the third term can be made less than ε/2 by choosing m larger if necessary, by Domi-
nated Convergence, Theorem 1.57. Since φm is continuous, φm(X0), φm(X1), . . . converges in
probability to φm(X) by Exercise 2.10(iv). So, ∀ m ≥ 1, limn→∞E |φm(Xn)− φm(X)| = 0
by Exercise 2.10(vi). In summary, ∀ ε > 0, ∃ m > 0 such that lim supn→∞E |Xn −X| < ε,
implying that limn→∞E |Xn −X| = 0.

We now show (ii) implies (iii). This follows by the L1 triangle inequality (or Jensen’s
inequality) and the reverse triangle inequality for scalars (||x| − |y|| ≤ |x− y| ∀ x, y ∈ R):

|E(|Xn| − |X|)| ≤ E ||Xn| − |X|| ≤ E |Xn −X| .
Letting n→∞ concludes the implication.

We now show (iii) implies (i). Fix m > 0 and define ψm : [0,∞)→ R so that ψm(x) := x
for any x ∈ [0,m − 1], ψm(x) := 0 for any x ≥ m, and ψm(x) = (m − 1)(m − x)
when x ∈ [m − 1,m]. Let ε > 0. Since E |X| < ∞, observe that limm→∞(E |X| −
Eψm(|X|)) = 0 by the Dominated Convergence Theorem, Exercise 2.10(vi). So, ∃ m > 0
such that E |X| − Eψm(|X|) < ε/3. Since ψm is continuous, ψm(X0), ψm(X1), . . . con-
verges in probability to ψm(X) by Exercise 2.10(iv). And since ψm is a bounded function,
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limn→∞Eψm(|Xn|) = Eψm(|X|) by Exercise 2.10(vi). So, ∃ r > 0 such that for all n > r,
|Eψm(|Xn|)− Eψm(|X|)| < ε/3 and |E |Xn| − E |X|| < ε/3 by (iii). So, by definition of ψm,

E |Xn| 1|Xn|>m ≤ E |Xn| − Eψm(|Xn|) ≤ E |X| − Eψm(|X|) + 2ε/3 ≤ ε.

This holds for fixed m > 0 and for all n > r, where r can depend on m. Since E |Xn| < ∞
for all 0 ≤ n ≤ r, there exists m′ > 0 such that E |Xn| 1|Xn|>m′ < ε for all 0 ≤ n ≤ r. So
E |Xn| 1|Xn|>max(m,m′) < ε for all n ≥ 0, proving (i). �

Theorem 6.45 (Submartingale Convergence). Let X0, X1, . . . be a submartingale. Then
the following are equivalent.

(i) The collection of random variables {X0, X1, . . .} is uniformly integrable.
(ii) X0, X1, . . . converges almost surely and in L1.

(iii) X0, X1, . . . converges in L1.

Proof. We first show (i) implies (ii). If n ≥ 0, E max(Xn, 0) ≤ E |Xn| ≤ supm≥0 E |Xm| <
∞ by Exercise 6.41, so X0, X1, . . . converges almost surely to some X with E |X| < ∞
by Doob’s Convergence Theorem, Theorem 6.37. Exercise 2.5 and Vitali’s Convergence
Theorem, Theorem 6.44 then imply X0, X1, . . . converges in L1 to X. The implication (ii)
implies (iii) is clear. We now show (iii) implies (i). From Exercise 2.6, X0, X1, . . . converges
in probability to X, so Vitali’s Convergence Theorem, Theorem 6.44, implies (i). �

Lemma 6.46. Let ((Xn)n≥0, (Fn)n≥0) be a martingale. Let X be a real-valued random
variable with E |X| < ∞. Assume that X0, X1, . . . converges to X in L1. Then Xn =
E(X|Fn) for all n ≥ 0.

Proof. Let m > n. Since ((Xn)n≥0, (Fn)n≥0) is a martingale, E(Xm|Fn) = Xn, so if A ∈
Fn, EXm1A = EXn1A. From the triangle inequality, |EXm1A − EX1A| ≤ E |Xm −X|, so
limm→∞EXm1A = EX1A. That is, EX1A = EXn1A for any A ∈ Fn. That is, Xn =
E(X|Fn) for all n ≥ 0, by the definition of conditional expectation, Definition 5.3. �

Below we can finally answer the question posed in Exercise 6.11.

Theorem 6.47 (Martingale Convergence). Let X0, X1, . . . be a martingale. Then the
following are equivalent.

(i) The collection of random variables {X0, X1, . . .} is uniformly integrable.
(ii) X0, X1, . . . converges almost surely and in L1.

(iii) X0, X1, . . . converges in L1.
(iv) ∃ a real-valued random variable X with Xn = E(X|Fn) for any n ≥ 0 and E |X| <∞.

Proof. Since martingales are submartingales, Theorem 6.45 shows that (i),(ii) and (iii) are
equivalent. By Lemma 6.46, (iii) implies (iv). It remains to show that (iv) implies (i). Let
n ≥ 0. From Jensen’s inequality, Exercise 5.15 applied twice, and the definition of conditional
expectation (using {E(|X| |Fn) > m} ∈ Fn), if m > 0,

E |E(X|Fn)| 1|E(X|Fn)|>m ≤ EE(|X| |Fn)1|E(X|Fn)|>m

≤ EE(|X| |Fn)1E(|X||Fn)>m = E |X| 1E(|X||Fn)>m. (∗)
From Markov’s inequality and Proposition 5.12,

P(E(|X| |Fn) > m) ≤ 1

m
EE(|X| |Fn) =

1

m
E |X| .
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Therefore, limm→∞ supn≥0 E |X| 1E(|X||Fn)>m = 0 by the Dominated Convergence Theorem,
Theorem 1.57. So, uniformly integrability of {X0, X1, . . .} follows from (∗). �

Exercise 6.48 (Galton-Watson Process). Let (ξi,n)i,n≥1 be i.i.d. nonnegative integer-
valued random variables. Let Z0 := 1 and for any n ≥ 0 define

Zn+1 :=

{
ξ1,n+1 + · · ·+ ξZn,n+1 , if Zn > 0

0 , if Zn = 0.

Then Z0, Z1, . . . is an example of a branching process, known as the Galton-Watson process.
The intuition is that Zn is the number of individuals in the nth generation of a family tree,
and at each time step, each person has a certain number of offspring. Galton and Watson
originally used this process to model the occurrence of last names in human family trees, to
see why some names become common while others become extinct.
∀ n ≥ 0, let Fn := σ(ξi,m : i ≥ 1, 1 ≤ m ≤ n), and let µ := Eξ1,1. Assume µ ∈ (0,∞).

• Show that Z0, Z1/µ, Z2/µ
2, . . . is a martingale with respect to F0,F1, . . .. (Hint: write

E(Zn+1|Fn) =
∑∞

k=1 E(Zn+11Zn=k|Fn).)
• If µ < 1, show that P(Zn > 0 for infinitely many n ≥ 0) = 0. Therefore, Zn/µ

n

converges to 0 almost surely as n→∞. Also, show that the expected total population
E
∑∞

n=0 Zn is finite. That is, extinction occurs as n → ∞ if the average number of
offspring is less than 1 for each individual.
• If µ = 1, and P(ξ1,1 = 1) < 1, show that Z0, Z1, . . . converges almost surely to 0.

Lemma 6.49. Let ((Xn)n≥0, (Fn)n≥0) be a submartingale and let T be a stopping time.
Assume supn≥0 E max(Xn, 0) < ∞. Then E |XT | < ∞. (It is shown in the proof that
X∞ := limn→∞Xn exists almost surely.)

Proof. By Exercise 6.17(iv), max(X0, 0),max(X1, 0), . . . is a submartingale. So, by Theorem
6.26 with stopping times T ≤ N := ∞, E max(Xn∧T , 0) ≤ E max(Xn, 0) for all n ≥ 0. So,
by our assumption, supn≥0 E max(Xn∧T , 0) < ∞. Applying Doob’s Convergence Theorem,
Theorem 6.37, to the submartingale X0∧T , X1∧T , . . . (by Theorem 6.26), we have almost
surely limn→∞Xn∧T = XT and E |XT | <∞ �

Theorem 6.50 (Optional Stopping Theorem, Version 2). Let ((Xn)n≥0, (Fn)n≥0) be a
supermartingale with Xn ≥ 0 for all n ≥ 0. Let T ≤ N be stopping times. Then

∞ > EXT ≥ EXN .

(It is shown in the proof that X∞ := limn→∞Xn exists almost surely.)

Proof. From Theorem 6.26, 0 = X0∧N − X0∧T , X1∧N − X1∧T , . . . is a supermartingale, so
∞ > EXn∧T ≥ EXn∧N for any n ≥ 0. Since T ≤ N , 1N≥n−1T≥n = 1N≥n>T and subtracting
EXn1T≥n from both sides,

EXT1T<n ≥ EXn∧N(1N<n + 1N≥n)− EXn1T≥n = EXN1N<n + EXn1N≥n>T . (∗)
Since X0, X1, . . . is a nonnegative supermartingale, Doob’s Convergence Theorem, Theorem
6.37 says there exists a random variable X with E |X| <∞ such that X0, X1, . . . converges
almost surely to X. By Fatou’s Lemma, Theorem 1.56,

lim inf
n→∞

EXn1N≥n>T = lim inf
n→∞

EXn1N≥n1n>T ≥ EX1N=∞>T
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By Monotone Convergence, Theorem 1.54, limn→∞EXN1N<n = EXN1N<∞ and similarly
limn→∞EXT1T<n = EXT1T<∞, so (∗) implies

EXT1T<∞ ≥ EXN1N<∞ + EX1N=∞>T .

Adding the equality EXT1T=∞ = EXN1N=T=∞, which holds since T ≤ N , we get EXT ≥
EXN . Choosing T ′ := 0 ≤ T in this inequality shows ∞ > EX0 ≥ EXT ≥ EXN . �

6.4. Optional Stopping Theorems.

Theorem 6.51 (Doob’s Optional Stopping Theorem). Let ((Vn)n≥0, (Fn)n≥0) and
((Yn)n≥0, (Fn)n≥0) be submartingales with Vn ≤ 0 for all n ≥ 0. Let T ≤ N be stopping
times. Assume that {Y0∧N , Y1∧N , . . .} is uniformly integrable. Define

Xn := Yn + Vn, ∀n ≥ 0.

Also define XN1N=∞ := 1N=∞ lim supn→∞Xn. Then E |XN | ,E |XT | <∞, and

EXN ≥ EXT ≥ EX0.

Remark 6.52. Setting Vn := 0 for all n ≥ 0, we see that the conclusion of Theorem 6.51
holds for any submartingale ((Xn)n≥0, (Fn)n≥0) such that {X0∧N , X1∧N , . . .} is uniformly
integrable.

More specifically, Theorem 6.51 is commonly applied when ((Xn)n≥0, (Fn)n≥0) is a mar-
tingale and {X0∧N , X1∧N , . . .} is uniformly integrable, giving the conclusion

EXN = EX0.

Conditions for {X0∧N , X1∧N , . . .} being uniformly integrable are given in Proposition 6.53.

Proof. By linearity of expected value, we deal with the Yn and Vn terms separately. Since
((−Vn)n≥0, (Fn)n≥0) is a nonnegative supermartingale, Theorem 6.50 implies that EVN ≥
EVT ≥ EV0 > −∞.

It remains to consider the Yn terms. For any n ≥ 0, define Un := Yn∧N , Zn := Yn∧T . From
Theorem 6.26 and T ≤ N , the following three sequences are submartingales with respect to
(Fn)n≥0: U0, U1, . . ., Z0, Z1, . . . and U0 − Z0, U1 − Z1, . . .. So,

EUn ≥ EZn ≥ EZ0, ∀n ≥ 0 (∗)
By assumption, {U0, U1, . . .} is uniformly integrable, so there exists a random variable U
with E |U | < ∞ such that U0, U1, . . . converges almost surely and in L1 to U , by Theorem
6.45. Since T ≤ N , Zn = Un∧T for all n ≥ 0. So, since {U0, U1, . . .} is uniformly integrable,
{Z0, Z1, . . .} is uniformly integrable by Proposition 6.53(iii). By Theorem 6.45 again, there
exists a random variable Z with E |Z| <∞ such that Z0, Z1, . . . converges almost surely and
in L1 to Z. Then, almost surely, Z = limn→∞ Yn∧T = YT and U = limn→∞ Yn∧N = YN , so by
(∗), and their L1 convergence, EYN ≥ EYT ≥ EZ0 = EY0. �

Proposition 6.53. Let Y0, Y1, . . . be a sequence of real-valued random variables with E |Yn| <
∞ for all n ≥ 0. Let T be a stopping time adapted to a filtration F0 ⊆ F1 ⊆ · · · . Then
{Y0∧T , Y1∧T , . . .} is uniformly integrable if any one of the following conditions holds.

(i) ET <∞, and ∃ c > 0 such that, almost surely, E(|Yn − Yn−1| |Fn−1) ≤ c, ∀ n ≥ 1.
(ii) {Y01T>0, Y11T>1, . . .} is uniformly integrable and E |YT1T<∞| <∞.

(iii) ((Yn)n≥0, (Fn)n≥0) is a uniformly integrable submartingale (or supermartingale).
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Proof. We first prove (i). From the triangle inequality, for any n ≥ 0,

|Yn∧T | ≤ Zn := |Y0|+
n∧T∑
m=1

|Ym − Ym−1| = |Y0|+
n∑

m=1

|Ym − Ym−1| 1T≥m.

Since Z0 ≤ Z1 ≤ · · · , we have supn≥0 |Yn∧T | ≤ limn→∞ Zn =: Z. So, if EZ <∞, we are done
by Exercise 6.40. We therefore show EZ <∞. Since T is a stopping time, 1T≥m = 1−1T<m
is Fm−1-measurable. So, from Propositions 5.12 and 5.16, for any m ≥ 1,

E(|Ym − Ym−1| · 1T≥m) = EE(|Ym − Ym−1| |Fm−1)1T≥m ≤ cP(T ≥ m).

Using this inequality, Monotone Convergence, Theorem 1.54, and Exercise 1.88,

EZ ≤ E |Y0|+ c
∞∑
m=1

P(T ≥ m) = E |Y0|+ cET <∞.

We now prove (ii). For any sequence of random variables X0, X1, . . ., and for any n ≥ 0,
|Xn∧T | ≤ |XT | 1T<∞ + |Xn| 1T>n. (As above, define XT1T=∞ := 1T=∞ lim supn→∞Xn.) By
(ii), {|Y0| 1T>0, |Y1| 1T>1, . . .} is uniformly integrable. Let m > 0. Using Xn := Yn1|Yn|>m for
all n ≥ 0,

sup
n≥0

E |Yn∧T | 1|Yn∧T |>m ≤ E |YT | 1|YT |>m1T<∞ + sup
n≥0

E |Yn| 1|Yn|>m1T>n.

Since E |Yn| 1|Yn|>m1T>n = E |Yn| 1T>n1{|Yn|1T>n>m}, the uniform integrability assumption (ii)
and E |YT1T<∞| <∞ imply that the right side converges to 0 as m→∞, as desired.

We now prove (iii). By assumption, {Y01T>0, Y11T>1, . . .} is uniformly integrable and
supn≥0 E max(Yn, 0) <∞ by Exercise 6.41. Lemma 6.49 then implies that E |YT | 1T<∞ <∞,
so that (iii) reduces to (ii). �

Exercise 6.54. Explain why Example 6.24 does not contradict Doob’s Optional Stopping
Theorem.

Exercise 6.55 (Gambler’s Ruin). We can now finally answer the question posed in Exam-
ple 6.8. Let 0 < p < 1. Let 0 ≤ a < y0 < b with a, y0, b ∈ Z. Let Y1, Y2, . . . be independent
random variables such that P(Yn = 1) =: p and P(Yn = −1) = 1 − p =: q ∀ n ≥ 1. Let
Y0 := y0. Let Zn = Y0 + · · · + Yn, and let Xn := (q/p)Zn ∀ n ≥ 0. For any n ≥ 0, let
Fn := σ(Y0, . . . , Yn). We showed in Example 6.8 that X0, X1, . . . is a martingale with respect
to F0 ⊆ F1 ⊆ · · · . Let T = min{n ≥ 1: Zn ∈ {a, b}}. That is, T is the first time the random
walk Z0, Z1, . . . hits either a or b.

• Compute c := P(YT = a), using Doob’s Optional Stopping Theorem, when p 6= 1/2.
• Compute ET using Doob’s Optional Stopping Theorem, when p 6= 1/2. (Hint: Z0 −

0(2p− 1), Z1 − (2p− 1), . . . is a martingale.)
• Compute E min{n ≥ 1: Zn = a} when p < 1/2. (Hint: let b→∞.)
• Compute c when p = 1/2 using the martingale Z0, Z1, . . ..
• Compute ET when p = 1/2. (Hint: if y0 = 0, then Z2

0−0, Z2
1−1, . . . is a martingale.)

Exercise 6.56. Let Y1, Y2, . . . be independent random variables such that P(Yn = 1) =
P(Yn = −1) = 1/2 ∀ n ≥ 1. Let Y0 := 0. Let Zn := Y0 + · · · + Yn for any n ≥ 0. From the
previous exercise, one might wonder where the martingale Z2

0 −0, Z2
1 −1, . . . came from, and

if more like it exist. In this exercise, we compute an infinite family of such martingales.
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For any α ∈ R and n ≥ 0, let Xn := eαZn−n log cosh(α). Show that X0, X1, . . . is a martingale.
Then, using the power series expansion of the exponential function, we have Xn =∑∞
m=0

αm

m!
Mm,n for some random variables M1,1, . . ., for any α ∈ R and for any n ≥ 0.

It follows that, for any m ≥ 0, Mm,0,Mm,1, . . . is a martingale. For example, using m = 2
we get M2,n = Z2

n − n for all n ≥ 0. And using m = 4, M4,n = Z4
n − 6nZ2

n + 2n + 3n2 for
all n ≥ 0. Using this martingale, compute ET 2 when T := min{n ≥ 1: Zn ∈ {−b, b}} and
b > 0, b ∈ Z.

Exercise 6.57. Let 0 < p < 1. Let b be a positive integer. Let Y1, Y2, . . . be independent
random variables such that P(Yn = 1) =: p and P(Yn = −1) = 1 − p =: q ∀ n ≥ 1. Let
Y0 := 0. Let Zn = Y0 + · · ·+ Yn, ∀ n ≥ 0. Let Tb := min{n ≥ 1: Zn = b}. For any α ∈ R let
M(α) := EeαY1 . For any n ≥ 0, let Xn := eαZn(M(α))−n.

• If 1/2 ≤ p < 1, show that eαbEM(α)−Tb = 1 for all α > 0.
• If 1/2 ≤ p < 1 and 0 < s < 1, show that

EsT1 =
1

2qs
(1−

√
1− 4pqs2), EsTb = (EsT1)b.

• If 0 < p < 1/2, show that P(Tb <∞) = e−λb where λ := log((1− p)/p) > 0.
• If 0 < p < 1/2, show that Z := 1 + maxn≥0 Zn is a geometric random variable with

success probability 1− e−λ.

Exercise 6.58 (Ballot Theorem). Let a, b be positive integers. Suppose there are c votes
cast by c people in an election. Candidate 1 gets a votes and candidate 2 gets b votes. (So
c = a + b.) Assume a > b. The votes are counted one by one. The votes are counted in a
uniformly random ordering, and we would like to keep a running tally of who is currently
winning. (News agencies seem to enjoy reporting about this number.) Suppose the first
candidate eventually wins the election. We ask: with what probability will candidate 1
always be ahead in the running tally of who is currently winning the election? As we will
see, the answer is a−b

a+b
.

To prove this, for any positive integer k, let Sk be the number of votes for candidate
1, minus the number of votes for candidate 2, after k votes have been counted. Then,
define Xk := Sc−k/(c − k). Show that X0, X1, . . . is a martingale. Then, let T such that
T = min{0 ≤ k ≤ c : Xk = 0}, or T = c−1 if no such k exists. Apply the Optional Stopping
theorem to XT to deduce the result.

Exercise 6.59. Prove Wald’s Equation, Proposition 4.21, using Doob’s Optional Stopping
Theorem.

6.5. Additional Comments. A “martingale” originally referred to the double-your-bet
strategy for betting on fair coin flips, discussed in France in the late 1700s. The term
“martingale” was introduced to probability theory by Ville in 1939, though the concept was
introduced by Lévy in 1934. This term was then used by Doob in 1951. The term “Optional
Stopping Theorem” seems to have originated in Doob’s 1953 book.

Consider the set Ω := {1, 2, 3, . . .} with the probability measure P defined by P({n}) :=
2−n for all n ≥ 1. For any n ≥ 1, define Xn : Ω → R so that Xn(n) := 2n and Xn(m) := 0
for any m ∈ Ω with m 6= n. Let H be the collection of random variables H := {X1, X2, . . .}.
Then H is bounded in L1 since E |Xn| = 1 for all n ≥ 1, but H is not uniformly integrable.
For any m ≥ 1, supX∈H E |X| 1|X|>m = 1, so limm→∞ supX∈H E |X| 1|X|>m = 1 6= 0. The
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following theorem says that, in some sense, this is the only example of a bounded set H ⊆ L1

that is not uniformly integrable. (From Exercise 6.41, if H is not bounded in L1, then H is
not uniformly integrable.) The Theorem below also restates uniform integrability in terms
of compactness.

Theorem 6.60. Let H ⊆ L1 satisfy supX∈H E |X| <∞. Then the following are equivalent.

• H is not uniformly integrable.
• H is not relatively weakly compact. (There exists a sequence X1, X2, . . . in H such

that any subsequence of this sequence does not converge in the weak topology.) (We
say X1, X2, . . . ∈ L1 converges to X ∈ L1 in the weak topology if, for any Y ∈ L∞,
limn→∞EXnY = EXY .)
• ∃ ε > 0 such that, for any integer n ≥ 1, there exist n disjoint sets A1, . . . , An ∈ F

such that, for all 1 ≤ m ≤ n,

sup
X∈H

E |X| 1Am ≥ ε.

• ∃ a, b > 0 such that, for any integer n ≥ 1, there exist X1, . . . , Xn ∈ H such that, for
any α1, . . . , αn ∈ R,

a
n∑
i=1

|αi| ≤

∥∥∥∥∥
n∑
i=1

αiXi

∥∥∥∥∥
1

≤ b
n∑
i=1

|αi| .

(Said another way, X1, . . . , Xn is equivalent up to constant factors to the unit vector
basis of Rn equipped with the 1-norm, ‖(α1, . . . , αn)‖1 :=

∑n
i=1 |αi|.)

This obstruction to weak compactness does not occur in Lp when 1 < p < ∞. If 1 <
p < ∞, it is well-known that L∗p = Lq where 1/p + 1/q = 1, so that L∗∗p = Lp, so the weak
topology and weak∗ topology coincide on Lp. Therefore, the unit ball {X ∈ Lp : ‖X‖p ≤ 1}
of Lp is weakly compact by Alaoglu’s Theorem, Theorem 8.3. So, if 1 < p <∞, any bounded
set in Lp is relatively weakly compact. Also, as we verified in Exercise 6.43, the unit ball
{X ∈ Lp : ‖X‖p ≤ 1} of Lp is uniformly integrable if 1 < p <∞.

7. Some Concentration of Measure

Theorem 7.1 (Hall Marriage Theorem). Let G = (V,E) be a bipartite graph with vertices
C ∪D = V . Suppose: for all A ⊆ C, |{d ∈ D : {c, d} ∈ E, c ∈ A}| ≥ |C|. Then there exists
a bijection φ : C → D where φ(c) = d implies (c, d) ∈ E.

Proof. We create an inductive procedure to improve any given matching. Begin with any
injective, partially defined φ as above. Assume ∃ c ∈ C unmatched. By assumption, ∃ d1 ∈ D
such that c ∼ d1. If d1 is unmatched, the inductive step is done. If not, let c1 := φ−1(d1). By
assumption, ∃ d2 ∈ D, d2 6= d1 with d2 joined to at least one of c, c1. If d2 is unmatched and
c ∼ d2, the inductive step is done. If d2 is unmatched and c1 ∼ d2, we “flip” the assignments
of φ, and we are done. (Let φ(c) := d1, φ(c1) := d2). If d2 is matched, let c2 := φ−1(d2), etc.
Eventually this process will terminate. �

Theorem 7.2 (Existence and Uniqueness of Haar Measure). Let (Ω, d) be a compact
metric space, d : Ω × Ω → [0,∞). Let G be a group whose members act as isometries on
Ω. Then there exists a regular measure µ on the Borel sets of Ω that is invariant under the
action of G. Equivalently,

∫
Ω
f(t)dµ(t) =

∫
Ω
f(gt)dµ(t) for all g ∈ G, and for all continuous
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functions f : Ω → R. Additionally, if G acts transitively on Ω, then µ is unique, up to
multiplication by a constant.

Proof. Let ε > 0. Let Nε be an ε-net of minimal cardinality (for every ω ∈ Ω, ∃ x ∈ Nε

such that d(x, ω) < ε, and Nε is as small as possible). For any f : Ω→ R continuous, define
µε = 1

|Nε|
∑

t∈Nε f(t). Since ‖µε‖ := supf : Ω→R, continuous, ‖f‖∞≤1

∫
Ω
f(x)µεdx ≤ 1, and µ is

positive, Alaoglu’s Theorem 8.3) and Riesz’s Theorem 3.4) show that ∃ µ a subsequential
weak∗ limit as ε → 0+ of µε, with µ a regular Borel measure. (In fact µ is a probability
measure since µ(1) = 1). We claim that the choice of Nε (among other minimal cardinality
ε nets) does not change µ. Let A := {x1, . . . , xn} ∈ Nε, n ≤ |Nε|. If N ′ε denotes another
such minimal net, then A′ := {x′ ∈ N ′ε : B(x′, ε) ∩ B(x, ε) 6= ∅, x ∈ A} satisfies |A′| ≥ |A|,
where B(x, ε) := {ω ∈ Ω: d(ω, x) < ε}. For if not, A′ ∪ (Nε r A) is an ε net with smaller
cardinality than Nε. (If y is not ε close to NεrA, then y is ε close to A, so ∃ a ∈ A, b ∈ N ′ε
with y ∈ B(a, ε) ∩B(b, ε), so y ∈ A′).

For any x ∈ Nε, y ∈ N ′ε write x ∼ y if their ε-neighborhoods intersect. By the Hall
marriage theorem, Theorem 7.1), ∃ a bijection from φ : Nε → N ′ε where φ(x) = y implies
x ∼ y. That is, d(φ(x), x) ≤ 2ε. Thus, we can immediately see that |µε(f)− µ′ε(f)| ≤
supa,b∈Ω: d(a,b)<2ε |f(a)− f(b)|. This proves G-invariance of µ, since gNε is another ε-net.

To show uniqueness, let G0 := {g ∈ G : gω = ω,∀ω ∈ Ω} and define a metric on G/G0

by ρ(g, h) := supω∈Ω d(gω, hω). Using the compactness of Ω, a subsequential argument with
ε-nets of X “increasing density” shows that a sequence g1, g2, . . . ∈ G/G0 has a subsequence
that converges to some isometry g of Ω with respect to ρ. Since G/G0 is a topological group,
we use: if V ⊆ G/G0 is a neighborhood of the identity, then V ⊆ V ⊆ V 2. This result
implies that g ∈ G/G0, so that (G/G0, ρ) is a compact metric space.

SinceG/G0 acts on itself, let ν be a Haar measure forG/G0. For any f : Ω→ R continuous,

ν(G)µ(f) =

∫
G

1

∫
Ω

f(gt)dµ(t)dν(g) =

∫
Ω

∫
G

f(gt)dν(g)dµ(t) =: ν(f)µ(Ω)

For the final equality, fix t0 ∈ Ω. Given t ∈ Ω, invariance and transitivity show that there
exists g′ ∈ G such that g′(t) = t0, so

∫
G
f(gt)dν(g) =

∫
G
f(gg′t)dν(g) =

∫
G
f(gt0)dν(g).

That is, the inner integral in the last equality does not depend on t. �

Below, for any n ≥ 0, we denote the n-dimensional sphere in Rn+1 centered at the origin
with radius 1 as

Sn := {(x1, . . . , xn+1) ∈ Rn+1 : x2
1 + · · ·+ x2

n+1 = 1}.

Theorem 7.3 (Spherical Isoperimetric Inequality). Among all domains of fixed volume
on the sphere, one with minimal boundary volume is the geodesic ball.

Proof due to Figiel-Lindenstrauss-Milman-1977. Idea: if we start with an optimal set that
is not a geodesic ball, we can apply a finite number of symmetrizations to it so that its
interior is squished into a smaller region. This gives a contradiction, so we had a ball at the
beginning. The technical device of outer radius allows the argument to proceed rigorously.

Let Sn−1 ⊆ Rn be the unit sphere centered at the origin, and let A ⊆ Sn−1 be closed.
Given two antipodal points a, b ∈ Sn−1, let γ ⊆ Sn−1 be a geodesic joining a and b. We
define the symmetrization σγ(A) as follows. For each y ∈ γ, let Πy be the plane containing y,
such that Πy is perpendicular to the line in Rn connecting a and b. Note that Πy ∩Sn−1 is a
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dilation and translation of Sn−2, so let µn−2,y be the normalized Haar measure on Πy ∩Sn−1.
We let σγ(A) ∩Πy be a geodesic ball in Sn−2 with center y, such that µn−2,y(σγ(A) ∩Πy) =
µn−2,y(A∩Πy). From Fubini’s Theorem, Theorem 1.66), we have µn−1(B) = µn−1(A), where
µn−1 is normalized Haar measure on Sn−1.

We say σγ(A) is the symmetrization of A with respect to γ. Let r(A) := min{r >
0: ∃x ∈ Sn−1, A ⊆ B(x, r)} be the (outer) radius ofA. HereB(x, r) := {y ∈ Sn−1 : d(x, y) <
r} is the open ball of radius r centered at y on Sn−1, and d is the usual metric on Sn−1, so
that d(x, y) = cos−1(〈x, y〉) for all x, y ∈ Sn−1. The minimum in the definition of r(A) exists

by closedness of A and B(x, r). We claim that σγ(A) is closed.
To show this, we use the Hausdorff distance on closed sets in Sn−1, δ(A,B) := min{r >

0: Ar ⊇ B,Br ⊇ A}. (Here Ar := {x ∈ Sn−1 : d(x,A) < r}.) Let B := σγ(A). Recall that
the set of closed sets is a complete metric space with respect to the metric δ. Note that the
function y 7→ µn−2,y(A) = µn−2,y(B) is upper semicontinuous in y ∈ γ, i.e. µn−2,y0(A) ≥
lim supy→y0 µn−2,y(A) when y, y0 ∈ γ. This follows by the definition of the product topology
and by the closedness of A. Now, writing Sn−1 as Sn−2 × [−1, 1]/ ∼ where (x, 1) ∼ (x′, 1)
and (x,−1) ∼ (x′,−1) ∀ x, x′ ∈ Sn−2, we can treat A ⊆ Sn−1 as a closed set in the product
topology of Sn−2 × [−1, 1]. Given (x, y) ∈ Bc ⊆ Sn−1 × [−1, 1], we wish to find a box
F ×G ⊆ Sn−2 × [−1, 1] with F,G open, so that (x, y) ∈ F ×G and F ×G is disjoint from
B. Since B ∩Πy is a geodesic ball (which is not all of Sn−2), we can find F ×G as required,
by the upper semicontinuity of y 7→ µn−2,y(B). (Specifically, our inability to find such a box
F ×G would violate this upper semicontinuity.)

Below we also use that µn−1(·) is upper semi-continuous with respect to δ, that is if
A(1), A(2), . . . ⊆ Sn−1 satisfy limk→∞ δ(A

(k), A) = 0, then µn−1(A) ≥ lim supk→∞ µn−1(A(k)).
To see this, let xk ∈ A(k) for any k ≥ 1. Since d(xk, A) ≤ δ(A(k), A) → 0 as k → ∞, any
limit point of the set {xk}∞k=1 must be contained in A. Therefore, for any fixed ε > 0, there
exists K > 0 such that k ≥ K implies A(k) ⊆ Aε. Let λ > µn−1(A). Since µn−1 is a Borel
measure, there exists an open set U such that A ⊆ U and µn−1(U) < λ. Since A is compact,
d(A,U c) > 0, and there exists ε > 0 such that Aε ⊆ U . Combining these observations,
lim supk→∞ µn−1(A(k)) ≤ µn−1(Aε) ≤ µn−1(U) < λ. Therefore, lim supk→∞ µn−1(A(k)) ≤
µn−1(A), as desired.

We are now ready to proceed by inducting on n. For the case n = 1, the theorem is clear.
We require the following claims, which are proven by induction.

Claim 1: Let A ⊆ Sn−1 be closed, and define

M(A) := {C ⊆ Sn−1 : C is closed,

µn−1(C) = µn−1(A), µn−1(Cε) ≤ µn−1(Aε) ∀ ε > 0}

Then there is a B ∈M(A) with minimal radius, i.e. min{r(C) : C ⊆M(A)} exists.
Claim 2: Let A ⊆ Sn−1 be closed. Then for every half circle γ, σγ(A) ∈M(A).
Claim 3: Let B ⊆ Sn−1 be a closed set that is not a geodesic ball. There exists a finite

family of half circles {γi}ni=1 ⊆ Sn−1 so that r(σγn(σγn−1(· · ·σγ1(B) · · · ))) < r(B).
We prove the theorem assuming these claims. By definition of M(A), B ∈ M(A) and

C ∈ M(B) implies C ∈ M(A). So, using Claim 2, B ∈ M(A) and σγ1(B) ∈ M(B) implies
σγ1(B) ∈M(A), σγ2(σγ1(B)) ∈M(A), etc. Using Claim 3, we therefore see that an element
of minimal (outer) radius in M(A) must be a geodesic ball. Claim 1 says that this minimal
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element must exist, so M(A) must contain a geodesic ball. The theorem is therefore proven.
We now prove the claims.

Proof of Claim 1: B 7→ r(B) is continuous (with respect to the Hausdorff metric for
B ⊆ Sn−1), so it suffices to show that M(A) is a closed subset in the space of closed subsets
of Sn−1 (since the latter space is compact with respect to δ). Let B(1), B(2), . . . ∈M(A) with
limk→∞ δ(B

(k), B) = 0 for some B ⊆ Sn−1, and let ε ≥ 0. We will show B ∈M(A). For any

fixed η > 0, there exists K > 0 such that, if k ≥ K, then B ⊆ B
(k)
η , so Bε ⊆ B

(k)
ε+η. So, for

all k ≥ K, µn−1(Bε) ≤ µn−1(B
(k)
ε+η) ≤ µn−1(Aε+η), since B(1), B(2), . . . ∈M(A). Therefore,

µn−1(Bε) ≤ inf
η>0

µn−1(Aε+η) = µn−1(∩η>0Aε+η) = µn−1(Aε)

So, letting ε = 0, we get µn−1(B) ≤ µn−1(A). Moreover, µn−1(B) ≥ lim supk→∞ µn−1(B(k)) =
µn−1(A), using the upper semicontinuity of µn−1(·) mentioned above, and the definition of
B(1), B(2), . . . ∈M(A). So B ∈M(A), as desired.

Proof of Claim 2: Let A ⊆ Sn−1 be closed and let γ be a half circle on Sn−1 joining z ∈
Sn−1 with −z. Let u be the midpoint of γ. As usual, identify Sn−2,u := Sn−1∩Πu with Sn−2.
For any y ∈ γ, y 6= ±x, define a map τy : Sn−2,y → Sn−2,u by letting τy(x) := γ ∩ Sn−2,u for
any x ∈ Sn−2,y. (Note that this intersection is a single point). By applying polar coordinates,
we see that there exists a function f such that, if y1, y2 ∈ γ and if x1 ∈ Sn−2,y1 , x2 ∈ Sn−2,y2 ,
we have

d(x1, x2) = f(y1, y2, d(τy1(x1), τy2(x2))).

Moreover, for y1, y2 fixed, f is monotonically increasing with respect to its third argument,
d(τy1(x1), τy2(x2)) ≤ π.

For every y1, y2 ∈ γ, ε > 0 (with d(y1, y2) < ε) there is an η(y1, y2, ε) so that, for every
C ⊆ Sn−2,y1 , we have

Cε ∩ Sn−2,y2 = τ−1
y2

((τy1C)η(y1,y2,ε)) (∗)

To see this, it suffices to consider the case that C = {x1}. Then

Cε ∩ Sn−2,y2 = {x2 ∈ Sn−2,y2 : d(x1, x2) < ε}
= {x2 ∈ Sn−2,y2 : f(y1, y2, d(τy1(x1), τy2(x2))) < ε}
= {x2 ∈ Sn−2,y2 : d(τy1(x1), τy2(x2)) < η}

Here η is determined by the existence and monotonicity of f . (If d(y1, y2) ≥ ε, then
Cε ∩ Sn−2,y2 = ∅.) Note that the subscript ε on the left of (∗) denotes an ε neighborhood in
Sn−1, whereas the subscript η on the right of (∗) denotes an η neighborhood in Sn−2. Let
Ay := A ∩ Sn−2,y. By fixing y2 = y and varying y1 = z in (∗), we have

τy((Aε)
y) = ∪{z∈γ : d(z,y)<ε}(τz(A

z))η(z,y,ε) (∗∗)

Substituting B := σγ(A) gives

τy((Bε)
y) = ∪{z∈γ : d(z,y)<ε}(τz(B

z))η(z,y,ε) (†)

By definition of B, τz(B
z) is a geodesic ball in Sn−2,u ∀ z ∈ γ, and µn−2,u(τz(B

z)) =
µn−2,u(τz(A

z)). So, the induction hypothesis (i.e. the full theorem) says

µn−2,u((τz(B
z))η(z,y,ε)) ≤ µn−2,u((τz(A

z))η(z,y,ε)) (‡)

86



for admissible y, z, ε. Since the sets on the right side of (†) are all (n − 2)-dimensional
geodesic balls with the same center, we have

µn−2,u(τy(Bε)
y) = sup

z∈γ : d(z,y)≤ε
µn−2,u((τz(B

z))η(z,y,ε))

≤ sup
z∈γ : d(z,y)≤ε

µn−2,u((τz(A
z))η(z,y,ε)) , from (‡)

≤ µn−2,u(τy(Aε)
y) , from (∗∗)

Re-writing this inequality, we see that for every y ∈ γ, y 6= ±x we have

µn−2,y((Bε)
y) ≤ µn−2,y((Aε)

y)

So by Fubini’s Theorem, Theorem 1.66), we can integrate this inequality to get µn−1(Bε) ≤
µn−1(Aε), so that B ∈M(A) as desired.

Proof of Claim 3: Let B ⊆ Sn−1 be closed, and suppose B is not a geodesic ball. Let
r = r(B) as above, and let u ∈ Sn−1 be such that B ⊆ B(u, r). Let γ be a half circle with

midpoint u, so that we will symmetrize with respect to γ, leaving B(u, r) fixed. Since B is
not a geodesic ball, E := Bc ∩ ∂B(u, r) 6= ∅.

We need two observations. First, any symmetrization σγ does not decrease the set E. That
is, E ⊆ (σγ(B))c∩∂B(u, r). Second, we can find symmetrizations that increase E. To see the
second claim, let G ⊆ ∂B(u, r) be a relatively open set. Given any x ∈ ∂B(u, r) rG, there
exists a relatively open set Gx ⊆ ∂B(u, r) and γx such that x ∈ Gx, and Gx∩σγx(B) = ∅. To
construct γx, consider the straight line ` (in Rn) between x and some point y ∈ Bc∩∂B(u, r)
(which exists since B is not a ball). Let P reflect ∂B(u, r) across a hyperplane perpendicular
to ` and intersecting ` at its midpoint. Then, let Gx be a small ball (in ∂B(u, r)) around
x disjoint from G, such that PGx ⊆ Bc ∩ ∂B(u, r) (which is possible since B is closed).
Observe that Gx does what we claimed above. Also note that Gx, γx depend on x and G,
but not on B.

Now, apply the above observations to B and G := Bc ∩ ∂B(u, r) to produce γ1, Gx1 .
Then, apply these same observations to σγ1(B) and G := σγ1(B)c ∩ ∂B(u, r) to produce γ2

and Gx2 , and so on. By compactness of Sn−1 (using a cover by {Gxi}i≥1), after a finite
number of symmetrizations we have σγn(· · · σγ1(B) · · · ) disjoint from ∂B(u, r). Therefore,
r(σγn(· · ·σγ1(B) · · · )) < r(B). �

As an application, we prove the following concentration of measure result. Note that the
exponential dependence on n implies that almost all of a high dimensional sphere is close to
any given set of Haar measure 1/2. Put another way, a high dimensional sphere has a “large
waist.”

Theorem 7.4 (Concentration of measure on the sphere). Let µ be the normalized
Haar measure on Sn+1 (using Theorem 7.2). Let A ⊆ Sn+1, let ε > 0, and define Aε :=

{x ∈ Sn+1 : ∃y ∈ Sn+1 with dSn+1(x, y) ≤ ε}. If µ(A) ≥ 1/2 then µ(Aε) ≥ 1−
√

π
8
e−ε

2n/2.

Proof. By Theorem. 7.3, it suffices to prove this claim for geodesic balls, i.e. it suffices to
analyze the quantity

µ(B(π/2 + ε)) =

∫ ε
−π/2 cosn(t)dt∫ π/2
−π/2 cosn(t)dt

.
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For any n ≥ 1, let In :=
∫ π/2

0
cosn(t)dt. Changing variables and using cos(t) ≤ e−t

2/2, valid
for any 0 ≤ t ≤ π/2 (which follows since f(t) := log cos t satisfies f ′′(t) = −1/ cos2(t) ≤ −1
for all 0 ≤ t ≤ π/2),

1− µ(B(π/2 + ε)) =

∫ π/2

ε

cosn(t)
dt

2In
=

1√
n

∫ (π/2)
√
n

ε
√
n

cosn(t/
√
n)

dt

2In

≤ 1√
n

∫ (π/2)
√
n

ε
√
n

e−t
2/2 dt

2In
≤ 1√

n
e−ε

2n/2

∫ (π/2−ε)
√
n

0

e−t
2/2 dt

2In

≤ 1√
n
e−ε

2n/2

∫ ∞
0

e−t
2/2 dt

2In
=

1

2
√
nIn

e−ε
2n/2
√
π/2.

Integration by parts shows that In = n−1
n
In−2. Since (n− 1)/

√
n(n− 2) ≥ 1 for any n ≥ 3,

we get
√
nIn ≥

√
n− 2In−2 for any n ≥ 3, so that
√
nIn ≥ min(I1,

√
2I2) = min(1,

√
2π/4) = 1, ∀n ≥ 1

In summary, 1− µ(B(π/2 + ε)) ≤ e−ε
2n/2
√
π/8. �

Theorem 7.4 implies a corresponding statement for Lipschitz functions. That is, Lipschitz
functions on high-dimensional spheres are typically close to their average value.

For any x = (x1, . . . , xn) ∈ Rn, we denote ‖x‖ := (x2
1 + · · ·+ x2

n)1/2.

Theorem 7.5 (Concentration of measure, Lipschitz function form)). Let f : Sn+1 →
R. Suppose that for all x, y ∈ Sn+1, |f(x)− f(y)| ≤ ‖x− y‖, so that f is 1-Lipschitz. Let µ
denote normalized Haar measure on Sn+1, by Theorem 7.2. Then for all ε > 0,

µ

(
x ∈ Sn+1 :

∣∣∣∣f(x)−
∫
Sn+1

f(y)dµ(y)

∣∣∣∣ ≥ ε

)
≤
√
π

2
e−nε

2/4.

Proof. Let m ∈ R such that µ(x ∈ Sn+1 : f(x) ≤ m) ≥ 1/2 and µ(x ∈ Sn+1 : f(x) ≥ m) ≥
1/2. Let C := {x ∈ Sn+1 : f(x) ≤ m}. Then x ∈ Cε if and only if ∃ y ∈ C with ‖x− y‖2 ≤ ε.
Since f is 1-Lipschitz, |f(x)− f(y)| ≤ ε, so that f(x) ≤ m+ ε. Taking the contrapositive,

{x ∈ Sn+1 : f(x) > m+ ε} ⊆ Sn+1 r Aε

So, from Thm. 7.4, since µ(C) ≥ 1/2, we have

µ
(
x ∈ Sn+1 : f(x) > m+ ε

)
≤
√
π/8e−nε

2/2.

Similarly, µ (x ∈ Sn+1 : f(x) < m− ε) ≤
√
π/8e−nε

2/2. In conclusion,

µ
(
x ∈ Sn+1 : |f(x)−m| > ε

)
≤ 2
√
π/8e−nε

2/2. (∗)

It remains to replace m with
∫
Sn+1 f(y)dµ(y). Consider µ× µ on Sn+1 × Sn+1. Observe

(µ× µ)
(
(x, y) ∈ Sn+1 × Sn+1 : |f(x)− f(y)| ≥ ε

)
≤ (µ× µ) ({|f(x)−m| ≥ ε/2} ∪ {|f(y)−m| ≥ ε/2})

≤ 2µ(|f(x)−m| ≥ ε/2) ≤ 4
√
π/8e−nε

2/2 , from (∗)
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Let λ > 0. Then from Theorem 1.60, if λ2 := n/4,∫
Sn+1×Sn+1

eλ
2(f(x)−f(y))2dµ(x)dµ(y)

=

∫ ∞
0

2λ2teλ
2t2(µ× µ)

(
(x, y) ∈ Sn+1 × Sn+1 : |f(x)− f(y)| ≥ t

)
dt

≤ 4
√
π/8

∫ ∞
0

λ2teλ
2t2e−nt

2/2dt =
√
π/8

∫ ∞
0

tne−nt
2/4dt = 2

√
π/8 =

√
π/2.

So, for this λ, Jensen’s inequality in y, Theorem 1.40, implies that√
π/2 ≥

∫
Sn+1×Sn+1

eλ
2(f(x)−f(y))2dµ(x)dµ(y) ≥

∫
Sn+1

eλ
2(f(x)−

∫
Sn+1 f(y)dµ(y))2dµ(x).

Finally, by Chebyshev’s inequality,

µ(x ∈ Sn+1 : |f(x)−
∫
Sn+1

fdµ| ≥ ε) = µ(x ∈ Sn+1 : eλ
2|f(x)−

∫
Sn+1 f(y)dµ(y)|2 ≥ eλ

2ε2)

≤ e−λ
2ε2
∫
Sn+1

eλ
2|f(x)−

∫
Sn+1 f(y)dµ(y)|2dµ(x) ≤

√
π/2e−λ

2ε2 .

�

The Johnson-Lindenstrauss lemma says that the pairwise distances between n vectors
in Euclidean space can be almost preserved by almost all linear projections into O(log n)
dimensional Euclidean space.

Theorem 7.6 (Johnson-Lindenstrauss). Let x(1), . . . , x(n) ∈ Rm. Let ε > 0. Then there

exists a linear function T : Rm → RO(ε−2 logn) such that∥∥x(i) − x(j)
∥∥ ≤ ∥∥T (x(i))− T (x(j))

∥∥ ≤ (1 + ε)
∥∥x(i) − x(j)

∥∥ , ∀ 1 ≤ i, j ≤ n.

One proves this via the probabilistic method. By concentration of measure, a random
projection does what we require.

Proof. Let µ denote normalized Haar measure on Sn−1 and let ν be normalized Haar measure
onO(n), the group of orthogonal n×n real matrices, by Theorem 7.2. Let P : Rn → Rn be the
orthogonal projection such that P (z1, . . . , zn) := (z1, . . . , zk, 0, . . . , 0) for all (z1, . . . , zn) ∈ Rn.
Fix x0 ∈ Sn−1. Suppose U is uniformly distributed in O(n) and X is uniformly distributed
in Sn−1. Observe that Ux0 and X have the same distribution. To see this, let A ⊆ Sn−1 and
define µ̃(A) := ν(U ∈ O(n) : Ux0 ∈ A). Note that µ̃ is O(n) invariant, so apply Theorem
7.2. Now, define

E :=

∫
Sn−1

‖Px‖ dµ(x) =

∫
O(n)

‖PUx0‖ dν(U).

We will eventually show that E ≥ 10−2
√
k/n. Observe∫

Sn−1

‖Px‖2 dµ(x) =

∫
Sn−1

( k∑
i=1

x2
i

)
dµ(x)

= k

∫
Sn−1

x2
1dµ(x) =

k

n

∫
Sn−1

( n∑
i=1

x2
i

)
dµ(x) = k/n. (∗)
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Now, we use Theorems 1.86 and 7.5 for the 1-Lipschitz function x 7→ ‖Px‖,∫
Sn−1

‖Px‖4 dµ(x) =

∫ ∞
0

4u3µ(‖Px‖ ≥ u)du

≤
∫ 2E

0

4u3du+

∫ ∞
2E

4u3µ(| ‖Px‖ − E| > u/2)du

≤ 16E4 +

√
π

2

∫ ∞
2E

u3e−nu
2/16du ≤ 16E4 +

8

n2

∫ ∞
2E
√
n

v3e−v
2/16dv , setting v = u

√
n

≤ 16E4 + 8n−2

∫ ∞
0

v3e−v
2/16dv ≤ 16E4 + 103n−2 ≤ 16E4 + 103k2n−2

≤ 104

(∫
Sn−1

‖Px‖2
2 dµ(x)

)2

, using Jensen’s inequality and (∗).

So, if Z := ‖Px‖2 is a random variable, we have shown that EZ4 < c(EZ2)2 where c := 104.
So, using Hölder’s Inequality, Theorem 1.48, for p = 3/2, q = 3,

EZ2 = E(Z2/3Z4/3) ≤ (EZ)2/3(EZ4)1/3 ≤ (EZ)2/3c1/3(EZ2)2/3.

Using this inequality and (∗),

EZ ≥ c−1/2
√
EZ2 ≥ 10−2

√
k/n. (∗∗)

In summary, E ≥ 10−2
√
k/n for E defined above. Now, by uniqueness of Haar measure,

Theorem 7.2, Theorem 7.5, and using E ≥ 10−2
√
k/n, for any ε > 0, and for any x0 ∈ Sn−1,

ν
(
U ∈ O(n) :

∣∣ ∥∥U−1PUx0

∥∥
2
− E

∣∣ ≥ εE
)

= µ
(
x ∈ Sn−1 | ‖Px‖2 − E| ≥ εE

)
≤
√
π

2
e−nε

2E2/4 ≤ 2e−10−5kε2 .

Let x(1), . . . , x(n) be n points in Rn. If k ≥ 106ε−2 log n, the union bound shows that

ν

(
U ∈ O(n) : ∃ i 6= j :

∣∣∣∣ ∥∥∥∥U−1PU

(
x(i) − x(j)

‖x(i) − x(j)‖

)∥∥∥∥
2

− E
∣∣∣∣ ≥ εE

)
≤
(
n

2

)
2e−10−5kε2 < 1.

For any 1 ≤ i ≤ n, define yi := U−1PUx(i)/(E(1− ε)). Then ∃ U ∈ O(n) such that

1 ≤
∥∥∥∥ y(i) − y(j)

‖x(i) − x(j)‖

∥∥∥∥ ≤ 1 + ε

1− ε
≤ 1 + 3ε, ∀ 1 ≤ i, j ≤ n.

So, our required embedding is T (x(i)) := y(i) for all 1 ≤ i ≤ n. Note that T is linear. (In
fact, if we choose k to be slightly larger, then the probability becomes exponentially small,
so essentially all U satisfies our desired property, hence essentially all linear projections
T : Rn → RO(ε−2 logn) satisfy our desired property.) �
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8. Appendix: Results from Analysis

Theorem 8.1 (Riesz Representation Theorem, Hilbert space version). Let ` : H →
R be a continuous linear functional on a Hilbert space H. Then ∃ unique v ∈ H such that
`(u) = 〈u, v〉 for all u ∈ H.

Proof. Uniqueness is clear. For existence, if ` = 0 take v = 0. Otherwise let M = {u ∈
H : `(u) = 0}. Observe that M is a closed subspace and M 6= H. So we can let w 6= 0,

w ∈ M⊥, via Theorem 5.22(b). Then `(w) 6= 0. Let v = (`(w)/ ‖w‖2)w. Then `(u −
(`(u)/`(w))w) = 0, so u− (`(u)/`(w))w ∈M , and v ∈M⊥ so

〈u, v〉 =

〈
u−

(
u− `(u)

`(w)
w

)
, v

〉
=

〈
`(u)

`(w)
w,

`(w)

‖w‖2w

〉
= `(u)

�

Theorem 8.2. (Radon-Nikodym Theorem) Let (Ω,F , µ) be a σ-finite measure space,
and let ν be a σ-finite measure on A with ν � µ. Then ∃ f ≥ 0 measurable with ν(E) =∫
E
fdµ for all E ∈ A, and f is unique up to a set of µ measure zero.

Proof. (von Neumann, finite ν, µ) One can check that `(g) :=
∫

Ω
gdν is well-defined on

L2(Ω,F , µ + ν). By duality (i.e. Theorem 8.1), ∃ φ ∈ L2(Ω,F , µ + ν) such that `(g) =∫
Ω
gφd(µ + ν). Let E := {φ ≥ 1}. Examining ν(E) = `(1E), shows µ(E) = 0, so ν(E) = 0,

so φ < 1, ν-almost everywhere, hence µ-almost everywhere. So, since dν = φdµ + φdν, we
have dν = φ

1−φdµ. �

A normed linear space H is a vector space (over R or C) with a norm ‖·‖. A norm is a
function ‖·‖ : H → [0,∞) such that ‖h‖ ≥ 0 for all h ∈ H, with equality if and only if h = 0,
‖αh‖ = |α| ‖j‖ for all h ∈ H and for all scalars α, and ‖h+ g‖ ≤ ‖h‖+ ‖g‖ for all h, g ∈ H.
Using the norm, we see that d(h, g) := ‖h− g‖ is a metric d : H ×H → [0,∞), whose open
balls define the metric topology on H. We refer to this topology as the norm topology, or
strong topology. Using the triangle inequality, one can show that a normed linear space is
also a topological vector space. A Banach space is a normed linear space that is complete
with respect to the norm topology.

A linear functional h∗ on H is a linear map from H to scalars (C or R) with ‖h∗‖ <∞.
The space of linear functionals is called the dual space of H, and is denoted by H∗. The
norm of h∗ ∈ H∗ is given by ‖h∗‖ := suph∈H : ‖h‖≤1 |h∗(h)|.

We define the weak∗ topology on H∗ via its basis of neighborhoods of h∗0 ∈ H∗ given by

U(h∗0, ε, h1, . . . , hn) := {h∗ ∈ H∗ : |h∗(hj)− h∗0(hj)| < ε ∀ 1 ≤ j ≤ n}.
Here ε > 0, n ≥ 1, h1, . . . , hn ∈ H.

Theorem 8.3. (Alaoglu Theorem/ Banach-Alaoglu) Let H be a normed linear space.
Then the unit ball BH∗ = {h∗ ∈ H∗ : ‖h∗‖ ≤ 1} of H∗ is compact in the weak∗ topology.

Proof. Let A be the set of scalar valued functions ξ on H with ‖ξ(h)‖ ≤ ‖h‖ for all h ∈ H.
Equivalently, A =

∏
h∈H Bh where Bh := {λ ∈ {scalars} : |λ| ≤ ‖h‖}. Then A with the

product topology is compact by Tychonoff’s Theorem. By the definition of the product
topology, a basic open neighborhood of some ξ0 ∈ A is {ξ ∈ A : |ξ(hj)− ξ0(hj)| < ε, ∀ 1 ≤
j ≤ n} for some h1, . . . , hn ∈ H. Now for fixed h ∈ H, the projection map ξ 7→ ξ(h) is
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continuous, from A (with the product topology) to scalars. (Given ξ in the inverse image of
a small open interval, ξ is contained in an open set in A). Consider the natural embedding
BX∗ ⊆ A. By the definition of the weak∗ topology, the topology induced by BX∗ ⊆ A is
exactly the weak∗ topology.

Putting everything together, let g, h ∈ H, α, β scalars, and observe: ξ(αg+βh)−αξ(g)−
βξ(h) is a continuous function of ξ, from A to scalars (since it is a composition of continuous
functions). Therefore, {ξ ∈ A : ξ(αx + βy) − αξ(x) − βξ(y) = 0} is closed in A (being an
inverse image of zero). Therefore,

BX∗ =
⋂

g,h∈H,
α,β∈{scalars}

{ξ ∈ A : ξ(αx+ βy)− αξ(x)− βξ(y) = 0}

is closed in the compact set A. �

Let f, g : R → C be measurable. For any 1 ≤ p < ∞, in this section we denote ‖f‖p :=

(
∫
R |f(x)|p dx)1/p and ‖f‖∞ := inf{c > 0: |f(x)| ≤ c almost everywhere}.

Theorem 8.4. (Minkowski’s Inequality) Let 1 ≤ p ≤ ∞, and let f : R2 → R be mea-
surable. Then ∥∥∥∥∫

R
f(x, y)dx

∥∥∥∥
p,dy

≤
∫
R
‖f(x, y)‖p,dy dx.

In particular, the integrand on the right is measurable, so if the right side is finite, then∫
R f(x, y)dx is defined for almost every y ∈ R.

Proof. The right side is unchanged by replacing f with |f |, so without loss of generality we
assume f : R2 → [0,∞). The case p = 1 follows from Fubini’s Theorem, Theorem 1.66. If
1 < p < ∞, measurability follows from Fubini’s Theorem, and the inequality follows from
Fubini’s Theorem and the Hölder inequality for y, Theorem 1.48 (for Lebesgue measure),
with exponents p, p′ (using (p− 1)p′ = p).∫

R

∣∣∣∣∫
R
f(x, y)dx

∣∣∣∣p dy =

∫
R

∣∣∣∣∫
R
f(x, y)dx

∣∣∣∣p−1 ∣∣∣∣∫
R
f(x′, y)dx′

∣∣∣∣ dy
=

∫
R

(∫
R
f(x′, y)

∣∣∣∣∫
R
f(x, y)dx

∣∣∣∣p−1

dy
)
dx′

≤
∫
R

(∫
R
|f(x′, y)|p dy

)1/p(∫
R
|
∫
R
f(x, y)dx|p′(p−1)dy

)1/p′

dx′

=

∫
R
‖f(x′, y)‖p,dy dx

′ ·
(∫

R
|
∫
R
f(x, y)dx|pdy

)1/p′

.

If the right-most term is nonnegative and finite, we divide both sides by it to conclude, using
1− 1/p′ = 1/p. If the right-most term is zero, there is nothing to prove. In the case that f
is the indicator function of a rectangle, the right-most term is finite, so the Theorem holds
in this case. The Monotone Convergence Theorem, Theorem 1.54, then implies that the
Theorem holds for more general functions f .

The case p = ∞ takes more work. Measurability follows by approximating f by simple
functions, and using that the limit of measurable functions is measurable. We then use
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duality. Let g : R → [0,∞) be measurable with
∫
R g(y)dy ≤ 1. Then by Fubini’s Theorem

and Hölder’s inequality for y, Theorem 1.48 (for Lebesgue measure)∫
R
g(y)

(∫
R
f(x, y)dx

)
dy =

∫
R

(∫
R
f(x, y)g(y)dy

)
dx ≤

∫
R
‖f(x, y)‖∞,dy dx. (∗)

From the Reverse Hölder inequality, if h : R→ R is measurable, then

‖h‖∞ = sup
g : R→[0,∞)∫
R g(y)dy≤1

∫
R
g(x)h(x)dx.

So, taking the supremum over such g in (∗),
∥∥∫

R f(x, y)dx
∥∥
∞,dy ≤

∫
R ‖f(x, y)‖∞,dy dx. �

We say f : R → R is a Schwartz function if, for any integers j, k ≥ 1, f is k times
continuously differentiable and there exists cj,k ∈ R such that∣∣f (k)(x)

∣∣ ≤ cjk

1 + |x|j
, ∀x ∈ R.

Proposition 8.5 (Properties of Convolution on R). Let 1 ≤ p ≤ ∞, let p′ with 1/p +
1/p′ = 1. Let φ : R → R with

∫
R |φ(x)| dx < ∞, let ε > 0 and define φε(x) := 1

ε
φ(x/ε) for

any x ∈ R and c :=
∫
R φ(x)dx. Let f, g : R→ R be Schwartz functions.

(a) For any 1 ≤ p <∞, limε↓0 ‖φε ∗ f − cf‖p = 0.

(b) limε→0+ ‖φε ∗ f − cf‖∞ = 0.
(c) For any x ∈ R, limε→0+(φε∗f)(x) = cf(x) (using only that f is bounded, continuous).
(d) The convergence in (c) is uniform on R (using only that f is uniformly continuous).
(e) ∀ m ≥ 1, f ∗ g is m times continuously differentiable, and (f ∗ g)(m) = f (m) ∗ g.

Proof of (a),(b):

‖φε ∗ f − cf‖p =

∥∥∥∥∫
R
φε(y)(f(x− y)− f(x))dy

∥∥∥∥
p,dx

≤
∫
R
|φε(y)| ‖f(x− y)− f(x)‖p,dx dy , by Theorem. 8.4

=

∫
R
|φ(y)| ‖f(x− εy)− f(x)‖p,dx dy, changing variables.

The y-integrand is bounded by 2 ‖f‖p
∫
R |φ(y)| dy <∞ and by |φ(y)| |εy| ‖f ′‖∞ by the Fun-

damental Theorem of Calculus. Since f is Schwartz, the latter quantity is bounded, so it
goes to zero pointwise as ε → 0. So, the Dominated Convergence Theorem, Theorem 1.57,
implies (a) and (b).
Proof of (c): Arguing as in (a) (taking absolute values, changing variables, and applying
Dominated Convergence),

|(φε ∗ f)(x)− cf(x)| ≤
∫
R
|φ(y)| |f(x− εy)− f(x)| dy → 0.

Proof of (d): Let η > 0. Choose m > 0 so that 2 ‖f‖∞
∫
|y|>m |φ(y)| ≤ η. Choose δ > 0 by

uniform continuity of f so that for any x ∈ R, if |u| ≤ δ then |f(x+ u)− f(x)| ≤ η/ ‖φ‖1.
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Then for any 0 < ε ≤ δ/m and for any x ∈ R, if |y| ≤ m, then |f(x− εy)− f(x)| ≤ η/ ‖φ‖1.
So, continuing the calculation of (c), and applying the definition of m,∫

R
|φ(y)| |f(x− εy)− f(x)| dy =

∫
{y∈R : |y|>m}

(· · · ) +

∫
{y∈R : |y|≤m}

(· · · )

≤ 2 ‖f‖∞
∫
{y∈R : |y|>m}

|φ(y)| dy +

∫
{y∈R : |y|≤m}

|φ(y)| η

‖φ‖1

≤ η + η = 2η.

Proof of (e): Let h > 0 and x ∈ R. Then∣∣∣∣(f ∗ g)(x+ h)− (f ∗ g)(x)

h
− (f ′ ∗ g)(x)

∣∣∣∣ ≤ ∥∥∥∥f(x+ h)− f(x)

h
− f ′(x)

∥∥∥∥
∞,dx
‖g‖1

≤
∥∥∥∥1

h

∫ x+h

x

(x+ h− t)f ′′(t)dt
∥∥∥∥
∞,dx
‖g‖1 ≤ |h| ‖f

′′‖∞ ‖g‖1 .

Since f is a Schwartz function, ‖f ′′‖∞ < ∞, so the case m = 1 follows by letting h → 0+.
The case of larger m follows by iteration. �

Let f : R→ R with
∫
R |f(x)| dx <∞. For any ξ ∈ R, we define

f̂(ξ) = F(f)(ξ) :=

∫
R
eixξf(x)dx.

Then f̂ : R→ R is called the Fourier Transform of f .

Proposition 8.6 (Properties of Fourier Transform). Let f, g be Schwartz functions.
Let ξ ∈ R and let λ > 0.

(a) |f̂(ξ)| ≤
∫
R |f(x)| dx, ∀ ξ ∈ R.

(b) F [f(x− h)](ξ) = eiξhf̂(ξ), F [eixhf(x)](ξ) = f̂(ξ + h), ∀ h ∈ R.

(c) F [f(x/λ)](ξ) = λf̂(λξ).

(d) (̂f ∗ g) = f̂ ĝ

(e) ∂f̂/∂ξ = F(ixf(x))

(f) F [f ′](ξ) = −iξf̂(ξ).

(g)
∫
R f(x)ĝ(x)dx =

∫
R f̂(x)g(x)dx.

Proof of (a): |f̂(ξ)| =
∣∣∫

R e
ixξf(x)dx

∣∣ ≤ ∫R |f(x)| dx.
Proof of (b): By the change of variables formula, if ξ ∈ R,

F [f(x− h)](ξ) =

∫
R
eixξf(x− h)dx = eixh

∫
R
eixξf(x)dx = eixhf̂(ξ).

F [eixhf(x)](ξ) =

∫
R
eix(ξ+h)f(x)dx = f̂(ξ + h).

Proof of (c): By the change of variables formula,

F [f(x/λ)](ξ) =

∫
R
eixξf(x/λ)dx = λ

∫
R
eixξλf(x)dx = λf̂(ξλ).
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Proof of (d): Applying Fubini’s Theorem, Theorem 1.66, and part (b) give∫
R
eixξ

(∫
R
f(x− y)g(y)dy

)
dx =

∫
R

∫
R
eixξf(x− y)dxg(y)dy

(b)
=

∫
R
eiξyf̂(ξ)g(y)dy = f̂(ξ)

∫
R
eiξyg(y)dy = f̂(ξ)ĝ(ξ).

Proof of (e): Let h > 0. Using part (b) and the Dominated Convergence Theorem 1.57,

f̂(ξ + h)− f̂(ξ)

h

(b)
= F

[(
eixh − 1

h

)
f(x)

]
(ξ)→ F [ixf(x)](ξ) , as h→ 0.

We now justify the use of the Dominated Convergence Theorem. By the Mean Value Theo-
rem,

∣∣Re(eixh − 1)/h
∣∣ = |(cos(xh)− 1)/h| ≤ |x| and

∣∣Im(eixh − 1)/h
∣∣ = |(sin(xh)− 1)/h| ≤

|x|, so
∣∣(eixh − 1)/h

∣∣ ≤ 2 |x| and
∣∣f(x)(eixh − 1)/h

∣∣ ≤ 2 |x| |f(x)|.
Proof of (f): Integrating by parts and then using that f is a Schwartz function

F [f ′(x)](ξ) = lim
N→∞

∫ N

−N
f ′(x)eixξdx = lim

N→∞
−
∫ N

−N
f(x)(iξ)eixξdx = −iξf̂(ξ).

Proof of (g): Apply Fubini’s Theorem 1.66. �

Proposition 8.7. Let f, g be Schwartz functions. Let ξ ∈ R.

(a) F [e−x
2/2](ξ) =

√
2πe−ξ

2/2.

(b) limξ→∞ f̂(ξ) = 0.

(c) f̂ is a Schwarz function.

Proof. Let ξ ∈ R. Completing the square, and then shifting the contour in the complex
plane, ∫

R
e−x

2/2+ixξdx = e−ξ
2/2

∫
R
e−(x−iξ)2/2dx = e−ξ

2/2

∫
R
e−x

2/2dx =
√

2πe−ξ
2/2.

Now, let φ(x) := e−x
2/2/
√

2π for any x ∈ R and denote φε(x) := ε−1φ(x/ε) for any x ∈ R.
Note that

∫
R φε(x)dx = 1. From Proposition 8.6(a),(d) and Proposition 8.5(a),∣∣∣φ̂ε(ξ)f̂(ξ)− f̂(ξ)

∣∣∣ =
∣∣∣φ̂ε ∗ f(ξ)− f̂(ξ)

∣∣∣ ≤ ∫
R
|φε ∗ f(x)− f(x)| dx→ 0,

as ε → 0. Combining this statement with Proposition 8.6(c) and part (a) of the current

Proposition, e−ε
2ξ2/2f̂(ξ) converges to f̂(ξ) uniformly over all ξ ∈ R, as ε→ 0. Since f̂ itself

is bounded by Proposition 8.6(a), e−ε
2ξ2/2f̂(ξ) vanishes at ξ = ∞, for every ε > 0. So, the

uniform convergence implies that f̂(ξ) also vanishes as ξ →∞, proving (b).

To prove (c), note that repeated application of Proposition 8.6 shows that f̂ is k times
differentiable for any k ≥ 1, since f is a Schwartz function. And part (b) of the current
Proposition says that f (k) vanishes at infinity for any k ≥ 1, so repeated application of

Proposition 8.6(f) shows that f̂ is a Schwartz function. �

Exercise 8.8. Give an alternate proof of the fact F [e−x
2/2](ξ) =

√
2πe−ξ

2/2 using the fol-
lowing strategy:

• Let g(ξ) := (2π)−1/2F [e−x
2/2](ξ). Show that g′(ξ) = −ξg(ξ) for all ξ ∈ R.
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• Deduce that (d/dξ)(g(ξ)eξ
2/2) = 0.

• Finally, conclude that g(ξ) = e−ξ
2/2.

Theorem 8.9 (Fourier Inversion). Let f : R→ R be a Schwartz function. Then

f(x) =
1

2π

∫
R
e−ixξf̂(ξ)dξ, ∀x ∈ R.

Proof. let φ(x) := e−x
2/2/
√

2π for any x ∈ R and denote φε(x) := ε−1φ(x/ε) for any x ∈ R.

Note that
∫
R φε(x)dx = 1. By Proposition 8.6(c) and Proposition 8.7(a), F [φ](ξ) = e−ξ

2/2,

F [φε](ξ) = e−ε
2ξ2/2, and F(F(φε)) = 2πφε. So, using Theorem 8.6(g), we get

2π

∫
R
f(x)φε(x)dx =

∫
R
f̂(ξ)e−ε

2ξ2/2dξ. (∗)

Using this equality for f(x+y), applying Theorem 8.6(b), and using φε(−y) = φε(y) ∀ y ∈ R,

1

2π

∫
R
f̂(ξ)e−ixξe−ε

2ξ2/2dξ
(∗)
=

∫
R
f(x+ y)φε(y)dy =

∫
R
f(x− y)φε(y)dy = (φε ∗ f)(x).

As ε→ 0, the left side converges to 1
2π

∫
R f̂(ξ)eixξdξ by the Dominated Convergence Theorem

1.57. And the right side tends to f uniformly in x by Proposition 8.5(d). So f(x) =
1

2π

∫
f̂(ξ)e−ixξdξ almost everywhere in x ∈ R, hence everywhere since f is Schwartz. �

Lemma 8.10 (Stirling’s Formula). Let n ∈ N. Then n! ∼
√

2πnnne−n. That is,

lim
n→∞

n!√
2πnnne−n

= 1.

Proof. We prove the weaker estimate that ∃ c ∈ R such that

n! = (1 +O(1/n))e1−c√nnne−n. (∗)
Note that log(n!) =

∑n
m=1 logm. We use integral comparison for this sum. On the interval

[m,m+ 1] the function x 7→ log x has second derivative O(1/m2). So, Taylor expansion (i.e.
the trapezoid rule) gives∫ m+1

m

log xdx =
1

2
log(m+ 1) +

1

2
logm+O(1/m2).∫ n

1

log xdx =
n−1∑
m=1

∫ m+1

m

log xdx =
n−1∑
m=1

logm+
1

2
log n+ c+O(1/n).

Since
∫ n

1
log xdx = n(log(n)− 1) + 1, log(n!) =

∑n
m=1 logm, exponentiating proves (∗). �
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9. Appendix: Notation

Let n,m be a positive integers. Let A,B be sets contained in a universal set Ω.

N = {1, 2, . . .} denotes the set of natural numbers

Z = {. . . ,−2,−1, 0, 1, 2, . . .} denotes the set of integers

Q = {a/b : a, b,∈ Z, b 6= 0} denotes the set of rational numbers

R denotes the set of real numbers

C = {a+ b
√
−1: a, b ∈ R} denotes the set of complex numbers

∈ means “is an element of.” For example, 2 ∈ R is read as “2 is an element of R.”

∀ means “for all”

∃ means “there exists”

Rn = {(x1, x2, . . . , xn) : xi ∈ R ∀ 1 ≤ i ≤ n}
f : A→ B means f is a function with domain A and range B. For example,

f : R2 → R means that f is a function with domain R2 and range R
∅ denotes the empty set

A ⊆ B means ∀ a ∈ A, we have a ∈ B, so A is contained in B

ArB := {a ∈ A : a /∈ B}
Ac := Ω r A, the complement of A in Ω

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B

A∆B := (ArB) ∪ (B r A)

P denotes a probability law on Ω

Let a1, . . . , an be real numbers. Let n be a positive integer.
n∑
i=1

ai = a1 + a2 + · · ·+ an−1 + an.

n∏
i=1

ai = a1 · a2 · · · an−1 · an.

min(a1, a2) denotes the minimum of a1 and a2.

max(a1, a2) denotes the maximum of a1 and a2.

The min of a set of nonnegative real numbers is the smallest element of that set. We also
define min(∅) :=∞.

Let z ∈ C, so that z = a+ b
√
−1 for some a, b ∈ R.

Re(z) := a denotes the real part of z.

Im(z) := b denotes the imaginary part of z.
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Let X : Ω→ R be a random variable on a probability space (Ω,F , µ).

E(X) denotes the expected value of X

‖X‖p := (E |X|p)1/p, denotes the Lp-norm of X when 1 ≤ p <∞
‖X‖∞ := inf{c > 0: P(|X| ≤ c) = 1}, denotes the L∞-norm of X

var(X) = E(X − E(X))2, the variance of X

σX =
√

var(X), the standard deviation of X

Let A ⊆ Ω. Let G ⊆ F be a σ-algebra. Let Y : Ω → R. Assume E |X| < ∞. Let σ(Y )
denote the σ-algebra generated by Y .

E(X|A) := E(X1A)/P(A) denotes the expected value of X conditioned on the event A.

E(X|G) denotes the conditional expectation of X given G.

E(X|Y ) := E(X|σ(Y )) denotes the conditional expectation of X given Y .

1A : Ω→ {0, 1}, denotes the indicator function of A, so that

1A(ω) =

{
1 , if ω ∈ A
0 , otherwise.

Let H be a Hilbert space with inner product 〈·, ·〉. Let h ∈ H.

‖h‖ := 〈h, h〉1/2, denotes the norm of h

Let X be a random variable on a sample space Ω, so that X : Ω → R. Let P be a
probability law on Ω. Let x, t ∈ R. Let i :=

√
−1.

FX(x) = P(X ≤ x) = P({ω ∈ Ω: X(ω) ≤ x})
the Cumulative Distibution Function of X.

MX(t) = EetX denotes the Moment Generating Function of X at t ∈ R
φX(t) = EeitX denotes the Characteristic Function (or Fourier Transform) of X at t ∈ R

We define the tail σ-algebra of random variables X1, X2, . . . to be

T :=
∞⋂
i=1

σ(Xi, Xi+1, . . .).

We let E denote the exchangeable σ-algebra.
Let g, h : R→ R. Let t ∈ R.

(g ∗ h)(t) =

∫ ∞
−∞

g(x)h(t− x)dx denotes the convolution of g and h at t ∈ R
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Let f, g : R→ C. We use the notation f(t) = o(g(t)), ∀ t ∈ R to denote limt→0

∣∣f(t)
g(t)

∣∣ = 0.

Let A ⊆ R and let f, g : A→ C. We use the notation f(t) = O(g(t)) to denote that ∃ c > 0
such that |f(t)| ≤ c |g(t)| for all t ∈ A.

USC Mathematics, Los Angeles, CA
E-mail address: stevenmheilman@gmail.com
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