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1. Question 1

Let X1, X2, . . .Ω→ R be random variables such that EXi = 0 and EX2
i = 1 for all i ≥ 1.

Show that

P(Xn > n for infinitely many n ≥ 1) = 0.

Solution. Note that var(Xn) = EX2
n − (EXn)2 = 1 for all n ≥ 1. From Chebyshev’s

inequality,

P(Xn > n) ≤ var(Xn)

n2
=

1

n2
, ∀n ≥ 1.

Therefore, ∑
n≥1

P(Xn > n) ≤
∑
n≥1

1

n2
<∞.

So, from the Borel-Cantelli Lemma, the claim follows.

2. Question 2

In this Exercise we will use the following form of Jensen’s inequality (which you can take
as a given fact):

Let X : Ω → [−∞,∞] be a random variable. Let φ : R → R be convex. Assume that
E |X| <∞ and E |φ(X)| <∞. Then

φ(EX) ≤ Eφ(X).

In this Exercise, the above form of Jensen’s inequality is the only form of Jensen’s in-
equality that you are allowed to use.

Prove: if E(X2) <∞, then |EX| <∞.
Solution. Fix n ≥ 1 and let Xn := max(−n,min(X,n)). That is, Xn = X when |X| < n,

Xn = n when X ≥ n and Xn = −n when X ≤ −n. Then |Xn| increases monotonically to
|X| as n → ∞. Since Xn is bounded, E |Xn| < ∞ and EX2

n < ∞, so Jensen’s inequality
implies that

(EXn)2 ≤ EX2
n.

By the Monotone Convergence Theorem, we can let n→∞ on the right side to get

(EXn)2 ≤ EX2 <∞, ∀n ≥ 1. (∗)

Moreover, EX2
n ≤ EX2 < ∞, for all n ≥ 1. The Convergence Theorem with Bounded

Moment (Theorem 1.59 in the notes) then implies that EX = E limn→∞Xn = limn→∞EXn.
That is, we can let n→∞ on the left side of (∗) to get

(EX)2 ≤ EX2.
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3. Question 3

Let Ω be a universal set, and let F be a set of subsets of Ω. Suppose F is a monotone
class.

(As usual, we define σ(F) to be the σ-algebra generated by F . That is, σ(F) is the
smallest σ-algebra containing F .)

Prove or disprove the following statement:
σ(F) is the smallest monotone class containing F .
Solution. This statement is false. Let F be the set of all two-element subsets of {1, 2, 3}.

Then F is trivially a monotone class. (For example, the only increasing unions of sets in F
consist of singleton sets, e.g. ∪∞n=1{1, 2} = {1, 2}.) However, σ(F ) is strictly larger than F ,
since σ(F ) consists of all subsets of {1, 2, 3}.

4. Question 4

Give an example of a function f : [−1, 1]× [−1, 1]→ R such that

• For a.e. x ∈ [−1, 1],
∫ 1

−1 f(x, y)dy = 0.

• For a.e. y ∈ [−1, 1],
∫ 1

−1 f(x, y)dx = 0.

•
∫
[−1,1]×[−1,1] |f(x, y)| dxdy =∞.

That is,
∫ 1

−1

( ∫ 1

−1 f(x, y)dy
)
dx = 0,

∫ 1

−1

( ∫ 1

−1 f(x, y)dx
)
dy = 0, while∫

[−1,1]×[−1,1]
|f(x, y)| dxdy =∞.

Consequently, a “converse” of Fubini’s Theorem does not hold for probability spaces. (We
can divide by appropriate constants to turn these integrals into expected values.)

Solution. Here is one example that works. Let r(x, y) be the radial function such that
r(x, y) = 1 in the first and third quadrants (x > 0, y > 0 and x < 0, y < 0) and r(x, y) = −1
in the second and fourth quadrants (x > 0, y < 0 and x > 0, y < 0). (And set r(x, y) = 0
when x = 0 or y = 0.) Let g(x, y) := (x2 + y2)−1 for any x, y 6= 0 (and let g(0, 0) := 0).
Define

f(x, y) := r(x, y)g(x, y), ∀ − 1 ≤ x, y ≤ 1.

Since g(x, y) = g(−x, y) = g(x,−y) while r(x, y) = −r(x,−y) = −r(−x, y) for all −1 ≤
x, y ≤ 1, the function f then satisfies f(x, y) = −f(x,−y) = −f(−x, y) for all −1 ≤ x, y ≤ 1,
so the first two properties follow immediately. For the third property, note that∫

[−1,1]×[−1,1]
|f(x, y)| dxdy =

∫
[−1,1]×[−1,1]

|g(x, y)| dxdy ≥
∫ 2π

θ=0

∫ 1

r=0

r−2rdrdθ =∞.
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