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Final Exam

This exam contains 9 pages (including this cover page) and 6 problems. Check to see if any
pages are missing. Enter all requested information on the top of this page.

You may use your books and notes on this exam. You cannot use a calculator or any other
electronic device (or internet-enabled device) on this exam. You are required to show your
work on each problem on the exam. The following rules apply:

• You have 24 hours to complete the exam.

• If you use a theorem or proposition from
class or the notes or the book you must
indicate this and explain why the theorem
may be applied. It is okay to just say, “by
some theorem/proposition from class.”

• Organize your work, in a reasonably neat
and coherent way, in the space provided. Work
scattered all over the page without a clear or-
dering will receive very little credit.

• Mysterious or unsupported answers will
not receive full credit. A correct answer, un-
supported by calculations, explanation, or al-
gebraic work will receive no credit; an incorrect
answer supported by substantially correct cal-
culations and explanations might still receive
partial credit.

• If you need more space, use the back of the
pages; clearly indicate when you have done
this. Scratch paper is at the end of the exam.

Do not write in the table to the right. Good luck!a

aNovember 23, 2020, c© 2020 Steven Heilman, All Rights
Reserved.

Problem Points Score

1 10

2 10

3 10

4 10

5 10

6 10

Total: 60



1. (10 points) This problem proves a dominated convergence theorem for conditional ex-
pectation. Let (Ω,F ,P) be a probability space. LetX, Y,X1, X2, X3, . . . be F -measurable
random variables on (Ω,F ,P). Assume that for all n ≥ 1, |Xn| ≤ Y almost surely, and
E |Y | <∞. Let G ⊆ F be a σ-algebra. Assume that X1, X2, . . . converges almost surely
to X. Conclude that

E(X1|G),E(X2|G), . . .

converges almost surely to E(X|G).

You can freely use the conditional monotone convergence theorem: if 0 ≤ X1 ≤ X2 ≤ · · ·
are F -measurable random variables that converge almost surely to X, then

lim
n→∞

E(Xn|G) = E(X|G).

(Hint: formulate and prove a conditional version of Fatou’s Lemma, i.e. under some
assumptions, show

E(lim inf
n→∞

Xn|G) ≤ lim inf
n→∞

E(Xn|G). )
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2. (10 points) Let H be a real Hilbert space with inner product 〈·, ·〉. As usual we denote
||h|| := 〈h, h〉1/2 for all h ∈ H. We say a Hilbert space H is separable if there exists a
countable set h1, h2, . . . ∈ H such that ||hi|| = 1 for all i ≥ 1, 〈hi, hj〉 = 0 for all i, j ≥ 1
with i 6= j, and such that, ∀ h ∈ H,

lim
n→∞

∣∣∣∣∣
∣∣∣∣∣h−

n∑
i=1

〈h, hi〉hi

∣∣∣∣∣
∣∣∣∣∣ = 0.

Let K be a real Hilbert space with inner product 〈·, ·〉′. Assume that H and K are
each separable. Show that H and K are linearly isometric. That is, ∃ a linear function
T : H → K such that T is injective, T is surjective, and ∀ g, h ∈ H, we have

〈T (g), T (h)〉′ = 〈g, h〉.
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3. (10 points) For any natural number n and a parameter 0 < p < 1, define an Erdös-Renyi
graph on n vertices with parameter p to be a random graph (V,E) on a (deterministic)
vertex set V = {1, . . . , n} of n vertices (thus (V,E) is a random variable taking values in

the discrete space of all 2(n
2) possible undirected graphs one can place on V ) such that

the events {i, j} ∈ E for unordered pairs with i, j ∈ V are independent and each edge
occurs with probability p.

A stable set in a graph is a subset S of the vertices of the graph such that no two of the
vertices in S are connected by an edge.

For any n ≥ 1, let Xn be the cardinality of the largest cardinality stable set in an

Erdös-Renyi random graph on n vertices with parameter p = 1/2. Show that

P(|Xn − EXn| > t) ≤ 2e−
t2

2n , ∀n ≥ 1, ∀ t > 0.

(Hint: construct an increasing sequence of σ-algebras {∅,Ω} = F0 ⊆ F1 ⊆ · · · ⊆ Fn =
2Ω such that Fj corresponds to all subsets of edges going between vertices {1, . . . , j},
and define Yj := E(Xn|Fj), ∀ 0 ≤ j ≤ n. Show that Y0, Y1, . . . , Yn is a martingale.)
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4. (10 points) Let X0, X1, . . . be the symmetric simple random walk on the integers Z. For
any k ∈ Z, let Pk denote the probability law on this random walk such that X0 := k.
Let T0 := min{n ≥ 1: Xn = 0} be the first positive time that the random walk takes
the value 0. For any positive integers j, k, r, show:

Pk(T0 < r, Xr = j) = Pk(Xr = −j).

(Hint: draw a picture. Show that Pk(XT0+(r−s) = j |T0 = s, Xs = 0) = P0(Xr−s = j)
for any j ∈ Z. Then deduce Pk(T0 = s, Xr = j) = Pk(T0 = s)P0(Xr−s = j). For the
term on the right, can we replace −j with j? Combine terms and sum over all 1 ≤ s < r.
Also justify that Pk(T0 < r, Xr = −j) = Pk(Xr = −j) when j > 0.)
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5. (10 points) Let a, b be positive integers. Suppose there are c votes cast by c people in
an election. Candidate 1 gets a votes and candidate 2 gets b votes. (So c = a + b.)
Assume a > b. The votes are counted one by one. The votes are counted in a uniformly
random ordering, and we would like to keep a running tally of who is currently winning.
Suppose the first candidate eventually wins the election. We ask: with what probability
will candidate 1 always be ahead in the running tally of who is currently winning the
election? You are asked to show that the answer is a−b

a+b
.

To prove this, for any positive integer k, let Sk be the number of votes for candidate
1, minus the number of votes for candidate 2, after k votes have been counted. Then,
define Xk := Sc−k/(c − k). Show that X0, X1, . . . is a martingale with respect to the
σ-algebras generated by the (reversed) ordering of Sc, Sc−1, Sc−2, . . .. Then, let T such
that T = min{0 ≤ k ≤ c : Xk = 0}, or T = c− 1 if no such k exists. Apply the Optional
Stopping theorem to XT .
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6. (10 points) For any a = (a1, a2, . . .) ∈ RN, b = (b1, b2, . . .) ∈ RN, define 〈a, b〉 :=∑∞
i=1 aibi (if it exists). Let `2 denote the Hilbert space {a ∈ RN : 〈a, a〉 < ∞} with

respect to the inner product 〈·, ·〉. (You can freely use that `2 is a Hilbert space.)

This problem proves Grothendieck’s inequality: ∃ a constant k > 0 such that, ∀ n ≥ 1,
∀ real n× n matrices (cij)1≤i,j≤n,

max
x(1),...,x(n),y(1),...,y(n)∈`2

||x(i)||=||y(i)||=1

n∑
i,j=1

cij〈x(i), y(j)〉 ≤ k · max
ε1,...,εn,δ1,...,δn∈{−1,1}

n∑
i,j=1

cijεiδj.

To prove this inequality, do the following. Let Γ denote the left side of the inequality, and
let ∆ denote the right side (without the k constant). We need to show that Γ = O(∆).

• First, let g1, g2, . . . be a fixed sequence of i.i.d. standard Gaussians. Using a previous
problem, we may replace `2 with the Hilbert space H := {

∑∞
i=1 aigi : (ai)

∞
i=1 ∈ `2}

with respect to the inner product 〈X, Y 〉 := EXY for all X, Y ∈ H. (You can
freely use that H is itself a Hilbert space.)

• Fix m > 0 and let X ∈ H. Denote X≤m := X1|X|≤m. Fix ε > 0. Pick X(1), . . . , X(n)

and Y (1), . . . , Y (n) that come within ε of achieving the maximum in the definition of
Γ. Compare

∑n
i,j=1 cijEX

(i)Y (j) to
∑n

i,j=1 cijEX
(i)
≤mY

(j)
≤m by adding and subtracting

some terms inside the sum. You should be able to show that

Γ− ε ≤ m2∆ + 100e−m
2/4Γ.

(Hint: Try dividing and multiplying some terms by m, and try dividing and mul-

tiplying some terms by maxk=1,...,n ||X(k) −X(k)
≤m|| or maxk=1,...,n ||Y (k) − Y (k)

≤m||.)

• To get the e−m
2/4 bound, note that X(k) −X(k)

≤m = X(k)1|X(k)|>m, so you should be
able to bound its L2 norm.
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(Scratch paper)
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(Extra Scratch paper)
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