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1. Question 1

This problem proves a dominated convergence theorem for conditional expectation. Let
(Ω,F ,P) be a probability space. Let X, Y,X1, X2, X3, . . . be F -measurable random variables
on (Ω,F ,P). Assume that for all n ≥ 1, |Xn| ≤ Y almost surely, and E |Y | <∞. Let G ⊆ F
be a σ-algebra. Assume that X1, X2, . . . converges almost surely to X. Conclude that

E(X1|G),E(X2|G), . . .

converges almost surely to E(X|G).
You can freely use the conditional monotone convergence theorem: if 0 ≤ X1 ≤ X2 ≤ · · ·

are F -measurable random variables that converge almost surely to X, then

lim
n→∞

E(Xn|G) = E(X|G).

(Hint: formulate and prove a conditional version of Fatou’s Lemma, i.e. under some assump-
tions, show

E(lim inf
n→∞

Xn|G) ≤ lim inf
n→∞

E(Xn|G). )

Solution. Let 0 ≤ Y1 ≤ Y2 ≤ . . . be F -measurable random variables. We will show that

E(lim inf
n→∞

Yn|G) ≤ lim inf
n→∞

E(Yn|G). (∗)

For any k ≥ 1, let Zk := infn≥k Yk. Note that 0 ≤ Z1 ≤ Z2 ≤ · · · , and these random variables
are increasing pointwise, so their pointwise limit exists almost surely (since a monotone
sequence of real numbers converges, possible to ∞), so if Z := limn→∞ Zn = lim infn→∞ Yn,
then by the conditional Monotone Convergence Theorem,

lim
n→∞

E(Zn|G) = E(Z|G) = E(lim inf
n→∞

Yn|G). (∗∗)

Finally, by definition of Zk, we have Zk ≤ Yn for all n ≥ k, so monotonicity of condition
expectation implies that E(Zk|G) ≤ E(Yn|G) for all n ≥ k, so that E(Zk|G) ≤ infn≥k E(Yk|G).
Letting k →∞, we get

lim
k→∞

E(Zk|G) ≤ lim
k→∞

inf
n≥k

E(Yk|G) = lim inf
n→∞

E(Yn|G).

Combining this equality with (∗∗) proves (∗).
Now, we apply (∗) to the sequences (Y +Xn)n≥1 and (Y −Xn)n≥1 separately (noting that

both sequences are nonnegative by assumption) to get

E(Y +X|G) ≤ lim inf
n→∞

E(Y +Xn|G).

E(Y −X|G) ≤ lim inf
n→∞

E(Y −Xn|G).

Subtracting E(Y |G) from these inequalities and combining them,

lim sup
n→∞

E(Xn|G) = − lim inf
n→∞

E(−Xn|G) ≤ E(X|G) ≤ lim inf
n→∞

E(Xn|G).

Since lim sup ≥ lim inf, we see that all above quantities are equal and the limit exists, i.e.

lim
n→∞

E(Xn|G)E(X|G).
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2. Question 2

Let H be a real Hilbert space with inner product 〈·, ·〉. As usual we denote ‖h‖ := 〈h, h〉1/2
for all h ∈ H. We say a Hilbert space H is separable if there exists a countable set h1, h2, . . . ∈
H such that ‖hi‖ = 1 for all i ≥ 1, 〈hi, hj〉 = 0 for all i, j ≥ 1 with i 6= j, and such that, ∀
h ∈ H,

lim
n→∞

∥∥∥∥∥h−
n∑
i=1

〈h, hi〉hi

∥∥∥∥∥ = 0.

Let K be a real Hilbert space with inner product 〈·, ·〉′. Assume that H and K are each
separable. Show that H and K are linearly isometric. That is, ∃ a linear function T : H → K
such that T is injective, T is surjective, and ∀ g, h ∈ H, we have

〈T (g), T (h)〉′ = 〈g, h〉.

Solution. Let h1, h2, . . . ⊆ H be the countable set defined in terms of separability for H.
Let k1, k2, . . . ⊆ K be the countable set defined in terms of separability for K. Define a
function T : H → K so that T (hi) = ki for all i ≥ 1. Below, we write limn→∞ to denote
limits with respect to the metric topology on the Hilbert space K. For any h ∈ H, we can
then formally define

T (h) := lim
n→∞

n∑
i=1

〈h, hi〉ki
∞∑
i=1

〈h, hi〉T (hi) =
∞∑
i=1

〈h, hi〉ki.

From the Pythagorean Theorem, we have∥∥∥∥∥
∞∑
i=1

〈h, hi〉ki

∥∥∥∥∥
2

=
∞∑
i=1

〈h, hi〉2 = ‖h‖2 , ∀h ∈ H. (∗)

So, T is well-defined for all h ∈ H. Evidently T is also linear since it is the limit of a sum
of linear functions.
T is injective since, if T (h) = 0, then the left side of (∗) is zero, so by (∗) we have h = 0.
T is surjective since, for any k ∈ K, the definition of separability says that

k =
∞∑
i=1

〈k, ki〉ki.

So, given this k, define

h :=
∞∑
i=1

〈k, ki〉hi.

Then h ∈ H exists since, again by the Pythagorean theorem,
∑∞

i=1〈k, ki〉2 = ‖k‖2 < ∞, so
h ∈ H exists by completeness of the Hilbert space H. By definition of H, we have T (h) = k,
so that T is surjective. Finally, to prove the isometry property, we have (using continuity of
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the inner product and the definition of each orthonormal basis)

〈T (g), T (h)〉′ =
〈 ∞∑

i=1

〈g, hi〉ki,
∞∑
j=1

〈h, hj〉kj
〉′

=
∞∑

i,j=1

〈g, hi〉〈h, hj〉〈ki, kj〉′

=
∞∑
i=1

〈g, hi〉〈h, hi〉 =
∞∑

i,j=1

〈g, hi〉〈h, hj〉〈hi, hj〉′

=
〈 ∞∑

i=1

〈g, hi〉hi,
∞∑
j=1

〈h, hj〉hj
〉

= 〈g, h〉.

3. Question 3

For any natural number n and a parameter 0 < p < 1, define an Erdös-Renyi graph
on n vertices with parameter p to be a random graph (V,E) on a (deterministic) vertex
set V = {1, . . . , n} of n vertices (thus (V,E) is a random variable taking values in the

discrete space of all 2(n
2) possible undirected graphs one can place on V ) such that the events

{i, j} ∈ E for unordered pairs with i, j ∈ V are independent and each edge occurs with
probability p.

A stable set in a graph is a subset S of the vertices of the graph such that no two of the
vertices in S are connected by an edge.

For any n ≥ 1, let Xn be the cardinality of the largest cardinality stable set in an Erdös-

Renyi random graph on n vertices with parameter p = 1/2. Show that

P(|Xn − EXn| > t) ≤ 2e−
t2

2n , ∀n ≥ 1, ∀ t > 0.

(Hint: construct an increasing sequence of σ-algebras {∅,Ω} = F0 ⊆ F1 ⊆ · · · ⊆ Fn = 2Ω

such that Fj corresponds to all subsets of edges going between vertices {1, . . . , j}, and define
Yj := E(Xn|Fj), ∀ 0 ≤ j ≤ n. Show that Y0, Y1, . . . , Yn is a martingale.)
Solution. From the definition of Yj and the tower property, we have, for all 0 ≤ j ≤ n− 1,

E(Yj+1|F|) = E(E(Xn|Fj)|Fj) = E(Xn|Fj) = Yj

Also, 0 ≤ Yj ≤ n for all 0 ≤ j ≤ n, so that E |Yj| < ∞ for all 0 ≤ j ≤ n, so Y0, . . . , Yn is a
martingale.

By the definition of Yj, we have |Yj+1 − Yj| ≤ 1 for all 0 ≤ j ≤ n− 1. To see this, let G be
an undirected graph on n vertices (with no self-edges) and let Gj be the set of all undirected
graphs G′ on n vertices such that G and G′ are the same induced subgraph on the vertices
{1, . . . , j}. Then Yj(G) is the average size of the largest stable set in Gj. And Yj+1(G) is the
average size of the largest stable set in Gj+1. Note that Gj+1 ⊆ Gj, and for any G′ ∈ Gj+1, if
we average over all graphs G′′ ∈ Gj such that G′ and G′′ have the same induced subgraph on
{1, . . . , j}, this corresponds to adding or subtracting a single vertex from the largest stable
set of G′. So, by the total expectation theorem, we conclude that |Yj+1(G)− Yj(G)| ≤ 1 for
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all 0 ≤ j ≤ n− 1. That is,

Yj(G) =

∑
G′∈Gj

Xn(G′)P(G′)∑
G′∈Gj

P(G′)

=

∑
S⊆{1,...,j}

∑
G′′ : {i,j+1}∈G′′, ∀ i∈S Xn(G′′)P(G′′)∑

G′∈Gj
P(G′)

=

∑
S⊆{1,...,j}

∑
G′′ : {i,j+1}∈G′′, ∀ i∈S Xn(G′′)P(G′′)∑

G′′∈Gj+1
P(G′′)

·
∑

G′′∈Gj+1
P(G′′)∑

G′∈Gj
P(G′)

= 2−j
∑

S⊆{1,...,j}

∑
G′′ : {i,j+1}∈G′′, ∀ i∈S Xn(G′′)P(G′′)∑

G′′∈Gj+1
P(G′′)

So,

Yj(G)− Yj+1(G) = 2−j
∑

S⊆{1,...,j}

(∑
G′′ : {i,j+1}∈G′′, ∀ i∈S Xn(G′′)P(G′′)∑

G′′∈Gj+1
P(G′′)

− Yj+1(G)
)

= 2−j
∑

S⊆{1,...,j}

∑
G′′ : {i,j+1}∈G′′, ∀ i∈S Xn(G′′)P(G′′)−

∑
G′′∈Gj+1

Xn(G′′)P(G′′)∑
G′′∈Gj+1

P(G′′)

The numerator can be arranged so that the difference of the Xn terms is at most one, so
|Yj(G)− Yj+1(G)| ≤ 1. We conclude by Azuma’s inequality.

4. Question 4

Let X0, X1, . . . be the symmetric simple random walk on the integers Z. For any k ∈ Z, let
Pk denote the probability law on this random walk such that X0 := k. Let T0 := min{n ≥
1: Xn = 0} be the first positive time that the random walk takes the value 0. For any
positive integers j, k, r, show:

Pk(T0 < r, Xr = j) = Pk(Xr = −j).

Solution. If the random walk takes the value zero, then after this visit to zero, the walk
is independent of its previous movements, and we can then treat the walk as if it started at
0. That is, for any integers 0 < s < r and j,

Pk(XT0+(r−s) = j |T0 = s, Xs = 0) = P0(Xr−s = j).

Rearranging and simplifying,

Pk(T0 = s, Xr = j) = Pk(T0 = s)P0(Xr−s = j). (∗)

When the walk starts at zero, it has equal probability of reaching j or −j (that is, the
random walk is symmetric with respect to zero). So, the right side is equal to

Pk(T0 = s)P0(Xr−s = −j) (∗)
= Pk(T0 = s, Xr = −j).
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Summing over all 1 ≤ s < r, and combining this equality with (∗) (with j > 0),

Pk(T0 < r, Xr = j) = Pk(T0 < r, Xr = −j) = Pk(Xr = −j).

The last equality follows since a random walk started from k > 0 must pass through 0 before
reaching a negative integer −j. That is, given X0 = k, the event Xr = −j is contained in
the event T0 < r.

5. Question 5

Let a, b be positive integers. Suppose there are c votes cast by c people in an election.
Candidate 1 gets a votes and candidate 2 gets b votes. (So c = a + b.) Assume a > b. The
votes are counted one by one. The votes are counted in a uniformly random ordering, and we
would like to keep a running tally of who is currently winning. Suppose the first candidate
eventually wins the election. We ask: with what probability will candidate 1 always be
ahead in the running tally of who is currently winning the election? You are asked to show
that the answer is a−b

a+b
.

To prove this, for any positive integer k, let Sk be the number of votes for candidate
1, minus the number of votes for candidate 2, after k votes have been counted. Then,
define Xk := Sc−k/(c − k). Show that X0, X1, . . . is a martingale with respect to the σ-
algebras generated by the (reversed) ordering of Sc, Sc−1, Sc−2, . . .. Then, let T such that
T = min{0 ≤ k ≤ c : Xk = 0}, or T = c−1 if no such k exists. Apply the Optional Stopping
theorem to XT .

Solution.

E(Xk+1 −Xk |Sc−k = sc−k, . . . , Sc = sc, X0 = x0)

= E

(
Sc−k−1

c− k − 1
− sc−k
c− k

|Sc−k = sc−k, . . . , Sc = sc, X0 = x0

)
= E

(
Sc−k−1 − Sc−k + sc−k

c− k − 1
− sc−k
c− k

|Sc−k = sc−k, . . . , Sc = sc, X0 = x0

)
Given that Sc−k = sc−k, c − k votes have been counted, and there are sc−k more votes for
candidate 1 than candidate 2, among the first c−k counted votes. So, if there are x votes for
candidate 1 after c− k votes have been counted, then there are c− k−x votes for candidate
2. And we know x = sc−k + (c − k − x) by definition of sc−k, so 2x = sc−k + c − k, and
x = (1/2)(sc−k + c− k).

Given that Sc−k = sc−k, the expected value of Sc−k−1 − Sc−k is the change in the vote
tally, with all c− k votes equally likely to be chosen. (That is, we can think of counting the
ballots “in reverse.” Given the value of Sc−k, we can think of c− k votes as sitting in a pile
of “counted” votes. Then Sc−k−1 − Sc−k can be found by choosing any of these c − k votes
uniformly at random, and placing this vote into the pile of “uncounted” votes.) That is, this
(conditional) expected value of Sc−k−1 − Sc−k is

(−1) · x

c− k
+ (1)

c− k − x
c− k

=
−2x+ c− k

c− k
= − sc−k

c− k
.
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Therefore,

E(Xk+1 −Xk |Sc−k = sc−k, . . . , Sc = sc, X0 = x0)

= E

(
− sc−k

c−k + sc−k

c− k − 1
− sc−k
c− k

|Sc−k = sc−k, . . . , Sc = sc, X0 = x0

)

= sc−k

(
− 1
c−k + 1

c− k − 1
− 1

c− k

)
= sc−k

( (
c−k−1
c−k

)
c− k − 1

− 1

c− k

)
= 0.

We conclude that X1, X2, . . . is a martingale. Then

P(candidate 1 always leads the vote tally) = EXT = EX0 = ESc/c =
a− b
a+ b

.

(Since a > b, if the first vote is counted for candidate 2, then Xt will be zero for some t. So,
XT = 1 if and only if Sk > 0 for all 1 ≤ k ≤ c. And XT = 0 otherwise. So, EXT = P(Sk > 0)
for all 1 ≤ k ≤ c. That is, EXT is the probability that candidate 1 always leads the vote
tally.)

6. Question 6

For any a = (a1, a2, . . .) ∈ RN, b = (b1, b2, . . .) ∈ RN, define 〈a, b〉 :=
∑∞

i=1 aibi (if it
exists). Let `2 denote the Hilbert space {a ∈ RN : 〈a, a〉 < ∞} with respect to the inner
product 〈·, ·〉. (You can freely use that `2 is a Hilbert space.)

This problem proves Grothendieck’s inequality: ∃ a constant k > 0 such that, ∀ n ≥ 1, ∀
real n× n matrices (cij)1≤i,j≤n,

max
x(1),...,x(n),y(1),...,y(n)∈`2

‖x(i)‖=‖y(i)‖=1

n∑
i,j=1

cij〈x(i), y(j)〉 ≤ k · max
ε1,...,εn,δ1,...,δn∈{−1,1}

n∑
i,j=1

cijεiδj.

To prove this inequality, do the following. Let Γ denote the left side of the inequality, and
let ∆ denote the right side (without the k constant). We need to show that Γ = O(∆).

• First, let g1, g2, . . . be a fixed sequence of i.i.d. standard Gaussians. Using a previous
problem, we may replace `2 with the Hilbert space H := {

∑∞
i=1 aigi : (ai)

∞
i=1 ∈ `2}

with respect to the inner product 〈X, Y 〉 := EXY for all X, Y ∈ H. (You can freely
use that H is itself a Hilbert space.)
• Fix m > 0 and let X ∈ H. Denote X≤m := X1|X|≤m. Fix ε > 0. Pick X(1), . . . , X(n)

and Y (1), . . . , Y (n) that come within ε of achieving the maximum in the definition of

Γ. Compare
∑n

i,j=1 cijEX
(i)Y (j) to

∑n
i,j=1 cijEX

(i)
≤mY

(j)
≤m by adding and subtracting

some terms inside the sum. You should be able to show that

Γ− ε ≤ m2∆ + 100e−m
2/4Γ.

(Hint: Try dividing and multiplying some terms by m, and try dividing and multi-

plying some terms by maxk=1,...,n ‖X(k) −X(k)
≤m‖ or maxk=1,...,n ‖Y (k) − Y (k)

≤m‖.)
• To get the e−m

2/4 bound, note that X(k) − X(k)
≤m = X(k)1|X(k)|>m, so you should be

able to bound its L2 norm.
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Solution. Define

Γ := max
x(1),...,x(n),y(1),...,y(n)∈`2

‖x(i)‖=‖y(i)‖=1

n∑
i,j=1

cij〈x(i), y(j)〉, ∆ := max
ε1,...,εn,δ1,...,δn∈{−1,1}

n∑
i,j=1

cijεiδj.

We wish to show Γ = O(∆). Let {gi}∞i=1 be standard iid gaussians on some probability space
(Ω, µ). Define a space H by

H :=

{
∞∑
i=1

aigi : {ai}∞i=1 ∈ `2

}

Note that H is a Hilbert space with respect to the inner product 〈X, Y 〉 := E(XY ). Now, let
X(1), . . . , X(n), Y (1), . . . , Y (n) ∈ H satisfy

∑n
i,j=1 aijE(X(i)Y (j)) ≥ Γ−ε, E(X(i))2,E(X(j))2 ≤

1, ε < Γ/4. (Since all separable Hilbert spaces are isomorphic, it suffices to prove the theorem
where H replaces `2).

We now use truncation. For X ∈ L2(µ), and m > 0 define X≤m := X1|X|≤m. Now,

Γ− ε ≤
n∑

i,j=1

aijE(X(i)Y (j)) , by choice of X(i), Y (j)

=
n∑

i,j=1

aijE(X
(i)
≤mY

(j)
≤m) +

n∑
i,j=1

aijE((X(i) −X(i)
≤m)Y (j)) +

n∑
i,j=1

aijE(X
(i)
≤m(Y (j) − Y (j)

≤m))

= M2

n∑
i,j=1

aijE

(
X

(i)
≤m

M

Y
(j)
≤m

M

)
+ max

k=1,...,n
‖X(k) −X(k)

≤m‖
n∑

i,j=1

aijE

(
X(i) −X(i)

≤m

maxk=1,...,n ‖X(k) −X(k)
≤m‖

Y (j)

)

+ max
k=1,...,n

‖Y (k) − Y (k)
≤m‖

n∑
i,j=1

aijE

(
X

(i)
≤m

Y (j) − Y (j)
≤m

maxk=1,...,n ‖Y (k) − Y (k)
≤m‖

)
≤M2∆ + 2Ce−M

2/4Γ , by definition of ∆, Γ

For the final inequality, we need two observations. First, the quantity ∆ achieves its max-
imum over the larger set εi, δj ∈ [−1, 1]. To see this, observe that

∑
aijεiδj is a linear

function of the variables εi, δj. Therefore, this linear function achieves its maximum on
the extreme points of the set {|εi| ≤ 1, |δj| ≤ 1}. These extreme points are given by

εi, δj ∈ {±1}. So, since X
(i)
≤m/M, Y

(i)
≤m/M ∈ [−1, 1], we take the pointwise maximum of∑

i,j ai,j(X
(i)
≤mY

(j)
≤m)/(M ·M). (Recall that the X

(i)
≤m, Y

(i)
≤m are real valued functions on a prob-

ability space.) The pointwise maximum is bounded by ∆, so we then take the expected
values, giving our desired bound of M2∆.

For our second observation, note that each Xk =
∑
bigi satisfies EX2

k =
∑

i≥1 b
2
i ≤ 1 (by

assumption). In particular, the distribution of Xk is ‖b‖`2 g where g is a standard gaussian.
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So, using Theorem 1.86 from the notes (“integration by parts”) we have

‖X(i) −X(i)
≤m‖2 = E(X(i) −X(i)

≤m)2 = 2

∫ ∞
M

(t−M)P(X(i) > t)dt

= 2

∫ ∞
0

tP(X(i) > t+M)dt = 2

∫ ∞
0

te−t
2/2e−M

2/2e−Mtdt

≤ 2e−M
2/2

∫ ∞
0

te−t
2/2dt ≤ C2e−M

2/2

Since ε < Γ/4, if we let M large so that 2Ce−M
2/4 < 1/2, we get Γ = O(∆).
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