
Graduate Probability Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due November 13, 12PM noon PST, to be uploaded as a single PDF document to blackboard
(under the Assignments tab).

Homework 10

Exercise 1. Prove Wald’s first equation. Let X1, X2, . . . : Ω → R be i.i.d. with E |X1| <
∞. Let N be a stopping time with EN < ∞. Let S0 := 0 and for any n ≥ 1, let
Sn := X1 + · · ·+Xn. Then ESN = EX1EN . (Hint: condition on N taking fixed values.)

Exercise 2. Let Ω = [0, 1]. Let P be the uniform probability law on Ω. Let X : [0, 1]→ R
be a random variable such that X(t) = t2 for all t ∈ [0, 1]. Let

G = σ{[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1]}.
Compute explicitly the function E(X|G). (It should be constant on each of the partition
elements.) Draw the function E(X|G) and compare it to a drawing of X itself.

Now, for every integer k > 1, let s = 2−k, and let Gk := σ{[0, s), [s, 2s), [2s, 3s), . . . , [1 −
2s, 1− s), [1− s, 1)}. Try to draw E(X|Gk). Prove that, for every t ∈ [0, 1],

lim
k→∞

E(X|Gk)(t) = X(t).

Exercise 3. Let X : Ω → R be a random variable with finite variance, and let t ∈ R.
Consider the function f : R→ R defined by f(t) = E(X − t)2. Show that the function f is
uniquely minimized when t = EX. That is, f(EX) < f(t) for all t ∈ R such that t 6= EX.
Put another way, setting t to be the mean of X minimizes the quantity E(X − t)2 uniquely.

The conditional expectation, being a piecewise version of taking an average, has a similar
property. Let B1, . . . , Bk ⊆ Ω such that Bi ∩ Bj = ∅ for all i, j ∈ {1, . . . , k} with i 6= j,
and ∪ki=1Bi = Ω. Write G = σ{B1, . . . , Bk}. Let Y be any other random variable such that,
for each 1 ≤ i ≤ k, Y is constant on Bi. Show that the quantity E(X − Y )2 is uniquely
minimized by such a Y only when Y = E(X|G).

Exercise 4. Let Ω = [0, 1]. Let P be the uniform probability law on Ω. Let X : [0, 1]→ R be
a random variable such that X(t) = t2 for all t ∈ [0, 1]. For every integer k > 1, let s = 2−k,
let Gk := σ{[0, s), [s, 2s), [2s, 3s), . . . , [1−2s, 1−s), [1−s, 1)}, and let Mk := E(X|Gk). Show
that the increments M2 −M1,M3 −M2, . . . are orthogonal in the following sense. For any
i, j ≥ 1 with i 6= j,

E(Mi+1 −Mi)(Mj+1 −Mj) = 0.

This property is sometimes called orthogonality of martingale increments.

Exercise 5. Let (Ω,F ,P) be a probability space, and let X : Ω→ R be a random variable
with E |X| <∞. Let G,H ⊆ F be σ-algebras. Let H be a σ-algebra that is independent of
σ(σ(X),G). Show that

E(X|σ(G,H)) = E(X|G).
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In particular, if we choose G = {∅,Ω}, we get: if H is independent of σ(X), then E(X|H) =
EX.

(Hint: Let G ∈ G, H ∈ H, let Y := E(X|G). Compare E(X1G∩H) and E(Y 1G∩H). Is the set
of A ∈ σ(G,H) such that E(X1A) = E(Y 1A) a monotone class?)

Exercise 6. Prove Jensen’s inequality for the conditional expectation. Let X : Ω→ R be a
random variable and let φ : R→ R be convex. Assume E |X| ,E |φ(X)| <∞. Then

φ(E(X|G)) ≤ E(φ(X)|G)

Conclude that for any 1 ≤ p ≤ ∞ we have the following contractive inequality for conditional
expectation

||E(X|G)||p ≤ ||X||p .

THE EXERCISES BELOW ARE OPTIONAL. The exercises below will not be
graded. You could consider the below exercises as practice questions for the
exam (if we even cover the corresponding material on the exam.)

Exercise 7 (Tower Property). Let (Ω,F ,P) be a probability space, and let X : Ω → R
be a random variable with E |X| < ∞. Let H ⊆ G ⊆ F be σ-algebras. Then E(X|H) =
E(E(X|G)|H).

Exercise 8 (Conditional Markov Inequality). Let p > 0. Let (Ω,F ,P) be a probability
space, and let X : Ω → R be a random variable with E |X|p < ∞. Let G ⊆ F be a
σ-algebra. For any A ∈ F , we denote P(A|G) := E(1A|G).

• Show that, almost surely,

E(|X|p |G) =

∫ ∞
0

ptp−1P(|X| > t|G)dt.

• Deduce a conditional version of Markov’s inequality: for any t > 0, almost surely,

P(|X| > t|G) ≤ E(|X|p |G)

tp
.

Exercise 9 (Conditional Hölder Inequality). Let p, q > 1 with 1
p

+ 1
q

= 1. Let (Ω,F ,P) be

a probability space, and let X, Y : Ω → R be random variables with E |X|p ,E |Y |q < ∞.
Let G ⊆ F be a σ-algebra. Show that, almost surely,

E(|XY | |G) ≤ [E(|X|p |G)]1/p[E(|Y |q |G)]1/q.

Exercise 10. Let H be a Hilbert space. Let g, h ∈ H. Prove the Cauchy-Schwarz inequality

|〈g, h〉| ≤ ||g|| ||h|| .

Show also the triangle inequality ||g + h|| ≤ ||g||+||h||, and the parallelogram law ||g + h||2+
||g − h||2 = 2 ||g||2 + 2 ||h||2.

Exercise 11. Let H be a Hilbert space, let M ⊆ H a closed subspace, and for any h ∈ H,
denote f(h) as the linear projection of H onto M . Show that h 7→ f(h) is actually a linear
projection. That is, verify that f(αg+h) = αf(g)+f(h) and f(f(h)) = f(h) for any α ∈ R,
g, h ∈ H.
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Exercise 12. Let X be F -measurable and let Y be G-measurable, real-valued random
variables, where G ⊆ F . Let µX|G be a regular conditional probability of X given G. Let
h : R2 → R be a Borel measurable function with E |h(X, Y )| < ∞. Then, almost surely
with respect to ω ∈ Ω,

E(h(X, Y )|G)(ω) =

∫
R

h(x, Y (ω))µX|G(x, ω)dx.

In particular, if Y is constant and if E |X| <∞,

E(X|G)(ω) =

∫
R

xµX|G(x, ω)dx.

Exercise 13 (Binomial Option Pricing Model). Let u, d > 0. Let 0 < p < 1. Let Y1, Y2, . . .
be independent random variables such that P(Yn = log u) =: p and P(Yn = log d) = 1 − p
∀ n ≥ 1. Let Z0 be a fixed constant. Let Zn := Y0 + · · · + Yn, and let Vn := eZn ∀ n ≥ 1.
In general, V0, V1, . . . will not be a martingale, but we can e.g. compute EVn, by modifying
V0, V1, . . . to be a martingale.

First, note that if n ≥ 1, then Zn has a binomial distribution, in the sense that

P(Zn = X0 + i log u+ (n− i) log d) =

(
n

i

)
pi(1− p)n−i, ∀ 0 ≤ i ≤ n.

For any n ≥ 1, let Fn := σ(Y0, . . . , Yn). Define

r := p(u− d)− 1 + d.

Here we chose r so that p = 1+r−d
u−d . For any n ≥ 0, define

Xn := (1 + r)−nVn.

Show that X0, X1, . . . is a martingale with respect to F0 ⊆ F1 ⊆ · · · . Consequently,

(1 + r)−nEVn = EV0, ∀n ≥ 0.

Exercise 14. Let M0,M1, . . . be a martingale with EM2
n <∞ for all n ≥ 0. Show that the

increments M2 −M1,M3 −M2, . . . are orthogonal in the following sense. For any i, j ≥ 1
with i 6= j,

E(Mi+1 −Mi)(Mj+1 −Mj) = 0.

This property is sometimes called orthogonality of martingale increments.

Exercise 15. Let X be a real-valued random variable on a probability space (Ω,F ,P).
Assume E |X| < ∞. Let F0 ⊆ F1 ⊆ · · · F be σ-algebras. For any n ≥ 0, define Xn :=
E(X|Fn). Show that X0, X1, . . . is a martingale. (Optional challenge question: For any
martingale ((Xn)n≥0, (Fn)n≥0), is there a random variable X with E |X| < ∞ such that
Xn = E(X|Fn) for all n ≥ 0?)

Exercise 16. Let M,N be stopping times for a martingale ((Xn)n≥0, (Fn)n≥0). Show that
max(M,N) and min(M,N) are stopping times. In particular, if n ≥ 0 is fixed, then
max(M,n) and min(M,n) are stopping times

Exercise 17. Let X0, X1, . . . and let Y0, Y1, . . . be submartingales adapted to the same
filtration F0 ⊆ F1 ⊆ · · · . Show that X0 + Y0, X1 + Y1, . . . is a submartingale adapted to the
filtration F0 ⊆ F1 ⊆ · · · . Consequently, a sum of supermartingales is a supermartingale,
and a sum of martingales is a martingale (when they are adapted to the same filtration).
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Exercise 18.

(i) Let ((Xn)n≥0, (Fn)n≥0) be a submartingale. Show that, almost surely, E(Xn|Fm) ≥
Xm for any n > m. Consequently, n 7→ EXn is nondecreasing.

(ii) Let ((Xn)n≥0, (Fn)n≥0) be a supermartingale. Show that, almost surely, E(Xn|Fm) ≤
Xm for any n > m. Consequently, n 7→ EXn is nonincreasing.

(iii) Let ((Xn)n≥0, (Fn)n≥0) be a martingale. Let φ : R→ R be convex. Assume E |φ(Xn)| <
∞ for all n ≥ 1. Show that ((φ(Xn))n≥0, (Fn)n≥0) is a submartingale.

(iv) Let ((Xn)n≥0, (Fn)n≥0) be a submartingale. Let φ : R → R be convex and nonde-
creasing. Assume E |φ(Xn)| < ∞ for all n ≥ 1. Show that ((φ(Xn))n≥0, (Fn)n≥0) is
a submartingale.

Exercise 19 (Azuma’s Inequality). In this exercise, we prove a generalization of the Ho-
effding inequality to martingales. Let c1, c2, . . . > 0. Let ((Xn)n≥0, (Fn)n≥0) be a martingale.
Assume that |Xn −Xn−1| ≤ cn for all n ≥ 1. Then for any t > 0,

P(|Xn −X0| > t) ≤ 2e
− t2

2
∑n

i=1
c2
i .

Prove this inequality using the following steps.

• Let α > 0. Show that Eeα(Xn−X0) = E[eα(Xn−1−X0)E(eα(Xn−Xn−1)|Fn−1)].
• For any y ∈ [−1, 1], show that eαcny ≤ 1+y

2
eαcn + 1−y

2
e−αcn .

• Take the conditional expectation of this inequality when y = (Xn −Xn−1)/cn.
• Now argue as in Hoeffding’s inequality.

Using Azuma’s inequality, deduce McDiarmid’s Inequality. Let X1, . . . , Xn be indepen-
dent real-valued random variables. Let c1, c2, . . . > 0. Let f : Rn → R be a measurable
function such that, for any 1 ≤ m ≤ n,

sup
x1,...,xm−1,xm,x′m,xm+1,...,xn∈R

|f(x1, . . . , xn)− f(x1, . . . , xm−1, x
′
m, xm+1, . . . , xn)| ≤ cm.

Then, for any t > 0,

P(|f(X1, . . . , Xn)− Ef(X1, . . . , Xn)| > t) ≤ 2e
− t2

2
∑n

i=1
c2
i .

(Note that a linear function f recovers Hoeffding’s inequality.)


