Graduate Probability Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due October 9, 12PM noon PST, to be uploaded as a single PDF document to blackboard
(under the Assignments tab).

Homework 6

Exercise 1 (Triangular Arrays). For any n > 1, let X,,1,..., X, @ — R be a collection
of independent random variables, and let S,, = X,,; +--- 4+ X,,,,. Let p € R.

(i) (Weak law) If EX,,; = p for all 1 <7 <n and sup, , E | X,.> < 0o, show that S, /n
converges in probability to p.

(ii) (Strong law) If EX,,; = p for all 1 <7 < n and sup, ,, E | X" < 00, show that S, /n
converges almost surely to p.

Exercise 2 (Optional). For any natural number n and a parameter 0 < p < 1, define
an Erdos-Renyi graph on n vertices with parameter p to be a random graph (V, F) on a
(deterministic) vertex set V' of n vertices (thus (V, ) is a random variable taking values in

the discrete space of all 2(3) possible undirected graphs one can place on V') such that the
events {i,j} € E for unordered pairs with i,j € V are independent and each occur with
probability p.

For each n > 1, let (V,,, E,,) be an Erdés-Renyi graph on n vertices with parameter p = 1/2
(we do not require the graphs to be independent of each other).

(i) Let |E,| be the number of edges in (V,, E,). Show that |E,|/(}) converges almost
surely to 1/2 (Hint: use Exercise 1.)

(ii) Let |7},| be the number of triangles in (V,,, E,) (i.e. the set of unordered triples
{i,j, k} with 4,5,k € V, such that {i,j},{i,k},{j,k} € E,), show that |T,|/(})
converges in probability to 1/8. (Note: there is not quite enough independence here
to directly apply the law of large numbers, so try using the second moment method
directly.)

(iii) Show in fact that |T},| /(%) converges almost surely to 1/8. (Note: you don’t need to
compute the fourth moment here.)

Exercise 3 (Optional). For each n > 1, let A, = (aijn)1<ij<n be a random n X n matrix
(i.e. arandom variable taking values in the space R™*" or C™*" of n X n matrices) such that
the entries a;;, of A, are independent in 4, j and take values in {—1,1} with a probability
of 1/2 each. We do not assume any independence for the sequence A;, A,, . . ..

(i) Show that the random variables TrA, A% /n? are equal to the constant 1, where A
denotes the matrix adjoint (which, in this case, is also the transpose) of A, and Tr
denotes the trace (or sum of the diagonal entries) of a matrix.



(ii) Show that for any natural number k > 1, the quantities ETr(A,A?)*/nf*1 are
bounded uniformly in n > 1 (i.e. they are bounded by a quantity Cj that can
depend on k but not on n). (It may be helpful to first try k¥ = 2 and k = 3.)

(iii) Let || A,|| denote the operator norm of A,, and let ¢ > 0. Show that ||A4,||/n'/?>*¢ con-
verges almost surely to zero, and that || A, | /n'/?>~¢ diverges almost surely to infinity.
(Hint: use the spectral theorem to relate || A, | with the quantities Tr(A,A*)".

Exercise 4 (Optional). The Cramér random model for the primes is a random subset P
of the natural numbers such that 1 ¢ P, 2 € P, and the events n € P for n = 3,4,... are

independent with P(n € P) := loén’ Here we used the restriction n > 3 so that loén < 1
This random set of integers P gives a reasonable way to model the primes 2,3,5,7,.. ., since

by the Prime Number Theorem, the number of primes less than n is approximately n/logn,
so the probability of n being a prime should be about 1/logn. The Cramér random model
can provide heuristic confirmations for many conjectures in analytic number theory:
e (Probabilistic prime number theorem) Show that mHn <z :n € P}| converges
almost surely to one as x — oc.
e (Probabilistic Riemann hypothesis) Let ¢ > 0. Show that

1 Todt
- < - — —
xl/2+e <|{n swin€Py /2 logt>

converges almost surely to zero as z — oo.

e (Probabilistic twin prime conjecture) Show that almost surely, there are an infinite
number of elements p of P such that p + 2 also lies in P.

e (Probabilistic Goldbach conjecture) Show that almost surely, all but finitely many
natural numbers n are expressible as the sum of two elements of P.

Exercise 5. This exercise proves the Hardy-Ramanujan Theorem. This theorem, with
probabilistic proof due to Turan, says that a typical large n € N has about log log n distinct
prime factors. Unlike the previous exercise, the probabilistic proof here proves a rigorous
result about primes.

Let P C N denote the set of prime numbers (in this exercise P is deterministic, not random).
When p € P and n € N, we use the notation p|n to denote “p divides n,” i.e. n/pis a positive
integer. Let # > 100 with = € N (so that loglogx > 1), and let N be a natural number that
is uniformly distributed in {1,2,...,z}. Assume Mertens’ theorem

Z L loglogz + O(1).

peP: p<z

e Show that the random variable »_ 5. .10 1pn has mean loglogz + O(1) and
variance O(loglog ). (Hint: up to reasonable errors, compute the means, variances
and covariances of the random variables 1py.)

e For any n € N, let f(n) denote the number of distinct prime factors of n. Show
that 1o£ gi\QN converges to 1 in probability as  — oo. (Hint: first show that f(IV) =
> pep: p<ai/io v + O(1).) More precisely, show that

f(N) —loglog N

g(N)/loglog N
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converges in probability to zero as * — oo, whenever g: N — R is any function
satisfying lim,, ,, g(n) = oc.

Exercise 6 (Kronecker’s Lemma). Let y1, ya, ... be a sequence of real numbers. Let 0 < b; <
by < --- be a sequence of real numbers that goes to infinity. Assume that lim, oo > | Um
exists. Then lim,, é > bmYm = 0. (Hint: if s, := > " _| 4, then the summation by

parts formula implies that i > bmYm = S — é an_:11(bm+1 — bm)Sm-)

Exercise 7 (Renewal Theory). Let t1, s, ... be positive, independent identically distributed
random variables. Let © € R. Assume Et; = p. For any positive integer j, we interpret ¢;
as the lifetime of the j* lightbulb (before burning out, at which point it is replaced by the
(7 + 1)% lightbulb). For any n > 1, let T, :== ¢; + - - - + t,, be the total lifetime of the first
n lightbulbs. For any positive integer ¢, let N; := min{n > 1: T,, > t} be the number of
lightbulbs that have been used up until time ¢. Show that V;/t converges almost surely to
1/pas t — oo. (Hint: if ¢, ¢ are positive integers, then {N; < ¢t} = {T,; > t}. Apply the
Strong Law to Ti;.)

Exercise 8 (Playing Monopoly Forever). Let t1,t, ... be independent random variables, all
of which are uniform on {1,2,3,4,5,6}. For any positive integer j, we think of ¢; as the
result of rolling a single fair six-sided die. For any n > 1, let T,, = t; + --- + t,, be the
total number of spaces that have been moved after the n'* roll. (We think of each roll as
the amount of moves forward of a game piece on a very large Monopoly game board.) For
any positive integer ¢, let Ny := min{n > 1: T,, > t} be the number of rolls needed to get
t spaces away from the start. Using Exercise 7, show that IV;/t converges almost surely to
2/7ast — 0.

Exercise 9 (Random Numbers are Normal). Let X be a uniformly distributed random
variable on (0,1). Let X; be the first digit in the decimal expansion of X. Let X5 be the
second digit in the decimal expansion of X. And so on.

e Show that the random variables X, X5, ... are uniform on {0, 1,2,...,9} and inde-
pendent.

e Fix m € {0,1,2,...,9}. Using the Strong Law of Large Numbers, show that with
probability one, the fraction of appearances of the number m in the first n digits of
X converges to 1/10 as n — oo.

(Optional): Show that for any ordered finite set of digits of length k, the fraction of appear-
ances of this set of digits in the first n digits of X converges to 107 as n — oco. (You already
proved the case k = 1 above.) That is, a randomly chosen number in (0, 1) is normal. On
the other hand, if we just pick some number such that v/2 — 1, then it may not be easy to
say whether or not that number is normal.

(As an optional exercise, try to explicitly write down a normal number. This may not be so
easy to do, even though a random number in (0, 1) satisfies this property!)

Exercise 10 (Cheap Law of the Iterated Logarithm). Let X, Xs,...: 2 — R be indepen-
dent random variables with mean zero and variance one. The Strong Law of Large Numbers
says that %(X 1+ -+ X,,) converges almost surely to zero (if the random variables are also

identically distributed). The Central Limit Theorem says that \/LH(X 1+ -+ X,,) converges
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in distribution to a standard Gaussian random variable (if the random variables are also
identically distributed). But what happens if we divide by some function of n in between
n'/?2 and n ? This Exercise gives a partial answer to this question.

Let € > 0. Show that
Xi+---4+ X,

n1/2(logn)(1/2)+e
converges to zero almost surely as n — oo. (Hint: Re-do the proof of the Strong Law of

Large Numbers, but divide by n'/?(logn)*/?*¢ instead of n. You don’t need to do any
truncation.)




