Please provide complete and well-written solutions to the following exercises.

Due October 9, 12PM noon PST, to be uploaded as a single PDF document to blackboard (under the Assignments tab).

Homework 6

Exercise 1 (Triangular Arrays). For any $n \geq 1$, let $X_{n,1}, \ldots, X_{n,n} \colon \Omega \to \mathbf{R}$ be a collection of independent random variables, and let $S_n = X_{n,1} + \cdots + X_{n,n}$. Let $\mu \in \mathbf{R}$.

- (i) (Weak law) If $\mathbf{E}X_{n,i} = \mu$ for all $1 \le i \le n$ and $\sup_{i,n} \mathbf{E} |X_{n,i}|^2 < \infty$, show that S_n/n converges in probability to μ .
- (ii) (Strong law) If $\mathbf{E}X_{n,i} = \mu$ for all $1 \le i \le n$ and $\sup_{i,n} \mathbf{E} |X_{n,i}|^4 < \infty$, show that S_n/n converges almost surely to μ .

Exercise 2 (Optional). For any natural number n and a parameter 0 , define an Erdös-Renyi graph on <math>n vertices with parameter p to be a random graph (V, E) on a (deterministic) vertex set V of n vertices (thus (V, E) is a random variable taking values in the discrete space of all $2^{\binom{n}{2}}$ possible undirected graphs one can place on V) such that the events $\{i, j\} \in E$ for unordered pairs with $i, j \in V$ are independent and each occur with probability p.

For each $n \ge 1$, let (V_n, E_n) be an Erdös-Renyi graph on n vertices with parameter p = 1/2 (we do not require the graphs to be independent of each other).

- (i) Let $|E_n|$ be the number of edges in (V_n, E_n) . Show that $|E_n|/\binom{n}{2}$ converges almost surely to 1/2 (Hint: use Exercise 1.)
- (ii) Let $|T_n|$ be the number of triangles in (V_n, E_n) (i.e. the set of unordered triples $\{i, j, k\}$ with $i, j, k \in V_n$ such that $\{i, j\}, \{i, k\}, \{j, k\} \in E_n$), show that $|T_n| / \binom{n}{3}$ converges in probability to 1/8. (Note: there is not quite enough independence here to directly apply the law of large numbers, so try using the second moment method directly.)
- (iii) Show in fact that $|T_n|/\binom{n}{3}$ converges almost surely to 1/8. (Note: you don't need to compute the fourth moment here.)

Exercise 3 (Optional). For each $n \geq 1$, let $A_n = (a_{ij,n})_{1 \leq i,j \leq n}$ be a random $n \times n$ matrix (i.e. a random variable taking values in the space $\mathbf{R}^{n \times n}$ or $\mathbf{C}^{n \times n}$ of $n \times n$ matrices) such that the entries $a_{ij,n}$ of A_n are independent in i,j and take values in $\{-1,1\}$ with a probability of 1/2 each. We do not assume any independence for the sequence A_1, A_2, \ldots

(i) Show that the random variables $\operatorname{Tr} A_n A_n^*/n^2$ are equal to the constant 1, where A_n^* denotes the matrix adjoint (which, in this case, is also the transpose) of A_n and Tr denotes the trace (or sum of the diagonal entries) of a matrix.

- (ii) Show that for any natural number $k \geq 1$, the quantities $\mathbf{E}\mathrm{Tr}(A_nA_n^*)^k/n^{k+1}$ are bounded uniformly in $n \geq 1$ (i.e. they are bounded by a quantity C_k that can depend on k but not on n). (It may be helpful to first try k=2 and k=3.)
- (iii) Let $||A_n||$ denote the operator norm of A_n , and let $\varepsilon > 0$. Show that $||A_n||/n^{1/2+\varepsilon}$ converges almost surely to zero, and that $||A_n||/n^{1/2-\varepsilon}$ diverges almost surely to infinity. (Hint: use the spectral theorem to relate $||A_n||$ with the quantities $\operatorname{Tr}(A_n A_n^*)^k$.

Exercise 4 (Optional). The Cramér random model for the primes is a random subset \mathcal{P} of the natural numbers such that $1 \notin \mathcal{P}$, $2 \in \mathcal{P}$, and the events $n \in \mathcal{P}$ for $n = 3, 4, \ldots$ are independent with $\mathbf{P}(n \in \mathcal{P}) := \frac{1}{\log n}$. Here we used the restriction $n \geq 3$ so that $\frac{1}{\log n} < 1$. This random set of integers \mathcal{P} gives a reasonable way to model the primes $2, 3, 5, 7, \ldots$, since by the Prime Number Theorem, the number of primes less than n is approximately $n/\log n$, so the probability of n being a prime should be about $1/\log n$. The Cramér random model can provide heuristic confirmations for many conjectures in analytic number theory:

- (Probabilistic prime number theorem) Show that $\frac{1}{x/\log x}|\{n \leq x : n \in \mathcal{P}\}|$ converges almost surely to one as $x \to \infty$.
- (Probabilistic Riemann hypothesis) Let $\varepsilon > 0$. Show that

$$\frac{1}{x^{1/2+\varepsilon}} \Big(|\{n \le x : n \in \mathcal{P}\}| - \int_2^x \frac{dt}{\log t} \Big)$$

converges almost surely to zero as $x \to \infty$.

- (Probabilistic twin prime conjecture) Show that almost surely, there are an infinite number of elements p of \mathcal{P} such that p+2 also lies in \mathcal{P} .
- (Probabilistic Goldbach conjecture) Show that almost surely, all but finitely many natural numbers n are expressible as the sum of two elements of \mathcal{P} .

Exercise 5. This exercise proves the Hardy-Ramanujan Theorem. This theorem, with probabilistic proof due to Turán, says that a typical large $n \in \mathbb{N}$ has about $\log \log n$ distinct prime factors. Unlike the previous exercise, the probabilistic proof here proves a rigorous result about primes.

Let $\mathcal{P} \subseteq \mathbf{N}$ denote the set of prime numbers (in this exercise \mathcal{P} is deterministic, not random). When $p \in \mathcal{P}$ and $n \in \mathbf{N}$, we use the notation p|n to denote "p divides n," i.e. n/p is a positive integer. Let $x \geq 100$ with $x \in \mathbf{N}$ (so that $\log \log x \geq 1$), and let N be a natural number that is uniformly distributed in $\{1, 2, \ldots, x\}$. Assume Mertens' theorem

$$\sum_{p \in \mathcal{P}: \ p \le x} \frac{1}{p} = \log \log x + O(1).$$

- Show that the random variable $\sum_{p \in \mathcal{P}: p \leq x^{1/10}} 1_{p|N}$ has mean $\log \log x + O(1)$ and variance $O(\log \log x)$. (Hint: up to reasonable errors, compute the means, variances and covariances of the random variables $1_{p|N}$.)
- For any $n \in \mathbb{N}$, let f(n) denote the number of distinct prime factors of n. Show that $\frac{f(N)}{\log \log N}$ converges to 1 in probability as $x \to \infty$. (Hint: first show that $f(N) = \sum_{p \in \mathcal{P}: p < x^{1/10}} 1_{p|N} + O(1)$.) More precisely, show that

$$\frac{f(N) - \log \log N}{g(N)\sqrt{\log \log N}}$$

converges in probability to zero as $x \to \infty$, whenever $g \colon \mathbf{N} \to \mathbf{R}$ is any function satisfying $\lim_{n\to\infty} g(n) = \infty$.

Exercise 6 (Kronecker's Lemma). Let y_1, y_2, \ldots be a sequence of real numbers. Let $0 < b_1 \le b_2 \le \cdots$ be a sequence of real numbers that goes to infinity. Assume that $\lim_{n\to\infty} \sum_{m=1}^n y_m$ exists. Then $\lim_{n\to\infty} \frac{1}{b_n} \sum_{m=1}^n b_m y_m = 0$. (Hint: if $s_n := \sum_{m=1}^n y_m$, then the summation by parts formula implies that $\frac{1}{b_n} \sum_{m=1}^n b_m y_m = s_n - \frac{1}{b_n} \sum_{m=1}^{n-1} (b_{m+1} - b_m) s_m$.)

Exercise 7 (Renewal Theory). Let t_1, t_2, \ldots be positive, independent identically distributed random variables. Let $\mu \in \mathbf{R}$. Assume $\mathbf{E}t_1 = \mu$. For any positive integer j, we interpret t_j as the lifetime of the j^{th} lightbulb (before burning out, at which point it is replaced by the $(j+1)^{st}$ lightbulb). For any $n \geq 1$, let $T_n := t_1 + \cdots + t_n$ be the total lifetime of the first n lightbulbs. For any positive integer t, let $N_t := \min\{n \geq 1 : T_n \geq t\}$ be the number of lightbulbs that have been used up until time t. Show that N_t/t converges almost surely to $1/\mu$ as $t \to \infty$. (Hint: if c, t are positive integers, then $\{N_t \leq ct\} = \{T_{ct} \geq t\}$. Apply the Strong Law to T_{ct} .)

Exercise 8 (Playing Monopoly Forever). Let t_1, t_2, \ldots be independent random variables, all of which are uniform on $\{1, 2, 3, 4, 5, 6\}$. For any positive integer j, we think of t_j as the result of rolling a single fair six-sided die. For any $n \geq 1$, let $T_n = t_1 + \cdots + t_n$ be the total number of spaces that have been moved after the n^{th} roll. (We think of each roll as the amount of moves forward of a game piece on a very large Monopoly game board.) For any positive integer t, let $N_t := \min\{n \geq 1 : T_n \geq t\}$ be the number of rolls needed to get t spaces away from the start. Using Exercise 7, show that N_t/t converges almost surely to 2/7 as $t \to \infty$.

Exercise 9 (Random Numbers are Normal). Let X be a uniformly distributed random variable on (0,1). Let X_1 be the first digit in the decimal expansion of X. Let X_2 be the second digit in the decimal expansion of X. And so on.

- Show that the random variables X_1, X_2, \ldots are uniform on $\{0, 1, 2, \ldots, 9\}$ and independent.
- Fix $m \in \{0, 1, 2, ..., 9\}$. Using the Strong Law of Large Numbers, show that with probability one, the fraction of appearances of the number m in the first n digits of X converges to 1/10 as $n \to \infty$.

(Optional): Show that for any ordered finite set of digits of length k, the fraction of appearances of this set of digits in the first n digits of X converges to 10^{-k} as $n \to \infty$. (You already proved the case k = 1 above.) That is, a randomly chosen number in (0,1) is normal. On the other hand, if we just pick some number such that $\sqrt{2} - 1$, then it may not be easy to say whether or not that number is normal.

(As an optional exercise, try to explicitly write down a normal number. This may not be so easy to do, even though a random number in (0,1) satisfies this property!)

Exercise 10 (Cheap Law of the Iterated Logarithm). Let $X_1, X_2, \ldots : \Omega \to \mathbf{R}$ be independent random variables with mean zero and variance one. The Strong Law of Large Numbers says that $\frac{1}{n}(X_1 + \cdots + X_n)$ converges almost surely to zero (if the random variables are also identically distributed). The Central Limit Theorem says that $\frac{1}{\sqrt{n}}(X_1 + \cdots + X_n)$ converges

in distribution to a standard Gaussian random variable (if the random variables are also identically distributed). But what happens if we divide by some function of n in between $n^{1/2}$ and n? This Exercise gives a partial answer to this question.

Let $\varepsilon > 0$. Show that

$$\frac{X_1 + \dots + X_n}{n^{1/2}(\log n)^{(1/2) + \varepsilon}}$$

converges to zero almost surely as $n \to \infty$. (Hint: Re-do the proof of the Strong Law of Large Numbers, but divide by $n^{1/2}(\log n)^{(1/2)+\varepsilon}$ instead of n. You don't need to do any truncation.)