
Graduate Probability Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due October 9, 12PM noon PST, to be uploaded as a single PDF document to blackboard
(under the Assignments tab).

Homework 6

Exercise 1 (Triangular Arrays). For any n ≥ 1, let Xn,1, . . . , Xn,n : Ω → R be a collection
of independent random variables, and let Sn = Xn,1 + · · ·+Xn,n. Let µ ∈ R.

(i) (Weak law) If EXn,i = µ for all 1 ≤ i ≤ n and supi,n E |Xn,i|2 <∞, show that Sn/n
converges in probability to µ.

(ii) (Strong law) If EXn,i = µ for all 1 ≤ i ≤ n and supi,n E |Xn,i|4 <∞, show that Sn/n
converges almost surely to µ.

Exercise 2 (Optional). For any natural number n and a parameter 0 < p < 1, define
an Erdös-Renyi graph on n vertices with parameter p to be a random graph (V,E) on a
(deterministic) vertex set V of n vertices (thus (V,E) is a random variable taking values in

the discrete space of all 2(n
2) possible undirected graphs one can place on V ) such that the

events {i, j} ∈ E for unordered pairs with i, j ∈ V are independent and each occur with
probability p.

For each n ≥ 1, let (Vn, En) be an Erdös-Renyi graph on n vertices with parameter p = 1/2
(we do not require the graphs to be independent of each other).

(i) Let |En| be the number of edges in (Vn, En). Show that |En| /
(
n
2

)
converges almost

surely to 1/2 (Hint: use Exercise 1.)
(ii) Let |Tn| be the number of triangles in (Vn, En) (i.e. the set of unordered triples
{i, j, k} with i, j, k ∈ Vn such that {i, j}, {i, k}, {j, k} ∈ En), show that |Tn| /

(
n
3

)
converges in probability to 1/8. (Note: there is not quite enough independence here
to directly apply the law of large numbers, so try using the second moment method
directly.)

(iii) Show in fact that |Tn| /
(
n
3

)
converges almost surely to 1/8. (Note: you don’t need to

compute the fourth moment here.)

Exercise 3 (Optional). For each n ≥ 1, let An = (aij,n)1≤i,j≤n be a random n × n matrix
(i.e. a random variable taking values in the space Rn×n or Cn×n of n×n matrices) such that
the entries aij,n of An are independent in i, j and take values in {−1, 1} with a probability
of 1/2 each. We do not assume any independence for the sequence A1, A2, . . ..

(i) Show that the random variables TrAnA
∗
n/n

2 are equal to the constant 1, where A∗n
denotes the matrix adjoint (which, in this case, is also the transpose) of An and Tr
denotes the trace (or sum of the diagonal entries) of a matrix.
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(ii) Show that for any natural number k ≥ 1, the quantities ETr(AnA
∗
n)k/nk+1 are

bounded uniformly in n ≥ 1 (i.e. they are bounded by a quantity Ck that can
depend on k but not on n). (It may be helpful to first try k = 2 and k = 3.)

(iii) Let ‖An‖ denote the operator norm of An, and let ε > 0. Show that ‖An‖/n1/2+ε con-
verges almost surely to zero, and that ‖An‖/n1/2−ε diverges almost surely to infinity.
(Hint: use the spectral theorem to relate ‖An‖ with the quantities Tr(AnA

∗
n)k.

Exercise 4 (Optional). The Cramér random model for the primes is a random subset P
of the natural numbers such that 1 /∈ P , 2 ∈ P , and the events n ∈ P for n = 3, 4, . . . are
independent with P(n ∈ P) := 1

logn
. Here we used the restriction n ≥ 3 so that 1

logn
< 1.

This random set of integers P gives a reasonable way to model the primes 2, 3, 5, 7, . . ., since
by the Prime Number Theorem, the number of primes less than n is approximately n/ log n,
so the probability of n being a prime should be about 1/ log n. The Cramér random model
can provide heuristic confirmations for many conjectures in analytic number theory:

• (Probabilistic prime number theorem) Show that 1
x/ log x

|{n ≤ x : n ∈ P}| converges

almost surely to one as x→∞.
• (Probabilistic Riemann hypothesis) Let ε > 0. Show that

1

x1/2+ε

(
|{n ≤ x : n ∈ P}| −

∫ x

2

dt

log t

)
converges almost surely to zero as x→∞.
• (Probabilistic twin prime conjecture) Show that almost surely, there are an infinite

number of elements p of P such that p+ 2 also lies in P .
• (Probabilistic Goldbach conjecture) Show that almost surely, all but finitely many

natural numbers n are expressible as the sum of two elements of P .

Exercise 5. This exercise proves the Hardy-Ramanujan Theorem. This theorem, with
probabilistic proof due to Turán, says that a typical large n ∈ N has about log log n distinct
prime factors. Unlike the previous exercise, the probabilistic proof here proves a rigorous
result about primes.

Let P ⊆ N denote the set of prime numbers (in this exercise P is deterministic, not random).
When p ∈ P and n ∈ N, we use the notation p|n to denote “p divides n,” i.e. n/p is a positive
integer. Let x ≥ 100 with x ∈ N (so that log log x ≥ 1), and let N be a natural number that
is uniformly distributed in {1, 2, . . . , x}. Assume Mertens’ theorem∑

p∈P : p≤x

1

p
= log log x+O(1).

• Show that the random variable
∑

p∈P : p≤x1/10 1p|N has mean log log x + O(1) and

variance O(log log x). (Hint: up to reasonable errors, compute the means, variances
and covariances of the random variables 1p|N .)
• For any n ∈ N, let f(n) denote the number of distinct prime factors of n. Show

that f(N)
log logN

converges to 1 in probability as x→∞. (Hint: first show that f(N) =∑
p∈P : p≤x1/10 1p|N +O(1).) More precisely, show that

f(N)− log logN

g(N)
√

log logN
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converges in probability to zero as x → ∞, whenever g : N → R is any function
satisfying limn→∞ g(n) =∞.

Exercise 6 (Kronecker’s Lemma). Let y1, y2, . . . be a sequence of real numbers. Let 0 < b1 ≤
b2 ≤ · · · be a sequence of real numbers that goes to infinity. Assume that limn→∞

∑n
m=1 ym

exists. Then limn→∞
1
bn

∑n
m=1 bmym = 0. (Hint: if sn :=

∑n
m=1 ym, then the summation by

parts formula implies that 1
bn

∑n
m=1 bmym = sn − 1

bn

∑n−1
m=1(bm+1 − bm)sm.)

Exercise 7 (Renewal Theory). Let t1, t2, . . . be positive, independent identically distributed
random variables. Let µ ∈ R. Assume Et1 = µ. For any positive integer j, we interpret tj
as the lifetime of the jth lightbulb (before burning out, at which point it is replaced by the
(j + 1)st lightbulb). For any n ≥ 1, let Tn := t1 + · · · + tn be the total lifetime of the first
n lightbulbs. For any positive integer t, let Nt := min{n ≥ 1: Tn ≥ t} be the number of
lightbulbs that have been used up until time t. Show that Nt/t converges almost surely to
1/µ as t → ∞. (Hint: if c, t are positive integers, then {Nt ≤ ct} = {Tct ≥ t}. Apply the
Strong Law to Tct.)

Exercise 8 (Playing Monopoly Forever). Let t1, t2, . . . be independent random variables, all
of which are uniform on {1, 2, 3, 4, 5, 6}. For any positive integer j, we think of tj as the
result of rolling a single fair six-sided die. For any n ≥ 1, let Tn = t1 + · · · + tn be the
total number of spaces that have been moved after the nth roll. (We think of each roll as
the amount of moves forward of a game piece on a very large Monopoly game board.) For
any positive integer t, let Nt := min{n ≥ 1: Tn ≥ t} be the number of rolls needed to get
t spaces away from the start. Using Exercise 7, show that Nt/t converges almost surely to
2/7 as t→∞.

Exercise 9 (Random Numbers are Normal). Let X be a uniformly distributed random
variable on (0, 1). Let X1 be the first digit in the decimal expansion of X. Let X2 be the
second digit in the decimal expansion of X. And so on.

• Show that the random variables X1, X2, . . . are uniform on {0, 1, 2, . . . , 9} and inde-
pendent.
• Fix m ∈ {0, 1, 2, . . . , 9}. Using the Strong Law of Large Numbers, show that with

probability one, the fraction of appearances of the number m in the first n digits of
X converges to 1/10 as n→∞.

(Optional): Show that for any ordered finite set of digits of length k, the fraction of appear-
ances of this set of digits in the first n digits of X converges to 10−k as n→∞. (You already
proved the case k = 1 above.) That is, a randomly chosen number in (0, 1) is normal. On
the other hand, if we just pick some number such that

√
2 − 1, then it may not be easy to

say whether or not that number is normal.

(As an optional exercise, try to explicitly write down a normal number. This may not be so
easy to do, even though a random number in (0, 1) satisfies this property!)

Exercise 10 (Cheap Law of the Iterated Logarithm). Let X1, X2, . . . : Ω→ R be indepen-
dent random variables with mean zero and variance one. The Strong Law of Large Numbers
says that 1

n
(X1 + · · ·+Xn) converges almost surely to zero (if the random variables are also

identically distributed). The Central Limit Theorem says that 1√
n
(X1 + · · ·+Xn) converges



4

in distribution to a standard Gaussian random variable (if the random variables are also
identically distributed). But what happens if we divide by some function of n in between
n1/2 and n ? This Exercise gives a partial answer to this question.

Let ε > 0. Show that
X1 + · · ·+Xn

n1/2(log n)(1/2)+ε

converges to zero almost surely as n → ∞. (Hint: Re-do the proof of the Strong Law of
Large Numbers, but divide by n1/2(log n)(1/2)+ε instead of n. You don’t need to do any
truncation.)


