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Abstract. These lecture notes are based upon the textbooks Cassella and Berger, Statistical Inference
and Keener, Theoretical Statistics.
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1. Review of Probability Theory

1.1. Random Variables, Expectation.

Definition 1.1 (Universal Set). In a specific problem, we assume the existence of a sample
space, or universal set Ω which contains all other sets. The universal set represents all pos-
sible outcomes of some random process. We sometimes call the universal set the universe.
The universe is always assumed to be nonempty. Subsets of the sample space are sometimes
called events.

Definition 1.2 (Countable Set Operations). Let A1, A2, . . . ⊆ Ω. We define

∞⋃
i=1

Ai = {x ∈ Ω: ∃ a positive integer j such that x ∈ Aj}.

∞⋂
i=1

Ai = {x ∈ Ω: x ∈ Aj, ∀ positive integers j}.

Exercise 1.3. Prove that the set of real numbers R can be written as the countable union

R =
∞⋃
j=1

[−j, j].

(Hint: you should show that the left side contains the right side, and also show that the
right side contains the left side.)

Prove that the singleton set {0} can be written as

{0} =
∞⋂
j=1

[−1/j, 1/j].
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Definition 1.4 (Disjointness). Let A,B be sets in some universe Ω. We say that A and
B are disjoint if A ∩ B = ∅. A collection of sets A1, A2, . . . in Ω is said to be a partition
of Ω if ∪∞

i=1Ai = Ω, and if, for all i, j ≥ 1 with i ̸= j, we have Ai ∩ Aj = ∅.

Remark 1.5. Two or three sets can be visualized with a Venn diagram, though the Venn
diagram is no longer very helpful when considering more than three sets.

The following properties follow from the above definitions.

Proposition 1.6. Let A,B,C be sets in a universe Ω.

(i) A ∪B = B ∪ A.
(ii) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
(iii) (Ac)c = A.
(iv) A ∪ Ω = Ω.
(v) A ∪ (B ∪ C) = (A ∪B) ∪ C.
(vi) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
(vii) A ∩ Ac = ∅.
(viii) A ∩ Ω = A.

Exercise 1.7. Using the definitions of intersection, union and complement, prove properties
(ii) and (iii). (Hint: to prove property (ii), it may be helpful to first draw a Venn diagram
of A,B,C. Now, let x ∈ Ω. Consider where x could possibly be with respect to A,B,C.
For example, we could have x ∈ A, x /∈ B, x ∈ C. We could also have x ∈ A, x ∈ B, x /∈ C.
And so on. In total, there should be 23 = 8 possibilities for the location of x, with respect
to A,B,C. Construct a truth table which considers all eight such possibilities for each side
of the purported equality A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).)

Exercise 1.8 (De Morgan’s Laws). Let A1, A2, . . . be sets in some universe Ω. Then(
∞⋃
i=1

Ai

)c

=
∞⋂
i=1

Ac
i ,

(
∞⋂
i=1

Ai

)c

=
∞⋃
i=1

Ac
i .

Exercise 1.9. Let A1, A2, . . . be sets in some universe Ω. Let B ⊆ Ω. Show the following
generalization of Proposition 1.6(ii).

B ∩

(
∞⋃
k=1

Ak

)
=

∞⋃
k=1

(Ak ∩B).

Exercise 1.10. Let f : R → R be a function. Show that

∪y∈R{x ∈ R : f(x) = y} = R.

Also, show that the union on the left is disjoint. That is, if y1 ̸= y2 and y1, y2 ∈ R, then
{x ∈ R : f(x) = y1} ∩ {x ∈ R : f(x) = y2} = ∅.

Definition 1.11. A Probability Law (or probability distribution) P on a sample space
Ω is a function whose domain is the set of all subsets of Ω, and whose range is contained in
[0, 1], such that

(i) For any A ⊆ Ω, we have P(A) ≥ 0. (Nonnegativity)
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(ii) For any A,B ⊆ Ω such that A ∩B = ∅, we have

P(A ∪B) = P(A) +P(B).

If A1, A2, . . . ⊆ Ω and Ai∩Aj = ∅ whenever i, j are positive integers with i ̸= j, then

P

(
∞⋃
k=1

Ak

)
=

∞∑
k=1

P(Ak). (Additivity)

(iii) We have P(Ω) = 1. (Normalization)

More generally, a measure µ satisfies properties (i) and (ii) and has a range in [0,∞].

Remark 1.12. For technical reasons, it is sometimes not possible to define a probability
law on an arbitrary uncountable sample space. However, in practice, many sample spaces
will be finite or countable, so this issue will not arise in many applications of statistics.
Nevertheless, this is an important foundational issue in probability theory; for more on the
subject, take a class on measure theory, or consult my graduate probability notes here.

Proposition 1.13 (Properties of Probability Laws). Let Ω be a sample space and let
P be a probability law on Ω. Let A,B,C ⊆ Ω.

• If A ⊆ B, then P(A) ≤ P(B).
• P(A ∪B) = P(A) +P(B)−P(A ∩B).
• P(A ∪B) ≤ P(A) +P(B).
• P(A ∪B ∪ C) = P(A) +P(Ac ∩B) +P(Ac ∩Bc ∩ C).

Let n be a positive integer. Let A1, . . . , An ⊆ Ω. Then

P

(
n⋃

k=1

Ak

)
≤

n∑
k=1

P(Ak).

Proof. Let A ⊆ B. Then B = (B ∩ A) ∪ (B ∩ Ac), and (B ∩ A) ∩ (B ∩ Ac) = ∅. So, using
Axiom (ii) for probability laws, B ∩ A = A, and using Axiom (i) for probability laws,

P(B) = P(B ∩ A) +P(B ∩ Ac) = P(A) +P(B ∩ Ac) ≥ P(A).

So, the first item is proven. We now prove the second item. Write A = (A ∖ B) ∪ (A ∩ B)
and note that A ∖ B and A ∩ B are disjoint. Similarly, write B = (B ∖ A) ∪ (B ∩ A) and
note that (B ∖ A) and (B ∩ A) are disjoint. Finally, we can write A ∪ B as the union of
three disjoint sets: A ∪B = (A∖B) ∪ (A ∩B) ∪ (B ∖ A).

So, using Axiom (ii) for probability laws twice,

P(A) +P(B) = P(A∖B) +P(A ∩B) +P(B ∖ A) +P(A ∩B) = P(A ∪B) +P(A ∩B).

So, the second item is proven. The third and fourth items are left to the exercises. The final
inequality follows from the third item and induction on n. □

Definition 1.14 (Random Variable). Let Ω be a sample space. Let P be a probability law
on Ω. A random variable X is a function X : Ω → R. (Sometimes we might also consider
a random variable to be a function from Ω to another set.) Let n be a positive integer. A
random vector X is a function X : Ω → Rn. A discrete random variable is a random
variable whose range is either finite or countably infinite. A probability density function
(PDF) is a function f : R → [0,∞) such that

∫∞
−∞ f(x)dx = 1, and such that, for any
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−∞ ≤ a ≤ b ≤ ∞, the integral
∫ b

a
f(x)dx exists. A random variable X is called continuous

if there exists a probability density function f such that, for any −∞ ≤ a ≤ b ≤ ∞, we have

P(a ≤ X ≤ b) =

∫ b

a

f(x)dx.

When this equality holds, we call f the probability density function of X.
Let X be any random variable. We then define the cumulative distribution function

(CDF) F : R → [0, 1] of X by

F (x) := P(X ≤ x), ∀x ∈ R.

We say two random variables X, Y are identically distributed if they have the same CDF.

Remark 1.15. There is another foundational issue here for uncountable sample spaces which
we will not discuss further. It suffices to say that the definition of a random variable should
have an extra condition, which is not needed for finite or countable sample spaces; for more
on the subject, take a class on measure theory, or consult my graduate probability notes
here.

Definition 1.16 (Probability Mass Function). Let X be a discrete random variable on
a sample space Ω, so that X : Ω → R. The probability mass function (or PMF) of X,
denote fX : R → [0, 1] is defined by

fX(x) = P(X = x) = P({X = x}) = P({ω ∈ Ω: X(ω) = x}), x ∈ R.

Definition 1.17 (Independence). Let A1, A2, . . . be subsets of a sample space Ω, and let
P be a probability law on Ω. We say that A1, A2, . . . are independent if, for any finite
subset S of {1, 2, . . .}, we have

P (∩i∈SAi) =
∏
i∈S

P(Ai).

Let X1 : Ω → Rn, X2 : Ω → Rn, . . . be random variables. We say that X1, X2, . . . are inde-
pendent if, for any integer m ≥ 1 and for any B1, B2, . . . ,⊆ Rn,

P (∩m
i=1{Xi ∈ Bi}) =

m∏
i=1

P(Xi ∈ Bi).

Here we denoted {X ∈ B} := {ω ∈ Ω: X(ω) ∈ B} where X : Ω → Rn and B ⊆ Rn.

1.2. Examples of Random Variables. We now give descriptions of some commonly en-
countered random variables.

Definition 1.18 (Bernoulli Random Variable). Let 0 < p < 1. A random variable X is
called a Bernoulli random variable with parameter p if X has the following PMF:

P(X = k) =


p , if k = 1

1− p , if k = 0

0 , otherwise.
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Definition 1.19 (Binomial Random Variable). Let 0 < p < 1 and let n be a positive
integer. A random variable X is called a binomial random variable with parameters
n and p if X has the following PMF. If k is an integer with 0 ≤ k ≤ n, then

P(X = k) =

(
n

k

)
pk(1− p)n−k.

For any other k, we have P(X = k) = 0.

Recall that a sum of n independent Bernoulli random variables with parameter 0 < p < 1
is a binomial random variable with parameters n and p.

Definition 1.20 (Geometric Random Variable). Let 0 < p < 1. A random variable X
is called a geometric random variable with parameter p if X has the following PMF.
If k is a positive integer, then

P(X = k) = (1− p)k−1p.

For any other k, we have P(X = k) = 0. Note that X is the number of times that are
needed to flip a biased coin in order to get a heads (if the coin has probability p of landing
heads).

Definition 1.21 (Negative Binomial Random Variable). Let 0 < p < 1 and let n be
a positive integer. A random variable X is called a negative binomial random variable
with parameters n and p if X has the following PMF. If k is an integer with n ≤ k, then

P(X = k) =

(
k − 1

n− 1

)
(1− p)k−npn.

For any other k, we have P(X = k) = 0. Note that X is the number of times that are
needed to flip a biased coin in order to get n heads (if the coin has probability p of landing
heads). The case n = 1 recovers the geometric random variable.

The negative binomial is equivalently defined as Y = X − n, i.e. the number of tails that
occur before the nth heads occurs, so that for any k ≥ 0,

P(Y = k) = P(X = k + n) =

(
k + n− 1

n− 1

)
(1− p)kpn =

(
k + n− 1

k

)
(1− p)kpn.

Definition 1.22 (Hypergeometric Random Variable). Let m,n, p be positive integers
such thatm ≤ p. A random variableX is called a hypergeometric random variable with
parameters m,n, p if X has the following PMF. If k is a positive integer with max(0, p +
m− n) ≤ k ≤ min(m, p), then

P(X = k) =

(
m
k

)(
n−m
p−k

)(
n
p

)
For any other k, we have P(X = k) = 0.

Suppose we have an urn containing n cubes, where m cubes are red and the remaining
n−m cubes are blue. We then randomly select p cubes from the urn, without replacement.
Let 0 ≤ k ≤ m be an integer. Then the probability that exactly k of the selected cubes are
red is given by the above distribution, since

(
m
k

)
is the number of ways to select k of the

(labelled) red cubes,
(
n−m
p−k

)
is the number of ways to select p−k of the (labelled) blue cubes,

and we then divide by the total number of ways to select p cubes from all n of them.
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Definition 1.23 (Poisson Random Variable). Let λ > 0. A random variable X is called
a Poisson random variable with parameter λ if X has the following PMF. If k is a
nonnegative integer, then

P(X = k) = e−λλ
k

k!
.

For any other x, we have pX(x) = 0.

Example 1.24. We say that a random variable X is uniformly distributed in [c, d] when
X has the following density function: f(x) = 1

d−c
when x ∈ [c, d], and f(x) = 0 otherwise.

Example 1.25. Let λ > 0. A random variable X is called an exponential random
variable with parameter λ if X has the following density function: f(x) = λe−λx when
x ≥ 0, and f(x) = 0 otherwise.

Definition 1.26 (Normal Random Variable). Let µ ∈ R, σ > 0. A continuous random
variable X is said to be normal or Gaussian with mean µ and variance σ2 if X has the
following density function:

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , ∀x ∈ R.

In particular, a standard normal or standard Gaussian random variable is defined to
be a normal with µ = 0 and σ = 1.

Proposition 1.27 (Poisson Approximation to the Binomial). Let λ > 0. For each
positive integer n, let 0 < pn < 1, and let Xn be a binomial distributed random variable with
parameters n and pn. Assume that limn→∞ pn = 0 and limn→∞ npn = λ. Then, for any
nonnegative integer k, we have

lim
n→∞

P(Xn = k) = e−λλ
k

k!
.

Lemma 1.28. Let λ > 0. For each positive integer n, let λn > 0. Assume that limn→∞ λn =
λ. Then

lim
n→∞

(
1− λn

n

)n

= e−λ

Proof. Let log denote the natural logarithm. For any x < 1, define f(x) = log(1− x). From
L’Hôpital’s Rule,

lim
x→0

f(x)

x
= lim

x→0
f ′(x) = lim

x→0

−1

1− x
= −1. (∗)

So, using limn→∞ λn/n = 0 we can apply (∗) and then limn→∞ λn = λ, so

lim
n→∞

(
1− λn

n

)n

= lim
n→∞

exp

(
log

(
1− λn

n

)n)
= exp

(
lim
n→∞

log
(
1− λn

n

)
λn/n

λn

)
= exp((−1)(λ)) = e−λ.

□
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Proof of Proposition 1.27. For any positive integer n, let λn = npn. Then limn→∞ λn = λ
and limn→∞ λn/n = 0. And if k is a nonnegative integer,

P(Xn = k) =

(
n

k

)(
λn
n

)k (
1− λn

n

)n−k

=

(
k∏

i=1

n− i+ 1

n

)
λkn
k!

(
1− λn

n

)n(
1− λn

n

)−k

So, using Lemma 1.28, limn→∞ P(Xn = k) = 1 · λk

k!
e−λ · 1. □

Remark 1.29. A Poisson random variable is often used as an approximation for counting
the number of some random occurrences. For example, the Poisson distribution can model
the number of typos per page in a book, the number of magnetic defects in a hard drive, the
number of traffic accidents in a day, etc.

Exercise 1.30. The Wheel of Fortune involves the repeated spinning of a wheel with 72
possible stopping points. We assume that each time the wheel is spun, any stopping point is
equally likely. Exactly one stopping point on the wheel rewards a contestant with $1, 000, 000.
Suppose the wheel is spun 24 times. Let X be the number of times that someone wins
$1, 000, 000. Using the Poisson Approximation the Binomial, estimate the following proba-
bilities: P(X = 0), P(X = 1), P(X = 2). (Hint: consider the binomial distribution with
p = 1/72.)

Remark 1.31. The Bernoulli, binomial, geometric and Poisson random variables are all
examples of the following general construction of a random variable. Let a0, a1, a2, . . . ≥ 0
such that

∑∞
i=0 ai = 1. Then define a random variable X such that P(X = i) = ai for all

nonnegative integers i.
There are many other random variables we will encounter in this class as well, but these

will be enough for now.

Exercise 1.32. For any α > 0 define the Gamma function Γ(α) by the formula

Γ(α) :=

∫ ∞

0

xα−1e−xdx.

Since α > 0, it follows that 0 ≤
∫∞
0
xα−1e−xdx <∞, so this quantity is well-defined.

Using integration by parts, show that for any α > 0, we have the recursion

Γ(α + 1) = αΓ(α).

Since Γ(1) = 1, conclude by an inductive argument that, for any positive integer n,

Γ(n+ 1) = n!.

In this way, the Gamma function extends the definition of the factorial to any positive real
number.

Definition 1.33 (Gamma Distribution). Let α, β > 0. Define the gamma distribution
with parameters (α, β) to be the random variable with the probability density function

f(x) :=

{
xα−1e−x/β

βαΓ(α)
, ifx > 0

0, ifx ≤ 0.
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By changing variables, note that

P (X/β < t) = P(X < tβ) =

∫ tβ

0

xα−1e−x/β

βαΓ(α)
dx =

∫ t

0

yα−1e−y

Γ(α)
dy.

That is, X/β has the gamma distribution with parameters (α, 1). Also, choosing t = ∞
shows that the integral of the density function is one on (−∞,∞).

For example, if α = p/2 where p is a positive integer and β = 2, we get the chi squared
distribution with p degrees of freedom:

f(x) :=

{
xp/2−1e−x/2

2p/2Γ(p/2)
, ifx > 0

0, ifx ≤ 0.

This distribution can be defined as the distribution of sum of the squares of p independent
standard Gaussian random variables. See Example 1.109 below for a derivation of this fact
when p = 1 or p = 2.

Definition 1.34 (Beta Distribution). Let α, β > 0. Define the beta distribution with
parameters (α, β) to be the random variable with the probability density function

f(x) :=

{
1

B(α,β)
xα−1(1− x)β−1, if 0 < x < 1

0, ifx /∈ [0, 1].

Here B(α, β) :=
∫ 1

0
xα−1(1− x)β−1.

It can be shown that B(α, β) = Γ(α)Γ(β)
Γ(α+β)

. The quickest proof first switches to (squared)

polar coordinates so that x = r cos2 θ, y = r sin2 θ. Then the Jacobian determinant is

det

(
cos2 θ −2r cos θ sin θ
sin2 θ 2r sin θ cos θ

)
= 2r sin θ cos θ.

Using this change of variables, we get

Γ(α)Γ(β) =

∫ ∞

0

∫ ∞

0

xα−1e−xyβ−1e−ydxdy

=

∫ ∞

0

∫ π/2

0

2rα+β−1e−r(cos2 θ+sin2 θ) cos2α−1 θ sin2β−1 θdθdr

= 2

∫ ∞

0

rα+β−1e−rdr

∫ π/2

0

cos2α−1 θ sin2β−1 θdθ

= Γ(α + β)

∫ 1

0

tα−1(1− t)β−1dt = Γ(α + β)B(α, β).

In the last line, we changed variables by t = cos2 θ, so that dt = −2 cos θ sin θdθ.

Definition 1.35 (Cauchy Distribution). Define the (centered) Cauchy distribution to
be the random variable with the probability density function

f(x) :=
1

π

1

1 + x2
, ∀x ∈ R.
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Note that 1
π

∫∞
−∞

1
1+x2dx = 1

π
tan−1(x)|x=∞

x=−∞ = 1. Also, from Remark 1.40, note that

E |X| = 2
∫∞
0

x
π(x2+1)

dx = ∞, so EX does not exist when X is a Cauchy distributed random

variable.

1.3. Expected Value.

Definition 1.36 (Indicator Function). Let A ⊆ Ω be a set. We define the indicator
function of A, denoted 1A : Ω → R so that 1A(ω) = 0 if ω /∈ A, and 1A(ω) = 1 if ω ∈ A.

Definition 1.37 (Expected Value). Let Ω be a sample space, let P be a probability law
on Ω. Let X be a random variable on Ω. Assume that X : Ω → [0,∞). We define the
expected value of X, denoted E(X), by

E(X) =

∫ ∞

0

P(X > t)dt.

In analytic notation, EX =
∫
Ω
X(ω)dP(ω). More generally, if g : [0,∞) → [0,∞) is a

differentiable function such that g′ is continuous and g(0) = 0, we define

Eg(X) =

∫ ∞

0

g′(t)P(X > t)dt.

In particular, taking g(t) = tn for any positive integer n, for any t ≥ 0, we have

EXn =

∫ ∞

0

ntn−1P(X > t)dt.

For a general random variable X, if Emax(X, 0) < ∞ and if Emax(−X, 0) < ∞, we then
define E(X) = Emax(X, 0)− Emax(−X, 0). Otherwise, we say that E(X) is undefined.

Remark 1.38. If we assume that the expected value and the integral on R can be commuted,
then the following derivation of the formula for Eg(X) can be given. From the Fundamental
Theorem of Calculus, we have

g(X) =

∫ X

0

g′(t)dt =

∫ ∞

0

g′(t)1{X>t}dt.

Therefore, Eg(X) = E
∫∞
0
g′(t)1{X>t}dt =

∫∞
0
g′(t)E1{X>t}dt =

∫∞
0
g′(t)P(X > t)dt.

Remark 1.39. If X only takes positive integer values, then for any t > 0, if k is an integer
such that k − 1 < t ≤ k, then P(X > t) = P(X ≥ k), so

E(X) =

∫ ∞

0

P(X > t)dt =
∞∑
k=1

∫ k

k−1

P(X > t)dt =
∞∑
k=1

P(X ≥ k) =
∞∑
k=0

P(X > k).

Also, using Fubini’s Theorem 1.80 to rearrange the sum, we can arrive at

E(X) =
∞∑
k=0

P(X > k) =
∞∑
k=0

∞∑
j=k+1

P(X = j) =
∑

0≤k<j≤∞

P(X = j)

=
∞∑
j=1

j−1∑
k=0

P(X = j) =
∞∑
j=1

jP(X = j).
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Remark 1.40. If X is positive with density function f that is continuous, then recall that
(d/dt)P(X ≤ t) = f(t) for all t ∈ R. Since P(X > t) = 1 − P(X ≤ t), we then have
(d/dt)P(X > t) = −f(t). So, we can recover the usual formula for expected value by
integrating by parts (assuming g(0) = 0 and |g(t)| ≤ 1 for all t ≥ 0):

Eg(X) =

∫ ∞

0

g′(t)P(X > t)dt = −
∫ ∞

0

g(t)
d

dt
P(X > t)dt =

∫ ∞

0

g(t)f(t)dt.

Exercise 1.41 (Stein Identity). Let X be a standard Gaussian random variable, so that

X has density x 7→ e−x2/2/
√
2π, ∀ x ∈ R. Let g : R → R be a continuously differentiable

function such that g and g′ have polynomial volume growth. That is, ∃ a, b > 0 such that
|g(x)| , |g′(x)| ≤ a(1 + |x|)b, ∀ x ∈ R. Prove the Stein identity

EXg(X) = Eg′(X).

Using this identity, recursively compute EXk for any positive integer k.
Alternatively, for any t > 0, show that EetX = et

2/2, i.e. compute the moment generat-

ing function of X. Then, using dk

dtk
|t=0Ee

tX = EXk and using the power series expansion

of the exponential, compute EXk directly from the identity EetX = et
2/2.

Theorem 1.42 (Fundamental Theorem of Calculus). Let f be a probability density

function. Then the function g(t) =
∫ t

−∞ f(x)dx is continuous at any t ∈ R. Also, if f is
continuous at a point x, then g is differentiable at t = x, and g′(x) = f(x).

Proposition 1.43. Let X1, . . . , Xn be random variables. Then

E(
n∑

i=1

Xi) =
n∑

i=1

E(Xi).

Unfortunately the above property is not obvious from our definition of expected value.

Definition 1.44 (Variance). Let Ω be a sample space, let P be a probability law on Ω.
Let X be a random variable on Ω. We define the variance of X, denoted var(X), by

var(X) = E(X − E(X))2 = EX2 − (EX)2.

We define the standard deviation of X, denoted σX , by

σX =
√

var(X).

Proposition 1.45. Let Ω be a sample space, let P be a probability law on Ω. Let X be a
random variable on Ω. Let a, b be constants. Then

var(aX + b) = a2var(X).

We will review conditional expectation later on in the notes.

Exercise 1.46 (Inclusion-Exclusion Formula). Let A1, . . . , An ⊆ Ω be events. Then:

P(∪n
i=1Ai) =

n∑
i=1

P(Ai)−
∑

1≤i<j≤n

P(Ai ∩ Aj) +
∑

1≤i<j<k≤n

P(Ai ∩ Aj ∩ Ak)

· · ·+ (−1)n+1P(A1 ∩ · · · ∩ An).

To prove this formula, show that 1∪n
i=1Ai

= 1−
∏n

i=1(1− 1Ai
) and then take expected values

of both sides.
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1.4. Joint PDFs.

Definition 1.47 (Joint Probability Density Function, Two Variables). A joint
probability density function (PDF) for two random variables is a function f : R2 →
[0,∞) such that

∫∫
R2 f(x, y)dxdy = 1, and such that, for any −∞ ≤ a < b ≤ ∞ and

−∞ ≤ c < d ≤ ∞, the integral
∫ y=d

y=c

∫ x=b

x=a
fX,Y (x, y)dxdy exists.

Definition 1.48. Let X, Y be two continuous random variables on a sample space Ω. We
say that X and Y are jointly continuous with joint PDF fX,Y : R2 → [0,∞) if, for any
subset A ⊆ R2, we have

P((X, Y ) ∈ A) =

∫∫
A

fX,Y (x, y)dxdy.

In particular, choosing A = [a, b]× [c, d] with −∞ ≤ a < b ≤ ∞ and −∞ ≤ c < d ≤ ∞, we
have

P(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ y=d

y=c

∫ x=b

x=a

fX,Y (x, y)dxdy.

We define the marginal PDF fX of X by

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy, ∀x ∈ R.

We define the marginal PDF fY of Y by

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx, ∀ y ∈ R.

Note that

P(c ≤ Y ≤ d) = P(−∞ ≤ X ≤ ∞, c ≤ Y ≤ d) =

∫ y=d

y=c

∫ x=∞

x=−∞
fX,Y (x, y)dxdy.

Comparing this formula with Definition 1.14, we see that the marginal PDF of Y is exactly
the PDF of Y . Similarly, the marginal PDF of X is the PDF of X.

Example 1.49. Suppose X and Y have a joint PDF so that

P((X, Y ) ∈ A) =
1

2π

∫∫
A

e−(x2+y2)/2dxdy.

That is, we can think of X as the x-coordinate of a randomly thrown dart, and we can think
of Y as the y-coordinate of a randomly thrown dart on the infinite dartboard R2.

In this case, the marginals are both standard Gaussians:

fX(x) =
1√
2π
e−x2/2

∫ ∞

−∞
e−y2/2 dy√

2π
=

1√
2π
e−x2/2, ∀x ∈ R.

fY (y) =
1√
2π
e−y2/2

∫ ∞

−∞
e−x2/2 dx√

2π
=

1√
2π
e−y2/2, ∀y ∈ R.

That is, if we only keep track of the x-coordinate of the random dart, then this x-coordinate
is a standard Gaussian itself. And if we only keep track of the y-coordinate of the random
dart, then this y-coordinate is also a standard Gaussian.
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Example 1.50 (Buffon’s Needle). Suppose a needle of length ℓ > 0 is kept parallel to
the ground. The needle is dropped onto the ground with a random position and orientation.
The ground has a grid of equally spaced horizontal lines, where the distance between two
adjacent lines is d > 0. Suppose ℓ < d. What is the probability that the needle touches one
of the lines? (Since ℓ < d, the needle can touch at most one line.)
Let x be the distance of the midpoint of the needle from the closest line. Let θ be the acute

angle formed by the needle and any horizontal line. The tip of the needle exactly touches
the line when sin θ = x/(ℓ/2) = 2x/ℓ. So, any part of the needle touches some line if and
only if x ≤ (ℓ/2) sin θ. Since the needle has a uniformly random position and orientation,
we model X,Θ as random variables with joint distribution uniform on [0, d/2]× [0, π/2]. So,

fX,Θ(x, θ) =

{
4
πd
, x ∈ [0, d/2] and θ ∈ [0, π/2]

0, otherwise.

(Note that
∫∫

R2 fX,Θ(x, θ)dxdθ = 1.) And the probability that the needle touches one of the
lines is ∫∫

0≤x≤(ℓ/2) sin θ

fX,Θ(x, θ)dxdθ =

∫ θ=π/2

θ=0

∫ x=(ℓ/2) sin θ

x=0

4

πd
dxdθ

=
2ℓ

πd

∫ θ=π/2

θ=0

sin θdθ =
2ℓ

πd
[− cos θ]

θ=π/2
θ=0 =

2ℓ

πd
.

Note that x ≤ ℓ/2 < d/2 always, so the set 0 ≤ x ≤ (ℓ/2) sin θ is still contained in the set
x ∈ [0, d/2].

In particular, when ℓ = d, the probability is 2/π.

Definition 1.51. Let X, Y be random variables with joint PDF fX,Y . Let g : R2 → R. Then

Eg(X, Y ) =

∫∫
R2

g(x, y)fX,Y (x, y)dxdy.

In particular,

E(XY ) =

∫∫
R2

xyfX,Y (x, y)dxdy.

Exercise 1.52. Let X, Y be random variables with joint PDF fX,Y . Let a, b ∈ R. Using
Definition 1.51, show that E(aX + bY ) = aEX + bEY .

Definition 1.53 (Joint Density Function). We say that random variables X1, . . . , Xn

have joint density function f : Rn → [0,∞) if
∫
Rn f(x)dx = 1, and if

P((X1, . . . , Xn) ∈ A) =

∫
A

f(x)dx, ∀A ⊆ Rn.

We define the marginal density f1 : R → [0,∞) of X1 so that

f1(x1) =

∫
Rn−1

f(x1, . . . , xn)dx2 · · · dxn, ∀x1 ∈ R.

Similarly, we can define the marginal density f12 : R2 → [0,∞) of X1, X2 so that

f12(x1, x2) =

∫
Rn−2

f(x1, . . . , xn)dx3 · · · dxn, ∀x1, x2 ∈ R.

13



And so on.

Exercise 1.54. Let X1, Y1 be random variables with joint PDF fX1,Y1 . Let X2, Y2 be random
variables with joint PDF fX2,Y2 . Let T : R2 → R2 and let S : R2 → R2 so that ST (x, y) =
(x, y) and TS(x, y) = (x, y) for every (x, y) ∈ R2. Let J(x, y) denote the determinant of the
Jacobian of S at (x, y). Assume that (X2, Y2) = T (X1, Y1). Using the change of variables
formula from multivariable calculus, show that

fX2,Y2(x, y) = fX1,Y1(S(x, y)) |J(x, y)| .

We defined independence of random variables in Definition 1.17. Below is an equivalent
definition (the equivalence is beyond the scope of this course).

Definition 1.55 (Independence of Random Variables). Let X1, . . . , Xn be random
variables on a sample space Ω, and let P be a probability law on Ω. We say that X1, . . . , Xn

are independent if

P(X1 ≤ x1, . . . , Xn ≤ xn) =
n∏

i=1

P(Xi ≤ xi), ∀x1, . . . , xn ∈ R.

Exercise 1.56. Let X1, . . . , Xn be discrete random variables. Assume that

P(X1 = x1, . . . , Xn = xn) =
n∏

i=1

P(Xi = xi), ∀x1, . . . , xn ∈ R.

Show that X1, . . . , Xn are independent.

Exercise 1.57. Let X1, . . . , Xn be continuous random variables with joint PDF f : Rn →
[0,∞). Assume that

fX1,...,Xn(x1, . . . , xn) =
n∏

i=1

fXi
(xi), ∀x1, . . . , xn ∈ R.

Show that X1, . . . , Xn are independent.

Exercise 1.58. Let X1, . . . , Xn : Ω → R be uncorrelated random variables with EX2
i < ∞

for any 1 ≤ i ≤ n. Show that

var(
n∑

i=1

Xi) =
n∑

i=1

var(Xi)

Proposition 1.59. Let X1, . . . , Xn be random variables on a sample space Ω, and let P be
a probability law on Ω. Assume that X1, . . . , Xn are pairwise independent. That is, Xi and
Xj are independent whenever i, j ∈ {1, . . . , n} with i ̸= j. Then

var(
n∑

i=1

Xi) =
n∑

i=1

var(Xi).

Proposition 1.60. Let X1, . . . , Xn be independent random variables. Then

E(
n∏

i=1

Xi) =
n∏

i=1

E(Xi).
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Proposition 1.61. Let 0 = n0 < n1 < n2 < . . . < nk = n be integers. Let X1, . . . , Xn

be independent random variables. For any 1 ≤ i ≤ k, let gi : Rni−ni−1 → R. Then the
random variables g1(X1, . . . , Xn1), g2(Xn1+1, . . . , Xn2), . . ., gk(Xnk−1+1, . . . , Xnk

) are inde-
pendent. Consequently,

E(
k∏

i=1

gi(Xni−1+1, . . . , Xni
)) =

k∏
i=1

Egi(Xni−1+1, . . . , Xni
).

Definition 1.62 (Covariance). Let X and Y be random variables with finite variances.
We define the covariance of X and Y , denoted cov(X, Y ), by

cov(X, Y ) = E((X − E(X))(Y − E(Y ))).

Remark 1.63. By the Cauchy-Schwarz inequality (see Theorem 1.99), we have

|cov(X, Y )| ≤ (E(X − EX)2)1/2(E(Y − EY )2)1/2.

So, the covariance is well defined if X, Y both have finite variance. Note that

cov(X,X) = E(X − E(X))2 = var(X).

The covariance of X and Y is meant to measure whether or not X and Y are related
somehow. The covariance of two random variables can be any real number. In order to more
accurately measure how two random variables are “related” to each other, it is natural to
divide the covariance by the product of the standard deviations, i.e. the right side of Remark
1.63.

In linear algebraic terms, if we think of the random variables X − EX and Y − EY as
vectors with the inner product ⟨X − EX, Y − EY ⟩ := E[(X − EX)(Y − EY )] and norm
∥(X − EX)∥ := ⟨X−EX,X−EX⟩1/2, then the covariance is the cosine of the angle between
the unit vectors X−EX

∥X−EX∥ and Y−EY
∥Y−EY ∥ .

Definition 1.64 (Correlation). Let Ω be a sample space, let P be a probability law on Ω.
Let X and Y be discrete random variables on Ω taking a finite number of values. We define
the correlation of X and Y to be

cov(X, Y )√
var(X)

√
var(Y )

.

From Remark 1.63, the correlation of X and Y is a real number in the interval [−1, 1]. If
the correlation is 1 or −1, then X −EX is a constant multiple of Y −EY with probability
1, by the known equality case of the Cauchy-Schwarz inequality (see Theorem 1.99). By
contrast, correlation zero is analogous to X and Y being independent. However, correlation
zero does not necessarily imply that X and Y are independent. Other correlation values can
be thought of as an interpolations between these extreme cases.

Exercise 1.65. Let X1, . . . , Xn be random variables. Then

var(
n∑

i=1

Xi) =
n∑

i=1

var(Xi) + 2
∑

1≤i<j≤n

cov(Xi, Xj).
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1.5. Conditional Probability and Conditional Expectation. In elementary probabil-
ity theory, conditional probability and conditional expectation allow a rigorous notion for
incorporating previously unknown information into a probability law.

Definition 1.66. IfA,B are events and ifP(B) > 0, we define the conditional probability
of A given B, denoted P(A|B), to be

P(A|B) := P(A ∩B)/P(B).

For example, if P is uniform on the sample space Ω = {1, 2, 3, 4, 5, 6}, and if B = {2, 4, 6},
then P({1}|B) = 0 and P({2}|B) = 1/3.
Let X : Ω → [−∞,∞] be a random variable with E |X| < ∞. Note that, if B is fixed,

then the function A 7→ P(A|B) is itself a probability law on Ω, so we can e.g. define the
conditional expectation of a random variable X given B, denoted E(X|B), to be the
usual expectation of X with respect to the probability law P(·|B).

E(X|B) := E(X1B)/P(B).

In case X ≥ 0, we have the equivalent definition E(X|B) =
∫∞
0

P(X > t|B)dt.
If Z is a discrete random variable, i.e. if Z takes at most countably many values, and

if P(Z = z) > 0 for some z ∈ R, we let B := {Z = z} in the above definition to define
E(X|Z = z). By splitting the sample space Ω into countably many disjoint sets B1, B2, . . .
such that ∪∞

n=1Bn = Ω and P(Bn) > 0 for all n ≥ 1, we can write

P(A) =
∞∑
n=1

P(A ∩Bn) =
∞∑
n=1

P(A|Bn)P(Bn).

EX =
∞∑
n=1

E(X1Bn) =
∞∑
n=1

E(X|Bn)P(Bn). (1)

By breaking up expected values or probabilities into pieces in this way, sometimes the quan-
tities on the right side are easier to compute, allowing computation of the left side.

There is a way to condition on events with probability zero, but we will not do so here.

Proposition 1.67. Let B be a fixed subset of some sample space Ω. Let P be a probability law
on Ω. Assume that P(B) > 0. Given any subset A in Ω, define P(A|B) = P(A ∩B)/P(B)
as above. Then P(A|B) is itself a probability law on Ω.

Proof. We first verify Axiom (i). Let A ⊆ Ω. Since Axiom (i) holds for P by assumption,
we have P(A ∩B) ≥ 0. Therefore, P(A|B) = P(A ∩B)/P(B) ≥ 0.

We now verify Axiom (iii). Note that P(Ω|B) = P(Ω ∩ B)/P(B) = P(B ∩ B)/P(B) =
P(B)/P(B) = 1.

We now verify Axiom (ii). Let A,C ⊆ Ω with A ∩ C = ∅. Since A and C are disjoint,
we know that A ∩ B and C ∩ B are disjoint. So, we can apply Axiom (ii) for P to the sets
A ∩B and C ∩B. So,

P(A ∪ C|B)P(B) = P((A ∪ C) ∩B) = P((A ∩B) ∩ (C ∩B)), by Proposition 1.6(ii)

= P(A ∩B) +P(C ∩B) = P(A|B)P(B) +P(C|B)P(B).

Dividing both sides by P(B) implies that Axiom (ii) holds for two sets. To verify that
additivity holds for a countable number of sets, let A1, A2, . . . be subsets of Ω such that
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Ai∩Aj = ∅ whenever i, j are positive integers with i ̸= j. Since Ai∩Aj = ∅ whenever i ̸= j,
we have (Ai ∩B) ∩ (Aj ∩B) = ∅. So, using Exercise 1.9, and Axiom (ii) for P,

P(B)P

(
∞⋃
k=1

Ak

∣∣∣∣∣B
)

= P

((
∞⋃
k=1

Ak

)
∩B

)
= P

(
∞⋃
k=1

(Ak ∩B)

)
, by Exercise 1.9

=
∞∑
k=1

P(Ak ∩B) = P(B)
∞∑
k=1

P(Ak|B)

So, Axiom (ii) holds. In conclusion, P(A|B) is a probability law on Ω. □

Remark 1.68. Proposition 1.67 implies that facts from Proposition 1.13 apply also to
conditional probabilities. For example, using the notation of Proposition 1.67, we have
P(A ∪ C|B) ≤ P(A|B) +P(C|B).

Example 1.69 (Medical Testing). Suppose a test for a disease is 99% accurate. That is,
if you have the disease, the test will be positive with 99% probability. And if you do not
have the disease, the test will be negative with 99% probability. Suppose also the disease is
fairly rare, so that roughly 1 in 10, 000 people have the disease. If you test positive for the
disease, with what probability do you actually have the disease?

The answer is unfortunately around 1/100. To see this, let’s consider the probabilities.
Let B be the event that you test positive for the disease. Let A be the event that you
actually have the disease. We want to compute P(A|B). We have

P(A|B) = P(A ∩B)/P(B) = (P(A)/P(B))P(A ∩B)/P(A) = (P(A)/P(B))P(B|A).
We are given that P(A) = 10−4, P (B|A) = .99 and P(B|Ac) = .01. To compute P(B), we
write B = (B ∩ A) ∪ (B ∩ Ac), so that

P(B) = P(B ∩ A) +P(B ∩ Ac) = P(B|A)P(A) +P(B|Ac)P(Ac)

= .99(10−4) + .01(1−P(A)) = .99(10−4) + .01(1− 10−4) ≈ 10−2.

In conclusion,

P(A|B) =
10−4

P(B)
(.99) ≈ 10−4102 = 10−2.

So, even though the test is fairly accurate from a certain perspective, a positive test result
does not say very much.

Many people find this result counterintuitive, though the following reasoning can help to
explain the result. Suppose we have a population of 10, 000 people. Then roughly 1 person
in the population has the disease. Suppose everyone is given the test. Since 9, 999 people
are healthy and the test is 99% accurate, around 100 healthy people will test positive for the
disease. Meanwhile, the 1 sick person will most likely test positive for the disease. So, out of
around 101 people testing positive for the disease, only 1 of them actually has the disease.
So, P(A|B) is roughly 1/101 ≈ 10−2.

Definition 1.70 (Conditioning a Continuous Random Variable on a Set). Let X
be a continuous random variable on a sample space Ω. Let A ⊆ Ω with P(A) > 0. The
conditional PDF fX|A of X given A is defined to be the function fX|A satisfying

P(X ∈ B |A) =
∫
B

fX|A(x)dx, ∀B ⊆ R.
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Example 1.71. Suppose A′ ⊆ R and we condition on X satisfying X ∈ A′. That is, A is
the event A = {X ∈ A′}. Then, using Definition 1.66,

P(X ∈ B |A) = P(X ∈ B |X ∈ A′) =
P(X ∈ B,X ∈ A′)

P(X ∈ A′)
=

∫
B∩A′ fX(x)dx

P(X ∈ A′)
.

So, using Definition 1.70, in this case we have

fX|A(x) =

{
fX(x)

P(X∈A′)
, x ∈ A′

0, otherwise.

Example 1.72. Suppose you go to the bus stop, and the time T between successive arrivals
of the bus is an exponential random variable with parameter λ > 0. Let t > 0. Suppose you
go to the bus stop and someone says the last bus came t minutes ago. Let A be the event
that T > t. That is, we will take it as given that T > t, i.e. that up to time t, the bus has
not yet arrived. Let X be the time you need to wait until the next bus arrives. Let x > 0.
Using Definition 1.66 and Example 1.25,

P(X > x|A) = P(T > t+ x|T > t) =
P(T > t+ x, T > t)

P(T > t)
=

P(T > t+ x)

P(T > t)

=
λ
∫∞
t+x

e−λsds

λ
∫∞
t
e−λsds

=
e−λ(t+x)

e−λt
= e−λx = λ

∫ ∞

x

e−λsds.

From Definition 1.70, P(X > x|A) =
∫∞
x
fX|A(x)dx. That is, fX|A(x) = λe−λx. That is,

X|A is also an exponential random variable with parameter λ. That is, even though we
know the bus has not arrived for t minutes, this does not at all affect our prediction for the
arrival of the next bus.

This property is called the memoryless property of the exponential random variable.

Exercise 1.73. Suppose you go to the bus stop, and the time T between successive arrivals
of the bus is anything between 0 and 30 minutes, with all arrival times being equally likely.

Suppose you get to the bus stop, and the bus just leaves as you arrive. How long should
you expect to wait for the next bus? What is the probability that you will have to wait at
least 15 minutes for the next bus to arrive?

On a different day, suppose you go to the bus stop and someone says the last bus came 10
minutes ago. How long should you expect to wait for the next bus? What is the probability
that you will have to wait at least 10 minutes for the next bus to arrive?

Exercise 1.74. Let A1, A2, . . . be disjoint events such that P(Ai) = 2−i for each i ≥ 1.
Assume ∪∞

i=1Ai = Ω. Let X be a random variable such that E(X|Ai) = (−1)i+1 for each
i ≥ 1. Compute EX.

Definition 1.75 (Conditioning one Random Variable on Another). Let X and Y be
continuous random variables with joint PDF fX,Y . Fix some y ∈ R with fY (y) > 0. For any
x ∈ R, define the conditional PDF of X, given that Y = y by

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
, ∀x ∈ R.
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We also define the conditional expectation of X given Y = y by

E(X|Y = y) =

∫ ∞

−∞
xfX|Y (x|y)dx.

From Definition 1.48, note that
∫∞
−∞ fX|Y (x|y)dx = 1. So, fX|Y (x|y) is a probability

distribution function.

Example 1.76. We continue the dart board example from Example 1.49. Suppose X and
Y have a joint PDF so that

P((X, Y ) ∈ A) =
1

2π

∫∫
A

e−(x2+y2)/2dxdy, ∀A ⊆ R2.

We verified the marginals are both standard Gaussians:

fX(x) =
1√
2π
e−x2/2, ∀x ∈ R, fY (y) =

1√
2π
e−y2/2 ∀ y ∈ R.

So, in this particular example, we have

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

1
2π
e−(x2+y2)/2

1√
2π
e−y2/2

=
1√
2π
e−x2/2.

That is, in this particular example, conditioning X on Y does not at all change X.

Example 1.77. Suppose X and Y have a joint PDF given by fX,Y (x, y) =
1
π
if x2 + y2 ≤ 1,

and fX,Y (x, y) = 0 otherwise. Let’s compute the marginals first, and then determine the
conditional PDFs. Let x, y ∈ R with x2 + y2 ≤ 1. Using Definition 1.48,

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy =

∫ y=
√
1−x2

y=−
√
1−x2

1

π
dy =

2
√
1− x2

π
.

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx =

∫ x=
√

1−y2

x=−
√

1−y2

1

π
dx =

2
√

1− y2

π
.

So, if x2 + y2 ≤ 1, then

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

1/π

2
√

1− y2/π
=

1

2
√

1− y2
.

Similarly,

fY |X(y|x) =
1

2
√
1− x2

.

That is, in this particular example, conditioning X on Y can drastically change X. For
example, X conditioned on Y = 0, and X conditioned on Y = 1/2 have very different PDFs.

The following Theorem is a version of (1) for continuous random variables.

Theorem 1.78 (Total Expectation Theorem). Let X, Y be continuous random variables.
Assume that fX,Y : R2 → R is a continuous function. Then

E(X) =

∫ ∞

−∞
E(X|Y = y)fY (y)dy.
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Proof. Using Definition 1.75 and then Definition 1.48,∫ ∞

−∞
E(X|Y = y)fY (y)dy =

∫ ∞

−∞

(∫ ∞

−∞
xfX|Y (x|y)dx

)
fY (y)dy

=

∫ ∞

−∞

(∫ ∞

−∞
xfX|Y (x|y)fY (y)dy

)
dx =

∫ ∞

−∞

∫ ∞

−∞
xfX,Y (x, y)dydx

=

∫ ∞

−∞
xfX(x)dx = EX.

□

In the above proof, we used the following Theorem from analysis.

Theorem 1.79 (Fubini Theorem). Let h : R2 → R be a continuous function such that∫∫
R2 |h(x, y)| dxdy <∞. Then∫∫

R2

h(x, y)dxdy =

∫
R

(∫
R
h(x, y)dx

)
dy =

∫
R

(∫
R
h(x, y)dy

)
dx.

Theorem 1.80 (Fubini Theorem for Sums). Let {aij}i,j≥0 be a doubly-infinite array of
nonnegative numbers. Then

∞∑
i=0

(
∞∑
j=0

aij

)
=

∞∑
j=0

(
∞∑
i=0

aij

)
.

Exercise 1.81. Find a doubly-infinite array of real numbers {aij}i,j≥0 such that

∞∑
i=0

(
∞∑
j=0

aij

)
= 1 ̸= 0 =

∞∑
j=0

(
∞∑
i=0

aij

)
.

(Hint: the array can be chosen to have all entries either −1, 0, or 1. And most of the entries
can be chosen to be 0.)

Exercise 1.82. Let X, Y be random variables. For any y ∈ R, assume that E(X|Y = y) =
e−|y|. Also, assume that Y has an exponential distribution with parameter λ = 2. Compute
EX.

1.6. Functions of Random Variables.

Proposition 1.83. Let X be a continuous random variable with density function fX : R →
[0,∞). Let g : R → R be continuous. Let Y := g(X). Assume that fX is a continuous
function. Then for any y ∈ R,

fY (y) =
d

dy

∫
{x∈R : g(x)≤y}

fX(x)dx.

Proof. Let A ⊆ R. Recall that fX is defined so that

P(X ∈ A) =

∫
A

fX(x)dx.

So, if we let y ∈ R and if we define A := {x ∈ R : g(x) ≤ y}, we have

FY (y) = P(Y ≤ y) = P(g(X) ≤ y) = P(X ∈ A) =

∫
A

fX(x)dx =

∫
{x∈R : g(x)≤y}

fX(x)dx.
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So, if FY is differentiable, d
dy
FY (y) = fY (y) for all y ∈ R, completing the proof by the

Fundamental Theorem of Calculus, Theorem 1.42. □

Example 1.84. LetX be a uniformly distributed random variable on [−1, 1], and let g : R →
R so that g(x) = x3 for any x ∈ R. Let Y := g(X). Then for any y ∈ R,

fY (y) =
d

dy

∫
{x∈R : g(x)≤y}

fX(x)dx =
d

dy

∫
{x∈[−1,1] : x3≤y}

1

2
dx.

If y < −1 the integral is zero. If y > 1, the integral is 1. And if y ∈ [−1, 1], we have

fY (y) =
d

dy

1

2

∫ x=y1/3

x=−1

dx =
1

2

d

dy
[y1/3 + 1] =

1

6
y−2/3.

And if y /∈ [−1, 1], we have fY (y) = 0.

Definition 1.85 (Monotonic Function). Let I, J ⊆ R be open intervals. Let g : I → J .
We say that g is strictly increasing if, for any x, y ∈ I with x > y, we have g(x) > g(y).
We say that g is strictly decreasing if, for any x, y ∈ I with x > y, we have g(x) < g(y).
We say that g is strictly monotonic if g is either strictly increasing or strictly decreasing.

Remark 1.86 (Monotonic Functions are Invertible). Let I, J ⊆ R be open intervals.
Let g : I → J be a monotonic function with range J . As we recall from calculus, g has an
inverse. That is, there exists a monotonic function h : J → I such that g(h(x)) = x for every
x ∈ J and h(g(x)) = x for every x ∈ I. Also, as we recall from calculus, if g is differentiable
with g′(x) ̸= 0 for all x ∈ I, then h is differentiable, and by differentiating the identity
h(g(x)) = x and applying the chain rule, we get

d

dx
h(g(x)) =

1

g′(x)
, ∀x ∈ I.

Or, written another way (defining y := g(x), so that x = h(y)),

h′(y) =
1

g′(h(y))
, ∀ y ∈ J.

If we graph g and h, then h is obtained by reflecting g across the line {(x, y) ∈ R2 : x = y}.
Similarly, g is obtained by reflecting h across the line {(x, y) ∈ R2 : x = y}.

Proposition 1.87. Let X be a continuous random variable such that FX is differentiable.
Let I, J ⊆ R be open intervals. Let g : I → J be a monotonic, differentiable function with
range J . Assume that g′(x) ̸= 0 for every x ∈ I. Let Y := g(X). Let h : J → I be the
inverse of g. Then for any y ∈ J ,

fY (y) = fX(h(y)) ·
∣∣∣∣ ddyh(y)

∣∣∣∣ = fX(h(y)) ·
1

|g′(h(y))|
.

Proof. Let y ∈ J . First, assume g is strictly increasing. Then

FY (y) = P(Y ≤ y) = P(g(X) ≤ y) = P(X ≤ h(y)) = FX(h(y)).

Since FX and h are differentiable, the Chain Rule then proves the first equality, using also
the Fundamental Theorem of Calculus, Theorem 1.42.. The second equality follows from

21



Remark 1.86, where we noted that

d

dy
h(y) =

1

g′(h(y))
, ∀y ∈ J.

□

Exercise 1.88. Let X be a uniformly distributed random variable on [0, 1]. Find the PDF
of − log(X).

Exercise 1.89. Let X be a standard normal random variable. Find the PDF of eX .

1.7. Inequalities.

Exercise 1.90. Let ϕ : R → R. We say that ϕ is convex if, for any x, y ∈ R and for any
t ∈ [0, 1], we have

ϕ(tx+ (1− t)y) ≤ tϕ(x) + (1− t)ϕ(y).

Let ϕ : R → R. Show that ϕ is convex if and only if: for any y ∈ R, there exists a constant
a and there exists a function L : R → R defined by L(x) = a(x− y)+ϕ(y), x ∈ R, such that
L(y) = ϕ(y) and such that L(x) ≤ ϕ(x) for all x ∈ R. (In the case that ϕ is differentiable,
the latter condition says that ϕ lies above all of its tangent lines.)

(Hint: Suppose ϕ is convex. If x is fixed and y varies, show that ϕ(y)−ϕ(x)
y−x

increases as y

increases. Draw a picture. What slope a should L have at x?)

Exercise 1.91 (Jensen’s Inequality). Let X : Ω → [−∞,∞] be a random variable. Let
ϕ : R → R be convex. Assume that E |X| <∞ and E |ϕ(X)| <∞. Then

ϕ(EX) ≤ Eϕ(X).

(Hint: use Exercise 1.90 with y := EX.) Deduce the triangle inequality:

|EX| ≤ E |X| .

Exercise 1.92 (Markov’s Inequality). Let X : Ω → [−∞,∞] be a random variable. Then

P(|X| ≥ t) ≤ E |X|
t

, ∀ t > 0.

(Hint: multiply both sides by t and use monotonicity of E.)

Corollary 1.93. If n is a positive integer, then

P(|X| ≥ t) ≤ E |X|n

tn
, ∀ t > 0.

Proof. From Markov’s Inequality, Exercise 1.92,

P(|X| ≥ t) = P(|X|n ≥ tn) ≤ E |X|n

tn
, ∀ t > 0.

□

We refer to E |X|n as the nth moment of X.

Definition 1.94 (Variance). Let X : Ω → [−∞,∞] be a random variable with E |X| <∞
and EX2 <∞. We define the variance of X, denoted var(X), to be

var(X) := E(X − EX)2 = EX2 − (EX)2.
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Remark 1.95. By Jensen’s Inequality, if EX2 <∞, then E |X| <∞, so EX ∈ R.

Exercise 1.96. Let a, b ∈ R and let X : Ω → [−∞,∞] be a random variable with EX2 <∞.
Show that

var(aX + b) = a2var(X).

Then, let X be a standard Gaussian. Show that EX = 0 and var(X) = 1.
Finally, show that the quantity E(X − t)2 is minimized for t ∈ R uniquely when t = EX.

Replacing X by X − EX and taking n = 2 in Corollary 1.93 gives:

Corollary 1.97 (Chebyshev’s Inequality). Let X : Ω → [−∞,∞] be a random variable
with EX2 <∞. Then

P(|X − EX| ≥ t) ≤ var(X)

t2
, ∀ t > 0.

(By Exercise 1.91, EX ∈ R.)

Corollary 1.93 shows that, if large moments of X are finite, then P(X > t) decays rapidly.
Sometimes, we can even get exponential decay on P(X > t), if we make the rather strong
assumption that EerX is finite for some r > 0. Note that, by the power series expansion of
the exponential, EerX <∞ assumes that an infinite sum of the moments of X is finite.

Exercise 1.98 (The Chernoff Bound). Let X : Ω → [−∞,∞] be a random variable.
Show that, for any r, t > 0,

P(X > t) ≤ e−rtEerX .

If 1 ≤ p <∞, and if X : Ω → [−∞,∞] is a random variable, denote the Lp-norm of X as
∥X∥p := (E |X|p)1/p and denote the L∞-norm ofX as ∥X∥∞ := inf{c > 0: P(|X| ≤ c) = 1}.

Theorem 1.99 (Hölder’s Inequality). Let X, Y : Ω → R be random variables. Let 1 ≤
p ≤ ∞, and let q be dual to p (so 1/p+ 1/q = 1). Then

E |XY | ≤ ∥X∥p ∥Y ∥q .

This inequality is an equality only if X is a constant multiple of Y with probability 1. The
case p = q = 2 recovers the Cauchy-Schwarz inequality:

E |XY | ≤ (EX2)1/2(EY 2)1/2.

Proof. By scaling, we may assume ∥X∥p = ∥Y ∥q = 1 (zeros and infinities being trivial).
Also, the case p = 1, q = ∞ follows from the triangle inequality, so we assume 1 < p < ∞.
From concavity of the log function, we have the pointwise inequality

|X(ω)Y (ω)| = (|X(ω)|p)1/p(|Y (ω)|q)1/q ≤ 1

p
|X(ω)|p + 1

q
|Y (ω)|q , ∀ω ∈ Ω

which upon integration gives the result. If this inequality is an equality with probability
one, then the strict concavity of the log function implies that P(X = Y ) = 1. □

Theorem 1.100 (Triangle Inequality). Let X, Y : Ω → R be random variables. Let
1 ≤ p ≤ ∞. Then

∥X + Y ∥p ≤ ∥X∥p + ∥Y ∥p , 1 ≤ p ≤ ∞

23



Proof. The case p = ∞ follows from the scalar triangle inequality, so assume 1 ≤ p < ∞.
By scaling, we may assume ∥X∥p = 1− t, ∥Y ∥p = t, for some t ∈ (0, 1) (zeros and infinities

being trivial). Define V := X/(1− t), W := Y/t. Then by convexity of x 7→ |x|p on R,

|(1− t)V (ω) + tW (ω)|p ≤ (1− t) |V (ω)|p + t |W (ω)|p , ∀ω ∈ Ω

which upon integration completes the proof. □

Exercise 1.101. Let X, Y : Ω → R be random variables. Let 0 < p < 1 and let ∥X∥p :=

(E |X|p)1/p. Show that there exists c(p) > 0 such that ∥X + Y ∥p ≤ c(p)(∥X∥p + ∥Y ∥p). In

particular, it suffices to choose c(p) = 21/p. (Hint: a pointwise inequality should imply that
∥X + Y ∥pp ≤ ∥X∥pp + ∥Y ∥pp.)

Exercise 1.102 (MAX-CUT). The probabilistic method is a very useful way to prove the
existence of something satisfying some properties. This method is based upon the following
elementary statement: If α ∈ R and if a random variable X : Ω → R satisfies EX ≥ α, then
there exists some ω ∈ Ω such that X(ω) ≥ α. We will demonstrate this principle in this
exercise.

Let G = (V,E) be an undirected graph on the vertices V = {1, . . . , n} so that the edge
set E is a subset of unordered pairs {i, j} such that i, j ∈ V and i ̸= j. Let S ⊆ V and
denote Sc := V ∖S. We refer to (S, Sc) as a cut of the graph G. The goal of the MAX-CUT
problem is to maximize the number of edges going between S and Sc over all cuts of the
graph G.

Prove that there exists a cut (S, Sc) of the graph such that the number of edges going
between S and Sc is at least |E| /2. (Hint: define a random S ⊆ V such that, for every
i ∈ V , P(i ∈ S) = 1/2, and the events 1 ∈ S, 2 ∈ S, . . . , n ∈ S are all independent. If
{i, j} ∈ E, show that P(i ∈ S, j /∈ S) = 1/4. So, what is the expected number of edges
{i, j} ∈ E such that i ∈ S and j /∈ S?)

1.8. Independent Sums and Convolution. Let X, Y be independent random variables.
From Proposition 1.67, the moment generating function of X + Y can be easily expressed
as MX+Y (t) = MX(t)MY (t), for any t such that both quantities on the right exist. On the
other hand, the CDF of X + Y has a more complicated dependence on X and Y .

Example 1.103. Let X, Y be independent integer-valued random variables. Then, repeat-
edly using properties of probability laws, and using that X, Y are independent,

P(X + Y = t) =
∑

j,k∈Z : j+k=t

P(X = j, Y = k) =
∑
j∈Z

P(X = j, Y = t− j)

=
∑
j∈Z

P(X = j)P(Y = t− j) =
∑
j∈Z

pX(j)pY (t− j).

Definition 1.104 (Convolution on the integers). Let g, h : Z → R be functions. The
convolution of g and h, denoted g ∗ h, is a function g ∗ h : Z → R defined by

(g ∗ h)(t) :=
∑
j∈Z

g(j)h(t− j), ∀ t ∈ Z.
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Example 1.105. Let g(k) := e−k and let h(k) := e−k for any nonnegative integer k ≥ 0,
and let g(k) = h(k) = 0 for any other integer k < 0. Then if t ≥ 0 is an integer,

(g ∗ h)(t) =
∑
k∈Z

g(k)h(t− k) =
t∑

k=0

e−ke−(t−k) =
t∑

k=0

e−t = (t+ 1)e−t.

And (g ∗ h)(t) = 0 for any negative integer t.

A similar formula holds for continuous random variables. That is, if X, Y are two contin-
uous random variables, then the density of X + Y is the convolution of fX and fY .

Definition 1.106 (Convolution on the real line). Let g, h : R → R be functions. The
convolution of g and h, denoted g ∗ h, is a function g ∗ h : R → R defined by

(g ∗ h)(t) :=
∫ ∞

−∞
g(x)h(t− x)dx, ∀ t ∈ R.

Proposition 1.107. Let X, Y be two continuous independent random variables. Assume
that fY is a continuous function. Then

fX+Y (t) = (fX ∗ fY )(t), ∀ t ∈ R.

Proof. Let X, Y be independent continuous random variables. Then, changing variables,

P(X + Y ≤ t) =

∫
{(x,y)∈R2 : x+y≤t}

fX,Y (x, y)dxdy =

∫ x=∞

x=−∞

∫ y=t−x

y=−∞
fX(x)fY (y)dydx.

Then, since P(X + Y ≤ t) is differentiable with respect to t, we have by the Fundamental
Theorem of Calculus, Theorem 1.42,

fX+Y (t) =
d

dt
P(X+Y ≤ t) =

∫ x=∞

x=−∞
fX(x)

d

dt

∫ y=t−x

y=−∞
fY (y)dydx =

∫ x=∞

x=−∞
fX(x)fY (t−x)dx.

□

Example 1.108. Let g(x) = h(x) := 1√
2π
e−x2/2 for any x ∈ R. Then if t ∈ R, we complete

the square and change variables twice to get

(g ∗ h)(t) = 1

2π

∫ ∞

−∞
e−x2/2e−(t−x)2/2dx =

1

2π

∫ ∞

−∞
e−x2+xt−t2/2dx

=
1

2π

∫ ∞

−∞
e−(x−t/2)2+t2/4−t2/2dx = e−t2/4 1

2π

∫ ∞

−∞
e−(x−t/2)2dx

= e−t2/4 1

2π

∫ ∞

−∞
e−x2

dx = e−t2/4 1

2
√
π

1√
2π

∫ ∞

−∞
e−x2/2dx = e−t2/4 1

2
√
π
.

And (g ∗ h)(t) = e−t2/4 1
2
√
π
for any t ∈ R.

Alternatively, we know that if X, Y are independent standard Gaussian random variables,
then X + Y is a Gaussian random variable with mean zero and variance σ2 = 2. That is,
X + Y has density e−t2/4 1

2
√
π
, t ∈ R.

More generally, the above argument shows: if X is a Gaussian with mean µX ∈ R and
variance σ2

X > 0, if Y is a Gaussian with mean µY and variance σ2
Y , and if X, Y are indepen-

dent, then X + Y is a Gaussian with mean µX + µX and variance σ2
X + σ2

Y . By induction,
this statement implies: if X1, . . . , Xn are independent Gaussian random variables with means
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µX1 , . . . , µXn ∈ R and variances σ2
X1
, . . . , σ2

Xn
> 0, then X1 + · · · + Xn is a Gaussian with

mean
∑n

i=1 µXi
and variance

∑n
i=1 σ

2
Xi
.

Example 1.109. Let X, Y be independent standard Gaussian random variables. We will
find the distribution of X2 + Y 2. First, if t > 0, note that

P(X2 ≤ t) = P(X ≤
√
t) =

∫ √
t

−
√
t

e−x2/2dx/
√
2π.

So, if t > 0,

fX2(t) =
d

dt
2

∫ √
t

0

e−x2/2dx/
√
2π = e−t/2t−1/2 1√

2π
.

For t < 0, fX2(t) = 0. The same formula holds for Y 2. Therefore,

fX2+Y 2(t) = fX2 ∗ fY 2(t) =
1

2π

∫ ∞

−∞
e−x/2x−1/2e−(t−x)/2(t− x)−1/21x>01t−x>0dx

=
1

2π

∫ t

0

e−x/2x−1/2e−(t−x)/2(t− x)−1/2dx =
1

2π
e−t/2

∫ t

0

x−1/2(t− x)−1/2dx

=
1

2π
e−t/22 sin−1(x1/2t−1/2)|x=t

x=0 =
1

2
e−t/2.

Exercise 1.110 (Convolution is Associative). Let g, h, d : R → R. Then for any t ∈ R,

((g ∗ h) ∗ d)(t) = (g ∗ (h ∗ d))(t)

Exercise 1.111. Let X, Y, Z be independent and uniformly distributed on [0, 1]. Note that
fX is not a continuous function.
Using convolution, compute fX+Y . Draw fX+Y . Note that fX+Y is a continuous function,

but it is not differentiable at some points.
Using convolution, compute fX+Y+Z . Draw fX+Y+Z . Note that fX+Y+Z is a differentiable

function, but it does not have a second derivative at some points.
Make a conjecture about how many derivatives fX1+···+Xn has, where X1, . . . , Xn are in-

dependent and uniformly distributed on [0, 1]. You do not have to prove this conjecture.
The idea of this exercise is that convolution is a kind of average of functions. And the more
averaging you do, the more derivatives fX1+···+Xn has.

Exercise 1.112. Construct two random variables X, Y such that X and Y are each uni-
formly distributed on [0, 1], and such that P(X + Y = 1) = 1.
Then construct two random variables W,Z such that W and Z are each uniformly dis-

tributed on [0, 1], and such that W + Z is uniformly distributed on [0, 2].
(Hint: there is a way to do each of the above problems with about one line of work. That

is, there is a way to solve each problem without working very hard.)

1.9. Additional Comments. The foundations of measure theory were developed in the late
1800s and early 1900s by several mathematicians. Measure theory allows the definition of a
probability law. In the 1930s, Kolmogorov provided an axiomatic foundation of probability
theory via measure theory, e.g. the axioms of Definition 1.11. Probability theory was often
not considered a “serious” subject, perhaps due to its historical affiliation with gambling.
Since the 1930s and continuing to the present, more and more subjects embrace probabilistic
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and statistical thinking. Statistics began to use more probability theory in the 1800s and
1900s.

2. Limit Theorems

The Laws of Large Numbers and Central Limit Theorem provide limiting statements for
sequences of random variables. The exact notions of convergence will depend on the limit
theorem. The general goal is to obtain the strongest possible convergence with the weakest
possible assumption. Sometimes, the convergence can be upgraded to a stronger notion, but
other times this is impossible.

2.1. Modes of Convergence. Below are a few of the most commonly encountered notions
of convergence of random variables.

Definition 2.1 (Almost Sure Convergence). We say random variables Y1, Y2, . . . : Ω → R
converge almost surely (or with probability one) to a random variable Y : Ω → R if

P( lim
n→∞

Yn = Y ) = 1.

That is, P({ω ∈ Ω: limn→∞ Yn(ω) = Y (ω)}) = 1

Definition 2.2 (Convergence in Probability). We say that a sequence of random vari-
ables Y1, Y2, . . . : Ω → R converges in probability to a random variable Y : Ω → R if: for
all ε > 0,

lim
n→∞

P(|Yn − Y | > ε) = 0.

That is, ∀ ε > 0, limn→∞P(ω ∈ Ω: |Yn(ω)− Y (ω)| > ε) = 0.

Definition 2.3 (Convergence in Distribution). We say that real-valued random variables
Y1, Y2, . . . converge in distribution to a real-valued random variable Y if, for any t ∈ R
such that s 7→ P(Y ≤ s) is continuous at s = t,

lim
n→∞

P(Yn ≤ t) = P(Y ≤ t).

Note that the random variables are allowed to have different domains.

Definition 2.4 (Convergence in Lp). Let 0 < p ≤ ∞. We say that random variables
Y1, Y2, . . . : Ω → R converge in Lp to Y : Ω → R if ∥Y ∥p <∞ and

lim
n→∞

∥Yn − Y ∥p = 0.

(Recall that ∥Y ∥p := (E |Y |p)1/p if 0 < p <∞ and ∥X∥∞ := inf{c > 0: P(|X| ≤ c) = 1}.)

Exercise 2.5. Let Y1, Y2, . . . : Ω → R be random variables that converge almost surely to
a random variable Y : Ω → R. Show that Y1, Y2, . . . converges in probability to Y in the
following way.

• For any ε > 0 and for any positive integer n, let

An,ε :=
∞⋃

m=n

{ω ∈ Ω: |Ym(ω)− Y (ω)| > ε}.

Show that An,ε ⊇ An+1,ε ⊇ An+2,ε ⊇ · · · .
• Show that P(∩∞

n=1An,ε) = 0.
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• Using Continuity of the Probability Law, deduce that limn→∞P(An,ε) = 0.

Now, show that the converse is false. That is, find random variables Y1, Y2, . . . that con-
verge in probability to Y , but where Y1, Y2, . . . do not converge to Y almost surely.

Exercise 2.6. Let 0 < p ≤ ∞. Show that, if Y1, Y2, . . . : Ω → R converge to Y : Ω → R in
Lp, then Y1, Y2, . . . converges to Y in probability.
Then, show that the converse is false.

Exercise 2.7. Suppose random variables Y1, Y2, . . . : Ω → R converge in probability to a
random variable Y : Ω → R. Prove that Y1, Y2, . . . converge in distribution to Y .
Then, show that the converse is false.

Exercise 2.8. Prove the following statement. Almost sure convergence does not imply
convergence in L2, and convergence in L2 does not imply almost sure convergence. That
is, find random variables that converge in L2 but not almost surely. Then, find random
variables that converge almost surely but not in L2.

Remark 2.9. The following table summarizes our different notions of convergence of random
variables, i.e. the following table summarizes the implications of Exercises 2.6, 2.7 and 2.8.

Almost sure
convergence

2.8

"*
Convergence
in probability

2.7 +3 Convergence
in distribution

Convergence
in Lp

2.6

4<

2.2. Limit Theorems. Laws of Large numbers say that if you perform a poll, then the
sample mean converges to the mean of the random variable, regardless of the population size.
Or, in the terminology of elementary statistics, the sample mean becomes more accurate as
the sample size increases. We will discuss the sample mean and related concepts more in
Section 4.

Theorem 2.10 (Weak Law of Large Numbers). Let X1, . . . , Xn be independent identi-
cally distributed random variables. Assume that µ := EX1 is finite. Then for any ε > 0

lim
n→∞

P

( ∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ > ε

)
= 0.

Theorem 2.11 (Strong Law of Large Numbers). Let X1, . . . , Xn be independent iden-
tically distributed random variables. Assume that µ := EX1 is finite. Then

P

(
lim
n→∞

X1 + · · ·+Xn

n
= µ

)
= 1.

Remark 2.12. A Monte Carlo simulation takes n independent samples from some ran-
dom distribution and then sums the sample results and divides by n. The Strong Law of
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Large Numbers guarantees that this averaging procedure converges to the average value as
n becomes large.

The Laws of Large Numbers unfortunately say nothing about the distribution of the sum
X1 + · · · +Xn. Or, in the terminology of elementary statistics, the precision of the sample
mean is not addressed by the Laws of Large Numbers. The precision of the sum X1+· · ·+Xn

is instead dealt with in the Central Limit Theorem. This Theorem was apparently called
“Central” since it is so fundamental to probability and statistics, and mathematics more
generally.

More formally, let X1, X2, . . . : Ω → R be i.i.d. random variables with mean zero and
variance 1. From the Strong Laws of Large Numbers, 1

n
(X1+ · · ·+Xn) converges to 0 almost

surely (and in probability). From these results, it is still unclear what value X1 + · · · +Xn

“typically” takes. For example, if P(X1 = 1) = P(X1 = −1) = 1/2, then limn→∞P(X1 +
· · · + Xn = 0) = 0. (What is the exact probability that P(X1 + · · · + Xn = 0)?) In order
to see what values X1 + · · ·+Xn “typically” takes, we need to divide by a constant smaller
than

√
n log n

Consider 1√
n
(X1 + · · · + Xn). Dividing by

√
n is quite natural since 1√

n
(X1 + · · · + Xn)

has mean zero and variance 1 by Exercise 1.58. So, we expect that the most typical values
of X1 + · · ·+Xn occur in some range (−a

√
n, a

√
n) for some a > 0.

Dividing by anything other than
√
n will not work correctly. For example, if g : N → (0,∞)

satisfies limn→∞ g(n) = ∞, then it follows from Chebyshev’s inequality, Corollary 1.97, that
1

g(n)
√
n
(X1 + · · ·+Xn) converges to 0 in probability. Similarly, g(n)√

n
(X1 + · · ·+Xn) does not

converge in any sensible way as n → ∞ (though we will not show this here). In summary,
in order to see what values X1 + · · ·+Xn typically takes, we must divide by

√
n.

Unfortunately, we cannot hope for 1√
n
(X1 + · · · + Xn) to converge almost surely or in

probability. (We will not show this here.) So, we have to look for a different notion of
convergence.

Theorem 2.13 (Central Limit Theorem). Let X1, . . . , Xn be independent identically
distributed random variables. Assume that E |X1| <∞ and 0 < Var(X1) <∞.

Let µ = EX1 and let σ =
√

Var(X1). Then for any −∞ ≤ a ≤ ∞,

lim
n→∞

P

(
X1 + · · ·+Xn − µn

σ
√
n

≤ a

)
=

∫ a

−∞
e−t2/2 dt√

2π
.

Remark 2.14. The random variable X1+···+Xn−(1/2)n
σ
√
n

has mean zero and variance 1, just like

the standard Gaussian.

Exercise 2.15. Estimate the probability that 1000000 coin flips of fair coins will result in
more than 501, 000 heads, using the Central Limit Theorem. (Some of the following integrals

may be relevant:
∫ 0

−∞ e−t2/2dt/
√
2π = 1/2,

∫ 1

−∞ e−t2/2dt/
√
2π ≈ .8413,

∫ 2

−∞ e−t2/2dt/
√
2π ≈

.9772,
∫ 3

−∞ e−t2/2dt/
√
2π ≈ .9987.) (Hint: use Bernoulli random variables.)

Casinos do these kinds of calculations to make sure they make money and that they do
not go bankrupt. Financial institutions and insurance companies do similar calculations for
similar reasons.
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Exercise 2.16. Let X, Y be independent, discrete random variables. Using a total proba-
bility theorem-type argument, show that

P(X + Y = z) =
∑
x∈R

P(X = x)P(Y = z − x), ∀ z ∈ R.

Exercise 2.17. LetX, Y be independent, continuous random variables with densities fX , fY ,
respectively. Let fX+Y be the density of X + Y . Show that

fX+Y (z) =

∫
R
fX(x)fY (z − x)dx, ∀z ∈ R.

Using this identity, find the density fX+Y when X and Y are both independent, uniformly
distributed on [0, 1].

Exercise 2.18 (Confidence Intervals). Among 625 members of a bank chosen uniformly
at random among all bank members, it was found that 25 had a savings account. Give
an interval of the form [a, b] where 0 ≤ a, b ≤ 625 are integers, such that with about 95%
certainty, the number of any set of 625 bank members with savings accounts chosen uniformly
at random lies in the interval [a, b]. (Hint: if Y is a standard Gaussian random variable,
then P(−2 ≤ Y ≤ 2) ≈ .95.)

Exercise 2.19 (Hypothesis Testing). Suppose we run a casino, and we want to test
whether or not a particular roulette wheel is biased. Let p be the probability that red results
from one spin of the roulette wheel. Using statistical terminology, “p = 18/38” is the null
hypothesis, and “p ̸= 18/38” is the alternative hypothesis. (On a standard roulette wheel,
18 of the 38 spaces are red.) For any i ≥ 1, let Xi = 1 if the ith spin is red, and let Xi = 0
otherwise.

Let µ := EX1 and let σ :=
√

var(X1). If the null hypothesis is true, and if Y is a standard
Gaussian random variable

lim
n→∞

P

( ∣∣∣∣X1 + · · ·+Xn − nµ

σ
√
n

∣∣∣∣ ≥ 2

)
= P(|Y | ≥ 2) ≈ .05.

To test the null hypothesis, we spin the wheel n times. In our test, we reject the null
hypothesis if |X1 + · · ·+Xn − nµ| > 2σ

√
n. Rejecting the null hypothesis when it is true is

called a type I error. In this test, we set the type I error percentage to be 5%. (The type I
error percentage is closely related to the p-value.)

Suppose we spin the wheel n = 3800 times and we get red 1868 times. Is the wheel biased?
That is, can we reject the null hypothesis with around 95% certainty?

Exercise 2.20 (Numerical Integration). In computer graphics in video games, etc., var-
ious integrations are performed in order to simulate lighting effects. Here is a way to use
random sampling to integrate a function in order to quickly and accurately render lighting
effects. Let Ω = [0, 1], and let P be the uniform probably law on Ω, so that if 0 ≤ a < b ≤ 1,
we have P([a, b]) = b − a. Let X1, . . . , Xn be independent random variables such that
P(Xi ∈ [a, b]) = b − a for all 0 ≤ a < b ≤ 1, for all i ∈ {1, . . . , n}. Let f : [0, 1] → R be a
continuous function we would like to integrate. Instead of integrating f directly, we instead
compute the quantity

1

n

n∑
i=1

f(Xi).
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Show that

lim
n→∞

E

(
1

n

n∑
i=1

f(Xi)

)
=

∫ 1

0

f(t)dt.

lim
n→∞

var

(
1

n

n∑
i=1

f(Xi)

)
= 0.

That is, as n becomes large, 1
n

∑n
i=1 f(Xi) is a good estimate for

∫ 1

0
f(t)dt.

Exercise 2.21 (Optional; Numerical Integration, Continued). Let P denote the uniform
probability law on [0, 1], and let X : [0, 1] → R be a random variable. This exercise dis-
cusses how to numerically compute expected values on a computer, as in Exercise 2.20. The
procedure below is an example of Monte Carlo simulation.

Consider the functionX(t) := t for all t ∈ [0, 1]. We know that EX = 1/2. To approximate
EX with Matlab, we can use sum(rand(1,1000))/1000, which sums 1000 independent,
random samples from the uniform probability law on [0, 1], and averages them (by dividing
by 1000). Enter the term sum(rand(1,1000))/1000 a few times in the command line of
Matlab, to get a few different results.

Consider the function X(t) := t2 for all t ∈ [0, 1]. Using Matlab, approximate EX by
averaging 1000 random samples from the uniform probability law on [0, 1].
Now, let P denote the standard Gaussian probability law on R, so that

EX :=

∫ ∞

−∞
X(t)e−t2/2dt/

√
2π

for any function X : R → R. Using the Matlab function randn, approximate EX for X(t) :=
t and X(t) := t2 by averaging 1000 random samples from the standard Gaussian probability
law.

Remark 2.22. WhenMatlab or other computer programs generate “random numbers” using
e.g. rand or randn, these numbers are not actually random or independent. These numbers
are pseudorandom. That is, functions such as rand output numbers in a deterministic
way, but these numbers behave as if they were random. All “random” numbers generated
by computers are actually pseudorandom, and this includes slot machines at casinos, video
games, etc. So, when using Monte Carlo simulation as we did above, we should be careful
about interpreting our results, since it is generally impossible to take random samples from
a probability law on a computer.

And, theoretically, if you knew enough about the random number generator that a slot
machine is using, you could predict its output.

Exercise 2.23. Suppose you begin at the lower left corner of an 8 × 8 chess board. Every
day, you are allowed to move either up or right to a consecutive board space (unless you are
waiting). When you land on a new space, you have to wait a number of days specified by
the number sitting on that board space, until you move again. The numbers on the board
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spaces appear below. 

1 2 2 1 3 2 6 0
4 7 3 2 4 8 3 4
3 4 4 4 5 5 4 2
4 7 5 3 4 4 5 5
4 5 4 2 3 3 7 3
4 6 6 4 3 4 3 2
5 4 6 3 4 3 4 1
0 3 6 2 7 2 7 5


.

Your goal is to reach the top right corner of the chess board in the shortest amount of time.
Find the path that takes the shortest amount of time, and also find the shortest amount
of time that it takes to reach the top right corner. (Hint: Use recursion. That is, solve a
more general problem. For any square on the board, find the least number of days it takes
to reach that square starting from the bottom left corner, using only up and right moves. If
you are still stuck, read a bit about dynamic programming.)

Exercise 2.24 (Renewal Theory). Let t1, t2, . . . be positive, independent identically dis-
tributed random variables. Let µ ∈ R. Assume Et1 = µ. For any positive integer j, we
interpret tj as the lifetime of the jth lightbulb (before burning out, at which point it is re-
placed by the (j +1)st lightbulb). For any n ≥ 1, let Tn := t1 + · · ·+ tn be the total lifetime
of the first n lightbulbs. For any positive integer t, let Nt := min{n ≥ 1: Tn ≥ t} be the
number of lightbulbs that have been used up until time t. Show that Nt/t converges almost
surely to 1/µ as t → ∞. (Hint: if c, t are positive integers, then {Nt ≤ ct} = {Tct ≥ t}.
Apply the Strong Law to Tct.)

Exercise 2.25 (Playing Monopoly Forever). Let t1, t2, . . . be independent random vari-
ables, all of which are uniform on {1, 2, 3, 4, 5, 6}. For any positive integer j, we think of tj
as the result of rolling a single fair six-sided die. For any n ≥ 1, let Tn = t1 + · · ·+ tn be the
total number of spaces that have been moved after the nth roll. (We think of each roll as
the amount of moves forward of a game piece on a very large Monopoly game board.) For
any positive integer t, let Nt := min{n ≥ 1: Tn ≥ t} be the number of rolls needed to get t
spaces away from the start. Using Exercise 2.24, show that Nt/t converges almost surely to
2/7 as t→ ∞.

Exercise 2.26 (Random Numbers are Normal). Let X be a uniformly distributed
random variable on (0, 1). Let X1 be the first digit in the decimal expansion of X. Let X2

be the second digit in the decimal expansion of X. And so on.

• Show that the random variables X1, X2, . . . are uniform on {0, 1, 2, . . . , 9} and inde-
pendent.

• Fix m ∈ {0, 1, 2, . . . , 9}. Using the Strong Law of Large Numbers, show that with
probability one, the fraction of appearances of the number m in the first n digits of
X converges to 1/10 as n→ ∞.

(Optional): Show that for any ordered finite set of digits of length k, the fraction of appear-
ances of this set of digits in the first n digits of X converges to 10−k as n→ ∞. (You already
proved the case k = 1 above.) That is, a randomly chosen number in (0, 1) is normal. On
the other hand, if we just pick some number such that

√
2 − 1, then it may not be easy to

say whether or not that number is normal.
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(As an optional exercise, try to explicitly write down a normal number. This may not be
so easy to do, even though a random number in (0, 1) satisfies this property!)

2.3. Additional Comments. A version of the Law of Large Numbers was stated as early
as the 1500s. In the 1700s and 1800s, various laws of large numbers were proved with weaker
and weaker hypotheses. For example, the L2 Weak Law was known to Chebyshev in 1867.
The Strong Law of Large Numbers might have first been proven in 1930 by Kolmogorov.

If the random variables have infinite mean, then the Strong Law cannot hold.

Exercise 2.27. Let X1, X2, . . . : Ω → R be i.i.d. with E |X1| = ∞. Then P(|Xn| >
n for infinitely many n ≥ 1) = 1. And P(limn→∞

X1+···+Xn

n
∈ (−∞,∞)) = 0. (Hint: show∑∞

n=1P(|Xn| > n) = ∞, then apply the second Borel-Cantelli Lemma. Write Sn

n
− Sn+1

n+1
=

Sn

n(n+1)
− Xn+1

n+1
, and consider what happens to both sides on the set where limn→∞

Sn

n
∈ R.)

Exercise 2.28 (Second Borel-Cantelli Lemma). Let A1, A2, . . . be independent events
with

∑∞
n=1P(An) = ∞. Then P(An occurs for infinitely many n ≥ 1) = 1. (Hint: using

1− x ≤ e−x for any x ∈ R, show P(∩t
n=sA

c
n) ≤ exp(−

∑t
n=sP(An)), let t → ∞ to conclude

P(∪∞
n=sAn) = 1 for all s ≥ 1, then let s→ ∞.)

The Central Limit Theorem was described by de Moivre in 1733 and again by Laplace in
1785 and 1812, where the Fourier Transform was used. In 1901, Lyapunov proved the Central
Limit Theorem under an assumption similar to E |X1|2+ε <∞ for some ε > 0. The Central
Limit Theorem under the assumption of a finite (truncated) second moment was proven by
Lindeberg in 1920. This result was extended by Feller in 1935, also with contributions by
Lévy in the same year.

Theorem 2.29 (Lindeberg Central Limit Theorem for Triangular Arrays). Let
j1, j2, . . . be a sequence of natural numbers with limn→∞ jn = ∞. For any n ≥ 1, let
Xn,1, . . . , Xn,n : Ωn → R be independent with mean zero and finite variance. (Note e.g.
that X3,1 and X2,2 might not be independent, and the sample space is allowed to change as
n changes.) Define

σ2
n :=

jn∑
k=1

Var(Xn,k), ∀n ≥ 1.

Assume that σn > 0 for all n ≥ 1. If, for any ε > 0, we have

lim
n→∞

1

σ2
n

jn∑
k=1

E(|Xn,k|21|Xn,k|>εσn) = 0, (∗)

then the random variables Xn,1+···+Xn,n

σn
converge in distribution to a standard Gaussian ran-

dom variable.

The Lindeberg condition (∗) implies the Feller condition

lim
n→∞

1

σ2
n

max
1≤k≤n

E|Xn,k|2 = 0.

It was shown by Feller that if the above assumptions hold (without (∗)) and if the Feller

condition holds, then the Lindeberg condition (∗) is necessary and sufficient for Xn,1+···+Xn,n

σn
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to converge in distribution to a standard Gaussian random variable. The combined result is
sometimes known as the Lindeberg-Feller theorem.

Berry and Esseén separately gave an error bound for the Central Limit Theorem in the
early 1940s.

Theorem 2.30 (Berry-Esseén). There exists c > 0 such that the following holds. Let
X1, X2, . . . be i.i.d. real-valued random variables with mean zero, variance 1 and E |X1|3 <
∞. Let Z be a standard Gaussian random variable. Then for any n ≥ 1,

sup
t∈R

∣∣P(X1 + · · ·+Xn/
√
n < t)−P(Z < t)

∣∣ ≤ c · E |X1|3√
n

.

With the assumption of more bounded moments, an asymptotic expansion can be written,
with explicit dependence on t, for the difference |P(X1 + · · ·+Xn/

√
n < t)−P(Z < t)|.

This expansion is called the Edgeworth Expansion; see Feller, Vol. 2, XVI.4.(4.1).
One may ask for general conditions under which the average of any i.i.d. random variables

have a limiting distribution, with moment assumptions different than the Central Limit
Theorem. Necessary and sufficient conditions are described in the following Theorem.

Theorem 2.31. Let X1, X2, . . . be i.i.d. real-valued random variables. Assume there exists
a function h : [0,∞) → (0,∞) such that, for any x > 0, limx→∞ L(tx)/L(x) = 1. Assume
also there exists θ ∈ [0, 1] and α ∈ (0, 2)such that

• limx→∞ P(X1 > x)/P(|X1| > x) = θ,
• P(|X1| > x) = x−αL(x), ∀ x > 0.

For any n ≥ 1, define

an := inf{x > 0: P (|X1| > x) ≤ 1/n}, bn := E(X11|X1|≤an).

Then X1+···+Xn−an
bn

converges in distribution to a random variable Y as n→ ∞

Exercise 2.32. Show that there exists a nonzero random variable X such that, if X1, X2, . . .
are i.i.d. copies of X, then X1+···+Xn

n
is equal in distribution to X, for any n ≥ 1. (Optional:

can you write out an explicit formula for the density of X?) (Hint: take the Fourier trans-
form.)

Show that there exists a nonzero random variable X such that, if X1, X2, . . . are i.i.d.
copies of X, then X1+···+Xn

n2 is equal in distribution to X, for any n ≥ 1.

By projection the random variables onto one-dimensional lines, the following Central Limit
Theorem in Rd can be proven from the corresponding result in R.

Theorem 2.33 (Central Limit Theorem in Rd). Let X(1), X(2), . . . be i.i.d. Rd-valued
random variables. Let µ ∈ Rd. (We write a random variable in its components as X(n) =

(X
(n)
1 , . . . , X

(n)
d ) ∈ Rd.) Assume EX(n) = µ for all n ≥ 1, and for any 1 ≤ i, j ≤ d, all of

the covariances

aij := E((X
(1)
i − EX

(1)
i )(X

(1)
j − EX

(1)
j )).

are finite. Then as n → ∞, X(1)+···+X(n)−nµ√
n

converges weakly to a Gaussian random vector

Z = (Z1, . . . , Zd) ∈ Rd with covariance matrix (aij)1≤i,j≤d.
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Remark 2.34. By definition, a random vector Z = (Z1, . . . , Zd) ∈ Rd isGaussian if, for any

v1, . . . , vd ∈ R, the random variable
∑d

i=1 viZi is a Gaussian random variable. Equivalently,
for any v ∈ Rd, the random variable ⟨v, Z⟩ is a Gaussian random variable. The covariance
matrix (aij)1≤i,j≤d of Z is defined by

aij := E((Zi − EZi)(Zj − EZj)).

Exercise 2.35. Let Z = (Z1, . . . , Zd) ∈ Rd be a Gaussian random vector.

• Show that the covariance matrix (aij)1≤i,j≤d of Z is symmetric, positive semidefinite.
That is, for any v ∈ Rd, we have

vTav =
d∑

i,j=1

vivjaij ≥ 0.

• Given any symmetric positive semidefinite matrix (bij)1≤i,j≤d, show that there exists a
Gaussian random vector Z such that the covariance matrix of Z is (bij)1≤i,j≤d. (Hint:
write the matrix b in its Cholesky decomposition b = rr∗, where r is a d × d real
matrix. Let e(1), . . . , e(d) be the rows of r. Let X1, . . . , Xd be independent standard
Gaussian random variables. Let X := (X1, . . . , Xd). Define Zi := ⟨X, e(i)⟩ for any
1 ≤ i ≤ d.)

Proposition 2.36.

• (Slutsky’s Theorem) Let X1, X2, . . . : Ω → R be random variables that converge in
distribution to X : Ω → R. Let c ∈ R. Let Y1, Y2, . . . : Ω → R be random variables
that converge in probability to c. Then X1 + Y1, X2 + Y2, . . . converges in distribution
to X + c. Also, X1Y1, X2Y2, . . . converges in distribution to cX.

• Let X1, X2, . . . : Ω → R be random variables that converge in distribution to X : Ω →
R. Let f : R → R be continuous. Then f(X1), f(X2), . . . converges in distribution to
f(X).

Exercise 2.37. Suppose I tell you that the following list of 20 numbers is a random sample
from a Gaussian random variable, but I don’t tell the mean or standard deviation.

5.1715, 3.2925, 5.2172, 6.1302, 4.9889, 5.5347, 5.2269, 4.1966, 4.7939, 3.7127

5.3884, 3.3529, 3.4311, 3.6905, 1.5557, 5.9384, 4.8252, 3.7451, 5.8703, 2.7885

To the best of your ability, determine what the mean and standard deviation are of this
random variable. (This question is a bit open-ended, so there could be more than one correct
way of justifying your answer.)

Exercise 2.38. Suppose I tell you that the following list of 20 numbers is a random sample
from a Gaussian random variable, but I don’t tell you the mean or standard deviation. Also,
around one or two of the numbers was corrupted by noise, computational error, tabulation
error, etc., so that it is totally unrelated to the actual Gaussian random variable.

−1.2045, −1.4829, −0.3616, −0.3743, −2.7298, −1.0601, −1.3298, 0.2554, 6.1865, 1.2185

−2.7273, −0.8453, −3.4282, −3.2270, −1.0137, 2.0653, −5.5393, −0.2572, −1.4512, 1.2347
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To the best of your ability, determine what the mean and standard deviation are of this
random variable. Supposing you had instead a billion numbers, and 5 or 10 percent of
them were corrupted samples, can you come up with some automatic way of throwing out
the corrupted samples? (Once again, there could be more than one right answer here; the
question is intentionally open-ended.)

3. Exponential Families

A basic problem in statistics is to fit data to an unknown probability distribution. As in
Exercise 2.37, we might have a list of numbers, and we known these numbers follow some
Gaussian distribution, but we might not know the mean and variance of this Gaussian.
We then want to infer the mean and variance from the data. In this example, there are
two unknown parameters. In order to generalize this problem, we introduce exponential
families. Exponential families provide a general class of distributions with a given number
of unknown parameters. Many of the examples introduced in Section 1.2 can be understood
as exponential families.

Definition 3.1 (Exponential Families). Let n, k be a positive integers and let µ be a
measure on Rn. Let t1, . . . , tk : Rn → R. Let h : Rn → [0,∞) with µ({x ∈ Rn : h(x) > 0}) >
0. For any w = (w1, . . . , wk) ∈ Rk, define

a(w) := log

∫
Rn

h(x) exp
( k∑

i=1

witi(x)
)
dµ(x).

The set {w ∈ Rk : a(w) < ∞} is called the natural parameter space. On this set, the
function

fw(x) := h(x) exp
( k∑

i=1

witi(x)− a(w)
)
, ∀x ∈ Rn

satisfies
∫
Rn fw(x)dµ(x) = 1. So, the set of functions (which can be interpreted as probability

density functions, or as probability mass functions according to µ)

{fw : a(w) <∞}
is called a k-parameter exponential family in canonical form.

More generally, let Θ ⊆ Rk and let w : Θ → Rk. We define a k-parameter exponential
family to be a set of functions {fθ : θ ∈ Θ, a(w(θ)) <∞}, where

fθ(x) := h(x) exp
( k∑

i=1

wi(θ)ti(x)− a(w(θ))
)
, ∀x ∈ Rn.

An exponential family is called curved if the dimension of Θ is less than k.

Remark 3.2. If w : Θ → Rk has an inverse function, then the corresponding k-parameter
exponential family can be written in canonical form.

When we deal with probability density functions, we will simplify to dµ(x) = dx and
n = 1, so that

a(w) := log

∫
R
h(x) exp

( k∑
i=1

witi(x)
)
dx.
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and we can then interpret

fθ(x) := h(x) exp
( k∑

i=1

wi(θ)ti(x)− a(w(θ)))
)
, ∀x ∈ R

as probability density functions on the real line, since
∫
R fθ(x)dx = 1 for every θ such that

a(w(θ)) <∞, and fw(θ)(x) ≥ 0 for all x ∈ R.
To specialize to probability mass functions on e.g. the integers, we let µ be counting

measure (so that µ({m}) = 1 for any integer m, and µ({x}) = 0 for any x ∈ R that is not
an integer), so that

a(w) := log
∞∑

m=−∞

h(m) exp
( k∑

i=1

wi(θ)ti(m)
)
.

and we can then interpret

fθ(m) := h(m) exp
( k∑

i=1

wi(θ)ti(m)− a(w(θ))
)
, ∀m ∈ Z

as a probability mass function, since
∑

m∈Z fw(θ)(m) = 1 and fw(θ)(m) ≥ 0 for all m ∈ Z.
Below we will use fθ interchangeably for a single variable density/mass function and for a

joint density/mass function.

Example 3.3. Let us see how to phrase Exercise 2.37 using a two parameter exponential
family. We write a Gaussian density of mean µ ∈ R and standard deviation σ > 0 as

1√
2πσ

e−
(x−µ)2

2σ2 =
1√
2π

exp
( µ
σ2
x− 1

2σ2
x2 −

( µ2

2σ2
+ log σ

))
, ∀x ∈ R.

Then, we interpret θ as θ = (θ1, θ2) = (µ, σ2) ∈ R2, and define

t1(x) := x, t2(x) := x2,

w1(θ) :=
θ1
θ2

=
µ

σ2
, w2(θ) := − 1

2θ2
= − 1

2σ2
,

a(w(θ)) :=
θ21
2θ2

+
1

2
log θ2 =

µ2

2σ2
+ log σ,

and h(x) := 1√
2π

for all x ∈ R. Let Θ := {θ ∈ R2 : θ2 > 0}, and for any θ ∈ Θ, define

fθ(x) := h(x) exp
( 2∑

i=1

wi(θ)ti(x)− a(w(θ)))
)
, ∀x ∈ R.

Then {fθ : θ ∈ Θ} is a two parameter exponential family.
If we instead want to write this exponential family in canonical form, we replace the θ

terms with w1, w2 terms as follows

a(w) =
µ2

2σ2
+ log σ =

( µ
σ2

)2 [
(−4)

(−1)

2σ2

]−1

− 1

2
log
(
(−2)

(−1)

2σ2

)
= − w2

1

4w2

− 1

2
log(−2w2).
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We then restrict to the set {(w1, w2) ∈ R2 : w2 < 0} and define

fw(x) := h(x) exp
( 2∑

i=1

witi(x)− a(w))
)
, ∀x ∈ R.

Remark 3.4 (Location Family). Let X be a random variable with density f : R → R.
Let µ ∈ R. Then the densities {f(x + µ)}µ∈R are called the location family of X. This
family may or may not be an exponential family.

Exercise 3.5. LetX be uniformly distributed on [0, 1]. Show that the location family ofX is
not an exponential family in the following sense. The corresponding densities {f(x+µ)}µ∈R
cannot be written in the form

h(x) exp(w(µ)t(x)− a(w(µ)))

where h : R → R, w : R → R, t : R → R, x ∈ R and a(w(µ)) is a real number chosen so that
the integral of the density is one. (Hint: Argue by contradiction. Assume that the location
family is a one-parameter exponential family. Compare where the different densities are zero
or nonzero as the parameter changes.)

Remark 3.6 (Scale Family). Let X be a random variable with density f : R → R. Let
σ > 0. Then the densities {σ−1f(x/σ)}σ>0 are called the scale family of X. This family
may or may not be an exponential family. Note that these are probability densities since∫∞
−∞ σ−1f(x/σ)dx =

∫∞
−∞ f(x)dx = 1.

Remark 3.7 (Location and Scale Family). Let X be a random variable with density
f : R → R. Let µ ∈ R, σ > 0. Then the densities {σ−1f((x + µ)/σ)}σ>0 are called the
location and scale family of X. This family may or may not be an exponential family.

3.1. Differential Identities. Recall from Exercise 1.41 that a standard Gaussian random
variable X satisfies

EetX = et
2/2, ∀ t ∈ R,

and using this information we can recover the mth moment of X by the formula

dm

dtm
|t=0Ee

tX = EXm.

Similarly, we can differentiate the parameters of exponential families and find out information
about moments of the exponential family. We describe such a procedure below.

As in Definition 3.1, let

a(w) := log

∫
Rn

h(x) exp
( k∑

i=1

witi(x)
)
dµ(x).

Define now

W := {w ∈ Rk : a(w) <∞}.

Lemma 3.8. The function a(w) is continuous and has continuous partial derivatives of all
orders on the interior of W . Moreover, we can compute these derivatives by differentiating
under the integral sign.
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Proof. We prove only the case of a first order partial derivative. Consider the case of the
partial derivative with respect to w1 at w in the interior of W . Let e1 = (1, 0, . . . , 0) ∈ Rk.
Since the exponential function is analytic, it suffices to show that the partial derivative of
ea(w) exists in the direction e1. We form the difference quotient for ea(w) as follows.

exp
(
a(w + εe1)

)
− exp(a(w))

ε

=
1

ε

∫
Rn

h(x)
[
exp

(
εt1(x) +

k∑
i=1

witi(x)
)
− exp

( k∑
i=1

witi(x)
)]
dµ(x)

=

∫
Rn

h(x)
exp(εt1(x))− 1

ε
exp

( k∑
i=1

witi(x)
)
dµ(x).

By the Mean Value Theorem, for any 0 < α < 1 and for any β ∈ R∣∣eαβ − 1
∣∣ ≤ |αβ|max(1, eαβ) ≤ |αβ| e|β| ≤ |α| e2|β| ≤ |α| (e2β + e−2β), (∗)

So, using δ > 0, α := ε/δ and β := δt1(x)∣∣∣∣∣h(x)exp(εt1(x))− 1

ε
exp

( k∑
i=1

witi(x)
)∣∣∣∣∣

≤ h(x)

∣∣∣∣exp(εt1(x))− 1

ε

∣∣∣∣ exp( k∑
i=1

witi(x)
)
dµ(x)

(∗)
≤ 1

δ
h(x)

(
e2δt1(x) + e−2δt1(x)

)
exp

( k∑
i=1

witi(x)
)
dµ(x)

So, if

Xε := h(x)
exp(εt1(x))− 1

ε
exp

( k∑
i=1

witi(x)
)
,

Y :=
1

δ
h(x)

(
e2δt1(x) + e−2δt1(x)

)
exp

( k∑
i=1

witi(x)
)
,

then |Xε| ≤ Y for any 0 < ε < δ < 1. We then conclude by the Dominated Convergence
Theorem 3.10 that

∂

∂w1

ea(w) = lim
ε→0

∫
Rn

∣∣∣∣∣h(x)exp(εt1(x))− 1

ε
exp

( k∑
i=1

witi(x)
)∣∣∣∣∣ dµ(x)

=

∫
Rn

t1(x)h(x) exp
( k∑

i=1

witi(x)
)
dµ(x).

Here we also use that
∫
Rn Y (x)dµ(x) = ea(w+2δe1) + ea(w−2δe1) < ∞ for sufficiently small δ

(depending only on w), since w is in the interior of W .

39



Using the right part of inequality (∗), we can similarly show that∫
Rn

k∏
j=1

|tj(x)|mj h(x) exp
( k∑

i=1

witi(x)
)
dµ(x) <∞,

for any positive integers m1, . . . ,mk, so that an inductive argument completes the above
proof for any iterated partial derivative. □

Remark 3.9. Using Definition 3.1 we can rewrite the penultimate formula as

e−a(w) ∂

∂w1

ea(w) =

∫
Rn

t1(x)h(x) exp
( k∑

i=1

witi(x)− a(w)
)
dµ(x) =

∫
Rn

t1(x)fw(x)dµ(x).

Theorem 3.10 (Dominated Convergence Theorem). Let X1, X2, . . . : Ω → R be ran-
dom variables that converge almost surely. Assume that Y is a nonnegative random variable
with EY <∞ and |Xn| ≤ Y almost surely, ∀ n ≥ 1. Then

E lim
n→∞

Xn = lim
n→∞

EXn.

Corollary 3.11. Let ε > 0. Let X : Ω → R be a random variable such that EewX < ∞ for
all w ∈ (−ε, ε). Then, for any integer n ≥ 1, EXn exists and

dn

dwn
|w=0Ee

wX = EXn.

Proof. Apply Lemma 3.8 when µ = P, h = 1, k = 1, t(x) = x. □

Remark 3.12. If X is a Cauchy distributed random variable, then EewX = ∞ for all w ̸= 0.
So, in this case, the hypothesis of the above Corollary does not apply. Indeed, E |X| = ∞
in this case.

Example 3.13. Recall that when dµ(x) = dx and n = 1, we have

a(w(θ)) := log

∫
R
h(x) exp

( k∑
i=1

wi(θ)ti(x)
)
dx.

so that

fθ(x) := h(x) exp
( k∑

i=1

wi(θ)ti(x)− a(w(θ)))
)
, ∀x ∈ R

is probability density functions on the real line. If Eθ denotes the expected value with respect
to this density function, then we have by the chain rule and Remark 3.9

e−a(w(θ)) ∂

∂θ1
ea(w(θ)) = e−a(w(θ))

k∑
i=1

∂ea(w)

∂wi

∂wi

∂θ1
=

k∑
i=1

∂wi

∂θ1
Eθti = Eθ

( k∑
i=1

∂wi

∂θ1
ti

)
.

Returning to Example 3.3, where we wrote the Gaussian density of mean µ and standard
deviation σ > 0 as a two-parameter exponential family, we had k = 2, n = 1, we wrote θ as
θ = (θ1, θ2) = (µ, σ2) ∈ R2, and define

t1(x) := x, t2(x) := x2,

w1(θ) :=
θ1
θ2

=
µ

σ2
, w2(θ) := − 1

2θ2
= − 1

2σ2
,

40



a(w(θ)) :=
θ21
2θ2

+
1

2
log θ2 =

µ2

2σ2
+ log σ,

So that

e−a(w(θ)) ∂

∂θ1
ea(w(θ)) =

θ1
θ2

=
µ

σ2
= Eθ

( 1

θ2
x
)
=

1

σ2
Eθ(x).

That is, Eθ(x) = µ, as we anticipated.

Exercise 3.14. Using a two parameter exponential family for a Gaussian random variable
(with mean µ and variance σ2), compute both sides of the following identity in terms of µ
and σ:

e−a(w) ∂2

∂wi∂wj

ea(w) =

∫
R
ti(x)tj(x)h(x) exp

( 2∑
i=1

witi(x)− a(w)
)
dµ(x), ∀ 1 ≤ i, j ≤ 2.

Recall that in this case,

t1(x) := x, t2(x) := x2, w1 :=
µ

σ2
, w2 := − 1

2σ2
,

a(w) := − w2
1

4w2

− 1

2
log(−2w2).

Example 3.15. We write the binomial distribution with parameters n, p as a one parameter
exponential family (where n is fixed), and then take derivatives to find its moments. Recall
from Definition 1.19 that the binomial random variable X with parameters n, p satisfies: if
x is an integer with 0 ≤ x ≤ n, then

P(X = x) =

(
n

x

)
px(1− p)n−x.

For any other x, we have P(X = x) = 0. We write(
n

x

)
px(1− p)n−x =

(
n

x

)
(1− p)n

( p

1− p

)x
=

(
n

x

)
exp

(
x log

( p

1− p

)
− (−1)n log(1− p)

)
So, define h : R → R so that, if x is an integer with 0 ≤ x ≤ n, then h(x) =

(
n
x

)
. (It does

not matter what other values h takes in this example.) Let θ := p, Θ := (0, 1) and define

t(x) := x, w(θ) := log
( θ

1− θ

)
, a(w(θ)) := −n log(1− θ).

Since X only takes values integers values with positive probability, we have

fθ(x) := h(x) exp
(
w(θ)t(x)− a(w(θ))

)
, ∀x ∈ R

As in the previous example, we have

e−a(w(θ)) d

dθ
ea(w(θ)) =

d

dθ
a(w(θ)) = Eθ

( d
dθ
w(θ)t

)
.

That is, (1
θ
+

1

1− θ

)
Eθ(x) =

n

1− θ
.

That is, the expected value of the binomial with parameters n, p (with p = θ) is

n

1− θ

1

1/(θ(1− θ))
= nθ.
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Exercise 3.16. Let X : Ω → Rn be a random variable with the standard Gaussian dis-
tribution:

P(X ∈ A) :=

∫
A

e−(x2
1+···+x2

n)/2dx(2π)−n/2, ∀A ⊆ Rn measurable.

Let v1, . . . , vm be vectors in Rn. Let ⟨·, ·⟩ : Rn × Rn → R be the standard inner product
on Rn, so that ⟨x, y⟩ :=

∑n
i=1 xiyi for any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn.

First, let v ∈ Rn and show that ⟨X, v⟩ is a mean zero Gaussian with variance ⟨v, v⟩.
Then, show that the random variables ⟨X, v1⟩, . . . , ⟨X, vm⟩ are independent if and only if

the vectors v1, . . . , vm are pairwise orthogonal.
(Hint: use the rotation invariance of the Gaussian.)

3.2. Additional Comments. Exponential families were apparently introduced by Dar-
mois, Koopman and Pitman in the 1930s.

4. Random Samples

When conducting a poll of a sample population, one often assumes that there exists
a random variable X : Ω → R that describes a single observation from the population.
Repeated observations of the population are then performed independently of each other.
This concept is formalized as a random sample.

Definition 4.1 (Random Sample). Let n be a positive integer. A random sample of size
n is a sequence X1, . . . , Xn of independent, identically distributed (i.i.d.) random variables.

As in Exercise 2.37, a basic problem is to find e.g. the mean or standard deviation
of the unknown distribution of X. That is, if we have a random sample of size n then
1
n
(X1 + · · ·+Xn) seems to be a reasonable guess for the mean of the unknown distribution

if n is large. More generally, any function of the random sample is called a statistic.

Definition 4.2 (Statistic). Let n, k be positive integers. Let X1, . . . , Xn be a random
sample of size n. Let f : Rn → Rk. A statistic is a random variable of the form Y :=
f(X1, . . . , Xn). The distribution of Y is called a sampling distribution.

Example 4.3. The sample mean of a random sample X1, . . . , Xn of size n, denoted X, is
the following statistic:

X :=
1

n

n∑
i=1

Xi.

Example 4.4. Let n > 1. The sample standard deviation of a random sampleX1, . . . , Xn

of size n, denoted S, is the following statistic:

S :=

√√√√ 1

n− 1

n∑
i=1

(Xi −X)2.

The sample variance of a random sample X1, . . . , Xn of size n is S2.

From the usual definition of the variance (for the uniform distribution on the integers
{1, . . . , n}), it might seem sensible to divide by n above instead of n − 1. The second part
of the following exercise attempts to explain why dividing by n− 1 is sensible.
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Exercise 4.5. Let n ≥ 2 be an integer. Let X1, . . . , Xn be a random sample of size n.
Assume that µ := EX ∈ R and σ :=

√
var(X) < ∞. Let X be the sample mean and let S

be the sample standard deviation of the random sample. Show the following

• Var(X) = σ2/n.
• ES2 = σ2.

If we divided by n instead of n − 1 in the definition of S, then the second part of the
above exercise would not hold. Since ES2 agrees with the variance of X, we say that S2 is
unbiased. We will discuss this concept more in Section 6.

Exercise 4.6. Let X : Ω → R be a random variable with EX2 <∞. Show that the quantity
E(X − t)2 is minimized for t ∈ R uniquely when t = EX.

4.1. Sampling from the Normal. The Central Limit Theorem implies that the combi-
nation of a large number of independent identically distributed random actions results in a
Gaussian distribution. For this reason, one can often (but not always) assume that sampling
from a large population is sampling from the normal distribution with unknown mean and
variance. Since this Gaussian assumption is so common, we discuss properties of sampling
from the normal in this section.

Proposition 4.7. Let n ≥ 2 be an integer. Let X1, . . . , Xn be a random sample from the
Gaussian distribution with mean µ ∈ R and variance σ2 > 0. Let X be the sample mean and
let S be the sample standard deviation.

• X and S are independent random variables.
• X is a Gaussian random variable with mean µ and variance σ2/n.
• (n−1)S2/σ2 is a chi-squared distributed random variable with n−1 degrees of freedom.

Proof. By replacing X1, . . . , Xn with X1 − µ, . . . , Xn − µ, it suffices to assume that µ = 0 in
the proof. It further suffices to assume σ = 1 by dividing all the random variables by σ. To
prove the first item, we first note that the random variable X is independent the collection
of random variables X1 −X, . . . , Xn −X. This follows from Exercise 3.16, since the vector
(1, . . . , 1) ∈ Rn is orthogonal to any vector in the span of

(1, 0, 0, . . .)− 1

n
(1, . . . , 1), . . . , (0, . . . , 0, 1)− 1

n
(1, . . . , 1).

(We are not asserting that the random variables X,X1−X, . . . , Xn−X are all independent;
in fact this is false by Exercise 3.16 since the vectors (1, 0, 0, . . .)− 1

n
(1, . . . , 1), (0, 0, . . . , 0, 1)−

1
n
(1, . . . , 1) are not orthogonal in Rn.) The first item follows, since S is a function of X1 −
X, . . . , Xn −X, so S is independent of X.

The second item follows from Proposition 1.45, Example 1.108 and Exercise 1.58.
We now prove the third item. Let Xn := 1

n

∑n
i=1Xi and let S2

n := 1
n−1

∑n
i=1(Xi − Xn)

2.

In the case n = 2, we have S2
2 = 1

4
(X1 −X2)

2 + 1
4
(X2 −X1)

2 = 1
2
(X1 −X2)

2. From Example

1.108, 1√
2
(X1 − X2) is a mean zero Gaussian random variable with variance 1. So, S2

2 is a

chi-squared distributed random variable by Definition 1.33 with one degree of freedom. That
is, the third item of this proposition holds when n = 2.

We now induct on n. From Lemma 4.8,

nS2
n+1 = (n− 1)S2

n +
n

n+ 1
(Xn+1 −Xn)

2, ∀n ≥ 2.
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From the first item, Sn is independent of Xn. Also, Xn+1 is independent of Sn by Proposition
1.61, since Sn is a function of X1, . . . , Xn, the latter being independent of Xn+1. In summary,
Sn is independent of (Xn+1 −Xn)

2. By the inductive hypothesis, (n− 1)S2
n is a chi-squared

distributed random variable with n−1 degrees of freedom. From Example 1.108 Xn+1−Xn is
a Gaussian random variable with mean zero and variance 1+1/n, so that

√
n/(n+ 1)(Xn+1−

Xn) is a mean zero Gaussian with variance 1. Definition 1.33 then implies that nSn+1 is a
chi-squared random variable with n degrees of freedom, completing the inductive step. □

Lemma 4.8. Let X1, X2, . . . be random variables. For any n ≥ 2, let Xn := 1
n

∑n
i=1Xi and

let S2
n := 1

n−1

∑n
i=1(Xi −Xn)

2. Then

nS2
n+1 − (n− 1)S2

n =
n

n+ 1
(Xn+1 −Xn)

2, ∀n ≥ 2.

Proof.

nS2
n+1 − (n− 1)S2

n =
n+1∑
i=1

(Xi −Xn+1)
2 −

n∑
i=1

(Xi −Xn)
2

= (Xn+1 −Xn+1)
2 +

n∑
i=1

(Xn+1 −Xn)(−2Xi +Xn+1 +Xn)

= (Xn+1 −Xn+1)
2 + (Xn+1 −Xn)

n∑
i=1

(−2Xi +Xn+1 +Xn)

= (Xn+1 −Xn+1)
2 + (Xn+1 −Xn)n(−2Xn +Xn+1 +Xn)

= (Xn+1(1− 1/(n+ 1))− n

n+ 1
Xn)

2 + n(Xn+1 −Xn)
2

=
n2

(n+ 1)2
(Xn+1 −Xn)

2 + n
(Xn+1

n+ 1
+ (

1

n+ 1
− 1

n
)

n∑
i=1

Xi

)2
=

n2

(n+ 1)2
(Xn+1 −Xn)

2 + n
(Xn+1

n+ 1
− 1

n(n+ 1)

n∑
i=1

Xi

)2
=

n2

(n+ 1)2
(Xn+1 −Xn)

2 + n
(Xn+1

n+ 1
− 1

n+ 1
Xn

)2
=

n2

(n+ 1)2
(Xn+1 −Xn)

2 +
n

(n+ 1)2
(Xn+1 −Xn)

2 =
n

n+ 1
(Xn+1 −Xn)

2.

□

If X1, X2, . . . are a random sample from a Gaussian random variable with mean µ ∈ R
and standard deviation σ > 0, then Example 1.108 implies that

X1 + · · ·+Xn − nµ

σ
√
n

=
X − µ

σ/
√
n

is a Gaussian random variable with mean zero and variance one. If the mean and standard
deviation are unknown, then it might be difficult to find either µ or σ by looking at this
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quantity for different values of µ and σ. However, if we substitute the sample variance S for
σ and examine instead

X − µ

S/
√
n
,

then there is only one unknown parameter µ appearing in this expression. So, if we insert

different values of µ into X−µ
S/

√
n
, we might be able to determine the unknown mean µ, if

we knew the distribution of X−µ
S/

√
n
for fixed µ. This distribution is given by the following

proposition.

Proposition 4.9. Let X be a standard Gaussian random variable. Let Y be a chi squared
random variable with p degrees of freedom. Assume that X and Y are independent. Then
X/
√
Y/p has the following density, known as Student’s t-distribution with p degrees of

freedom:

f
X/(

√
Y/p)

(t) :=
Γ(p+1

2
)

√
p
√
πΓ(p/2)

(
1 +

t2

p

)− p+1
2
, ∀ t ∈ R.

Remark 4.10. If X1, . . . , Xn+1 is a random sample from a Gaussian random variable with
mean µ ∈ R and standard deviation σ > 0, then (n− 1)−1/2(X − µ)/(S/

√
n) has Student’s

t-distribution with n − 1 degrees of freedom, since
√
n(X − µ) has mean zero and variance

one, and dividing the top and bottom by σ reduces to the case treated in the proposition
(using also independence of X and S by Proposition 4.7).

Proof. First, let Z :=
√
Y/p. We find the density of Z as follows. Let t > 0. Then

fZ(y) =
d

dy
P(Z ≤ y) =

d

dy
P(Y ≤ y2p) =

d

dy

∫ y2p

0

x(p/2)−1e−x/2

2p/2Γ(p/2)
dx

= 2ypp(p/2)−1yp−2e−y2p/2 1

2p/2Γ(p/2)
= pp/2yp−1e−y2p/2 1

2(p/2)−1Γ(p/2)
.

Let ϕ : R2 → R2 so that ϕ−1(x, y) = (y, x/y), ϕ(a, b) = (ab, a), |Jacϕ(a, b)| =
∣∣∣∣det(b a

1 0

)∣∣∣∣ =
|a|, for all (x, y), (a, b) ∈ R2. By the Change of Variables formula, for any U ⊆ R2,∫∫

ϕ(U)

f(x, y)dxdy =

∫∫
U

f(ϕ(a, b)) |Jacϕ(a, b)| dadb.

Let t > 0. Then by the definition of the joint distribution, and independence of X,Z,

P(
X

Z
≤ t) = P(X ≤ tZ) =

∫
{(x,y)∈R2 : x≤ty, y>0}

fX(x)fZ(y)dxdy

=

∫
{(a,b)∈R2 : b≤t, a>0}

|a| fX(ab)fZ(a)dadb =
∫ b=t

b=−∞

∫ ∞

a=0

|a| fX(ab)fZ(a)dadb.
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So, taking the derivative in t,applying the Fundamental Theorem of Calculus, and using the
change of variables x = a2 so that da = 1

2
√
x
dx,

fX/Z(t) =

∫ ∞

0

|a| fX(at)fZ(a)da =
pp/2√
2π

∫ ∞

0

ae−a2t2/2ap−1e−a2p/2 1

2(p/2)−1Γ(p/2)
da

=
pp/2√

2π2(p/2)−1Γ(p/2)

∫ ∞

0

ape−(p+t2)a2/2da =
pp/2√

2π2p/2Γ(p/2)

∫ ∞

0

x(p/2)−1/2e−(p+t2)x/2dx.

From Definition 1.33, the integrand is the density of a gamma distributed random variable
with parameters α, β where α− 1 = (p/2)− 1/2 and β = 2/(p+ t2); so that if we divide and
multiply by βαΓ(α), we have

fX/Z(t) =
pp/2√

2π2p/2Γ(p/2)
βαΓ(α) · (1) =

pp/2Γ(p+1
2
)

√
2π2p/2Γ(p/2)

( 2

p+ t2

) p+1
2

=
pp/2Γ(p+1

2
)

√
2π2p/2Γ(p/2)

2(p+1)/2p−(p+1)/2
(
1 +

t2

p

)− p+1
2

=
Γ(p+1

2
)

√
p
√
πΓ(p/2)

(
1 +

t2

p

)− p+1
2
.

□

Remark 4.11. The definition of Student’s t distribution looks not quite right in the Casella
and Berger book.

Exercise 4.12. Let X be a chi squared random variables with p degrees of freedom. Let
Y be a chi squared random variable with q degrees of freedom. Assume that X and Y
are independent. Show that (X/p)/(Y/q) has the following density, known as Snedecor’s
f-distribution with p and q degrees of freedom

f(X/p)/(Y/q)(t) :=
t(p/2)−1(p/q)p/2Γ((p+ q)/2)

Γ(p/2)Γ(q/2)

(
1 + t(p/q)

)−(p+q)/2

, ∀ t > 0.

Exercise 4.13 (Order Statistics). Let X : Ω → R be a random variable. Let X1, . . . , Xn

be a random sample of size n from X. Define X(1) := min1≤i≤nXi, and for any 2 ≤ i ≤ n,
inductively define

Xi := min
{
{X1, . . . , Xn}∖ {X(1), . . . , X(i−1)}

}
,

so that

X(1) ≤ X(2) ≤ · · · ≤ X(n) = max
1≤i≤n

Xi.

The random variables X(1), . . . , X(n) are called the order statistics of X1, . . . , Xn.

• Suppose X is a discrete random variable and we can order the values that X takes
as x1 < x2 < · · · . For any i ≥ 1, define pi := P(X ≤ xi). Show that, for any
1 ≤ i, j ≤ n,

P(X(j) ≤ xi) =
n∑

k=j

(
n

k

)
pki (1− pi)

n−k.

(Hint: Let Y be the number of indices 1 ≤ j ≤ n such that Xj ≤ xi. Then Y is a
binomial random variable with parameters n and pi.)
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You don’t have to show it, but ifX is a continuous random variable with density fX
and cumulative distribution function FX , then for any 1 ≤ j ≤ n, FX(j)

has density

fX(j)
(x) :=

n!

(j − 1)!(n− j)!
fX(x)(FX(x))

j−1(1− FX(x))
n−j, ∀x ∈ R.

(This follows by differentiating the above identity for the cumulative distribution
function.)

• Let X be a random variable uniformly distributed in [0, 1]. For any 1 ≤ j ≤ n,
show that X(j) is a beta distributed random variable with parameters j and n − j.
Conclude that (as you might anticipate)

EX(j) =
j

n+ 1
.

• Let a, b ∈ R with a < b. Let U be the number of indices 1 ≤ j ≤ n such that
Xj ≤ a. Let V be the number of indices 1 ≤ j ≤ n such that a < Xj ≤ b. Show
that the vector (U, V, n − U − V ) is a multinomial random variable, so that for any
nonnegative integers u, v with u+ v ≤ n, we have

P(U = u, V = v, n− U − V = n− u− v)

=
n!

u!v!(n− u− v)!
FX(a)

u(FX(b)− FX(a))
v(1− FX(b))

n−u−v.

Consequently, for any 1 ≤ i, j ≤ n,

P(X(i) ≤ a,X(j) ≤ b) = P(U ≥ i, U + V ≥ j) =

j−1∑
k=i

n−k∑
m=j−k

P(U = k, V = m) +P(U ≥ j).

So, it is possible to write an explicit formula for the joint distribution of X(i) and
X(j) (but you don’t have to write it yourself).

4.2. The Delta Method. From Examples 4.3 and 4.4 and Exercise 4.5, the sample mean
and sample variance give good estimates for the mean and variance of random samples. More
generally, we might want an estimate for a function of the mean or a function of the variance.
Such an estimate is provided by the following version of the Central Limit Theorem.

Theorem 4.14 (Delta Method). Let θ ∈ R. Let Y1, Y2, . . . be random variables such that√
n(Yn−θ) converges in distribution to a mean zero Gaussian random variable with variance

σ2 > 0. Let f : R → R. Assume that f ′(θ) exists. Then
√
n(f(Yn)− f(θ))

converges in distribution to a mean zero Gaussian with variance σ2(f ′(θ))2 as n→ ∞.

Proof. Since f ′(θ) exists, limy→θ
f(y)−f(θ)

y−θ
exists. That is, there exists h : R → R such that

limz→0
h(z)
z

= 0 and, for all y ∈ R,

f(y) = f(θ) + f ′(θ)(y − θ) + h(y − θ).

In particular,
√
n[f(Yn)− f(θ)] = f ′(θ)

√
n(Yn − θ) +

√
nh(Yn − θ). (∗)
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By assumption, ∀ s, t > 0, limn→∞P(|Yn − θ| > st/
√
n) = 2

∫∞
st
e−y2/[2σ2] dy

σ
√
2π
. So, ∀ n ≥ 1,

P(
√
n |h(Yn − θ)| > t) = P(

√
n |h(Yn − θ)| > t, |Yn − θ| > st/

√
n)

+P(
√
n |h(Yn − θ)| > t, |Yn − θ| ≤ st/

√
n)

≤ P(|Yn − θ| > st/
√
n) +P(

√
n |h(Yn − θ)| > t, |Yn − θ| ≤ st/

√
n).

As n→ ∞, the first term converges to 2
∫∞
st
e−

y2

2σ2 dy

σ
√
2π
, and the second term goes to zero since

limz→0(h(z)/z) = 0. So, for any s, t > 0, limn→∞ P(
√
n |h(Yn − θ)| > t) ≤ 2

∫∞
st
e−

y2

2σ2 dy

σ
√
2π
.

Since this holds for any s > 0, we can let s → ∞ to get limn→∞ P(
√
n |h(Yn − θ)| > t) = 0.

That is,
√
nh(Yn − θ) converges in probability to zero as n → ∞. So, by Proposition 2.36

and (∗),
√
n[f(Yn)− f(θ)] converges in distribution to a mean zero Gaussian with variance

σ2(f ′(θ))2. □

Example 4.15. Suppose Xn is the sample mean for a random sample X1, . . . , Xn of size
n and 0 < var(X1) < ∞. Let µ := EX1 ̸= 0. From the Central Limit Theorem 2.13,√
n(Xn−µ) converges in distribution to a mean zero Gaussian with variance σ2 := var(X1).

So, if we use f(x) := 1/x for any x ̸= 0, the random variable
√
n(f(Xn) − 1

µ
) converges in

distribution to a mean zero Gaussian with variance σ2(f ′(µ))2 = σ2µ−4 as n→ ∞.
From Exercises 2.6 and 2.7, this does not imply that the variance of

√
n(f(Xn) − 1/µ)

converges. However, if we assume there exists ε, c > 0 such that E
∣∣∣√n(f(Xn)− 1

µ
)
∣∣∣2+ε

≤ c

for all n ≥ 1, then we can conclude that

lim
n→∞

var(
√
n(f(Xn)−

1

µ
)) = σ2(f ′(µ))2

by Theorem 4.16 below with X ′
n := (f(Xn)− 1

µ
)2 for all n ≥ 1.

So, we can say that 1/Xn has expected value near 1/µ variance near n−1σ2µ−4, when n is
large.

Theorem 4.16 (Convergence Theorem with Bounded Moment). Let X1, X2, . . . be
random variables that converge in distribution to a random variable X. Assume ∃ 0 < ε, c <
∞ such that E |Xn|1+ε ≤ c, ∀ n ≥ 1. Then

EX = lim
n→∞

EXn.

For a proof, see my Graduate Probability Notes (Theorem 1.59 together with Exercise
3.8(iii).)

In the case that f ′(θ) = 0 in the Delta Method, we can instead use a second order Taylor
expansion as follows.

Theorem 4.17 (Second Order Delta Method). Let θ ∈ R. Let Y1, Y2, . . . be random
variables such that

√
n(Yn − θ) converges in distribution to a mean zero Gaussian random

variable with variance σ2 > 0. Let f : R → R. Assume that f ′(θ) = 0, f ′′(θ) exists and is
nonzero. Then

n(f(Yn)− f(θ))

converges in distribution to a chi squared random variable with one degree of freedom, mul-
tiplied by σ2 1

2
f ′′(θ) as n→ ∞.
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Proof. Since f ′(θ) = 0, there exists g : R → R such that limz→0 g(z) = 0 and, for all y ∈ R,
f(y) = f(θ) + (y − θ)g(y − θ).

Since f ′′(θ) exists, the following limit exists

lim
s→0

f(θ + 2s) + f(θ)− 2f(θ + s)

s2
= lim

s→0

2sg(2s)− 2sg(s)

s2
= lim

s→0
2
g(2s)− g(s)

s
= 2g′(0).

Since g′(0) exists, there exists r : R → R such that limz→0
r(z)
z

= 0 and, for all y ∈ R,
g(y) = g(0) + g′(0)y + r(y).

Since g′(0) exists, g is continuous at 0, so g(0) = limz→0 g(z) = 0. Combining the above, for
all y ∈ R,

f(y) = f(θ) + (y − θ)g(0) + (y − θ)2g′(0) + (y − θ)r(y − θ)

= f(θ) + (y − θ)2
1

2
f ′′(θ) + (y − θ)r(y − θ).

Let h(y) := yr(y) for all y ∈ R. Then limy→0
h(y)
y2

= limy→0
r(y)
y

= 0. Also,

n[f(Yn)− f(θ)] =
1

2
f ′′(θ)n(Yn − θ) + nh(Yn − θ). (∗)

By assumption, for all s, t > 0, limn→∞P(|Yn − θ| > st/
√
n) = 2

∫∞
st
e−

y2

2σ2 dy

σ
√
2π
. So, ∀ n ≥ 1,

P(n |h(Yn − θ)| > t) = P(n |h(Yn − θ)| > t, |Yn − θ| > st/
√
n)

+P(n |h(Yn − θ)| > t, |Yn − θ| ≤ st/
√
n)

≤ P(|Yn − θ| > st/
√
n) +P(n |h(Yn − θ)| > t, |Yn − θ| ≤ st/

√
n).

As n→ ∞, the first term goes to 2
∫∞
st
e−y2/[2σ2] dy

σ
√
2π
, and the second term goes to zero since

limz→0(h(z)/z
2) = 0. So, for any s, t > 0, limn→∞P(n |h(Yn − θ)| > t) ≤ 2

∫∞
st
e−

y2

2σ2 dy

σ
√
2π
.

Since this holds for any s > 0, we can let s → ∞ to get limn→∞P(n |h(Yn − θ)| > t) = 0.
That is, nh(Yn − θ) converges in probability to zero as n → ∞. So, by Proposition 2.36
and (∗), n[f(Yn)− f(θ)] converges in distribution to a chi squared random variable with one
degree of freedom, multiplied by σ2f ′′(θ)/2. □

Let m > 2 be an integer. Theorem 4.17 generalizes to: if f ′(θ) = · · · = f (m−1)(θ) = 0, if
f (m)(θ) exists and is nonzero, then as n→ ∞,

nm/2(f(Yn)− f(θ))

converges in distribution to the distribution of a standard Gaussian to the mth power, mul-
tiplied by σm 1

m!
f (m)(θ).

4.3. Simulation of Random Variables. In practice we often want to simulate random
variables on a computer. The sampling of random variables on a computer is also called
Monte Carlo simulation. In this section, we assume that a computer can simulate any
number of independent random variable that are uniformly distributed in (0, 1). From this
assumption, we will try to transform that random variable into other ones.

There are some caveats to our assumption that we can sample from the uniform distribu-
tion on (0, 1).
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(1) Computers cannot deal with arbitrary real numbers. The most common number
system used on computers is instead double precision floating point arithmetic.
This number system includes zero and any number of the form

±(1.a1a2 · · · a52) · 2b1···b11−1023,

where a1, . . . , a52, b1, . . . , b11 ∈ {0, 1} are binary digits, and b1, . . . , b11 are not all 0
and not all 1. Consequently, a computer can at best simulate a number that is drawn
randomly from the 264 numbers of this form. Put another way, every random variable
simulated on a computer is automatically discrete.

(2) A computer cannot produce a truly random quantity. When we repeatedly sample
from a random variable on a computer, the computer uses a deterministic process
to produce a sequence of numbers that behaves as if it were random. For this rea-
son, random number generators on computers are said to produce pseudorandom
outputs. There are a various random number generating algorithms available.

We can verify that a random number generator behaves “as if it were random” by checking
for its agreement with the Law of Large Number and Central Limit Theorem.

Exercise 4.18. Using Matlab (or any other mathematical system on a computer), verify
that its random number generator agrees with the law of large numbers and central limit
theorem. For example, average 107 samples from the uniform distribution on [0, 1] and check
how close the sample average is to 1/2. Then, make a histogram of 107 samples from the
uniform distribution on [0, 1] and check how close the histogram is to a Gaussian.

Example 4.19 (Discrete Random Variables). If we want to simulate a random variable
that is uniformly distributed in {1, 2, 3}, and if U is uniform on (0, 1), we define

X(U) :=


1 ifU < 1/3

2 if 1/3 ≤ U < 2/3

3 if 2/3 ≤ U.

Then X(U) is uniformly distributed in {1, 2, 3}.
More generally, if we want to simulate a random variable taking values x1, . . . , xn ∈ R

with probabilities p1, . . . , pn > 0 such that p1 + · · ·+ pn = 1, we define p0 := 0 and we define
X(U) so that

X(U) := xi if p1 + · · ·+ pi−1 ≤ U < p1 + · · ·+ pi ∀1 ≤ i ≤ n.

Then P(X(U) = xi) = pi for all 1 ≤ i ≤ n, as desired.

More generally, if X : Ω → R is an arbitrary random variable with cumulative distribution
function F : R → [0, 1], then the function F−1 (if it exists) is a random variable on [0, 1] with
the uniform probability law on (0, 1) that is equal in distribution to X, since

P(s ∈ [0, 1] : F−1(s) ≤ t) = P(s ∈ [0, 1] : F (t) > s)
(∗)
= F (t) = P(ω ∈ Ω: X(ω) ≤ t).

Here (∗) used the definition of the uniform probability law on (0, 1). In general, F−1 may not
exist, but we can still construct a generalized inverse of F and obtain the same conclusion
as follows.
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Exercise 4.20. Let X : Ω → R be a random variable on a sample space Ω equipped with a
probability law P. For any t ∈ R let F (t) := P(X ≤ t). For any s ∈ (0, 1) define

Y (s) := sup{t ∈ R : F (t) < s}.
Then Y is a random variable on (0, 1) with the uniform probability law on (0, 1). Show that
X and Y are equal in distribution. That is, P(Y ≤ t) = F (t) for all t ∈ R.

Exercise 4.20 then suggest the following method for simulating a random variable on a
computer.

Algorithm 4.21 (Sampling a Random Variable). Let X : Ω → R be a random variable.
Let P be a probability law on Ω. For any t ∈ R, let F (t) := P(X ≤ t). Let U be a random
variable uniformly distributed in (0, 1). For any s ∈ (0, 1), let

Y (s) := sup{t ∈ R : F (t) < s}.
To sample X on a computer, sample Y (U).

Example 4.22. Let X be an exponential random variable with parameter 1, so that for
any t > 0, P(X ≤ t) =

∫ t

0
e−xdx = 1 − e−t =: F (t). Then F−1(s) = − log(1 − s) for

any 0 < s < 1, since F (F−1(s)) = s. By Exercise 4.20, F−1 is an exponential random
variable with parameter 1 if P is the uniform probability law on (0, 1). Or by Algorithm
4.21, F−1(U) = − log(1− U) is an exponential random variable with parameter 1.

When an explicit formula can be given for Y in Algorithm 4.21, the random variable
can be simulated efficiently. However, if Y cannot be accurately or efficiently computed,
Algorithm 4.21 may not be a sensible way to simulate a random variable. For example,
consider a standard Gaussian random variable. The inverse of its cumulative distribution
function cannot be described using elementary formulas. Here are some possible ways to
simulate a standard Gaussian.

• Approximate the inverse cumulative distribution function and apply Algorithm 4.21.
The quality of the approximation then correspond to the quality of the simulation.

• Sample many independent uniform random variables U1, . . . , Un in (0, 1). Form the

sum U1+···+Un−n/2

n
√

1/12
. By the Central Limit Theorem 2.13, this random variable is close

to a standard Gaussian. In fact, explicit error bounds can be given by Theorem 2.30.
Moreover, if we perform this same procedure where U1, . . . , Un are i.i.d. and the first
k moments of U1 agree with the first k moments of a standard Gaussian, the error in
Theorem 2.30 will be a constant times n−(k−1)/2. (This follows from the Edgeworth
expansion, an asymptotic expansion for the error in the Central Limit Theorem.)
However, if we only want a few samples from the Gaussian, this procedure is very
inefficient, since it requires many samples from other random variables.

Perhaps the best way to simulate a standard Gaussian random variable is the Box-Mueller
algorithm.

Exercise 4.23 (Box-Muller Algorithm). Let U1, U2 be independent random variables
uniformly distributed in (0, 1). Define

R :=
√

−2 logU1, Ψ := 2πU2.

X := R cosΨ, Y := R sinΨ.
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Show that X, Y are independent standard Gaussian random variables. So, we can simulate
any number of independent standard Gaussian random variables with this procedure.

Now, let {aij}1≤i,j≤n be an n×n symmetric positive semidefinite matrix. That is, for any
v ∈ Rn, we have

vTav =
n∑

i,j=1

vivjaij ≥ 0.

We can simulate a Gaussian random vector with any such covariance matrix {aij}1≤i,j≤n

using the following procedure.

• Let X = (X1, . . . , Xn) be a vector of i.i.d. standard Gaussian random variables
(which can be sampled using the Box-Muller algorithm above).

• Write the matrix a in its Cholesky decomposition a = rr∗, where r is an n × n real
matrix. (This decomposition can be computed efficiently with about n3 arithmetic
operations.)

• Let e(1), . . . , e(n) be the rows of r. For any 1 ≤ i ≤ n, define

Zi := ⟨X, e(i)⟩.

Show that Z := (Z1, . . . , Zn) is a mean zero Gaussian random vector whose covariance matrix
is {aij}1≤i,j≤n, so that

E(ZiZj) = aij, ∀ 1 ≤ i, j ≤ n.

4.4. Additional Comments. The assumption that astronomical data sampling error arose
from sampling from the normal distribution was common in the early 1800s, and Quetelet
was one of the first of that period to apply the normal assumption to other scientific fields.
In the late 1700s, Laplace’s applications of statistics were also eclectic. The Delta Method
was known in the early 1800s, though it was not precisely described until the early 1900s.

Theorem 4.24 (Multivariate Delta Method). Let Θ ⊆ Rm be an open set. Let θ ∈ Θ.
Let Y1, Y2, . . . ∈ Rm be random variables such that

√
n(Yn − θ) converges in distribution to

a mean zero Gaussian random vector with covariance matrix Σ ∈ Rm×m. Let f : Rm → Rm.
Assume that f is differentiable at θ. Let Dg(θ) denote the matrix of first order partial
derivatives of g. Then as n→ ∞,

√
n(f(Yn)− f(θ))

converges in distribution to a mean zero Gaussian vector with covariance matrix

(Df(θ))TΣDf(θ).

5. Data Reduction

Suppose we have some data and an exponential family. We would like to find the parameter
θ among the exponential family that fits the data well. One way to achieve this goal is to
look for a sufficient statistic.
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5.1. Sufficient Statistics.

Definition 5.1 (Sufficient Statistic). Suppose X = (X1, . . . , Xn) is a random sample of
size n from a distribution f where f ∈ {fθ : θ ∈ Θ} is a family of PDFs or PMFs (such as an
exponential family). Let t : Rn → Rk, so that Y := t(X1, . . . , Xn) is a statistic. We say that
Y is a sufficient statistic for θ if, for every y ∈ Rk and for every θ ∈ Θ, the conditional
distribution of (X1, . . . , Xn) given Y = y (with respect to probabilities given by fθ) does not
depend on θ. That is, Y provides sufficient information to determine θ from X1, . . . , Xn.

Note that any invertible function of a sufficient statistic is sufficient.
Also, the term “sufficient” is a bit misleading. A sufficient statistic does not contain

sufficient information to exactly determine the parameter θ. As we will see in the next
example, the sample mean is a sufficient statistic for the Bernoulli distribution, but this
does not mean that we can exactly determine the unknown parameter of the Bernoulli.
Being a sufficient statistic essentially means that we can make the best possible guess for
the unknown parameter using the sufficient statistic.

Example 5.2. Let X1, . . . , Xn be a random sample of size n from a Bernoulli distribution
with parameter 0 < θ < 1. We claim that Y := X1 + · · · +Xn is a sufficient statistic for θ.
Let x1, . . . , xn ∈ {0, 1} and let 0 ≤ y ≤ n be an integer. Then Y has a binomial distribution
with parameters n and θ. We may assume that y = x1+ · · ·+xn, otherwise there is nothing
to show. Then

P((X1, . . . , Xn) = (x1, . . . , xn) |Y = y) =
P((X1, . . . , Xn) = (x1, . . . , xn), Y = y)

P(Y = y)

=
P((X1, . . . , Xn) = (x1, . . . , xn))

P(Y = y)
=

∏n
i=1 P(Xi = xi)

P(Y = y)
=

∏n
i=1 θ

xi(1− θ)1−xi(
n
y

)
θy(1− θ)n−y

=
θy(1− θ)n−y(
n
y

)
θy(1− θ)n−y

=
1(
n
y

) =
1(
n

x1+···+xn

) .
Since the last expression does not depend on θ, Y is sufficient for θ.

Example 5.3. Let X1, . . . , Xn be a random sample of size n from a Gaussian distribution
with known variance σ2 > 0 and unknown mean µ ∈ R. We claim that Y := (X1+· · ·+Xn)/n
is a sufficient statistic for µ. Let x1, . . . , xn ∈ R and let y ∈ R. Then Y is a Gaussian with
variance σ2/n and mean µ, and we may assume y = (x1 + · · ·+ xn)/n, so that

fX1,...,Xn|Y (x1, . . . , xn|y) =
fX1,...,Xn,Y (x1, . . . , xn, y)

fY (y)
=
fX1,...,Xn,Y (x1, . . . , xn, n

−1
∑n

i=1 xi)

fY (y)

=
fX1,...,Xn(x1, . . . , xn)

fY (y)
=
σ−n(2π)−n/2 exp

(
− 1

2σ2 (x
2
1 + · · ·+ x2n)− n

2σ2µ
2 + µ

σ2

∑n
i=1 xi

)
n1/2σ−1(2π)−1/2 exp

(
− n

2σ2y2 − n
2σ2µ2 + nµ

σ2 y
)

=
σ−n(2π)−n/2 exp

(
− 1

2σ2 (x
2
1 + · · ·+ x2n)

)
n1/2σ−1(2π)−1/2 exp

(
− n

2σ2y2
) .

Since the last expression does not depend on µ, Y is sufficient for µ.
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Theorem 5.4 (Factorization Theorem). Suppose X = (X1, . . . , Xn) is a random sample
of size n from a family {fθ : θ ∈ Θ} of joint probability density functions, or a family of joint
probability mass functions. (In the case of probability mass functions, we also assume that
the set ∪θ∈Θ{x ∈ Rn : fθ(x) > 0} is countable.) Let t : Rn → Rk, so that Y := t(X1, . . . , Xn)
is a statistic. Then Y is sufficient for θ if and only if there exist nonnegative functions
{gθ : θ ∈ Θ}, h : Rn → [0,∞), gθ : Rk → [0,∞), such that

fθ(x) = gθ(t(x))h(x), ∀ θ ∈ Θ.

When {fθ : θ ∈ Θ} are joint probability density functions, this equality holds for all x ∈ Rn

except a set of measure zero. When {fθ : θ ∈ Θ} are joint probability mass functions, this
equality holds on the set ∪θ∈Θ{x ∈ Rn : fθ(x) > 0}.

A set B ⊆ Rn of measure zero satisfies: for all ε > 0, there exists a countable set of balls
B1, B2, . . . such that the total volume of B1, B2, . . . is less than ε, and B ⊆ ∪∞

i=1Bi.

Proof. We only prove the case that the sampling distribution is discrete. The general case
relies on measure theory, appearing in the Keener book, section 6.4.

Suppose Y is sufficient. Let x ∈ Rn and note that

fθ(x) = Pθ(X = x) = Pθ(X = x and t(X) = t(x)) = Pθ(Y = t(x))Pθ(X = x|Y = t(x)).

By sufficiency, the last quantity does not depend on θ, so fθ(x) = gθ(t(x))h(x), where
gθ(y) := Pθ(Y = y) for all y ∈ Rk and h(x) := P(X = x|Y = t(x)) for all x ∈ Rn.

Conversely, assume that fθ(x) = gθ(t(x))h(x) as stated in the theorem. For any x ∈ Rn,
define t−1t(x) := {y ∈ Rn : t(y) = t(x)}. Then by our assumption and definitions

Pθ(X = x|Y = t(x)) =
fθ(x)

Pθ(Y = t(x))
=

gθ(t(x))h(x)

Pθ(t(X) = t(x))
=

gθ(t(x))h(x)∑
z∈t−1t(x) Pθ(X = z)

=
gθ(t(x))h(x)∑
z∈t−1t(x) fθ(z)

=
gθ(t(x))h(x)∑

z∈t−1t(x) gθ(t(z))h(z)

=
gθ(t(x))h(x)

gθ(t(x))
∑

z∈t−1t(x) h(z)
=

h(x)∑
z∈t−1t(x) h(z)

.

Since the probability does not depend on θ, Y is sufficient for θ. □

Remark 5.5. If t(x) := x for all x ∈ Rn, then the statistic t(X1, . . . , Xn) = (X1, . . . , Xn)
is automatically sufficient for θ, choosing gθ := fθ and h := 1. So, at least one sufficient
statistic always exists.

5.1.1. Minimal Sufficient Statistics. Suppose t : Rn → Rk and Y := t(X1, . . . , Xn) is a suf-
ficient statistic for θ. Let u : Rn → Rm so that Z := u(X1, . . . , Xn) is another statistic.
Suppose there exists r : Rm → Rk such that r(u(x)) = t(x) for all x ∈ Rn. That is, suppose

Y = r(Z).

It follows from the Factorization Theorem 5.4 that Z is also a sufficient statistic for θ since

fθ(x) = gθ(t(x))h(x) = gθ(r(u(x)))h(x), ∀x ∈ Rn, ∀ θ ∈ Θ.

So, define g̃θ(y) := gθ(r(y)) for all y ∈ Rm. Then

fθ(x) = g̃θ(u(x))h(x), ∀x ∈ Rn, ∀ θ ∈ Θ.
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That is, Z is sufficient for θ. That is, if Y is sufficient for θ, and if Y is a function of Z, then
all “information” about θ is also stored in Z.

We would like to determine the parameter θ fitting the data using as little information as
possible. For example, if we have a massive data set, we would like to use a minimal amount
of memory on our computer in order to determine the parameter θ. The above observations
motivate the following definition.

Definition 5.6 (Minimal Sufficient Statistic). Suppose X = (X1, . . . , Xn) is a random
sample of size n from a family {fθ : θ ∈ Θ} of joint probability density functions, or joint
probability mass functions. Let t : Rn → Rk, so that Y := t(X1, . . . , Xn) is a statistic.
Assume that Y is sufficient for θ. Then Y is minimal sufficient for θ if, for every statistic
Z : Ω → Rm that is sufficient for θ, there exists a function r : Rm → Rk such that Y = r(Z).

Example 5.7. Let X1, . . . , Xn be a random sample from a Gaussian distribution with un-
known mean θ ∈ R and variance 1. Then X is minimal sufficient for the mean θ. Let
t : Rn → Rn so that t(x) = x for all x ∈ Rn and define Y := t(X1, . . . , Xn). Then Y is
sufficient for θ, but Y is not minimal sufficient for θ.

It is fairly hard to prove directly that a statistic is minimal sufficient. The following
theorem gives a condition for verifying minimal sufficiency that applies in particular to
exponential families.

Theorem 5.8. Suppose (X1, . . . , Xn) is a random sample of size n from a family {fθ : θ ∈
Θ} of joint probability density functions or joint probability mass functions. (In the case
of probability mass functions, we also assume that the set ∪θ∈Θ{x ∈ Rn : fθ(x) > 0} is
countable.) Let t : Rn → Rm and define Y := t(X1, . . . , Xn). When {fθ : θ ∈ Θ} are joint
probability density functions, suppose the following condition holds for every x, y ∈ Rn, and
when {fθ : θ ∈ Θ} are joint probability mass functions, suppose the following condition holds
for every x, y in the set ∪θ∈Θ{x ∈ Rn : fθ(x) > 0}.

∃ c(x, y) ∈ R that does not depend on θ such that

fθ(x) = c(x, y)fθ(y) ∀ θ ∈ Θ

if and only if t(x) = t(y).

Then Y is minimal sufficient.

Proof. We consider the PMF case only. We first prove sufficiency.
For any z ∈ {t(x) : x ∈ Rn}, let xz be any element of t−1z, so that t(xz) = z. Then for any

y ∈ Rn, t(xt(y)) = t(y), so by assumption, fθ(y) = c(y, xt(y))fθ(xt(y)). So, define gθ : Rm → R,
h : Rn → R by

gθ(z) := fθ(xz), h(y) := c(y, xt(y)), ∀ z ∈ Rm, y ∈ Rn.

Then fθ(y) = gθ(t(y))h(y) for all y ∈ Rn, so the Factorization Theorem 5.4 says that t is
sufficient.

We now prove minimal sufficiency. Let u : Rn → Rm so that Z := u(X1, . . . , Xn) is another
statistic. Assume that Z is sufficient for θ. We are required to show that Y is a function of Z,
i.e. t is a function of u. By the Factorization Theorem 5.4, ∃ h′ : Rm → R and g′θ : Rm → R
for all θ ∈ Θ such that, ∀ θ ∈ Θ,

fθ(x) = g′θ(u(x))h
′(x), ∀x ∈ Rn
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Let y ∈ Rn. If h′(y) = 0, then fθ(y) = 0 for all θ ∈ Θ. Our assumption ignores this case.
That is, we may assume that h′(y) ̸= 0. Let x, y ∈ Rn with u(x) = u(y). Then

fθ(x) = g′θ(u(x))h
′(x) = g′θ(u(y))h

′(x) = g′θ(u(y))h
′(y)

h′(x)

h′(y)
= fθ(y)

h′(x)

h′(y)
, ∀ θ ∈ Θ.

So, define c(x, y) := h′(x)
h′(y)

. We have

fθ(x) = fθ(y)c(x, y), ∀ θ ∈ Θ.

So, by assumption t(x) = t(y). That is, u(x) = u(y) implies t(x) = t(y). We conclude that
t is a function of u by Exercise 5.9, so that Y is minimal sufficient for θ. □

Exercise 5.9. Let A,B,Ω be sets. Let u : Ω → A and let t : Ω → B. Assume that, for every
x, y ∈ Ω, if u(x) = u(y), then t(x) = t(y). Show that there exists a function s : A→ B such
that

t = s(u).

Exercise 5.10. Let {fθ : θ ∈ Θ} be a k-parameter exponential family {fθ : θ ∈ Θ, a(w(θ)) <
∞} of probability density functions or probability mass functions, where

fθ(x) := h(x) exp
( k∑

i=1

wi(θ)ti(x)− a(w(θ))
)
, ∀x ∈ R.

For any θ ∈ Θ, let w(θ) := (w1(θ), . . . , wk(θ)). Assume that the following subset of Rk is
k-dimensional:

{w(θ)− w(θ′) ∈ Rk : θ, θ′ ∈ Θ}.
That is, if x ∈ Rk satisfies ⟨x, y⟩ = 0 for all y in this set, then x = 0. (Note that the
assumption of the exercise is always satisfied for an exponential family in canonical form.)

Let X = (X1, . . . , Xn) be a random sample of size n from fθ. Define t : Rn → Rn by

t(X) :=
n∑

j=1

(t1(Xj), . . . , tk(Xj)) .

Show that t(X) is minimal sufficient for θ. (Hint: if you get stuck, look at Example 3.12 in
Keener.)

Conclude that if we sample from a Gaussian with unknown mean µ and variance σ2 > 0,
then X is minimal sufficient for θ and (X,S) is minimal sufficient for (µ, σ2).

Warning: the fθ exponential family mentioned here is a function of one variable. If you
use the Theorem from class about checking the ratio of fθ(x)/fθ(y), the functions there are
joint density functions (i.e. the product of n copies of the same function).

Remark 5.11. If a minimal sufficient statistic exists, it is unique up to an invertible trans-
formation. To see this, let Y : Ω → Rn and let Z : Ω → Rm be minimal sufficient statistics.
By minimality of Y , there exists r : Rm → Rn such that Y = r(Z). By minimality of Z,
there exists s : Rn → Rm such that Z = s(Y ). Composing each of these identities with each
other, we get

Y = r(s(Y )), Z = s(r(Z)).

That is, r ◦ s is the identity map on the range of Y , and s ◦ r is the identity map on the
range of Z. That is, Y and Z are each the invertible image of each other.
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The uniqueness of the minimal sufficient statistic is nice, since it implies that (up to an
invertible map), there is at most one way to reduce the data at hand when we are trying to
determine the parameter θ that fits our data.

Also, by this uniqueness, the converse of Theorem 5.8 should hold. The converse of
Theorem 5.8 then suggests a strategy for proving existence of the minimal sufficient statistic
that is used in the following Proposition.

Proposition 5.12 (Existence of Minimal Sufficient Statistic). Suppose X1, . . . , Xn is
a random sample of size n from a joint distribution f where f ∈ {fθ : θ ∈ Θ} is a family of
joint probability density functions, or a family of joint probability mass functions. (In the
case of probability mass functions, we also assume that the set ∪θ∈Θ{x ∈ Rn : fθ(x) > 0} is
countable.) Then there exists a statistic Y that is minimal sufficient for θ.

Proof. We first assume that Θ is countable. We relabel {fθ : θ ∈ Θ} as f1, f2, . . .. Let RN/ ∼
denote RN where two elements x, y ∈ RN are considered equivalent if there exists α ∈ R such
that x = αy. Define t : Rn → RN/ ∼ by

t(x) :=
(
f1(x), f2(x), . . .

)
.

We will show that Y := t(X1, . . . , Xn) is minimal sufficient for θ. This follows immediately
from Theorem 5.8.

Proof of sufficiency for uncountable case. We take as given the following facts from
real analysis. The set of functions L := {f : R → R :

∫
R |f(x)| dx ≤ 1} has a countable

dense set, i.e. it has a countable subset L′ such that for any f ∈ L, there exists a sequence
f1, f2, . . . ∈ L′ such that limi→∞

∫
R |fi(x)− f(x)| dx = 0. Similarly, the set of functions

L := {f : Z → R :
∑

x∈Z |f(x)| ≤ 1} has a countable subset L′ such that for any f ∈ L,
there exists a sequence f1, f2, . . . ∈ L′ such that limi→∞

∑
x∈Z |fi(x)− f(x)| = 0.

It follows that there is a countable set Θ′ ⊆ Θ such that, for any θ ∈ Θ and for any ε > 0,
there exists θ′ ∈ Θ′ such that

sup
A⊆Ω

|Pθ(A)−Pθ′(A)| < ε.

That is, {fθ : θ′ ∈ Θ′} is a countable dense subset of {fθ : θ ∈ Θ}. Without loss of generality,
we label Θ′ as {1, 2, 3, . . .}.
From above, we have a minimal sufficient statistic for θ ∈ Θ′. It remains to show this

property extends to all θ ∈ Θ. To this end, we use regular conditional probabilities and the
change of variables formula for the pushforward measure. ∀ θ ∈ Θ, ∀ A ⊆ Rn, B ⊆ RN,

Pθ(A ∩ t−1(B)) =

∫
B

Pθ(A|t = y)Pθ(t
−1(dy)) =

∫
t−1(B)

Pθ(A|t = t(x))dPθ(x).

Since Y is sufficient for θ ∈ Θ′, we can drop the θ subscript on the right to get

Pi(A ∩ t−1(B)) =

∫
t−1(B)

P(A|t = t(x))dPi(x), ∀ i ≥ 1, A ⊆ Rn, B ⊆ RN.

Or, written in analytic form,∫
A∩t−1(B)

dPi(x) =

∫
t−1(B)

P(A|t = t(x))dPi(x), ∀ i ≥ 1, A ⊆ Rn, B ⊆ RN. (∗)
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This condition is preserved under total variation limits, so it extends to the whole set of
densities. That is, for any θ ∈ Θ, we choose θ1, θ2, . . . ∈ Θ′ such that

lim
i→∞

sup
A⊆Rn

|Pθi(A)−Pθ(A)| = 0.

Then∣∣∣∣∫
t−1B

P(A|t = t(x))dPi(x)−
∫
t−1B

Pθ(A|t = t(x))dPθ(x)

∣∣∣∣ ≤ ∣∣Pi(t
−1B)−Pθ(t

−1B)
∣∣→ 0,

as i→ ∞. Similarly, as i→ ∞∣∣∣∣∫
A∩t−1(B)

dPi(x)−
∫
A∩t−1(B)

dPθ(x)

∣∣∣∣→ 0.

We conclude by (∗) that, for all θ ∈ Θ,∫
A∩t−1(B)

dPθ(x) =

∫
t−1(B)

P(A|t = t(x))dPθ(x), ∀A ⊆ Rn, B ⊆ RN.

So, going backwards and using the regular conditional probability definition of Pθ, we have∫
t−1(B)

Pθ(A|t = t(x))dPθ(x) =

∫
t−1(B)

P(A|t = t(x))dPθ(x), ∀A ⊆ Rn, B ⊆ RN.

That is, Pθ(A|t = y) does not depend on θ ∈ Θ. Therefore, Y is sufficient for θ ∈ Θ.

Proof of minimal sufficiency for uncountable case. Minimal sufficiency follows by the
proof of Theorem 5.8.

□

Exercise 5.13. Let P1,P2 be two probability laws on the sample space Ω = R. Suppose
these laws have densities f1, f2 : R → [0,∞) so that

Pi(A) =

∫
A

fi(x)dx, ∀ i = 1, 2, ∀A ⊆ R.

Show that

sup
A⊆R

|P1(A)−P2(A)| =
1

2

∫
R
|f1(x)− f2(x)| dx.

(Hint: consider A := {x ∈ R : f1(x) > f2(x)}.)
Similarly, if P1,P2 are probability laws on Ω = Z, show that

sup
A⊆Z

|P1(A)−P2(A)| =
1

2

∑
z∈Z

|P1(z)−P2(z)| .

5.2. Ancillary Statistics. Minimal sufficient statistics provide sufficient information to
estimate a parameter θ in a family of distributions {fθ : θ ∈ Θ}. However, even a minimal
sufficient statistic can have excess “information.” For example, we saw in Proposition 5.12
that a minimal sufficient statistic can have infinitely many nontrivial components in its
range. It would be desirable to come up with statistics that contain as little unnecessary
information as possible, while still being minimal sufficient. In order to accomplish this task,
we first define what we mean by “excess information” of a statistic.
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Definition 5.14 (Ancillary Statistic). Suppose X1, . . . , Xn is a random sample of size
n from a distribution f where f ∈ {fθ : θ ∈ Θ} is a family of distributions. A statistic
Y = t(X1, . . . , Xn), t : Rn → Rm is ancillary for θ if the distribution of Y does not depend
on θ.

Example 5.15. Let X1, . . . , Xn be a random sample of size n from the location family for
the Cauchy distribution:

fθ(x) :=
n∏

i=1

1

π

1

1 + (xi − θ)2
, ∀x = (x1, . . . , xn) ∈ Rn, ∀ θ ∈ R.

Then the order statistics X(1) ≤ · · · ≤ X(n) are minimal sufficient for θ. Sufficiency follows
by the Factorization Theorem 5.4 since, if t(x) := (x(1), . . . , x(n)), then fθ(t(x)) = fθ(x).
Minimal sufficiency follows from Theorem 5.8, since if x, y ∈ Rn are fixed, then the following
ratio is constant in θ

fθ(x)

fθ(y)
=

∏n
i=1

1
1+(xi−θ)2∏n

i=1
1

1+(yi−θ)2

=

∏n
i=1[1 + (yi − θ)2]∏n
i=1[1 + (xi − θ)2]

,

only when t(x) = t(y). To see this, note that the top and bottom are each polynomials in θ,
and these polynomials must be a constant multiple of each other, so their (complex) roots
must be identical (counting multiplicities), and these roots are θ = xi ±

√
−1, θ = yi ±

√
−1

respectively (i = 1, . . . , n), so that t(x) = t(y).
Even though the order statistics (X(1), . . . , X(n)) are minimal sufficient for θ in this case,

they certainly seem to contain a lot of extraneous information about θ. Indeed, the statistic
X(n)−X(1) is ancillary. To see this, let Z1, . . . , Zn be independent Cauchy random variables,
i.e. they each have density 1

π
1

1+x2 for all x ∈ R. Then Xi = Zi + θ for all 1 ≤ i ≤ n, so that
X(i) = Z(i) + θ for all 1 ≤ i ≤ n, so that X(n) −X(1) = Z(n) − Z(1), and the last expression
does not depend on θ.

5.3. Complete Statistics. Continuing Example 5.15, we saw that X(n) −X(1) is ancillary,
i.e. there exists a constant c that does not depend on θ such that

Eθ[[X(n) −X(1)]1{0≤X(n)−X(1)≤1} − c] = 0, ∀ θ ∈ Θ = R.
Let f : Rn → R so that f(x1, . . . , xn) := [xn − x1]10≤xn−x1≤1 − c for all (x1, . . . , xn) ∈ Rn.
Then we have shown that

Eθf(Y ) = 0, ∀ θ ∈ Θ,

where Y = (X(1), . . . , X(n)) is the vector of order statistics. Note that

f(Y ) = [X(n) −X(1)]1{0≤X(n)−X(1)≤1} − c ̸= 0.

The above observations imply that Y contains extraneous information, despite it being
minimal sufficient. That is, Y is not complete, in the following sense.

Definition 5.16 (Complete Statistic). Suppose X1, . . . , Xn is a random sample of size n
from a family of distributions {fθ : θ ∈ Θ}. Let t : Rn → Rm. A statistic Y = t(X1, . . . , Xn)
is complete for {fθ : θ ∈ Θ} if the following holds:

For any f : Rm → R such that Eθf(Y ) = 0 ∀ θ ∈ Θ, it holds that f(Y ) = 0.

(When we assume thatEθf(Y ) can be defined, we are also assuming, as usual, thatEθ |f(Y )| <
∞ for all θ ∈ Θ.)
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Remark 5.17. From our discussion above, we see that a nonconstant complete statistic is
not ancillary. (If Y is ancillary, then there is a constant c ∈ R such that Eθ(Y − c) = 0
for all θ ∈ Θ, and if Y is also complete, we then have Y − c = 0, so that Y = c.) Also, a
complete statistic may not be sufficient. Consider for example a statistic that is constant.

Remark 5.18. Unfortunately, a complete sufficient statistic might not exist.

Exercise 5.19. Give an example of a statistic Y that is complete and nonconstant, but such
that Y is not sufficient.

Exercise 5.20. This exercise shows that a complete sufficient statistic might not exist.
Let X1, . . . , Xn be a random sample of size n from the uniform distribution on the three

points {θ, θ + 1, θ + 2}, where θ ∈ R.
• Show that the vector Y := (X(1), X(n)) is minimal sufficient for θ.
• Show that Y is not complete by considering X(n) −X(1).
• Using minimal sufficiency, conclude that any sufficient statistic for θ is not complete.

Example 5.21. We return to Example 5.2. Let X = (X1, . . . , Xn) be a random sample
of size n from a Bernoulli distribution with parameter 0 < θ < 1. We showed that Y :=
X1 + · · · + Xn is a sufficient statistic for θ. We show now that Y is also complete. Let
f : R → R. Assume that Eθf(Y ) = 0. Since Y is binomial, we can write out this expected
value as the following sum

0 = Eθf(Y ) =
n∑

j=0

f(j)

(
n

j

)
θj(1− θ)n−j, ∀ θ ∈ (0, 1).

Let α := θ/(1− θ). Dividing by θn and rewriting this expression, we have

0 =
n∑

j=0

f(j)

(
n

j

)
αj, ∀α > 0.

This function of α is a polynomial. A polynomial can only be zero for all α > 0 if the
polynomial itself is always zero. That is, f(j) = 0 for all 0 ≤ j ≤ n. Therefore, Y is
complete.

Example 5.22. We return to Example 5.3. Let X1, . . . , Xn be a random sample of size n
from a Gaussian distribution with known variance σ2 > 0 and unknown mean µ ∈ R. We
claim that Y := (X1 + · · · +Xn)/n is a complete sufficient statistic for µ. For simplicity of
notation we just consider n = σ = 1, so that Y = X1 is a Gaussian random variable. Let
f : R → R such that Eµ |f(Y )| <∞ for all µ ∈ R and such that

0 = Eµf(Y ) =
1√
2π

∫ ∞

−∞
f(y)e−

1
2
(y−µ)2dy, ∀µ ∈ R.

Multiplying by eµ
2/2

√
2π, we equivalently have

0 =

∫
R
f(y)e−

1
2
y2eyµdy, ∀µ ∈ R.

In case f(y) ≥ 0 for all y ∈ R, we must have f = 0 since the integral of a nonnegative
function being zero implies that the function is zero. In case f is positive somewhere and
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negative elsewhere, write f = f+ − f− where f+ := max(f, 0) and f− = max(−f, 0). Then,
using the above equality for any µ and dividing by the case when µ = 0, we get∫

R f+(y)e
− 1

2
y2eyµdy∫

R f+(y)e
− 1

2
y2dy

=

∫
R f−(y)e

− 1
2
y2eyµdy∫

R f−(y)e
− 1

2
y2dy

, ∀µ ∈ R.

The left side is the moment generating function of a random variable with density f+(x)e−
1
2x2∫

R f+(y)e−
1
2 y2dy

,

and similarly for the right side with f−. Inverting the moment generating function by The-
orem 11.2, we conclude that f+ = f−, therefore f = 0 as desired.

Exercise 5.23 ((Optional) This exercise requires some measure theory so it is optional.).
Let {fθ : θ ∈ Θ} be a k-parameter exponential family {fθ : θ ∈ Θ, a(w(θ)) < ∞} of joint
probability density functions or probability mass functions in canonical form, where

fw(x) := h(x) exp
( k∑

i=1

witi(x)− a(w)
)
, ∀x ∈ Rn, ∀w ∈ {w ∈ Rk : a(w) <∞}.

Assume that the following subset of Rk contains an open set in Rk:

{w ∈ Rk : a(w) <∞}.
Assume also that there is no redundancy in the functions t1, . . . , tk, i.e. assume: if ∃
α1, . . . , αk ∈ R such that

∑k
i=1 αiti(x) = 0 for all x ∈ Rn, then α1 = · · · = αk = 0.

Let X be a random sample of size 1 from fθ (so X = (X1, . . . , Xn), and X1, . . . , Xn are
all real valued). Define t : Rn → Rn by

t(X) := (t1(X), . . . , tk(X)).

Show that t(X) is complete for θ.
Hint: if you get stuck, look at Theorem 4.3.1 in Lehmann-Romano. An early step in the

proof uses the change of variables formula for the pushforward measure.
Once we know the above statement, we can deduce the following about repeated random

samples from a single variable exponential family.
Let {fθ : θ ∈ Θ} be a k-parameter exponential family {fθ : θ ∈ Θ, a(w(θ)) < ∞} of

probability density functions or probability mass functions in canonical form, where

fw(x) := h(x) exp
( k∑

i=1

witi(x)− a(w)
)
, ∀x ∈ R, ∀w ∈ {w ∈ Rk : a(w) <∞}.

Assume that the following subset of Rk contains an open set in Rk:

{w ∈ Rk : a(w) <∞}.
Assume also that there is no redundancy in the functions t1, . . . , tk, i.e. assume: if ∃
α1, . . . , αk ∈ R such that

∑k
i=1 αiti(x) = 0 for all x ∈ R, then α1 = · · · = αk = 0.

Let X1, . . . , Xn be a random sample of size n from fθ. Define t : Rn → Rn by

t(X) :=
n∑

j=1

(t1(Xj), . . . , tk(Xj)) .

Show that t(X) is complete for θ.
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Exercise 5.24 (Conditional Expectation as a Random Variable). LetX, Y, Z : Ω → R
be discrete or continuous random variables. Let A be the range of Y . Define g : A → R by
g(y) := E(X|Y = y), for any y ∈ A. We then define the conditional expectation of X
given Y , denoted E(X|Y ), to be the random variable g(Y ).

(i) LetX, Y be random variables such that (X, Y ) is uniformly distributed on the triangle
{(x, y) ∈ R2 : x ≥ 0, y ≥ 0, x+ y ≤ 1}. Show that

E(X|Y ) =
1

2
(1− Y ).

(ii) Prove the following version of the Total Expectation Theorem

E(E(X|Y )) = E(X).

• If X is a random variable, and if f(t) := E(X − t)2, t ∈ R, then the function
f : R → R is uniquely minimized when t = EX. A similar minimizing property holds
for conditional expectation. Let h : R → R. Show that the quantity E(X − h(Y ))2

is minimized among all functions h : R → R when h(Y ) = E(X|Y ). (Hint: use the
previous item.)

(iii) Show the following:

E(Xh(Y )|Y ) = h(Y )E(X|Y ).

E([E(X|h(Y ))] |Y ) = E(X|h(Y )).

(iv) Show the following
E(X|X) = X.

E(X + Y |Z) = E(X|Z) + E(Y |Z).
(v) If Z is independent of X and Y , show that

E(X|Y, Z) = E(X|Y ).

(Here E(X|Y, Z) is notation for E(X|(Y, Z)) where (Y, Z) is interpreted as a random
vector, so that X is conditioned on the random vector (Y, Z).)

Exercise 5.23 strengthens Exercise 5.10 by the following Theorem.

Theorem 5.25 (Bahadur’s Theorem). If Y is a complete sufficient statistic for a family
{fθ : θ ∈ Θ} of joint probability densities or joint probability mass functions, then Y is a
minimal sufficient statistic for θ. (In the case of probability mass functions, we also assume
that the set ∪θ∈Θ{x ∈ Rn : fθ(x) > 0} is countable.)

Remark 5.26. So, by Remark 5.11, a complete sufficient statistic is unique, up to an
invertible map. Also, by Example 5.15, the converse of Bahadur’s Theorem is false.

Proof. By Proposition 5.12, there exists a minimal sufficient statistic Z for θ. To show
that Y is minimal sufficient, it suffices to find a function r such that Y = r(Z). Define
r(Z) := Eθ(Y |Z). Since Z is minimal sufficient and Y is sufficient by assumption, there
exists a function u such that Z = u(Y ). So, using the definition of r(Z), we have by Exercise
5.24

Eθ(r(u(Y ))) = Eθr(Z) = EθEθ(Y |Z) (ii)
= EθY.

That is,
Eθ[r(u(Y ))− Y ] = 0, ∀ θ ∈ Θ.
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Since Y is complete, we conclude that r(u(Y )) = Y , and since r(u(Y )) = r(Z), we have
r(Z) = Y , as desired. □

The following theorem says that complete sufficient statistics have no ancillary informa-
tion, unlike the minimal sufficient statistics, as we saw in Example 5.15.

Theorem 5.27 (Basu’s Theorem). If Y is a complete sufficient statistic for {fθ : θ ∈ Θ},
and if Z is ancillary for θ, then for all θ ∈ Θ, Y and Z are independent with respect to fθ.

Proof. Suppose Y : Ω → Rk and Z : Ω → Rm. Let A ⊆ Rk and let B ⊆ Rm. We need to
show that

Pθ(Y ∈ A,Z ∈ B) = Pθ(Y ∈ A)Pθ(Z ∈ B), ∀ θ ∈ Θ.

Using Exercise 5.24,

Pθ(Y ∈ A,Z ∈ B) = Eθ1Y ∈A1Z∈B
(ii)
= EθEθ(1Y ∈A1Z∈B|Y )

(iii)
= Eθ1Y ∈AEθ(1Z∈B|Y )

Let g(Y ) := Eθ(1Z∈B|Y ). Note that g(Y ) does not depend on θ by Exercise 6.9, i.e. g(Y ) is
a function of the sample but not an explicit function of θ. By Exercise 5.24 (ii),

Eθg(Y ) = EθEθ(1Z∈B|Y ) = Eθ1Z∈B = Pθ(Z ∈ B).

The quantity c := Pθ(Z ∈ B) does not depend on θ since Z is ancillary. Then Eθ[g(Y )−c] =
0 for all θ ∈ Θ. Since Y is complete, we must have g(Y ) = c. In conclusion,

Pθ(Y ∈ A,Z ∈ B) = Eθ1Y ∈APθ(Z ∈ B) = Pθ(Y ∈ Z)Pθ(Z ∈ B).

□

So, Basu’s Theorem says that complete sufficient statistics provide an “optimal” reduction
of data. Unfortunately, as we saw above, complete sufficient statistics might not exist, so we
might not be able to reduce data in this way.

5.4. Additional Comments. Sufficient and ancillary statistics were introduced by Fisher
in 1920. Complete and minimal sufficient statistics were studied in the mid 1900s by Ba-
hadur, Halmos, and Savage, and Lehmann and Scheffé.

Above, we have typically focused on families of probability density functions or probability
mass functions, in order to avoid use of measure theory. However, many of the above
theorems naturally generalize to the setting of a dominated family of functions.

Definition 5.28 (Dominated Family). Let Θ ⊆ Rm. Let {fθ : θ ∈ Θ} be a family of
functions so that fθ : Rn → [0,∞) for all θ ∈ Θ. We say that {fθ : θ ∈ Θ} is a dominated
family if there exists a measure µ on Rm such that Pθ is absolutely continuous with respect
to µ, for all θ ∈ Θ.

For example, a family of probability density functions is absolutely continuous with respect
to Lebesgue measure. And a family of probability mass functions is absolutely continuous
with respect to a counting measure, if ∪θ∈Θ{x ∈ Rn : fθ(x) > 0} is countable.
We can then restate the Factorization Theorem and its Corollaries for dominated families.

Theorem 5.29 (Factorization Theorem). Suppose X = (X1, . . . , Xn) is a random sample
of size n from a dominated family {fθ : θ ∈ Θ} that is dominated by a measure µ on Rn.
That is, fθ : Rn → [0,∞) for all θ ∈ Θ. Let t : Rn → Rk, so that Y := t(X1, . . . , Xn)
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is a statistic. Then Y is sufficient for θ if and only if there exist nonnegative functions
{gθ : θ ∈ Θ}, h : Rn → [0,∞), gθ : Rk → [0,∞), such that

fθ(x) = gθ(t(x))h(x), ∀ θ ∈ Θ, for a.e. x with respect to µ.

Theorem 5.30. Suppose X = (X1, . . . , Xn) is a random sample of size n from a dominated
family {fθ : θ ∈ Θ} that is dominated by a measure µ on Rn. Let t : Rn → Rm and define
Y := t(X1, . . . , Xn). Suppose the following condition holds for a.e. x, y ∈ Rn with respect to
µ:

∃ c(x, y) ∈ R that does not depend on θ such that

fθ(x) = c(x, y)fθ(y) ∀ θ ∈ Θ

if and only if t(x) = t(y).

Then Y is minimal sufficient.

Proposition 5.31 (Existence of Minimal Sufficient Statistic). Suppose X = (X1, . . . , Xn)
is a random sample of size n from a dominated family {fθ : θ ∈ Θ} that is dominated by a
measure µ on Rn. Suppose the set {fθ : θ ∈ Θ} has a countable dense set with respect to the
total variation metric d(fθ, fθ′) = supB⊆Rn |Pθ(B)−Pθ′(B)|. Then there exists a statistic Y
that is minimal sufficient for θ.

To see the original proof, read Theorem 6.1 in “Completeness, Similar Regions, and Un-
biased Estimation-Part I” by Lehmann and Scheffé.

6. Point Estimation

Let X1, . . . , Xn be a random sample of size n from a family of distributions {fθ : θ ∈ Θ}.
If Y is a statistic that is used to estimate the parameter θ that fits the data at hand, we
then refer to Y as a point estimator or estimator

6.1. Heuristic Principles for Finding Good Estimators. Let X1, . . . , Xn be a random
sample of size n from a family of distributions {fθ : θ ∈ Θ}.

Definition 6.1 (Likelihood). If we have data x ∈ Rn, then the function ℓ : Θ → [0,∞)
defined by

ℓ(θ) := fθ(x)

is called the likelihood function

Likelihood Principle. All data relevant to estimating the parameter θ is contained in
the likelihood function. (This is the intuition in the proof of Proposition 5.12.)

Sufficiency Principle. If Y = t(X1, . . . , Xn) is a sufficient statistic, and if we have two
results x, y ∈ Rn from an experiment with the same statistics t(x) = t(y), then our estimate
of the parameter θ should be the same for either experimental result. (This is the intuition
behind Theorem 5.8.)

Equivariance Principle. If the family of distributions {fθ : θ ∈ Θ} is invariant under
some symmetry, then the estimator of θ should respect the same symmetry.

For example, a location family is invariant under translation, so an estimator for the
location parameter should commute with translations.
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6.2. Evaluating Estimators. There are many different ways to create estimators. A priori,
it might not be clear which estimator is the best. One desirable property of an estimator is
that it is unbiased.

Definition 6.2. Let X1, . . . , Xn be a random sample of size n from a family of distributions
{fθ : θ ∈ Θ}. Let t : Rn → Rk and let Y := t(X1, . . . , Xn) be an estimator for g(θ). Let
g : Θ → Rk. We say that Y is unbiased for g(θ) if

EθY = g(θ), ∀ θ ∈ Θ.

For example, we saw in Exercise 4.5 that the sample mean and sample variance are unbi-
ased estimates of the mean and variance, respectively.

Even if an estimator is unbiased, its distribution of values might be quite far from θ.
Recall that we made a similar observation that the Law of Large Numbers does not give any
information about the Central Limit Theorem. It is desirable to examine the distribution of
values of the estimator. The most common way to check the quality of an estimator in this
sense is to examine the mean-squared error, or squared L2 norm, of the estimator minus θ:

Eθ(Y − g(θ))2.

If the estimator is unbiased, this quantity is equal to the variance of Y .

Definition 6.3 (UMVU). Let X1, . . . , Xn be a random sample of size n from a family of
distributions {fθ : θ ∈ Θ}. Let g : Θ → R. Let t : Rn → R and let Y := t(X1, . . . , Xn) be an
unbiased estimator for g(θ). We say that Y is uniformly minimum variance unbiased
(UMVU) if, for any other unbiased estimator Z for g(θ), we have

Varθ(Y ) ≤ Varθ(Z), ∀ θ ∈ Θ.

More generally, we are given a loss function

ℓ : Θ× Rk → R,
and we could be asked to minimize the risk function

r(θ, Y ) := Eθℓ(θ, Y )

over all possible estimators Y . In the case of mean-squared error, we have ℓ(θ, y) := (y−g(θ))2
for all y, θ ∈ R.

Definition 6.4 (UMRU). Let X1, . . . , Xn be a random sample of size n from a family of
distributions {fθ : θ ∈ Θ}. Let g : Θ → R. Let t : Rn → R and let Y := t(X1, . . . , Xn) be
an unbiased estimator for g(θ). We say that Y is uniformly minimum risk unbiased
(UMRU) for risk function r if, for any other unbiased estimator Z for g(θ), we have

r(θ, Y ) ≤ r(θ, Z), ∀ θ ∈ Θ.

Remark 6.5. Unfortunately the UMVU might not exist. Suppose we want a UMVU for a
binomial random variable X with known parameter n and unknown parameter 0 < θ < 1,
and we want an estimator for θ/(1−θ). In fact, no unbiased estimate exists for this function,
since Eθt(X) =

∑n
j=0

(
n
j

)
t(j)θj(1− θ)n−j and this is a polynomial in θ, i.e. only polynomials

in θ of degree at most n can possible have unbiased estimates. And θ/(1 − θ) is not a
polynomial in θ.

Recall that the function t 7→ t2 is a convex function of t.
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Definition 6.6. Let ϕ : R → R. We say that ϕ is strictly convex if, for any x, y ∈ R with
x ̸= y and for any t ∈ (0, 1), we have

ϕ(tx+ (1− t)y) < tϕ(x) + (1− t)ϕ(y).

A strictly convex function is convex.
The Rao-Blackwell Theorem says that, if ℓ(θ, y) is convex in y, then any sufficient statistic

can be used to improve any estimator for g(θ).

Theorem 6.7 (Rao-Blackwell). Let Z be a sufficient statistic for {fθ : θ ∈ Θ} and let Y
be an estimator for g(θ). Define W := Eθ(Y |Z). (Since Z is sufficient for θ, W does not
depend on θ by Exercise 6.9, i.e. W is a well-defined function of the random sample but not
an explicit function of θ.) Let θ ∈ Θ with r(θ, Y ) < ∞ and such that ℓ(θ, y) is convex in
y ∈ R. Then

r(θ,W ) ≤ r(θ, Y ).

And if ℓ(θ, y) is strictly convex in y, then this inequality is strict unless W = Y .

Proof. By the (conditional) Jensen’s inequality, Exercise 6.8

ℓ(θ,W ) = ℓ(θ,Eθ(Y |Z)) ≤ Eθ[ℓ(θ, Y )|Z].
Taking expected values of both sides and applying Exercise 5.24(ii), we get

r(θ,W ) ≤ EθEθ[ℓ(θ, Y )|Z] = Eθℓ(θ, Y ) = r(θ, Y ).

And if ℓ(θ, y) is strictly convex in y, then this inequality is strict, unless Y is a function of
Z. If Y is a function of Z, then Eθ(Y |Z) = Y , so W = Y . □

From Exercise 5.24(iii), if Y is a function of Z, then Eθ(Y |Z) = Y . Conversely, if
Eθ(Y |Z) = Y , then by definition of Eθ(Y |Z), we conclude that Y is a function of Z. That
is, Eθ(Y |Z) = Y if and only if Y is a function of Z.

Exercise 6.8 (Conditional Jensen Inequality). Prove Jensen’s inequality for the condi-
tional expectation. Let X, Y : Ω → R be random variables that are either both discrete or
both continuous. Let ϕ : R → R be convex. Then

ϕ(E(X|Y )) ≤ E(ϕ(X)|Y )

If ϕ is strictly convex, then equality holds only if X is constant on any set where Y is
constant. That is, (by Exercise 5.9) equality holds only if X is a function of Y .

(Hint: first show that if X ≥ Z then E(X|Y ) ≥ E(Z|Y ).)

Exercise 6.9. Let Y, Z be a statistics, and suppose Z is sufficient for {fθ : θ ∈ Θ}. Show
that W := Eθ(Y |Z) does not depend on θ. That is, there is a function t : Rn → R that does
not depend on θ such that W = t(X), where X is the sample distribution.

Remark 6.10. By Exercise 5.24, if Y is unbiased, then EθW = EθEθ(Y |Z) = EθY , so that
W is also unbiased in Theorem 6.7.

Remark 6.11. What happens if Z is constant in the Rao-Blackwell Theorem? This seems
desirable since then W := Eθ(Y |Z) is also constant, so W has variance zero for any fixed
θ ∈ Θ. But if g is not constant, then it is impossible for Z to be unbiased, hence W is not
unbiased. Moreover, W is a function only of θ and not a function of the random sample. So,
W is not a statistic.
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Put another way, if Z does not have enough information, then conditioning on Z in the
Rao-Blackwell Theorem seems undesirable. On the other hand, if Z has excess information
(i.e. Z is not complete), then this might also lead to no improvement in the variance.
For example, if Z is the vector of order statistics, then conditioning on Z does not change
anything, i.e. Eθ(Y |Z) = Y , i.e. conditioning on Z does not improve the variance at all.

Example 6.12. Let X1, . . . , Xn be a random sample of size n with unknown mean µ ∈ R.
Suppose we want to construct an estimator for the mean using the Rao-Blackwell Theorem
6.7. Let t : Rn → R so that t(x1, . . . , xn) := x1 for all x = (x1, . . . , xn) ∈ Rn. Let Y :=
t(X1, . . . , Xn) = X1. Note that Y is unbiased since EY = EX1 = µ. By Exercise 5.24 (v)
and (iv),

W := E(X1|X1, . . . , Xn) = E(X1|X1) = X1.

That is, conditioning on the whole sample does not change the statistic X1 at all, even
though the sample itself (X1, . . . , Xn) is sufficient for µ. So, sometimes the Rao-Blackwell
procedure may not be helpful.

Now, let’s instead condition on
∑n

i=1Xi. Since the random variables are i.i.d., for any
1 ≤ k < ℓ ≤ n, the joint distribution of (Xk,

∑n
i=1Xi) is equal to the joint distribution of

(Xℓ,
∑n

i=1Xi). So, by the definition of conditional expectation in Exercise 5.24,

E(Xk|
n∑

i=1

Xi) = E(Xℓ|
n∑

i=1

Xi).

Therefore, by Exercise 5.24(iv)

W := E(X1|
n∑

i=1

Xi) =
1

n

n∑
j=1

E(Xj|
n∑

i=1

Xi) =
1

n
E(

n∑
j=1

Xj|
n∑

i=1

Xi) =
1

n

n∑
i=1

Xi.

So, in this case the Rao-Blackwell Theorem 6.7 did in fact substantially improve our estimator
Y = X1, since W has variance of order n−1, while Y has constant variance.

From the above example, we see that the choice of the sufficient statistic Z in Theorem 6.7
can make a significant difference in the variance of the new estimator, and the choice of the
unbiased estimator does not seem very important. The Example suggests that conditioning
on too much “excess information” is not helpful, since conditioning on the whole sample made
no improvement in the variance of the estimator. And indeed, the following Theorem says
that a complete sufficient statistic is essentially the best thing to condition on in Theorem
6.7.

Theorem 6.13 (Lehmann-Scheffé). Let Z be a complete sufficient statistic for {fθ : θ ∈
Θ} and let Y be an unbiased estimator for g(θ). Define W := Eθ(Y |Z). Assume that ℓ(θ, y)
is convex in y, for all θ ∈ Θ. Then W is UMRU for g(θ). If ℓ(θ, y) is strictly convex in y
for all θ ∈ Θ, then W is unique.

In particular, W is the unique UMVU for g(θ).

Proof. W is unbiased by Remark 6.10. We first show that W does not depend on Y . Let Y ′

be another unbiased estimator for g(θ). We show that

Eθ(Y |Z) = Eθ(Y
′|Z), ∀ θ ∈ Θ. (∗)
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By Exercise 5.24(ii),

Eθ(Eθ(Y |Z)− Eθ(Y
′|Z)) = Eθ(Y − Y ′) = g(θ)− g(θ) = 0, ∀ θ ∈ Θ.

Therefore, Eθ(Y |Z) = Eθ(Y
′|Z) by completeness of Z. (By the definition of conditional

expectation in Exercise 6.8, Eθ(Y |Z) and Eθ(Y |Z) are both functions of Z. Also, recall that
these are not explicit functions of θ since Z is sufficient, using Exercise 6.9.)
Now by the Rao-Blackwell Theorem 6.7,

r(θ, Y ′) ≥ r(θ,Eθ(Y
′|Z)) (∗)

= r(θ,Eθ(Y |Z)) = r(θ,W ), ∀ θ ∈ Θ.

□

Remark 6.14. Let Z : Ω → Rk be a complete sufficient statistic for {fθ : θ ∈ Θ}, and let
h : Rk → Rm. Let g(θ) := Eθh(Z) for all θ ∈ Θ. Then h(Z) is unbiased for g(θ). By Exercise
5.24(iii)

W := Eθ(h(Z)|Z) = h(Z)Eθ(1|Z) = h(Z).

So, by Theorem 6.13, h(Z) is UMVU for g(θ).
So, one way to find a UMVU is to come up with a function of a complete sufficient statistic

that is unbiased for a given function g(θ).

Here are some methods for finding a UMVU, as suggested by Theorem 6.13.
Suppose we have a complete sufficient statistic Z : Ω → Rk (recall it may not exist) and

we want to estimate g(θ), g : Θ → R.
(1) (Condition Method/Rao-Blackwell) Find an unbiased estimator Y for g(θ). Then

Eθ(Y |Z) is UMVU.
(2) Solve for an h : Rk → R such that Eθh(Z) = g(θ).
(3) Somehow guess an h : Rk → R such that Eθh(Z) = g(θ).

Example 6.15. Suppose we are sampling from the Gaussian distribution with unknown
mean µ ∈ R and unknown variance σ2 > 0. Recall from the Factorization Theorem 5.4 and
Exercise 5.23 that (X,S2) is complete sufficient for (µ, σ2). So X is UMVU for µ (with fixed
σ) by method (3) above, since X is a function of the complete sufficient statistic Z = (X,S2),
using h(x, y) := x and g(µ, σ2) := µ. Similarly, S2 is UMVU for σ2 (with fixed µ) by method
(3) above, since S2 is a function of the complete sufficient statistic Z = (X,S2), using
h(x, y) := y and g(µ, σ2) := σ2.

If we wanted a UMVU for µ2, we can use method (3) above, noting that EX
2
= µ2+σ2/n,

E[X
2 − S2/n] = µ2.

So X
2 − S2/n is UMVU for µ2 (with fixed σ) by method (3) above, since X

2 − S2/n is
a function of the complete sufficient statistic Z = (X,S2), using h(x, y) := x2 − y/n and
g(µ, σ2) := µ2.

Example 6.16. Let us illustrate method (2) above for a binomial random variable X with
known parameter n and unknown parameter 0 < θ < 1. Suppose we want to estimate
g(θ) := θ(1− θ) (this is the variance of a Bernoulli random variable with parameter 0 < θ <
1.) We want to find h : R → R such that

θ(1− θ) = Eθh(X) =
n∑

j=0

h(j)

(
n

j

)
θj(1− θ)n−j.
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Letting a := θ/(1 − θ), so that a(1 − θ) = θ, i.e. θ = a/(1 + a) and 1 − θ = 1/(1 + a), we
want to find h(j) such that

(1− θ)−nEθh(X) =
n∑

j=0

(
n

j

)
h(j)aj = θ(1− θ)1−n = (1 + a)−1a(1 + a)n−1 = a(1 + a)n−2

= a
n−2∑
j=0

(
n− 2

j

)
aj =

n−1∑
j=1

(
n− 2

j − 1

)
aj.

Since this holds for all 0 < θ < 1, i.e. for all a > 0, both polynomials in a must have the
same coefficients, so that h(0) = h(n) = 0, and h(j)

(
n
j

)
=
(
n−2
j−1

)
for all 1 ≤ j ≤ n− 1. That

is, for all 1 ≤ j ≤ n− 1,

h(j) =

(
n− 2

j − 1

)
/

(
n

j

)
=

(n− 2)!

n!

(n− j)!j!

(n− j − 1)!(j − 1)!
=

(n− j)j

n(n− 1)
.

So, the UMVU for θ(1− θ) is
X(n−X)

n(n− 1)
.

Example 6.17. Let’s illustrate method (1). Suppose we have n ≥ 2 independent samples
X1, . . . , Xn from the Bernoulli distribution with unknown parameter 0 < θ < 1. From
Example 3.15 and Exercise 5.23 (or Example 5.21), Z :=

∑n
i=1Xi is complete and sufficient

for θ. Also, 1
n

∑n
i=1Xi is unbiased for θ, so 1

n

∑n
i=1Xi is UMVU for θ.

Suppose we want to estimate θ2. We use the unbiased estimate Y := X1X2 (noting that
EθY = EθX1EθX2 = θ2, by independence.) The UMVU is then E(Y |Z). Let 2 ≤ z ≤ n be
an integer. Note that Y = 1 when X1 = X2 = 1 and Y = 0 otherwise. So,

Eθ(Y |Z = z) = Eθ(1X1=X2=1|Z = z) = Pθ(X1 = X2 = 1|Z = z)

= Pθ(X1 = X2 = 1|
n∑

i=1

Xi = z) =
Pθ(X1 = X2 = 1,

∑n
i=1Xi = z)

Pθ(
∑n

i=1Xi = z))

=
Pθ(X1 = X2 = 1,

∑n
i=3Xi = z − 2)

Pθ(
∑n

i=1Xi = z))
=
θ2
(
n−2
z−2

)
θz−2(1− θ)n−z(

n
z

)
θz(1− θ)n−z

=
1

n(n− 1)

(n− z)!z!

(n− z)!(z − 2)!
=
z(z − 1)

n(n− 1)
.

Additionally, Eθ(Y |Z = z) = 0 = z(z−1)
n(n−1)

for z = 0 and for z = 1. So,

Eθ(Y |Z = z) =
z(z − 1)

n(n− 1)
, ∀ 0 ≤ z ≤ n.

So, the UMVU for θ2 is

Eθ(Y |Z) = Z(Z − 1)

n(n− 1)
.

The above procedures work well when we have a complete sufficient statistic, and these
procedures do not work when we do not have a complete sufficient statistic. The following
result attempts to deal with the case that the complete sufficient statistic does not exist,
while we would still like to find the UMVU. Consider e.g. that we have a UMVUW1 for g1(θ)
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and we have a UMVU W2 for g2(θ). Does it follow that W1+W2 is UMVU for g1(θ)+g2(θ)?
If the complete sufficient statistic exists, this follows immediately from Lehman-Scheffé’s
Theorem 6.13. It turns out the answer is also yes even when Theorem 6.13 does not apply
(i.e. when we don’t have a complete sufficient statistic). This follows from the following
Theorem.

Theorem 6.18 (Alternate Characterization of UMVU). Let {fθ : θ ∈ Θ} be a family
of distributions and let W be an unbiased estimator for g(θ). Let L2(Ω) be the set of statistics
with finite second moment. Then W ∈ L2(Ω) is UMVU for g(θ) if and only if Eθ(WU) = 0
∀ θ ∈ Θ, for all U ∈ L2(Ω) that are unbiased estimators of 0.

Proof. Assume W is UMVU for g(θ). Let U be an unbiased estimator of 0. Let s ∈ R and
consider W + sU . Note that W + sU is an unbiased estimator for g(θ). Since W is UMVU,
we have

Varθ(W ) ≤ Varθ(W + sU) = VarθW + 2sEθ(W − EθW )U + s2VarθU.

The minimum value occurs at s = 0 if and only if the derivative in s is zero at s = 0, so that
0 = Eθ(W −EθW )U = EθWU . So, this reasoning can be reversed, since if Y is any unbiased
estimator for g(θ), then U := Y −W is an unbiased estimator for 0, and Y = W + sU with
s = 1, so

Varθ(Y ) = Varθ(U +W ) = VarθU +VarθW ≥ VarθW.

□

6.3. Efficiency of an Estimator. Another desirable property of an estimator is high effi-
ciency. That is, the estimator is good with a small number of samples. One way to quantify
“good” in the previous sentence is to define a notion of information and to try to maximize
the information content of the estimator.

Definition 6.19 (Fisher Information). Let {fθ : θ ∈ Θ} be a family of multivariable
probability densities or probability mass functions. Assume Θ ⊆ R. Let X be a random
vector with distribution fθ. Define the Fisher information of the family to be

I(θ) = IX(θ) := Eθ(
d

dθ
log fθ(X))2, ∀ θ ∈ Θ,

if this quantity exists and is finite.

In order for the Fisher information to be well defined, the set {x ∈ Rn : fθ(x) > 0} should
not depend on θ, otherwise the derivative d

dθ
log fθ(X) might not be well-defined.

If {fθ : θ ∈ Θ} are n-dimensional probability densities, note that

Eθ
d

dθ
log fθ(X) =

∫
Rn

d
dθ
fθ(x)

fθ(x)
fθ(x)dx =

∫
Rn

d

dθ
fθ(x)dx =

d

dθ

∫
Rn

fθ(x)dx =
d

dθ
(1) = 0.

Similarly, if {fθ : θ ∈ Θ} are multivariable probability mass functions, Eθ
d
dθ
log fθ(X) = 0.

So, we could equivalently define

I(θ) = Varθ

( d
dθ

log fθ(X)
)
, ∀ θ ∈ Θ.
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(Differentiation under the integral sign can be justified whenever Proposition 9.8 applies.)
We also have another equivalent definition:

Eθ
d2

dθ2
log fθ(X) =

∫
Rn

d

dθ

d
dθ
fθ(x)

fθ(x)
fθ(x)dx =

∫
Rn

fθ(x)
d2

dθ2
fθ(x)−

(
d
dθ
fθ(x)

)2
[fθ(x)]2

fθ(x)dx

=

∫
Rn

d2

dθ2
fθ(x)−

( d
dθ

log fθ(x)
)2
fθ(x)dx = 0− IX(θ) = −IX(θ).

The Fisher information expresses the amount of “information” a random variable has.

Example 6.20. Let σ > 0 and let fθ(x) :=
1

σ
√
2π
e−(x−θ)2/[2σ2] for all θ ∈ Θ, x ∈ R. We have

I(θ) = Varθ

( d
dθ

−(X − θ)2

2σ2

)
=

1

σ4
Varθ(X − θ) =

1

σ2
.

For the Gaussian case, we interpret “more information” as σ small, since then the variance
is small, so more “information” is conveyed by a single sample than when σ is large. The
Fisher information also agrees with our intuitive notion of information since the information
of a joint distribution of independent random variables is equal to the sum of the separate
informations.

Proposition 6.21. Let X be a random variable with distribution from {fθ : θ ∈ Θ} (densities
or mass functions). Let Y be a random variable with distribution from {gθ : θ ∈ Θ} (densities
or mass functions). Assume that X and Y are independent. Then

I(X,Y )(θ) = IX(θ) + IY (θ), ∀ θ ∈ Θ.

Proof. Since X and Y are independent, (X, Y ) has distribution from the multivariate density
fθ(X)gθ(Y ). Also, d

dθ
log fθ(X) and d

dθ
log gθ(Y ) are independent for any θ ∈ Θ, so

I(X,Y )(θ) = Varθ

( d
dθ

log[fθ(X)gθ(Y )]
)
= Varθ

( d
dθ

[log fθ(X) + log gθ(Y )]
)

= Varθ

( d
dθ

log fθ(X)
)
+Varθ

( d
dθ

log gθ(X)
)
= IX(θ) + IY (θ).

□

Exercise 6.22. Let X be a random variable with distribution from {fθ : θ ∈ Θ} (densities or
mass functions). Let Y be a random variable with distribution from {gθ : θ ∈ Θ} (densities
or mass functions). Show that

I(X,Y )(θ) = IX(θ) + IY |X=x(θ), ∀ θ ∈ Θ, x ∈ R.
(If X, Y are continuous random variables, recall that Y |X has density fX,Y (x, y)/fX(x) for
any fixed x. And if X, Y are discrete random variables, recall that Y |X has mass function
P(X = x, Y = y)/P(Y = y). And if )

Theorem 6.23 (Cramér-Rao/ Information Inequality). Let X : Ω → Rn be a random
variable with distribution from a family of multivariable probability densities or probability
mass functions {fθ : θ ∈ Θ} with Θ ⊆ R. Let t : Rn → R and let Y := t(X) be statistic. For
any θ ∈ Θ let g(θ) := EθY . Then

Varθ(Y ) ≥ |g′(θ)|2

IX(θ)
, ∀ θ ∈ Θ.
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In particular, if Y is unbiased for θ,

Varθ(Y ) ≥ 1

IX(θ)
, ∀ θ ∈ Θ.

Equality occurs for some θ ∈ Θ only when d
dθ
log fθ(X) and Y − EθY are multiples of each

other. Also, if IX(θ) = 0, then g′(θ) = 0.

(Differentiation under the integral sign in the proof can be justified whenever Proposition
9.8 applies. Also, we assume that {x ∈ Rn : fθ(x) > 0} does not depend on θ, and for a.e.
x ∈ Rn, (d/dθ)fθ(x)) exists and is finite.)

Proof. For any θ ∈ Θ let g(θ) := EθY . We assume that X is continuous, the discrete case
being similar. Using Eθ

d
dθ
log fθ(X) = 0 and Remark 1.63,

|g′(θ)| =
∣∣∣∣ ddθ

∫
Rn

fθ(x)t(x)dx

∣∣∣∣ = ∣∣∣∣∫
Rn

d

dθ
log fθ(x)t(x)fθ(x)dx

∣∣∣∣ = ∣∣∣∣Eθ
d

dθ
log fθ(X)t(X)

∣∣∣∣
=

∣∣∣∣Covθ( ddθ log fθ(X), t(X)
)∣∣∣∣ ≤

√
Varθ

( d
dθ

log fθ(X)
)
Varθ(t(X)) =

√
IX(θ)Varθ(t(X)).

The equality case follows from Remark 1.63 and the known equality case of the Cauchy-
Schwarz Inequality (see Theorem 1.99). □

For a one-parameter family of distributions, the equality case of Theorem 6.23 gives a new
way to find a UMVU that avoids any discussion of complete sufficient statistics. To find a
UMVU, we look for affine functions of d

dθ
log fθ(X).

Example 6.24. Suppose fθ(x) := θxθ−110<x<1 for all x ∈ R, θ > 0. (This is a beta distri-
bution with β = 1.) We have

d

dθ
log fθ(x) =

1

θ
+ log x, ∀ 0 < x < 1.

A vector X = (X1, . . . , Xn) of n independent samples from fθ is distributed according to the
product

∏n
i=1 fθ(xi), so that

d

dθ
log

n∏
i=1

fθ(xi) =
n∑

i=1

(1
θ
+ log xi

)
= n

(1
θ
+

1

n
log

n∏
i=1

xi

)
, ∀ 0 < xi < 1, 1 ≤ i ≤ n.

Define

Y := − 1

n
log

n∏
i=1

Xi

Since Eθ
d
dθ
log
∏n

i=1 fθ(Xi) = 0, as shown after Definition 6.19, we have EθY = 1/θ for all

θ > 0. Note that Y − EθY is a multiple of d
dθ
log
∏n

i=1 fθ(Xi). By the equality case of
Theorem 6.23, Y must be UMVU for 1/θ = EθY .

Theorem 6.23 suggests the following quantity represents the efficiency of an estimator.
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Definition 6.25 (Efficiency). Let X : Ω → Rn be a random variable with distribution from
a family of multivariable probability densities or probability mass functions {fθ : θ ∈ Θ} with
Θ ⊆ R. Let t : Rn → R and let Y := t(X) be statistic. Define the efficiency of Y to be

1

IX(θ)Varθ(Y )
, ∀ θ ∈ Θ,

if this quantity exists and is finite. If Z is another statistic, we define the relative efficiency
of Y to Z to be

IX(θ)Varθ(Z)

IX(θ)Varθ(Y )
=

Varθ(Z)

Varθ(Y )
, ∀ θ ∈ Θ.

6.4. Bayes Estimation. In Bayes estimation, the unknown parameter θ ∈ Θ is regarded
instead as a random variable Ψ. The distribution of Ψ reflects our prior knowledge about
the probable values of Ψ. Then, given that Ψ = θ, the conditional distribution of X|Ψ = θ
is assumed to be {fθ : θ ∈ Θ}, where fθ : Rn → [0,∞). Suppose t : Rn → Rk, and we have a
statistic Y := t(X) and a loss function ℓ : Θ× Rk → R. Let g : Θ → Rk.

Definition 6.26 (Bayes Estimator). A Bayes estimator Y for g(θ) with respect to Ψ
is defined such that

Eℓ(g(Ψ), Y ) ≤ Eℓ(g(Ψ), Z).

for all estimators Z. Here the expectation is with respect to both Ψ and Y .

Note that we have not made any assumptions about bias for Y or Z.
In order to find a Bayes estimator, it is sufficient to minimize the conditional risk.

Proposition 6.27. Suppose there exists t : Rn → Rk such that, for almost every x ∈ Rn,
Y := t(X) minimizes

E(ℓ(g(Ψ), Z) |X = x),

over all estimators Z. Then t(X) is a Bayes estimator for g(θ) with respect to Ψ.

Remark 6.28. The condition on almost every x ∈ Rn is with respect to the marginal,
unconditional distribution of X given by

P(X ∈ A) =

∫
Θ

Pθ(X ∈ A)dΨ(θ), ∀A ⊆ Rn.

We also emphasize that t : Rk → Rk can depend on the distribution of Ψ.

Proof. By assumption, E(ℓ(g(Ψ), t(X)) |X = x) ≤ E(ℓ(g(Ψ), Y ) |X = x) for any esti-
mator Y , and for almost every x. Taking expected values of both sides, we then get
Eℓ(g(Ψ), t(X)) ≤ Eℓ(g(Ψ), Y ). □

Example 6.29. Suppose n = 1, g(θ) = θ and ℓ(Ψ, Y ) = (Ψ− Y )2. The minimum value of

E[(Ψ− t(X))2|X = x] = E[(Ψ− t(x))2|X = x] = E[Ψ2 − 2Ψt(x) + (t(x))2|X = x]

= E[Ψ2|X = x]− 2t(x)E(Ψ|X = x) + t(x)2.

occurs when t(x) = E(Ψ|X = x). So, define t(x) := E(Ψ|X = x) for any x ∈ R. By
Proposition 6.27, t(X) = E(Ψ|X) is the Bayes estimator for g(θ) := θ with respect to Ψ.
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Given that Ψ = θ > 0, suppose X is uniform on the interval [0, θ]. Also, assume that
Ψ has the gamma distribution with parameters α = 2 and β = 1, so that Ψ has density
θe−θ1θ>0. The joint distribution of X and Ψ is then

fΨ,X(θ, x) = fX|Ψ=θ(x|θ)fΨ(θ) =
1

θ
10<x<θθe

−θ1θ>0 = 10<x<θe
−θ.

The marginal distribution of X is then

fX(x) =

∫ ∞

−∞
fΨ,X(θ, x)dθ = 1x>0

∫ ∞

x

e−θdθ = e−x1x>0.

So, the conditional distribution of Ψ given X is

fΨ|X=x(θ|x) =
fΨ,X(θ, x)

fX(x)
=

10<x<θe
−θ

e−x1x>0

= 10<x<θe
x−θ.

So,

E(Ψ|X = x) =

∫ ∞

−∞
θfΨ|X=x(θ|x)dθ =

∫ ∞

x

θex−θdθ = ex((x+ 1)e−x) = x+ 1.

So, the Bayes estimator minimizing mean squared error for this particular Ψ is t(X) = X+1.
In contrast, the UMVU for θ for a single sample X is 2X by Theorem 6.13, since 2X is

complete sufficient and unbiased for θ, and Eθ(2X|2X) = 2X. (For n samples, (1+1/n)X(n)

is UMVU for θ.)

6.5. Method of Moments.

Definition 6.30 (Consistency). Let {fθ : θ ∈ Θ} be a family of distributions. Let Y1, Y2, . . .
be a sequence of estimators of g(θ). We say that Y1, Y2, . . . is consistent for g(θ) if, for any
θ ∈ Θ, Y1, Y2, . . . converges in probability to the constant value g(θ), with respect to the
probability distribution fθ.

Typically, we will take Yn to be a function of a random sample of size n, for all n ≥ 1.

Example 6.31. Let X1, . . . , Xn be a random sample of size n with distribution fθ. The
Weak Law of Large Numbers, Theorem 2.10, says that the sample mean is consistent when
Eθ |X1| <∞ for all θ ∈ Θ. More generally, if j ≥ 1 is a positive integer such that Eθ |X1|j <
∞ for all θ ∈ Θ, then the jth sample moment

Mj =Mj(θ) :=
1

n

n∑
i=1

Xj
i

is also consistent (as n→ ∞), i.e. as n→ ∞, Mj converges in probability to the jth moment

µj(θ) := EXj
1 .

Note also that if h : R → R is continuous, and if Y1, Y2, . . . is consistent for g(θ), then
h(Y1), h(Y2), . . . is consistent for h(g(θ)).

Definition 6.32 (Method of Moments). Let g : Θ → Rk. Suppose we want to estimate
g(θ) for any θ ∈ Θ. Suppose there exists h : Rj → Rk such that

g(θ) = h(µ1, . . . , µj).
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Then the estimator

h(M1, . . . ,Mj)

is a method of moments estimator for g(θ).

Example 6.33. To estimate the mean µ, we can use Θ = R = {µ1 ∈ R}, j = 1 and
h(µ1) = µ1, so that a method of moments estimator of µ1 is the sample mean M1.
To estimate the standard deviation, we can use Θ = R× (0,∞) = {(µ1, µ2) : µ1 ∈ R, µ2 >

0}, j = 2 and h(µ1, µ2) =
√
µ2 − µ2

1, so that a method of moments estimator of the standard

deviation is
√
M2 −M2

1 .

This approach is good in that it uses essentially no assumptions about model parameters.
Perhaps for this reason, the method of moments is one of the oldest methods of point esti-
mation, originating in the late 1800s. However, when information about model parameters
is available, often the method of moments does not work well (despite being consistent).

Example 6.34. Suppose X1, . . . , Xn is a random sample of size n from the interval [0, θ]
and θ > 0 is unknown. As mentioned in Example 6.29, (1 + 1/n)X(n) is UMVU for θ. Since
EθX1 = θ/2, a method of moment estimator for θ is 2M1 = 2

n

∑n
i=1Xi. This estimator is

unbiased and consistent, but its variance is 1
3n
θ2, while the variance of the UMVU is

(n+ 1)2

n2
EX2

(n) − θ2 =
(n+ 1)2

n2

∫ θ

0

2tP(X(n) > t)dt− θ2

= θ2
((n+ 1)2

n2
− 1
)
− (n+ 1)2

n2

∫ θ

0

2tP(X(n) < t)dt

= θ2
((n+ 1)2

n2
− 1
)
− (n+ 1)2

n2
θ−n

∫ θ

0

2ttndt = θ2
((n+ 1)2

n2
− 1
)
− (n+ 1)2

n2
θ2

2

n+ 2

=
θ2

n2(n+ 2)

(
(n+ 1)2(n+ 2)− n2(n+ 2)− 2(n+ 1)2

)
=

θ2

n2(n+ 2)

(
[(n+ 1)2 − n2](n+ 2)− 2(n+ 1)2

)
=

θ2

n2(n+ 2)

(
[2n+ 1](n+ 2)− 2(n+ 1)2

)
=

θ2

n2(n+ 2)
(5n− 4n+ 2− 2) =

θ2

n(n+ 2)
.

Example 6.35. Suppose we have a binomial random variable with unknown parameters
n, p. It is known that EX1 = np and EX2

1 = np(1 − p) + n2p2. So, we solve for n, p in the
system of equations

M1 = np, M2 = np(1− p) + n2p2,

to get the estimator for n:

N :=
M2

1

M1 − (M2 −M2
1 )

and the estimator for p:

P :=
M1

N
.
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6.6. Maximum Likelihood Estimator. LetX1, . . . , Xn be a random sample of size n from
a family of distributions {fθ : θ ∈ Θ}. So, we denote the joint distribution of X1, . . . , Xn as

n∏
i=1

fθ(xi), ∀ 1 ≤ i ≤ n.

If we have data x ∈ Rn, recall that we defined the function ℓ : Θ → [0,∞)

ℓ(θ) :=
n∏

i=1

fθ(xi)

and called it the likelihood function.

Definition 6.36 (Maximum Likelihood Estimator). The maximum likelihood esti-
mator (MLE) Y is the estimator maximizing the likelihood function. That is, Y := t(X),
t : Rn → Θ and t(x1, . . . , xn) is defined to be any value of θ ∈ Θ that maximizes the function

n∏
i=1

fθ(xi),

if this value of θ exists. A priori, the θ maximizing ℓ(θ) might not exist, and it might not be
unique

Remark 6.37. Maximizing the likelihood ℓ(θ) is equivalent to maximizing log ℓ(θ), since
log is monotone increasing.

It is relatively easy to construct examples where the MLE is not unique.

Example 6.38. Let fθ(x1) := 1[θ,θ+1](x1) for all x1, θ ∈ R. Then, for all x1, . . . , xn, θ ∈ R,
we have

n∏
i=1

fθ(xi) =
n∏

i=1

1[θ,θ+1](xi) =
n∏

i=1

1xi∈[θ,θ+1].

So, if x1 = · · · = xn = 0, we have
n∏

i=1

fθ(xi) = 10∈[θ,θ+1] = 1θ∈[−1,0].

That is, any value of θ ∈ [−1, 0] is a maximum of the likelihood function, i.e. there are
infinitely many maxima of the likelihood function. This is certainly not desirable.

If the likelihood function is continuous and Θ is compact, then at least one maximum of
the likelihood function must exist.

A common assumption of a probability density function is that it is logarithmically con-
cave. We will describe how this condition guarantees the uniqueness of the MLE. For a proof
of consistency of the MLE under certain assumptions, see the Keener book, Theorem 9.11.

Recall that ϕ : Rn → [−∞,∞] is convex if for any x, y ∈ Rn with x ̸= y and ∀ t ∈ (0, 1),

ϕ(tx+ (1− t)y) ≤ tϕ(x) + (1− t)ϕ(y).

And ϕ : Rn → [−∞,∞] is strictly convex if this inequality is always a strict inequality. We
also say ϕ is concave if − log ϕ is convex, and ϕ is strictly concave if − log ϕ is strictly convex.
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Definition 6.39 (Log-Concave). We say that ϕ : Rn → [0,∞) is logarithmically con-
cave or log concave if log ϕ is concave, i.e. − log ϕ is convex.

For example, the function ϕ(x) = e−x2
, x ∈ R, is log concave, since log ϕ is concave. If

we allow ϕ to take infinite values, then 1[−1,0] is log-concave, so Example 6.38 shows that
log-concavity still does not guarantee uniqueness of the maximum of the likelihood function.
However, strict log-concavity does guarantee uniqueness.

Proposition 6.40. Let fθ : R → [0,∞) be a family of probability density functions, where
θ ∈ Θ = Rk. Fix x1, . . . , xn ∈ R. Assume that the function

θ 7→ fθ(xi)

is strictly log-concave, for every 1 ≤ i ≤ n. Assume that Θ is a convex set (for any a, b ∈ Θ
and for any 0 < t < 1, at+ (1− t)b ∈ Θ). Then the likelihood function

θ 7→
n∏

i=1

fθ(xi)

has at most one maximum value.

Proof. The function θ 7→ log fθ(xi) is strictly concave for all 1 ≤ i ≤ n, so the function

θ 7→
n∑

i=1

log fθ(xi) = log
n∏

i=1

fθ(xi)

is strictly concave by Exercise 6.43. From Exercise 6.41, this function has at most one global
maximum. □

Exercise 6.41. Let f : Rn → R be a convex function. Let x ∈ Rn be a local minimum of f .
Show that x is in fact a global minimum of f .
Show also that if f is strictly convex, then there is at most one global minimum of f .
Now suppose additionally that f is a C1 function (all derivatives of f exist and are con-

tinuous), and x ∈ Rn satisfies ∇f(x) = 0. Show that x is a global minimum of f .

Exercise 6.42. Let A be a real m× n matrix. Let x ∈ Rn and let b ∈ Rm. Show that the
function f : Rn → R defined by f(x) = 1

2
∥Ax− b∥2 is convex. Moreover, show that

∇f(x) = AT (Ax− b), D2f(x) = ATA.

(Here D2f denotes the matrix of second derivatives of f .)
So, if ∇f(x) = 0, i.e. if ATAx = AT b, then x is the global minimum of f . And if A has

full rank, then ATA is invertible, so that x = (ATA)−1AT b is the global minimum of f .

Exercise 6.43. Let f1, . . . , fn : R → R be n strictly convex functions on R. Define g : Rn →
R by

g(x1, . . . , xn) :=
n∑

i=1

f(xi), ∀ (x1, . . . , xn) ∈ Rn.

Show that g : Rn → R is strictly convex.
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Exercise 6.44. Let f : R2 → R be a C1 function (all derivatives of f exist and are continu-
ous). Suppose there exists z ∈ R such that, for any x1 ∈ R, we have

f(x1, z) < f(x1, x2), ∀x2 ̸= z.

Assume also that the function
x1 7→ f(x1, z)

is strictly convex. Show that f has at most one global minimum.

Example 6.45. Consider a random sample from a Gaussian distribution with unknown
mean µ ∈ R and unknown variance σ2 > 0, so that θ = (µ, σ). The value of θ maximizing

log
n∏

i=1

1

σ
√
2π

exp(−(xi − µ)2/[2σ2]) =
n∑

i=1

− log σ − 1

2
log(2π)− (xi − µ)2

2σ2

can be found by differentiating in the two parameters. We have

∂

∂µ
log ℓ(θ) =

n∑
i=1

xi − µ

σ2
,

∂

∂σ
log ℓ(θ) =

n∑
i=1

−σ−1 + σ−3(xi − µ)2,

Setting both terms equal to zero, we get

µ =
1

n

n∑
i=1

xi, σ2 =
1

n

n∑
i=1

(xi − µ)2.

This is the unique critical point of the function ℓ(θ). It remains to show that this critical
point is the global maximum of ℓ(θ). It follows from Exercise 6.44 that, if z ̸= 1

n

∑n
i=1 xi,

then
n∑

i=1

(
xi −

1

n

n∑
i=1

xi

)2
<

n∑
i=1

(xi − z)2.

Therefore, for any such z ∈ R

log ℓ(
1

n

n∑
i=1

xi, σ) > log ℓ(z, σ).

So, we need only show that log ℓ( 1
n

∑n
i=1 xi, σ) is maximized when σ =

√
1
n

∑n
i=1(xi − µ)2.

Since
∂

∂σ
log ℓ(θ) = σ−3

n∑
i=1

−σ2 + (xi − µ)2,

the function σ 7→ log ℓ(µ, σ) is increasing, and then decreasing, so that the global maximum
occurs at the unique critical point.

We already know the sample mean is UMVU for the mean, by e.g. Exercise 5.10. Let

Y = Yn = Yn(X1, . . . , Xn) :=
1

n

n∑
j=1

(
Xj −

1

n

n∑
i=1

Xi

)2
.

We also know from Proposition 4.7 that Y is asymptotically unbiased for σ2, i.e.

lim
n→∞

EY

σ2
= lim

n→∞

n− 1

n
= 1.
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We will show that Y has asymptotically optimal variance without using the exponential
family. If we fix µ ∈ R and look at the information of the n-dimensional Gaussian X, we
get by modifying Example 6.20 and using Proposition 6.21

IX(σ) = nIX1(σ) = nVarσ

( d

dσ

−(X1 − µ)2

2σ2

)
= nσ−6Varσ[(X1 − µ)2]

= nσ−6Eσ((X1 − µ)4 − σ4) = 2nσ−2.

By the Cramér-Rao Inequality, Theorem 6.23, with g(σ) = Eσ(Y ) = σ2(n − 1)/n (using
Proposition 4.7), the variance of any unbiased estimator Z of σ2(n− 1)/n satisfies

Varσ(Z) ≥
|g′(σ)|2

IX(σ)
=

4σ2(n− 1)2

n22nσ−2
=

2σ4(n− 1)2

n3
.

And by Proposition 4.7,

Varσ(Y ) = Varσ

[σ2

n

1

σ2

n∑
j=1

(
Xj −

1

n

n∑
i=1

Xi

)2]
=
σ4

n2
2(n− 1) =

2σ4(n− 1)

n2
.

In summary,

lim
n→∞

EY

σ2
= 1, lim

n→∞

Varσ(Y )

|g′(σ)|2 /IX(σ)
= 1.

That is, the estimator Y is asymptotically unbiased (as n → ∞) and it asymptotically
achieves the optimal variance bound in the Cramér-Rao Inequality.

Example 6.46. Consider a random sample that is uniform on [0, θ] with θ > 0 unknown.
The value of θ maximizing

n∏
i=1

1

θ
1[0,θ](xi) = θ−n1x1,...,xn∈[0,θ] = θ−n1x(1),x(n)∈[0,θ]

occurs when θ is as small as possible such that the likelihood is nonzero, since θ−n is a
decreasing function in θ. Once θ < x(n), this expression is zero, so the smallest value of θ
giving a nonzero likelihood is θ = x(n). So, the unique global maximum occurs at θ = x(n),
so that X(n) is the MLE for θ. In contrast, recall that the UMVU for θ is (1 + 1/n)X(n), so
both are asymptotically equivalent, though the MLE is biased.

Example 6.47. Consider a random sample from the exponential density 1x>0θe
−θx with

θ > 0 unknown. Let x1, . . . , xn > 0. Then

log
n∏

i=1

θe−θxi = log θ − θ

n∑
i=1

xi.

So,

d

dθ
log

n∏
i=1

θe−θxi =
n

θ
−

n∑
i=1

xi.

As a function of θ, the likelihood is increasing for small θ and decreasing for large θ, so there
is a unique maximum of

Y :=
1

1
n

∑n
i=1Xi

,
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which is the MLE for θ.
To find the asymptotic efficiency of the MLE, recall that the exponential distribution has

mean θ−1 and variance θ−2, so by the Central Limit Theorem 2.13,
√
n(Xn− θ−1) converges

in distribution to a Gaussian random variable with mean 0 and variance θ−2 as n→ ∞. So,
the Delta Method, Theorem 4.14, with g(x) = 1/x, g′(x) = −1/x2 for all x > 0, shows that

√
n
( 1

Xn

− θ
)
=

√
n
( 1

Xn

− g(1/θ)
)

converges in distribution to a Gaussian random variable with mean 0 and variance (g′(1/θ))2θ−2 =
θ2 as n→ ∞. That is, (using also Theorem 4.16)

Var(Y ) = Var
[
n−1/2

√
n
( 1

Xn

− θ
)]

=
1

n
θ2(1 + o(1)).

On the other hand, the information inequality, Theorem 6.23, says the smallest possible
variance of an unbiased estimator of θ is

1/Var
(n
θ
−

n∑
i=1

Xi

)
= 1/(nθ−2) = θ2/n.

So, the MLE asymptotically achieves the optimal variance for an estimator of θ.

Example 6.48. Consider a random sample from the exponential density 1x>0θe
−θx with

θ > 0 unknown. That is, we continue the previous example. Instead of finding an MLE
for θ, suppose we want an MLE for e−θ. From the previous example, we can immediately
conclude that

ψ = e−1/
∑n

i=1 xi .

by with g(θ) := e−θ. Proposition 6.49.

Proposition 6.49 (Functional Equivariance of MLE). Let g : Θ → Θ′ be a bijection.
Suppose Y is the MLE of θ. Then g(Y ) is the MLE of g(θ).

Proof. By definition of the MLE Y , Y (X1, . . . , Xn) achieves the maximum value of θ 7→ ℓ(θ).
Writing ℓ(θ) = ℓ(g−1g(θ)), we have the equivalent statement: g(Y )(X1, . . . , Xn) achieves the
maximum value of θ′ 7→ ℓ(g−1(θ′)). □

So, unlike the UMVU, once we know the MLE for θ, we can easily get the MLE for
invertible functions of θ.

Lemma 6.50 (Likelihood Inequality). Let X : Ω → Rn be a random variable with proba-
bility density fθ : Rn → [0,∞). Let fω : Rn → [0,∞) be another probability density. Assume
that the probability laws Pθ and Pω corresponding to fθ and fω are not equal. Then the
Kullback-Leibler information

I(θ, ω) := Eθ log
fθ(X)

fω(X)

satisfies I(θ, ω) > 0.

Remark 6.51. If Pθ(fω(X) = 0 and fθ(X) > 0) > 0, then define I(θ, ω) := ∞, so there
is nothing to prove. Also, in the definition of I(θ, ω), if both densities take value zero, we
define the ratio of zero over zero to be 1.
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Proof. We may assume that Pθ(fω(X) = 0 and fθ(X) > 0) = 0. Note that fθ(X) > 0 with
probability one with respect to Pθ. By Jensen’s Inequality, Exercise 1.91,

−I(θ, ω) = Eθ log
fω(X)

fθ(X)
≤ logEθ

fω(X)

fθ(X)
= log

∫
x∈Rn : fθ(x)>0

fω(x)

fθ(x)
fθ(x)dx ≤ log(1) = 0.

If I(θ, ω) = 0, then both of the inequalities above are equalities. The last inequality being
an equality implies that {x ∈ Rn : fθ(x) > 0} and {x ∈ R : fω(x) > 0} are equal almost
everywhere. Since log is strictly concave, equality in the application of Jensen’s Inequality

implies that fω(X)
fθ(X)

is constant almost surely (with respect to the probability law Pθ), therefore

the densities fω and fθ must be proportional, hence equal almost surely with respect to Pθ,
so their corresponding probability laws are equal. □

Theorem 6.52 (Consistency of MLE). Let X1, X2, . . . : Ω → Rk be i.i.d. random vari-
ables with common probability density fθ : Rk → [0,∞). Let Θ ⊆ Rm. Suppose Θ is com-
pact and fθ(x1) is a continuous function of θ for a.e. x1 ∈ Rk. (Then a maximum of
ℓ(θ) exists, since it is a continuous function on a compact set.) Fix θ ∈ Θ. Assume that
Eθ supθ′∈Θ |log fθ′(X1)| <∞, and Pθ ̸= Pθ′, for all θ

′ ̸= θ with θ′ ∈ Θ. Then, as n→ ∞, an
MLE Yn of θ converges in probability to the constant function θ, with respect to Pθ.

Proof. For simplicity we assume that Θ is finite. For a full proof, see the Keener book,
Theorem 9.11. Fix θ ∈ Θ.

For any θ′ ∈ Θ and n ≥ 1, let ℓn(θ
′) := 1

n

∑n
i=1 log fθ′(Xi). Denote Θ = {θ, θ1, . . . , θk}.

By the Weak Law of Large Numbers, Theorem 2.10, for any θ′ ∈ Θ, ℓn(θ
′) converges in

probability with respect to Pθ to the constant µ(θ′) := Eθ log fθ′(X1) as n → ∞. Since
Pθ ̸= Pθ′ , for all θ′ ̸= θ, we have µ(θ) > µ(θ′) for all θ′ ∈ Θ with θ′ ̸= θ, by Lemma 6.50
(since I(θ, θ′) = µ(θ)− µ(θ′) > 0). For any n ≥ 1, let

An := {ℓn(θ) > ℓn(θj), ∀ 1 ≤ j ≤ k}.
Then limn→∞Pθ(An) = 1, and on the set An, the MLE Yn is well-defined and unique with
Yn = θ, so {Yn = θ}c ⊆ Ac

n, and for any ε > 0

lim
n→∞

Pθ(|Yn − θ| > ε) ≤ lim
n→∞

Pθ(A
c
n) = 0.

□

If g : Θ → Θ′ is a continuous bijection, it follows from Proposition 6.49 that the MLE for
g(θ) is also consistent, using also Proposition 2.36(ii) (for convergence in probability).
The above Theorem is analogous to a weak law of large numbers, since it gives convergence

in probability of the MLE. Continuing this analogy, the following Theorem is analogous to
the Central Limit Theorem, since it gives the limiting distribution of the MLE.

Theorem 6.53 (Limiting Distribution of MLE). Let {fθ : θ ∈ Θ} be a family of proba-
bility density functions, so that fθ : Rk → [0,∞) ∀ θ ∈ Θ. Let X1, X2, . . . be i.i.d. such that
X1 has density fθ. Let Θ ⊆ R. Assume the following

(i) The set A := {x ∈ Rk : fθ(x) > 0} does not depend on θ.
(ii) For every x ∈ A, ∂2fθ(x)/∂θ

2 exists and is continuous in θ.
(iii) The Fisher Information IX1(θ) exists and is finite, with Eθ

d
dθ
log fθ(X1) = 0 and

IX1(θ) = Eθ(
d

dθ
log fθ(X1))

2 = −Eθ
d2

dθ2
log fθ(X1) > 0.
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(iv) For every θ in the interior of Θ, ∃ ε > 0 such that

Eθ sup
θ′∈[θ−ε,θ+ε]

∣∣∣∣ d2

d[θ′]2
log fθ′(X1)

∣∣∣∣ <∞.

(v) An MLE Yn of θ exists and is consistent.

Then, for any θ in the interior of Θ, as n→ ∞,
√
n(Yn − θ)

converges in distribution to a mean zero Gaussian with variance 1
IX1

(θ)
, with respect to Pθ.

Remark 6.54. Combining this Theorem with Proposition 6.49, under the above assump-
tions (and also if the variance of the MLE converges, i.e. we can apply something like The-
orem 4.16), the MLE for θ achieves the asymptotically optimal variance in the Cramér-Rao
Inequality, Theorem 6.23. The same holds for a twice continuously differentiable, invertible
function of θ.

Proof. For simplicity we assume that Θ is finite. For a full proof, see the Keener book,
Theorem 9.14. Fix θ ∈ Θ. (When Θ is finite, it has no interior, so the theorem is vacuous
in this case, but the proof below is meant to illustrate the general case while avoiding a few
technicalities.)

For any θ′ ∈ Θ and n ≥ 1, let ℓn(θ
′) := 1

n

∑n
i=1 log fθ′(Xi).

Choose ε > 0 sufficiently small such that [θ− ε, θ+ ε]∩Θ = {θ}. For any n ≥ 1, let An be
the event that Yn = θ. Since Y1, Y2, . . . is consistent by Assumption (v), limn→∞Pθ(An) = 1.
Since Yn maximizes ℓn, we have ℓ

′
n(Yn) = 0 on An. (Since Θ is finite, this is not true, so take

it as an additional assumption.) Taylor expanding ℓ′n then gives

0 = ℓ′n(Yn) = ℓ′n(θ) + ℓ′′n(Zn)(Yn − θ), if An occurs,

where Zn lies between θ and Yn. Rewriting this equation gives

√
n(Yn − θ) =

√
nℓ′n(θ)

−ℓ′′n(Zn)
, if An occurs and ℓ′′n(Zn) ̸= 0. (∗)

By Assumption (iii), the summed terms in ℓ′n(θ) i.i.d. random variables with mean zero
and variance IX1(θ). So, the Central Limit Theorem 2.13 says that

√
nℓ′n(θ) converges in

distribution to a mean zero Gaussian with variance IX1(θ).
We now examine the denominator of (∗). By Assumption (iv) and the Weak Law of Large

Numbers, ℓ′′n(θ
′) converges in probability to Eθℓ

′′
n(θ

′). Since |Zn − θ| ≤ |Yn − θ| when An

occurs, we conclude that Zn also converges in probability to θ as n → ∞. Since Zn only

takes finitely many values, ℓ′′n(Zn) converges in probability to Eθℓ
′′
n(θ)

(iii)
= −IX1(θ). So, (∗)

implies that
√
n(Yn − θ) converges in distribution as n → ∞ to a mean zero Gaussian with

variance
IX1(θ)

[IX1(θ)]
2
=

1

IX1(θ)
.

So, we are done by Exercise 6.55 with Bn := An ∩ {ℓ′′n(Zn) ̸= 0} for all n ≥ 1. □
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Exercise 6.55. Suppose W1,W2, . . . are random variables that converge in distribution to a
random variable W , and U1, U2, . . . is any sequence of random variables. Let B1, B2, . . . ⊆ Ω
satisfy limn→∞ P(Bn) = 1. Then, as n→ ∞

Wn1Bn + Un1Bc
n

converges in distribution to W .

6.7. EM Algorithm. Let X : Ω → Rn be a discrete or continuous random variable. Let
t : Rn → Rm be a non-invertible function, and let Y := t(X). For example, let m < n,
and define t by t(x1, . . . , xn) := (x1, . . . , xm) ∀ (x1, . . . , xn) ∈ Rn. Suppose we would ideally
observe the sample X, but we can only observe the “incomplete” sample Y .

Suppose X has distribution from a family {fθ : θ ∈ Θ} where fθ : Rn → [0,∞) for all
θ ∈ Θ. To find the MLE of θ, we would ideally maximize

log ℓ(θ) = log fθ(X).

However, since X cannot be directly observed, we cannot compute ℓ(θ) directly, so we might
not be able to find the MLE. So, we instead approximate the maximum value of log ℓ(θ) by
conditioning on Y .

The following algorithm tries to find the MLE for Y .

Algorithm 6.56 (Expectation-Maximization (EM) Algorithm). Initalize θ0 ∈ Θ. Fix
k ≥ 1. For all 1 ≤ j ≤ k, repeat the following procedure:

• (Expectation) Given θj−1, let ϕj(θ) := Eθj−1
(log fθ(X)|Y ), for any θ ∈ Θ.

• (Maximization) Let θj ∈ Θ achieve the maximum value of ϕj (if it exists).

Remark 6.57. In the case that Y is constant, each step of the algorithm is identical by the
Likelihood Inequality, Lemma 6.50. In the case that Y = X, the algorithm just outputs the
MLE of Y = X in one step. In the case where m < n, X1, . . . , Xn : Ω → R are i.i.d. with
common density fθ : R → [0,∞) and t(x1, . . . , xn) := (x1, . . . , xm) ∀ (x1, . . . , xn) ∈ Rn,

ϕj(θ) := Eθj−1

( n∑
i=1

log fθ(Xi)
∣∣∣(X1, . . . , Xm)

)
=

m∑
i=1

log fθ(Xi) + Eθj−1

n∑
i=m+1

log fθ(Xi).

So, ϕj is the log likelihood for Y = (X1, . . . , Xm), plus the expected value of the log likelihood
for Xm+1, . . . , Xn.

Note that we cannot apply the Likelihood Inequality 6.50 directly to ϕj, i.e. the maximum
value of ϕj is not θj−1, in general.

Denote fX|Y (x|y) the conditional density (or conditional probability mass function) of X
given Y = y.

Lemma 6.58. Suppose X has density fθ and Y := t(X) has density hθ. We then denote
gθ(x|y) := fX|Y (x|y). Then for any θ ∈ Θ,

log hθ(Y )− log hθj−1
(Y ) ≥ ϕj(θ)− ϕj(θj−1).

Equality holds only when gθ(X|y) = gθj−1
(X|y) almost surely with respect to Pθj−1

(for fixed
y).
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Proof. Since fX,Y (x, y) = fX|Y (x|y)fY (y), we have

log fY (y) = log fX,Y (x, y)− log fX|Y (x|y).
Since Y = t(X), fX,Y (x, y) = fX(x)1y=t(x). That is, when y = t(x), we have

log fY (y) = log fX(x)− log fX|Y (x|y) = log fθ(x)− log fX|Y (x|y).
Using our streamlined notation, we write instead

log hθ(y) = log fθ(x)− log gθ(x|y).
Multiplying both sides by hθj−1

(x|y) and integrating in x, we get

Eθj−1

(
log hθ(Y )

∣∣∣Y = y
)
= Eθj−1

(
log fθ(X)

∣∣∣Y = y
)
− Eθj−1

(
log gθ(X|y)

∣∣∣Y = y
)

Setting also θ = θj−1 and subtracting one equality from the other, we get

log hθ(y)− log hθj−1
(y) = Eθj−1

(
log fθ(X)

∣∣∣Y = y
)
− Eθj−1

(
log fθj−1

(X)
∣∣∣Y = y

)
− Eθj−1

(
log gθ(X|y)

∣∣∣Y = y
)
+ Eθj−1

(
log gθj−1

(X|y)
∣∣∣Y = y

)
From the Likelihood Inequality, Lemma 6.50, the sum of the last two terms is nonnegative,
and it is zero only when log gθ(X|y) = log gθj−1

(X|y) almost surely with respect to Pθj−1
(for

fixed y). In summary,

log hθ(Y )− log hθj−1
(Y ) ≥ ϕj(θ)− ϕj(θj−1).

□

Proposition 6.59 (EM Algorithm Improvement). Let θ0, . . . , θk be an output of the
EM Algorithm 6.56. Then for all 1 ≤ j ≤ k,

log hθj(Y ) ≥ log hθj−1
(Y ).

Proof. By the definition of θj in Algorithm 6.56, ϕj(θj) ≥ ϕj(θj−1). So, Lemma 6.58 says

log hθj(Y )− log hθj−1
(Y ) ≥ 0.

And equality occurs only when gθj(X|y) = gθj−1
(X|y) almost surely with respect to Pθj−1

(for fixed y), or when θj = θj−1. □

6.8. Additional Comments. The Cramér-Rao and Limiting Distribution for the MLE
have analogous statements when Θ is a vector space.

Theorem 6.60 (Multiparameter Cramér-Rao/ Information Inequality). Let X : Ω →
Rn be a random variable with distribution from a family of multivariable probability densities
or probability mass functions {fθ : θ ∈ Θ}. Assume that Θ ⊆ Rm is an open set. We assume
that {x ∈ Rn : fθ(x) > 0} does not depend on θ, and for a.e. x ∈ Rn, and for all 1 ≤ i ≤ m,
(∂/∂θi)fθ(x) exists and is finite. Define the Fisher information of the family to be the
m×m matrix I(θ) = IX(θ), so that if 1 ≤ i, j ≤ m, the (i, j) entry of I(θ) is

Covθ

( ∂

∂θi
log fθ(X),

∂

∂θj
log fθ(X)

)
= Eθ

( ∂

∂θi
log fθ(X) · ∂

∂θj
log fθ(X)

)
, ∀ θ ∈ Θ,
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and assume this quantity exists and is finite. Moreover, assume that I(θ) is an invertible
matrix. (It is symmetric positive semidefinite by e.g. Exercise 2.35, but it might have a zero
eigenvalue, a priori.)

Let t : Rn → Rm and let Y := t(X) be statistic. For any θ ∈ Θ, let g(θ) := EθY so that
g : Θ → Θ. Assume that all first order partial derivatives of g exist and are continuous.
We assume that the assumptions of Proposition 9.8 hold, so that we can differentiate under
the integral sign. Let Dg(θ) denote the matrix of first order partial derivatives of g, and let
Varθ(Y ) denote the covariance matrix of Y . Then

Varθ(Y ) ≥ (Dg(θ))T [IX(θ)]
−1Dg(θ), ∀ θ ∈ Θ.

This is an inequality for symmetric matrices, i.e. for any column vector v ∈ Rm, we have

vTVarθ(Y )v ≥ vT (Dg(θ))T [IX(θ)]
−1Dg(θ)v, ∀ θ ∈ Θ.

In particular, if Y is unbiased for θ,

Varθ(Y ) ≥ [IX(θ)]
−1, ∀ θ ∈ Θ.

Theorem 6.61 (Limiting Distribution of MLE). Let {fθ : θ ∈ Θ} be a family of proba-
bility density functions, so that fθ : Rn → [0,∞) ∀ θ ∈ Θ. Let X1, X2, . . . be i.i.d. such that
X1 has density fθ. Let Θ ⊆ Rm. Assume the following

(i) The set A := {x ∈ Rn : fθ(x) > 0} does not depend on θ.

(ii) For every x ∈ A, ∀ 1 ≤ i, j ≤ m, ∂2fθ(x)
∂θi∂θj

exists and is continuous in θ.

(iii) The Fisher Information IX1(θ) exists and is finite, with Eθ∇θ log fθ(X1) = 0 and

IX1(θ) = Eθ

( ∂

∂θi
log fθ(X) · ∂

∂θj
log fθ(X)

)
= −EθD

2
θ log fθ(X1).

(D2
θ denotes the matrix of iterated second order derivatives in θ.) Moreover, assume

that IX1(θ) is an invertible matrix.
(iv) For every θ in the interior of Θ, ∀ 1 ≤ i, j ≤ m, ∃ ε > 0 such that

Eθ sup
θ′∈[θ−ε,θ+ε]

∣∣∣∣ ∂2

∂θ′i∂θ
′
j

log fθ′(X1)

∣∣∣∣ <∞.

(v) The MLE Yn of θ is consistent.

Then, for any θ in the interior of Θ, as n→ ∞,
√
n(Yn − θ)

converges in distribution to a mean zero Gaussian random vector with covariance matrix
[IX1(θ)]

−1, with respect to Pθ.

7. Resampling and Bias Reduction

The goal of bias reduction is to begin with an estimator and a random sample of fixed size
n, and to find a way to reduce the bias of the estimator. We already know that conditioning
as in the Rao-Blackwell Theorem 6.7 can allow us to reduce variance and maintain the bias
of an estimator. Unfortunately, reducing the bias can sometimes increase the variance of the
estimator. Recall that any random variable X can be written as

E(X − θ)2 = E(X − EX + EX − θ)2 = E(X − EX)2 + (EX − θ)2.
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From this equality, we can intuitively assert that reducing the variance of an estimator could
increase its bias, while reducing the bias of an estimator could increase its variance. This
tradeoff is known as the bias-variance tradeoff.

A standard way to reduce bias is to resample from our random sample. In jackknife
resampling, we consider the sample of size n with one sample removed, and then average the
estimator over all n ways of removing one sample.

7.1. Jackknife Resampling.

Definition 7.1. Let Θ ⊆ R. Let X1, X2, . . . : Ω → Rd be i.i.d random variables so that X1

has distribution fθ : Rd → [0,∞), θ ∈ Θ. Let Y1, Y2, . . . be a sequence of estimators for θ so
that for any n ≥ 1, Yn = tn(X1, . . . , Xn) for some tn : Rnd → Θ. For any n ≥ 1, define the
jackknife estimator of Yn to be

Zn := nYn −
n− 1

n

n∑
i=1

tn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn).

The jackknife estimator reduces the bias of the original estimator, as we now show.

Proposition 7.2. Assume that Y1, Y2, . . . are asymptotically unbiased, so that there exists
a, b ∈ R such that

EYn = θ + a/n+ b/n2 +O(1/n3), ∀n ≥ 1. (∗)

Then

EZn = θ +O(1/n2).

And if b = 0 and the O(1/n3) term is zero in (∗), then Zn is unbiased.

Proof. Let n ≥ 1. Then

EZn
(∗)
= nθ + a+

b

n
+O(1/n2)− n− 1

n

n∑
i=1

Etn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn)

(∗)
= nθ + a+

b

n
+O(1/n2)− n− 1

n

n∑
i=1

(θ +
a

n− 1
+

b

(n− 1)2
+O(1/n3))

= θ +
b

n
− b

n− 1
+O(1/n2) = θ +O(1/n2).

□

Example 7.3. The jackknife estimator of the sample mean is the sample mean.

nYn −
n− 1

n

n∑
i=1

tn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn)

=
n∑

i=1

Xi −
1

n

n∑
i=1

(X1 + · · ·+Xi−1 +Xi+1 + · · ·+Xn)

=
n∑

i=1

Xi −
n− 1

n

n∑
i=1

Xi =
1

n

n∑
i=1

Xi, ∀n ≥ 1.
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Example 7.4. Let X1, . . . , Xn be i.i.d. Bernoulli random variables with parameter 0 < θ <
1. The MLE for θ is the sample mean, so by the Functional Equivariance Property of the
MLE, Proposition 6.49, the MLE for θ2 is

Yn :=
( 1
n

n∑
i=1

Xi

)2
, ∀n ≥ 1.

This estimator is biased, since

EYn =
1

n2

(
nθ + n(n− 1)θ2

)
= θ2 +

1

n
(θ − θ2), ∀n ≥ 1.

By Proposition 7.2, the jackknife estimator

Zn := n
( 1
n

n∑
i=1

Xi

)2
− n− 1

n

n∑
i=1

( 1

n− 1

∑
j∈{1,...,n} : j ̸=i

Xj

)2
, ∀n ≥ 1.

is an unbiased estimator of θ2.

7.2. Bootstrapping.

Definition 7.5. Let X1, . . . , Xn be a random sample of size n. Let m ≥ 1. We define the
bootstrap sample W1, . . . ,Wm as follows. Given X1, . . . , Xn, let W1, . . . ,Wm be a random
sample of size m uniformly distributed in the values {X1, . . . , Xn}.

We typically take m significantly larger than n.
For example, if we are given a sample of the form {3, 3, 5, 6}, then W1 has probability 1/2

of taking the value 3.

Remark 7.6. Note that W1, . . . ,Wm are conditionally independent, by their definition.
Although the original sample consists of independent random variables, the bootstrap sample
does not. The easiest way to see this is to show that the covariance ofW1 andW2 is nonzero.
Indeed, using the conditional independence, we have

EW1W2 = E
[
E(W1W2|X1, . . . , Xn)

]
= E

[
E(W1|X1, . . . , Xn) · E(W2|X1, . . . , Xn)

]
= E

[(
E(W1|X1, . . . , Xn)

)2]
= EX

2
.

Meanwhile

E(W |X1, . . . , Xn) =
1

n

n∑
i=1

( 1
n

n∑
j=1

Xj

)
= X. (‡)

So, the covariance of W1 and W2 is

E(W1 −EW1)(W2 −EW2) = EW1W2 − (EW1)(EW2) = EX
2 − (EX)2 = VarX =

Var(X1)

n
.

So, if X1 is nonconstant, this covariance is nonzero.

Example 7.7. Suppose µ := EX1, σ :=
√
Var(X1), and γ := E(X1 − µ)3. Suppose we

want to estimate µ3. The method of moments estimator for µ3 is then X
3
. However, this
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estimator is biased. We have

EX
3
= E(X − µ+ µ)3

= µ3 + 3µ2E(X − µ) + 3µE(X − µ)2 + E(X − µ)3

= µ3 + 3µσ2/n+ γ/n2 = µ3 +O(1/n). (∗)
Here we used

E(X −µ)2 = E
( 1
n

n∑
i=1

(Xi−µ)
)2

=
1

n2
(nE(X1−µ)2+n(n− 1)E(X1−µ)(X2−µ)) =

n

n2
σ2.

E(X − µ)3 = E
( 1
n

n∑
i=1

(Xi − µ)
)3

=
1

n3
E

∑
1≤i,j,k≤n

(Xi − µ)(Xj − µ)(Xk − µ)

=
1

n3

(
nE(X1 − µ)3 +

∑
1≤i,j,k≤n : i ̸=j∨j ̸=k∨i ̸=k

E(Xi − µ)(Xj − µ)(Xk − µ)
)
=

n

n3
γ.

After conditioning on X1, . . . , Xn, Y is the sample mean of i.i.d. uniform random variables
in {X1, . . . , Xn}, so after conditioning we can re-use formula (∗) with Y in place of X, i.e.

E(Y
3|X1, . . . , Xn)

= (E(Y1|X1, . . . , Xn))
3 + 3(E(Y1|X1, . . . , Xn))(E((Y1 −X)2|X1, . . . , Xn))/n

+ E((Y1 −X)3|X1, . . . , Xn)/n
2

= X
3
+

3

n
X

1

n

n∑
i=1

(
Xi −X

)2
+

1

n

n∑
i=1

(
Xi −X

)3
/n2.

Here we used E(Y1|X1, . . . , Xn) = X using the definition of Y1, along with

E((Y1−X)2|X1, . . . , Xn) =
1

n

n∑
i=1

(
Xi−X

)2
, E((Y1−X)3|X1, . . . , Xn) =

1

n

n∑
i=1

(
Xi−X

)3
.

The bias-reduced estimator of µ3 is then defined to be the original estimator, minus the
“conditional bias” of the bootstrap estimator:

X
3 −

(
E(Y

3|X1, . . . , Xn)− [E(Y |X1, . . . , Xn)]
3
)

= X
3 −

3X 1
n

∑n
i=1

(
Xi −X

)2
n

−
1
n

∑n
i=1

(
Xi −X

)3
n2

.

This estimator has expected value

µ3 +
3

n2
(µσ2 − γ) +

6γ

n3
− 2γ

n4
= µ3 +O(1/n2). (∗∗)

So, the bias is asymptotically better than X
3
. To justify (∗∗), note that (∗) with n = 1 says

EX3
1 = µ3 + 3µσ2 + γ. Then, for any 1 ≤ j ≤ n, we have

EXj

n∑
i=1

X2
i = EX3

j +
∑
i ̸=j

EXjEX
2
i = µ3 + 3µσ2 + γ + (n− 1)µ(σ2 + µ2).
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Summing over j, we similarly have

EX
n∑

i=1

X2
i = µ3 + 3µσ2 + γ + (n− 1)µ(σ2 + µ2).

Therefore,

EX
1

n

n∑
i=1

(
Xi −X

)2
= EX

(
−X

2
+

1

n

n∑
i=1

X2
i

)
(∗)
= −(µ3 + 3µσ2/n+ γ/n2) + µ3/n+ 3µσ2/n+ γ/n+ (1− 1/n)µ(σ2 + µ2)

= −γ/n2 + γ/n+ µσ2 − µσ2/n

= µσ2 + (γ − µσ2)/n− γ/n2.

To compute the remaining term in the expected value before (∗∗), we use

1

n

n∑
i=1

E(Xi −X)3 = E(X1 −X)3 = E(X1 − µ+ µ−X)3

= E(X1 − µ)3 + 3E(X1 − µ)2(µ−X) + 3E(X1 − µ)(µ−X)2 + E(µ−X)3

= γ − 3

n
E(X1 − µ)3 + 3

1

n2

n∑
i=1

E(X1 − µ)(µ−Xi)
2 − γ

n2

= γ − 3

n
γ + 3

1

n2
E(X1 − µ)3 − γ

n2

= γ(1− 3/n+ 2/n2)

In total, the expected value we get then agrees with the formula from (∗∗), using (∗):

µ3 + 3µσ2/n+ γ/n2 − 3

n
(µσ2 + (γ − µσ2)/n− γ/n2)− 1

n2
γ(1− 3/n+ 2/n2)

= µ3 +
1

n2
(γ − 3γ + 3µσ2 − γ) +

1

n3
(3γ + 3γ)− 1

n4
2γ

= µ3 +
3

n2
(−γ + µσ2) +

6

n3
γ − 2

n4
γ

8. Some Concentration of Measure

8.1. Concentration for Independent Sums. In certain cases, we can make rather strong
conclusions about the distribution of sums of i.i.d. random variables, improving upon the
laws of large numbers.

Theorem 8.1 (Hoeffding Inequality/ Large Deviation Estimate). Let X1, X2, . . . be
independent identically distributed random variables with P(X1 = 1) = P(X1 = −1) = 1/2.
Let a1, a2, . . . ∈ R. Then, for any n ≥ 1,

P
( n∑

i=1

aiXi ≥ t
)
≤ e

− t2

2
∑n

i=1
a2
i , ∀ t ≥ 0.
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Consequently,

P
(∣∣∣ n∑

i=1

aiXi

∣∣∣ ≥ t
)
≤ 2e

− t2

2
∑n

i=1
a2
i , ∀ t ≥ 0.

Proof. By dividing a1, . . . , an by a constant, we may assume
∑n

i=1 a
2
i = 1. Let α > 0. Using

the (exponential) moment method as in Markov’s inequality, Corollary 1.93, and αt ≥ 0,

P(
n∑

i=1

aiXi ≥ t) = P(eα
∑n

i=1 aiXi ≥ eαt) ≤ e−αtEeα
∑n

i=1 aiXi = e−αt

n∏
i=1

EeαaiXi .

The last equality used independence of X1, X2, . . . and Proposition 1.13. Using an explicit
computation and Exercise 8.2,

EeαaiXi = (1/2)(eαai + e−αai) = cosh(αai) ≤ eα
2a2i /2, ∀ i ≥ 1.

In summary, for any t ≥ 0

P(
n∑

i=1

aiXi ≥ t) ≤ e−αteα
2
∑n

i=1 a
2
i /2 = e−αt+α2/2.

Since α > 0 is arbitrary, we choose α to minimize the right side. This minimum occurs when
α = t, so that −αt+ α2/2 = −t2/2, giving the first desired bound. The final bound follows
by writing P(|

∑n
i=1 aiXi| ≥ t) = P(

∑n
i=1 aiXi ≥ t)+P(−

∑n
i=1 aiXi ≥ t) and then applying

the first inequality twice. □

Exercise 8.2. Show that cosh(x) ≤ ex
2/2, ∀ x ∈ R.

In particular, Hoeffding’s inequality implies that

P
( 1
n

∣∣∣ n∑
i=1

Xi

∣∣∣ ≥ t
)
≤ 2e−nt2/2, ∀ t ≥ 0.

This inequality is much stronger than either Markov’s or Cheyshev’s inequality, since they
only respectively imply that

P
( 1
n

∣∣∣ n∑
i=1

Xi

∣∣∣ ≥ t
)
≤ 1

t
, P

( 1
n

∣∣∣ n∑
i=1

Xi

∣∣∣ ≥ t
)
≤ 1

nt2
, ∀ t ≥ 0.

Note also that Hoeffding’s inequality gives a quantitative bound for any fixed n ≥ 1, unlike
the (non-quantitative) limit theorems which only hold as n→ ∞.

Exercise 8.3 (Chernoff Inequality). Let 0 < p < 1. Let X1, X2, . . . be independent
identically distributed random variables with P(X1 = 1) = p and P(X1 = 0) = 1− p for any
i ≥ 1. Then for any n ≥ 1

P
( 1
n

n∑
i=1

Xi ≥ t
)
≤ e−np

(ep
t

)tn
, ∀ t ≥ p.

Prove the same estimate for P( 1
n

∑n
i=1Xi ≤ t) for any t ≤ p. (Hint: 1 + x ≤ ex for any

x ∈ R, so 1 + (eα − 1)p ≤ e(e
α−1)p.)
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Exercise 8.4. For any natural number n and a parameter 0 < p < 1, define an Erdös-Renyi
graph on n vertices with parameter p to be a random graph (V,E) on a (deterministic) vertex
set V of n vertices (thus (V,E) is a random variable taking values in the discrete space of

all 2(
n
2) possible undirected graphs one can place on V ) such that the events {i, j} ∈ E for

unordered pairs with i, j ∈ V are independent and each occur with probability p.
Suppose we have an Erdös-Renyi random graph G = (V,E) on n vertices with parameter

0 < p < 1. Define d := p(n− 1).

• Show that d is the expected degree of each vertex in G. (The degree of a vertex
v ∈ V is the number of vertices connected to v by an edge in E.)

• Show that there exists a constant c > 0 such that the following holds. Assume
p ≥ c logn

n
. Then with probability larger than .9, all vertices of G have degrees in the

range (.9d, 1.1d). (Hint: first consider a single vertex, then use the union bound over
all vertices.)

8.2. Concentration for Lipschitz Functions. One way to phrase the general question
in the subject of concentration of measure is: how far is a random variable from its mean
value? Hoeffding’s Inequality says that linear functions of mean zero ±1 valued independent
random variables are exponentially close to their mean value. A similar statement can be
made for bounded random variables (see Theorem 8.7 below). In order to answer the general
question, we next consider Lipschitz functions of i.i.d. random variables. We focus on the
Gaussian setting for simplicity.

For any x = (x1, . . . , xn) ∈ Rn, we denote ∥x∥ := (x21 + · · ·+ x2n)
1/2.

Theorem 8.5 (Concentration of measure for Gaussians, Lipschitz function form).
Let f : Rn → R. Suppose that for all x, y ∈ Rn, |f(x)− f(y)| ≤ ∥x− y∥, so that f is
1-Lipschitz. Let X = (X1, . . . , Xn) be a mean zero Gaussian random vector with identity
convariance matrix. Then for all t > 0,

P (x ∈ Rn : |f(x)− Ef(X)| ≥ t) ≤ 2e−2t2/π2

.

Proof. We assume that f all partial derivatives of f exist and are continuous. Let Y =
(Y1, . . . , Yn) be another mean zero Gaussian random vector with identity convariance matrix,
such that Y and X are independent. Let 0 ≤ θ ≤ π/2 and define

Zθ := X sin θ + Y cos θ.

By rotation invariance of a Gaussian random vector, Zθ and d
dθ
Zθ = X cos θ − Y sin θ have

the same joint distribution as X and Y (since the vectors (sin θ, cos θ) and (cos θ,− sin θ) are
orthogonal in R2.) Let ϕ : R → [0,∞) be a convex function. Using then Jensen’s Inequality,
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Exercise 1.91, then the Chain Rule, then Jensen’s inequality and Fubini’s Theorem,

Eϕ(f(X)− Ef(Y )) ≤ Eϕ(f(X)− f(Y )) = Eϕ
(∫ π/2

0

d

dθ
f(Zθ)dθ

)
= Eϕ

(∫ π/2

0

⟨(∇f)(Zθ),
d

dθ
Zθ⟩dθ

)
= Eϕ

( 1

π/2

∫ π/2

0

π

2
⟨(∇f)(Zθ),

d

dθ
Zθ⟩dθ

)
≤ E

1

π/2

∫ π/2

0

ϕ
(π
2
⟨(∇f)(Zθ),

d

dθ
Zθ⟩
)
dθ =

1

π/2

∫ π/2

0

Eϕ
(π
2
⟨(∇f)(Zθ),

d

dθ
Zθ⟩
)
dθ

=
1

π/2

∫ π/2

0

Eϕ
(π
2
⟨(∇f)(X), Y ⟩

)
dθ = Eϕ

(π
2
⟨(∇f)(X), Y ⟩

)
Let α ∈ R and let ϕ(x) := eαx for all x ∈ R. Then using independence in Y and Fubini’s

Theorem,

E exp(α[f(X)− Ef(Y )]) ≤ E exp
(
α
π

2

n∑
i=1

∂f

∂xi
(X)Yi

)
= EX

n∏
i=1

EY exp
(
α
π

2

∂f

∂xi
(X)Yi

)
.

Using an explicit computation, for any s ∈ R and for any 1 ≤ i ≤ n,

EY e
sYi =

∫ ∞

−∞
esye−y2/2 dy√

2π
= es

2/2

∫ ∞

−∞
e−(y−s)2/2 dy√

2π
= es

2/2.

So, applying this inequality with s = απ
2

∂f
∂xi

(X) for each 1 ≤ i ≤ n,

E exp(α[f(X)− Ef(Y )]) ≤ E exp
(
α2π

2

8

n∑
i=1

( ∂f
∂xi

(X)
)2)

≤ exp
(
α2π

2

8

)
.

(Since f is 1-Lipschitz, |⟨∇f(x), y⟩| ≤ 1 for all x, y ∈ Rn with ∥y∥ ≤ 1. In particular, using
y := ∇f(x)/ ∥∇f(x)∥, we get ∥∇f(x)∥ ≤ 1.) So,

P(f(X)− Ef(Y ) > t) = P(exp(α[f(X)− Ef(Y )]) > eαt)

≤ e−αt exp
(
α2π

2

8

)
= exp

(
− αt+ α2π

2

8

)
.

The minimum α occurs when α = 4t/π2, so making this choice of α, we get

P(f(X)− Ef(Y ) > t) ≤ exp(−2t2/π2).

Similarly, P(f(X)− Ef(Y ) < −t) ≤ exp(−2t2/π2), so that

P(|f(X)− Ef(Y )| > t) = P(f(X)− Ef(Y ) > t) +P(f(X)− Ef(Y ) < −t)
≤ 2 exp(−2t2/π2).

□

Theorem 8.6 (Johnson-Lindenstrauss Lemma). Let x(1), . . . , x(n) ∈ Rm. Let ε > 0.

Then there exists a linear function h : Rm → RO(ε−2 logn) such that∥∥x(i) − x(j)
∥∥ ≤

∥∥h(x(i))− h(x(j))
∥∥ ≤ (1 + ε)

∥∥x(i) − x(j)
∥∥ , ∀ 1 ≤ i, j ≤ n.

One proves this via the probabilistic method. By concentration of measure, a random
projection does what we require.
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Proof. Fix 1 ≤ k ≤ m. Let Π: Rm → Rm be the orthogonal projection such that

Π(z1, . . . , zm) := (z1, . . . , zk, 0, . . . , 0), ∀ (z1, . . . , zm) ∈ Rm.

Let X = (X1, . . . , Xm) be a standard m-dimensional Gaussian random vector. Define

a := E ∥ΠX∥ .
We will eventually show that a ≥ 10−2

√
k. Observe

E ∥ΠX∥2 = E
k∑

i=1

X2
i = kEX2

1 . = k. (∗)

Now, we use Remark 1.38 and 8.5 for the 1-Lipschitz function x 7→ ∥Πx∥,

E ∥ΠX∥4 =
∫ ∞

0

4u3P(∥ΠX∥ ≥ u)du

=

∫ 2a

0

4u3P(∥ΠX∥ ≥ u)du+

∫ ∞

2a

4u3P(∥ΠX∥ ≥ u)du

≤
∫ 2a

0

4u3du+

∫ ∞

2a

4u3P(| ∥ΠX∥ − a| > u/2)du

≤ 16a4 + 8

∫ ∞

2a

u3e−u2/2π2

du = 16a4 + 8(2π2)(2a2 + π2)e−2a2/π2 ≤ 16a4 + 2π4

≤ 16a4 + 200k2 ≤ 216

(∫
Rm

∥Πx∥2 γm(x)dx
)2

, using Jensen’s inequality and (∗).

So, if Z := ∥ΠX∥ is a random variable, we have shown that EZ4 < c(EZ2)2 where
c := 216. So, using Hölder’s Inequality, Theorem 1.99, for p = 3/2, q = 3,

EZ2 = E(Z2/3Z4/3) ≤ (EZ)2/3(EZ4)1/3 ≤ (EZ)2/3c1/3(EZ2)2/3.

Using this inequality and (∗),

EZ ≥ c−1/2
√
EZ2 ≥ 216−1/2

√
k. (∗∗)

In summary, a ≥ 2−4
√
k for a defined above.

Let A be an m × m matrix of i.i.d. standard Gaussian random variables. Fix x(0) ∈
Rm with ∥x∥ = 1. By rotation invariance of the Gaussian measure, A and AQ have the
same distribution where Q is a fixed m × m orthogonal matrix, so if we choose Q so that
Q(1, 0, . . . , 0)T = x(0), we get

P
(
A ∈ Rm×m :

∣∣ ∥∥ΠAx(0)∥∥
2
− a
∣∣ ≥ εa

)
= P

(
A ∈ Rm×m :

∣∣ ∥∥ΠA(1, 0, . . . , 0)T∥∥
2
− a
∣∣ ≥ εa

)
= P (X ∈ Rm | ∥ΠX∥ − a| ≥ εa) .

So, by Theorem 8.5 applied to the 1-Lipschitz function x 7→ ∥Πx∥, and using a ≥ 2−4
√
k,

for any ε > 0, and for any

P
(
A ∈ Rm×m :

∣∣ ∥∥ΠAx(0)∥∥
2
− a
∣∣ ≥ εa

)
≤ 2e−2ε2a2/π2 ≤ 2e−2−10kε2 .

Let x(1), . . . , x(n) be n points in Rm. If k ≥ 212ε−2 log n, the union bound shows that

P

(
A ∈ Rm×m : ∃ i ̸= j :

∣∣∣∣ ∥∥∥∥ΠA( x(i) − x(j)

∥x(i) − x(j)∥

)∥∥∥∥− a

∣∣∣∣ ≥ εa

)
≤
(
n

2

)
2e−2−10kε2 < 1.
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For any 1 ≤ i ≤ n, define yi := ΠAx(i)/(a(1− ε)). Then ∃ A ∈ Rn×m such that

1 ≤
∥∥∥∥ y(i) − y(j)

∥x(i) − x(j)∥

∥∥∥∥ ≤ 1 + ε

1− ε
≤ 1 + 3ε, ∀ 1 ≤ i, j ≤ n.

So, our required embedding is h := ΠA
a(1−ε)

, so that h(x(i)) = y(i) for all 1 ≤ i ≤ n. Note

that h is linear and its nonzero entries form a rectangular matrix of i.i.d. Gaussians. Also,
we can choose k := ⌈212ε−2 log n⌉. (In fact, if we choose k to be slightly larger, then the
probability becomes exponentially small, so essentially all A satisfies our desired property,
hence essentially all linear projections h : Rn → RO(ε−2 logn) satisfy our desired property.) □

8.3. Additional Comments. Hoeffding’s inequality in Theorem 8.1 can be generalized to
the following statement.

Theorem 8.7 (Hoeffding Inequality/ Large Deviation Estimate). For all i ≥ 1,
let ai < bi be real numbers. Let X1, X2, . . . be independent random variables with P(Xi ∈
[ai, bi]) = 1. Then, for any n ≥ 1,

P
( n∑

i=1

Xi − E
( n∑

j=1

Xj

)
≥ t
)
≤ e

− 2t2∑n
i=1

(bi−ai)
2
, ∀ t ≥ 0.

Consequently,

P
(∣∣∣ n∑

i=1

Xi − E
( n∑

j=1

Xj

)∣∣∣ ≥ t
)
≤ 2e

− 2t2∑n
i=1

(bi−ai)
2
, ∀ t ≥ 0.

Lemma 8.8 (Hoeffding’s Lemma). Let a < b be real numbers. Let X be a random variable
with P(X ∈ [a, b]) = 1. Then for any α ∈ R,

EeαX ≤ e
1
8
α2(b−a)2 .

Theorem 8.5 can be generalized to uniformly log-concave densities on Euclidean space (see
Ledoux, “The Concentration of Measure Phenomenon,” Proposition 2.18)

Theorem 8.9 (Concentration of measure for Log-Concave Measures, Lipschitz
function form). Let f : Rn → R. Suppose that for all x, y ∈ Rn, |f(x)− f(y)| ≤ ∥x− y∥,
so that f is 1-Lipschitz. Let u : Rn → R be a function such that e−u(x) is a probability density
on Rn. Assume there exists c > 0 such that the Hessian of u satisfies Hess(u)(x) ≥ cI, in
the matrix sense. (That is, all eigenvalues of the Hessian of u are bounded below by c, for
all x ∈ Rn.) Let X have distribution e−u. Then, for all t > 0,

P (x ∈ Rn : |f(x)− Ef(X)| ≥ t) ≤ 2e−ct2/2.

9. Appendix: Results from Analysis

Theorem 9.1. (Minkowski’s Inequality) Let 1 ≤ p ≤ ∞, and let f : R2 → R be mea-
surable. Then ∥∥∥∥∫

R
f(x, y)dx

∥∥∥∥
p,dy

≤
∫
R
∥f(x, y)∥p,dy dx.

In particular, the integrand on the right is measurable, so if the right side is finite, then∫
R f(x, y)dx is defined for almost every y ∈ R.
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Proof. The right side is unchanged by replacing f with |f |, so without loss of generality we
assume f : R2 → [0,∞). The case p = 1 follows from Fubini’s Theorem, Theorem 1.79. If
1 < p < ∞, measurability follows from Fubini’s Theorem, and the inequality follows from
Fubini’s Theorem and the Hölder inequality for y, Theorem 1.99 (for Lebesgue measure),
with exponents p, p′ (using (p− 1)p′ = p).∫

R

∣∣∣∣∫
R
f(x, y)dx

∣∣∣∣p dy =

∫
R

∣∣∣∣∫
R
f(x, y)dx

∣∣∣∣p−1 ∣∣∣∣∫
R
f(x′, y)dx′

∣∣∣∣ dy
=

∫
R

(∫
R
f(x′, y)

∣∣∣∣∫
R
f(x, y)dx

∣∣∣∣p−1

dy
)
dx′

≤
∫
R

(∫
R
|f(x′, y)|p dy

)1/p(∫
R
|
∫
R
f(x, y)dx|p′(p−1)dy

)1/p′
dx′

=

∫
R
∥f(x′, y)∥p,dy dx

′ ·
(∫

R
|
∫
R
f(x, y)dx|pdy

)1/p′
.

If the right-most term is nonnegative and finite, we divide both sides by it to conclude, using
1− 1/p′ = 1/p. If the right-most term is zero, there is nothing to prove. In the case that f
is the indicator function of a rectangle, the right-most term is finite, so the Theorem holds
in this case. The Monotone Convergence Theorem then implies that the Theorem holds for
more general functions f .
The case p = ∞ takes more work. Measurability follows by approximating f by simple

functions, and using that the limit of measurable functions is measurable. We then use
duality. Let g : R → [0,∞) be measurable with

∫
R g(y)dy ≤ 1. Then by Fubini’s Theorem

and Hölder’s inequality for y, Theorem 1.99 (for Lebesgue measure)∫
R
g(y)

(∫
R
f(x, y)dx

)
dy =

∫
R

(∫
R
f(x, y)g(y)dy

)
dx ≤

∫
R
∥f(x, y)∥∞,dy dx. (∗)

From the Reverse Hölder inequality, if h : R → R is measurable, then

∥h∥∞ = sup
g : R→[0,∞)∫
R g(y)dy≤1

∫
R
g(x)h(x)dx.

So, taking the supremum over such g in (∗),
∥∥∫

R f(x, y)dx
∥∥
∞,dy

≤
∫
R ∥f(x, y)∥∞,dy dx. □

We say f : R → R is a Schwartz function if, for any integers j, k ≥ 1, f is k times
continuously differentiable and there exists cj,k ∈ R such that∣∣f (k)(x)

∣∣ ≤ cjk

1 + |x|j
, ∀x ∈ R.

Proposition 9.2 (Properties of Convolution on R). Let 1 ≤ p ≤ ∞, let p′ with 1/p +
1/p′ = 1. Let ϕ : R → R with

∫
R |ϕ(x)| dx < ∞, let ε > 0 and define ϕε(x) :=

1
ε
ϕ(x/ε) for

any x ∈ R and c :=
∫
R ϕ(x)dx. Let f, g : R → R be Schwartz functions.

(a) For any 1 ≤ p <∞, limε↓0 ∥ϕε ∗ f − cf∥p = 0.

(b) limε→0+ ∥ϕε ∗ f − cf∥∞ = 0.
(c) For any x ∈ R, limε→0+(ϕε∗f)(x) = cf(x) (using only that f is bounded, continuous).
(d) The convergence in (c) is uniform on R (using only that f is uniformly continuous).
(e) ∀ m ≥ 1, f ∗ g is m times continuously differentiable, and (f ∗ g)(m) = f (m) ∗ g.
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Proof of (a),(b):

∥ϕε ∗ f − cf∥p =
∥∥∥∥∫

R
ϕε(y)(f(x− y)− f(x))dy

∥∥∥∥
p,dx

≤
∫
R
|ϕε(y)| ∥f(x− y)− f(x)∥p,dx dy , by Theorem. 9.1

=

∫
R
|ϕ(y)| ∥f(x− εy)− f(x)∥p,dx dy, changing variables.

The y-integrand is bounded by 2 ∥f∥p
∫
R |ϕ(y)| dy <∞ and by |ϕ(y)| |εy| ∥f ′∥∞ by the Fun-

damental Theorem of Calculus. Since f is Schwartz, the latter quantity is bounded, so it
goes to zero pointwise as ε → 0. So, the Dominated Convergence Theorem, Theorem 3.10,
implies (a) and (b).
Proof of (c): Arguing as in (a) (taking absolute values, changing variables, and applying
Dominated Convergence),

|(ϕε ∗ f)(x)− cf(x)| ≤
∫
R
|ϕ(y)| |f(x− εy)− f(x)| dy → 0.

Proof of (d): Let η > 0. Choose m > 0 so that 2 ∥f∥∞
∫
|y|>m

|ϕ(y)| ≤ η. Choose δ > 0 by

uniform continuity of f so that for any x ∈ R, if |u| ≤ δ then |f(x+ u)− f(x)| ≤ η/ ∥ϕ∥1.
Then for any 0 < ε ≤ δ/m and for any x ∈ R, if |y| ≤ m, then |f(x− εy)− f(x)| ≤ η/ ∥ϕ∥1.
So, continuing the calculation of (c), and applying the definition of m,∫

R
|ϕ(y)| |f(x− εy)− f(x)| dy =

∫
{y∈R : |y|>m}

(· · · ) +
∫
{y∈R : |y|≤m}

(· · · )

≤ 2 ∥f∥∞
∫
{y∈R : |y|>m}

|ϕ(y)| dy +
∫
{y∈R : |y|≤m}

|ϕ(y)| η

∥ϕ∥1
≤ η + η = 2η.

Proof of (e): Let h > 0 and x ∈ R. Then∣∣∣∣(f ∗ g)(x+ h)− (f ∗ g)(x)
h

− (f ′ ∗ g)(x)
∣∣∣∣ ≤ ∥∥∥∥f(x+ h)− f(x)

h
− f ′(x)

∥∥∥∥
∞,dx

∥g∥1

≤
∥∥∥∥1h
∫ x+h

x

(x+ h− t)f ′′(t)dt

∥∥∥∥
∞,dx

∥g∥1 ≤ |h| ∥f ′′∥∞ ∥g∥1 .

Since f is a Schwartz function, ∥f ′′∥∞ < ∞, so the case m = 1 follows by letting h → 0+.
The case of larger m follows by iteration. □
Let f : R → R with

∫
R |f(x)| dx <∞. For any ξ ∈ R, we define

f̂(ξ) = F(f)(ξ) :=

∫
R
eixξf(x)dx.

Then f̂ : R → R is called the Fourier Transform of f .

Proposition 9.3 (Properties of Fourier Transform). Let f, g be Schwartz functions.
Let ξ ∈ R and let λ > 0.

(a) |f̂(ξ)| ≤
∫
R |f(x)| dx, ∀ ξ ∈ R.
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(b) F [f(x− h)](ξ) = eiξhf̂(ξ), F [eixhf(x)](ξ) = f̂(ξ + h), ∀ h ∈ R.
(c) F [f(x/λ)](ξ) = λf̂(λξ).

(d) (̂f ∗ g) = f̂ ĝ

(e) ∂f̂/∂ξ = F(ixf(x))

(f) F [f ′](ξ) = −iξf̂(ξ).
(g)

∫
R f(x)ĝ(x)dx =

∫
R f̂(x)g(x)dx.

Proof of (a): |f̂(ξ)| =
∣∣∫

R e
ixξf(x)dx

∣∣ ≤ ∫R |f(x)| dx.
Proof of (b): By the change of variables formula, if ξ ∈ R,

F [f(x− h)](ξ) =

∫
R
eixξf(x− h)dx = eixh

∫
R
eixξf(x)dx = eixhf̂(ξ).

F [eixhf(x)](ξ) =

∫
R
eix(ξ+h)f(x)dx = f̂(ξ + h).

Proof of (c): By the change of variables formula,

F [f(x/λ)](ξ) =

∫
R
eixξf(x/λ)dx = λ

∫
R
eixξλf(x)dx = λf̂(ξλ).

Proof of (d): Applying Fubini’s Theorem, Theorem 1.79, and part (b) give∫
R
eixξ

(∫
R
f(x− y)g(y)dy

)
dx =

∫
R

∫
R
eixξf(x− y)dxg(y)dy

(b)
=

∫
R
eiξyf̂(ξ)g(y)dy = f̂(ξ)

∫
R
eiξyg(y)dy = f̂(ξ)ĝ(ξ).

Proof of (e): Let h > 0. Using part (b) and the Dominated Convergence Theorem 3.10,

f̂(ξ + h)− f̂(ξ)

h

(b)
= F

[(
eixh − 1

h

)
f(x)

]
(ξ) → F [ixf(x)](ξ) , as h→ 0.

We now justify the use of the Dominated Convergence Theorem. By the Mean Value Theo-
rem,

∣∣Re(eixh − 1)/h
∣∣ = |(cos(xh)− 1)/h| ≤ |x| and

∣∣Im(eixh − 1)/h
∣∣ = |(sin(xh)− 1)/h| ≤

|x|, so
∣∣(eixh − 1)/h

∣∣ ≤ 2 |x| and
∣∣f(x)(eixh − 1)/h

∣∣ ≤ 2 |x| |f(x)|.
Proof of (f): Integrating by parts and then using that f is a Schwartz function

F [f ′(x)](ξ) = lim
N→∞

∫ N

−N

f ′(x)eixξdx = lim
N→∞

−
∫ N

−N

f(x)(iξ)eixξdx = −iξf̂(ξ).

Proof of (g): Apply Fubini’s Theorem 1.79. □

Proposition 9.4. Let f, g be Schwartz functions. Let ξ ∈ R.
(a) F [e−x2/2](ξ) =

√
2πe−ξ2/2.

(b) limξ→∞ f̂(ξ) = 0.

(c) f̂ is a Schwarz function.

Proof. Let ξ ∈ R. Completing the square, and then shifting the contour in the complex
plane, ∫

R
e−x2/2+ixξdx = e−ξ2/2

∫
R
e−(x−iξ)2/2dx = e−ξ2/2

∫
R
e−x2/2dx =

√
2πe−ξ2/2.
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Now, let ϕ(x) := e−x2/2/
√
2π for any x ∈ R and denote ϕε(x) := ε−1ϕ(x/ε) for any x ∈ R.

Note that
∫
R ϕε(x)dx = 1. From Proposition 9.3(a),(d) and Proposition 9.2(a),∣∣∣ϕ̂ε(ξ)f̂(ξ)− f̂(ξ)

∣∣∣ = ∣∣∣ϕ̂ε ∗ f(ξ)− f̂(ξ)
∣∣∣ ≤ ∫

R
|ϕε ∗ f(x)− f(x)| dx→ 0,

as ε → 0. Combining this statement with Proposition 9.3(c) and part (a) of the current

Proposition, e−ε2ξ2/2f̂(ξ) converges to f̂(ξ) uniformly over all ξ ∈ R, as ε→ 0. Since f̂ itself

is bounded by Proposition 9.3(a), e−ε2ξ2/2f̂(ξ) vanishes at ξ = ∞, for every ε > 0. So, the

uniform convergence implies that f̂(ξ) also vanishes as ξ → ∞, proving (b).

To prove (c), note that repeated application of Proposition 9.3 shows that f̂ is k times
differentiable for any k ≥ 1, since f is a Schwartz function. And part (b) of the current
Proposition says that f (k) vanishes at infinity for any k ≥ 1, so repeated application of

Proposition 9.3(f) shows that f̂ is a Schwartz function. □

Exercise 9.5. Give an alternate proof of the fact F [e−x2/2](ξ) =
√
2πe−ξ2/2 using the fol-

lowing strategy:

• Let g(ξ) := (2π)−1/2F [e−x2/2](ξ). Show that g′(ξ) = −ξg(ξ) for all ξ ∈ R.
• Deduce that (d/dξ)(g(ξ)eξ

2/2) = 0.

• Finally, conclude that g(ξ) = e−ξ2/2.

Theorem 9.6 (Fourier Inversion). Let f : R → R be a Schwartz function. Then

f(x) =
1

2π

∫
R
e−ixξf̂(ξ)dξ, ∀x ∈ R.

Proof. let ϕ(x) := e−x2/2/
√
2π for any x ∈ R and denote ϕε(x) := ε−1ϕ(x/ε) for any x ∈ R.

Note that
∫
R ϕε(x)dx = 1. By Proposition 9.3(c) and Proposition 9.4(a), F [ϕ](ξ) = e−ξ2/2,

F [ϕε](ξ) = e−ε2ξ2/2, and F(F(ϕε)) = 2πϕε. So, using Theorem 9.3(g), we get

2π

∫
R
f(x)ϕε(x)dx =

∫
R
f̂(ξ)e−ε2ξ2/2dξ. (∗)

Using this equality for f(x+y), applying Theorem 9.3(b), and using ϕε(−y) = ϕε(y) ∀ y ∈ R,
1

2π

∫
R
f̂(ξ)e−ixξe−ε2ξ2/2dξ

(∗)
=

∫
R
f(x+ y)ϕε(y)dy =

∫
R
f(x− y)ϕε(y)dy = (ϕε ∗ f)(x).

As ε→ 0, the left side converges to 1
2π

∫
R f̂(ξ)e

ixξdξ by the Dominated Convergence Theorem
3.10. And the right side tends to f uniformly in x by Proposition 9.2(d). So f(x) =
1
2π

∫
f̂(ξ)e−ixξdξ almost everywhere in x ∈ R, hence everywhere since f is Schwartz. □

Lemma 9.7 (Stirling’s Formula). Let n ∈ N. Then n! ∼
√
2πnnne−n. That is,

lim
n→∞

n!√
2πnnne−n

= 1.

Proof. We prove the weaker estimate that ∃ c ∈ R such that

n! = (1 +O(1/n))e1−c
√
nnne−n. (∗)
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Note that log(n!) =
∑n

m=1 logm. We use integral comparison for this sum. On the interval
[m,m+1] the function x 7→ log x has second derivative O(1/m2). So, Taylor expansion (i.e.
the trapezoid rule) gives∫ m+1

m

log xdx =
1

2
log(m+ 1) +

1

2
logm+O(1/m2).∫ n

1

log xdx =
n−1∑
m=1

∫ m+1

m

log xdx =
n−1∑
m=1

logm+
1

2
log n+ c+O(1/n).

Since
∫ n

1
log xdx = n(log(n)− 1) + 1, log(n!) =

∑n
m=1 logm, exponentiating proves (∗). □

Proposition 9.8 (Differentiating under the Integral Sign). Let f : R × Rn → R.
Suppose

• For all θ ∈ R,
∫
Rn |f(θ, x)| dx <∞.

• For almost all θ ∈ R, the derivative ∂f(θ, x)/∂θ exists for all x ∈ Rn.
• There is a function g : Rn → [0,∞) with

∫
Rn |g(x)| dx <∞ and |∂f(θ, x)/∂θ| ≤ g(x)

for all θ ∈ R, x ∈ Rn.

Then for all θ ∈ R,
∂

∂θ

∫
Rn

f(θ, x)dx =

∫
Rn

∂

∂θ
f(θ, x)dx.

Proof. Let h(θ, x) := ∂
∂θ
f(θ, x) and let h0(θ, x) :=

∫ θ

0
h(t, x)dt for any θ ∈ R, x ∈ Rn. By

assumption,
∫
Rn |h(θ, x)| dx < ∞ for any θ ∈ R, so that

∫ θ

0

∫
Rn |h(t, x)| dxdt < ∞ for any

θ ∈ R. By Fubini’s Theorem 1.79,∫ θ

0

∫
Rn

h(t, x)dxdt =

∫
Rn

∫ θ

0

h(t, x)dtdx =

∫
Rn

h0(θ, x)dx <∞.

Taking derivatives in θ of both sides and applying Lebesgue’s Fundamental Theorem of
Calculus, Theorem 1.42 (twice) concludes the proof. □

10. Appendix: Convergence in Distribution, Characteristic Functions

Definition 10.1 (Vague Convergence of Measures). Let µ, µ1, µ2, . . . be a sequence of
finite measures on R (i.e. µ(R), µn(R) <∞ for all n ≥ 1). We say that µ1, µ2, . . . converges
vaguely (or converges weakly, or converges in the weak∗ topology) to µ if, for any
continuous compactly supported function g : R → R,

lim
n→∞

∫
R
g(x)dµn(x) =

∫
R
g(x)dµ(x).

In functional analysis, there is a subtle but important distinction between weak and weak∗

convergence, though this difference of terminology seems to be ignored in the probability
literature.

As we will show below, convergence in distribution of random variables X1, X2, . . . to a
random variable X is equivalent to µX1 , µX2 , . . . converging vaguely to µX .

Proposition 10.2. Let X,X1, X2, . . . be random variables with values in R. Then the fol-
lowing are equivalent

• X1, X2, . . . converges in distribution to X.
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• µX1 , µX2 , . . . converges vaguely to µX .

Proof. Assume thatX1, X2, . . . converges in distribution toX. Let g : R → R be a continuous
compactly supported function. Then g is uniformly continuous. So, if ε > 0, there exist t1 <
· · · < tm and c1, . . . , cm ∈ R such that gε(t) :=

∑m−1
i=1 ci1(ti,ti+1](t) satisfies |gε(t)− g(t)| < ε

for all t ∈ R. Since FX : R → [0, 1] is monotone increasing and bounded, any point of
discontinuity of FX is a jump discontinuity. So, FX has at most a countable set of points of
discontinuity. Therefore, t1 < · · · < tm can be chosen to all be points of continuity of FX .
By the definition of the expected value,∣∣∣∣∣Eg(X)−

m−1∑
i=1

ci

(
FX(ti+1)− FX(ti)

)∣∣∣∣∣ = |Eg(X)− Egε(X)| ≤ E |g(X)− gε(X)| ≤ ε.

The same holds replacing X with any of X1, X2, . . .. So, applying the triangle inequality,

lim sup
n→∞

|Eg(Xn)− Eg(X)|

≤ lim sup
n→∞

|Eg(Xn)− Egε(Xn)|+ |Egε(Xn)− Egε(X)|+ |Egε(X)− Eg(X)|

≤ 2ε+ lim sup
n→∞

m−1∑
i=1

|ci| |FXn(ti+1)− FX(ti+1)− [FXn(ti)− FX(ti)]| = 2ε.

Since ε > 0 is arbitrary limn→∞Eg(Xn) = Eg(X) as desired.
Now, suppose for any continuous, compactly supported g : R → R, limn→∞Eg(Xn) =

Eg(X). Let t ∈ R be a point of continuity of FX . Then, for any ε > 0, there exists δ > 0
such that if |s− t| < 2δ, then |FX(s)− FX(t)| < ε. By continuity of the probability law,
let m > 0 such that P(|X| > m) < ε. By choice of δ, ε we have P(|X − t| < δ) < ε. Let
g : R → [0, 1] so that g = 0 on (−∞,−2m], g = 1 on (−m, t − δ], g = 0 on (t,∞) and g is
linear otherwise. Then

Eg(X) = Eg(X)(1−2m<X≤−m + 1−m<X≤t−δ + 1t−δ<X≤t)

= O(ε) + FX(t− δ) +O(ε) = FX(t) +O(ε).

Since limn→∞ Eg(Xn) = Eg(X), there exists n0 = n0(ε) > 0 such that, for all n > n0,
Eg(Xn) = FX(t) +O(ε). By the definition of g,

P(Xn ≤ t) ≥ Eg(Xn) ≥ FX(t)−O(ε), ∀n > n0(ε).

Repeating the above with g where g = 1 on (t+ δ,m] and g = 0 on (−∞, t] ∪ [2m,∞) gives

P(Xn > t) ≥ 1− FX(t)−O(ε), ∀n > n0(ε).

Combining these inequalities gives

FXn(t) = FX(t) +O(ε), ∀n > n0(ε).

Letting ε→ 0+ concludes the proof. □

Lemma 10.3. Let µ1, µ2, . . . be a sequence of probability measures on R. Then any subse-
quential limit of the sequence (with respect to vague convergence) is a probability measure if
and only if µ1, µ2, . . . is tight: ∀ ε > 0, ∃ m = m(ε) > 0 such that

lim sup
n→∞

(1− µn([−m,m])) ≤ ε.
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Exercise 10.4. Let X,X1, X2, . . . and let Y, Y1, Y2, . . . be random variables with values in
R.

(i) Assume that X is constant almost surely. Show that X1, X2, . . . converges to X in
distribution if and only if X1, X2, . . . converges to X in probability.

(ii) Prove Lemma 10.3.
(iii) Suppose that X1, X2, . . . converges in distribution to X. Show there exist random

variables Z,Z1, Z2, . . . : Ω → R such that µZ = µX , µZn = µXn for any n ≥ 1, and
such that Z1, Z2, . . . converges almost surely to Z. (Hint: use Exercise 4.20.)

(iv) (Slutsky’s Theorem) Suppose X1, X2, . . . converges in distribution to X and Y1, Y2, . . .
converges in probability to Y . Assume Y is constant almost surely. Show that
X1+Y1, X2+Y2, . . . converges in distribution toX+Y . Show also thatX1Y1, X2Y2, . . .
converges in distribution to XY . (Hint: either use (iii) or use (ii) to control error
terms.) What happens if Y is not constant almost surely?

(v) (Fatou’s lemma) If g : R → [0,∞) is continuous, and if X1, X2, . . . converges in dis-
tribution to X, show that lim infn→∞Eg(Xn) ≥ Eg(X).

(vi) (Bounded convergence) If g : R → C is continuous and bounded, and if X1, X2, . . .
converges in distribution to X, show that limn→∞Eg(Xn) = Eg(X).

(vii) (Dominated convergence) If X1, X2, . . . : Ω → R converges in distribution to X, and
if there exists a random variable Y : Ω → [0,∞) with |Xn| ≤ Y for all n ≥ 1 and
EY <∞, show that limn→∞EXn = EX.

Theorem 10.5 (Lévy Continuity Theorem, Special Case). Let X,X1, X2, . . . be real-
valued random variables (possibly on different sample spaces). The following are equivalent.

• For every t ∈ R, limn→∞ ϕXn(t) = ϕX(t).
• X1, X2, . . . converges in distribution to X.

Proof. The second condition implies the first by Exercise 10.4(vi).
Now, assume the first condition holds. Let g : R → R be a Schwartz function (for any

integers j, k ≥ 1, g is k times continuously differentiable and there exists cj,k ∈ R such that
|g(k)(x)| ≤ cjk

1+|x|j , ∀x ∈ R.) The Fourier Inversion Formula, Theorem 9.6, implies that

g(Xn) =
1

2π

∫
R
e−iXnyĝ(y)dy.

where ĝ(y) =
∫
R e

ixyg(x)dx for all y ∈ R. From the Fubini Theorem 1.79,

Eg(Xn) =
1

2π

∫
R
Ee−iXnyĝ(y)dy =

1

2π

∫
R
ϕXn(−y)ĝ(y)dy.

Similarly, Eg(X) = 1
2π

∫
R ϕX(−y)ĝ(y)dy. So, limn→∞Eg(Xn) = Eg(X) by the Dominated

Convergence Theorem, Theorem 3.10 (and Proposition 9.4(c)). Since any continuous, com-
pactly supported function g can be uniformly approximated by Schwartz functions in the
L∞ norm (by e.g. replacing g with g ∗ ϕε, where ϕε(x) = ε−1e−x2/(2ε2)/

√
2π, letting ε → 0+

and applying Proposition 9.2(d)), the identity limn→∞Eg(Xn) = Eg(X) holds for any con-
tinuous, compactly supported g : R → R. We then conclude by Proposition 10.2. □

Remark 10.6. In particular, if Y = X1 = X2 = · · · , the above Theorem implies that if
ϕX(t) = ϕY (t) for all t ∈ R, then X and Y have the same distribution.
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Exercise 10.7 (Lévy Continuity Theorem). Let X,X1, X2, . . . be real-valued random
variables (possibly on different sample spaces). Assume that, ∀ t ∈ R, ϕ(t) := limn→∞ ϕXn(t)
exists. Then the following are equivalent.

(i) ϕ is continuous at 0.
(ii) µX1 , µX2 , . . . is tight. (∀ ε > 0, ∃ m = m(ε) > 0 such that lim supn→∞(1 −

µXn([−m,m])) ≤ ε.)
(iii) There exists a random variable X such that ϕX = ϕ.
(iv) X1, X2, . . . converges in distribution to X.

(Hint: Use Lemma 10.3 to get from (ii) to other conditions.)

11. Appendix: Moment Generating Functions

Exercise 11.1. Unfortunately, there exist random variables X, Y such that EXn = EY n

for all n = 1, 2, 3, . . ., but such that X, Y do not have the same CDF. First, explain why this
does not contradict the Lévy Continuity Theorem, Weak Form. Now, let −1 < a < 1, and
define a density

fa(x) :=

{
1

x
√
2π
e−

(log x)2

2 (1 + a sin(2π log x)) , if x > 0

0 , otherwise.

Suppose Xa has density fa. If −1 < a, b < 1, show that EXn
a = EXn

b for all n = 1, 2, 3, . . ..
(Hint: write out the integrals, and make a change of variables s = log(x)− n.)

Theorem 11.2 (Inversion of Moment Generating Function). Let X, Y be random
variables. Denote MX(t) := EetX for any t ∈ R. Suppose MX(t) =MY (t) for all t ∈ (−ε, ε).
Then X and Y have the same distribution.

Proof. From (the proof of) Lemma 3.8 with µ = P, h = 1, k = 1, t(x) = x, MX(t) is
complex-differentiable in a neighborhood of the origin. From a well-known theorem from
complex analysis, MX(z) is then equal to its power series for all z ∈ C with |z| < ε. That
is, its power series is absolutely convergence for all |z| < ε, and

MX(z) =
∞∑
k=0

(d/dt)k|t=0MX(t)

k!
zk, ∀ |z| < ε.

By Lemma 3.8 again, (d/dt)k|t=0MX(t) = EXk for all k ≥ 0. Since the series converges
absolutely, we have

lim
k→∞

EXk

k!
xk = 0, ∀ 0 < x < ε. (∗)

Fix 0 < r < s < ε. If k is an odd integer, then (k + 1)rk < εk+1 for sufficiently large k, and

for all 0 < x < r, |x|k ≤ 1 + |x|k+1, so multiplying these inequalities and taking expected
values gives

E |X|k rk

k!
≤ rk

k!
+

E |X|k+1 sk+1

(k + 1)!
.

That is, (∗) implies that

lim
k→∞

E |X|k

k!
xk = 0, ∀ 0 < x < ε. (∗∗)
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Let i :=
√
−1. Let x, t, h ∈ R. From the Taylor expansion of the exponential function,∣∣∣∣∣eitx(eihx −

n∑
k=0

(ihx)n

n!

)∣∣∣∣∣ =
∣∣∣∣∣eihx −

n∑
k=0

(ihx)k

k!

∣∣∣∣∣ ≤ |hx|n+1

(n+ 1)!
.

We denote ϕX(t) := EeitX . So, taking expected values of these same quantities with x = X,∣∣∣∣∣ϕX(t+ h)−
n∑

k=0

(i)kEeitXXk

k!

∣∣∣∣∣ ≤ |h|n+1 E |X|n+1

(n+ 1)!
, ∀ t ∈ R, ∀h ∈ (−ε, ε).

By (∗∗), the series then converges, so that

ϕX(t+ h) =
∞∑
k=0

ikEeitXXk

k!
hk, ∀ t ∈ R, ∀h ∈ (−ε, ε).

By Lemma 3.8, differentiating ϕX can occur under the expected value, so that

ϕX(t+ h) =
∞∑
k=0

ϕ
(k)
X (t)

k!
hk, ∀ t ∈ R, ∀h ∈ (−ε, ε). (∗ ∗ ∗)

Similarly,

ϕY (t+ h) =
∞∑
k=0

ϕ
(k)
Y (t)

k!
hk, ∀ t ∈ R, ∀h ∈ (−ε, ε). (‡)

Setting t = 0, using these equalities and our assumption, we see that for any k ≥ 0,

dk

dtk
|t=0ϕX(t) = ikEXk = ik

dk

dtk
|t=0Ee

tX = ik
dk

dtk
|t=0Ee

tY =
dk

dtk
|t=0Ee

itY .

Therefore, ϕX(t) = ϕY (t) for all t ∈ (−ε, ε) by (∗ ∗ ∗) and (‡), since each coefficient of their
power series also agrees. Consequently, ϕX(t) = ϕY (t) for all t ∈ (−2ε, 2ε) by (∗∗∗) and (‡).
Iterating this argument, ϕX(t) = ϕY (t) for all t ∈ R. We then conclude by Remark 10.6. □
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12. Appendix: Notation

Let n,m be a positive integers. Let A,B be sets contained in a universal set Ω.

N = {1, 2, . . .} denotes the set of natural numbers

Z = {. . . ,−2,−1, 0, 1, 2, . . .} denotes the set of integers

Q = {a/b : a, b,∈ Z, b ̸= 0} denotes the set of rational numbers

R denotes the set of real numbers

C = {a+ b
√
−1: a, b ∈ R} denotes the set of complex numbers

∈ means “is an element of.” For example, 2 ∈ R is read as “2 is an element of R.”
∀ means “for all”

∃ means “there exists”

Rn = {(x1, x2, . . . , xn) : xi ∈ R ∀ 1 ≤ i ≤ n}
f : A→ B means f is a function with domain A and range B. For example,

f : R2 → R means that f is a function with domain R2 and range R
∅ denotes the empty set

A ⊆ B means ∀ a ∈ A, we have a ∈ B, so A is contained in B

A∖B := {a ∈ A : a /∈ B}
Ac := Ω∖ A, the complement of A in Ω

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B

A∆B := (A∖B) ∪ (B ∖ A)

P denotes a probability law on Ω

Let n ≥ m ≥ 0 be integers. We define(
n

m

)
:=

n!

(n−m)!m!
=
n(n− 1) · · · (n−m+ 1)

m(m− 1) · · · (2)(1)
.

Let a1, . . . , an be real numbers. Let n be a positive integer.

n∑
i=1

ai = a1 + a2 + · · ·+ an−1 + an.

n∏
i=1

ai = a1 · a2 · · · an−1 · an.

min(a1, a2) denotes the minimum of a1 and a2.

max(a1, a2) denotes the maximum of a1 and a2.

The min of a set of nonnegative real numbers is the smallest element of that set. We also
define min(∅) := ∞.
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Let A ⊆ R.

supA denotes the supremum of A, i.e. the least upper bound of A.

inf A denotes the infimum of A, i.e. the greatest lower bound of A.

Let X : Ω → R be a random variable on a probability space (Ω,F , µ).

E(X) denotes the expected value of X

∥X∥p := (E |X|p)1/p, denotes the Lp-norm of X when 1 ≤ p <∞
∥X∥∞ := inf{c > 0: P(|X| ≤ c) = 1}, denotes the L∞-norm of X

var(X) = E(X − E(X))2, the variance of X

σX =
√

var(X), the standard deviation of X

Let A ⊆ Ω.

E(X|A) := E(X1A)/P(A) denotes the expected value of X conditioned on the event A.

1A : Ω → {0, 1}, denotes the indicator function of A, so that

1A(ω) =

{
1 , if ω ∈ A

0 , otherwise.

Let X be a random variable on a sample space Ω, so that X : Ω → R. Let P be a
probability law on Ω. Let x, t ∈ R.

FX(x) = P(X ≤ x) = P({ω ∈ Ω: X(ω) ≤ x})
the Cumulative Distibution Function of X.

MX(t) = EetX denotes the Moment Generating Function of X at t ∈ R

Let g, h : R → R. Let t ∈ R.

(g ∗ h)(t) =
∫ ∞

−∞
g(x)h(t− x)dx denotes the convolution of g and h at t ∈ R

Let n, k be a positive integers and let µ be a measure on Rn. Let t1, . . . , tk : Rn → R. Let
h : Rn → [0,∞] so that h is not identically zero. Let Θ ⊆ Rk and let w : Θ → Rk. For any
θ ∈ Θ define

a(w(θ)) := log

∫
Rn

h(x) exp
( k∑

i=1

wi(θ)ti(x)
)
dµ(x).
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We define a k-parameter exponential family to be a set of functions {fθ : θ ∈ Θ, a(w(θ)) <
∞}, where

fθ(x) := h(x) exp
( k∑

i=1

wi(θ)ti(x)− a(w(θ))
)
, ∀x ∈ Rn.

Let θ ∈ Θ

Pθ denotes probability law corresponding to fθ.

Eθ denotes expected value with respect to fθ.

USC Mathematics, Los Angeles, CA
Email address: stevenmheilman@gmail.com
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