541A Midterm 1 Solutions¹

1. Question 1

Let $\phi \colon \mathbf{R} \to \mathbf{R}$. We say that ϕ is **convex** if, for any $y \in \mathbf{R}$, there exists a constant a and there exists a function $L \colon \mathbf{R} \to \mathbf{R}$ defined by $L(x) = a(x - y) + \phi(y)$, $x \in \mathbf{R}$, such that $L(x) \le \phi(x)$ for all $x \in \mathbf{R}$.

Let $X: \Omega \to [-\infty, \infty]$ be a random variable. Let $\phi: \mathbf{R} \to \mathbf{R}$ be convex. Assume that $\mathbf{E}|X| < \infty$ and $\mathbf{E}|\phi(X)| < \infty$. Prove that

$$\phi(\mathbf{E}X) \leq \mathbf{E}\phi(X).$$

Solution. Choose $y := \mathbf{E}X$. Then there exists $a \in \mathbf{R}$ such that

$$a(x - \mathbf{E}X) + \phi(\mathbf{E}X) \le \phi(x), \quad \forall x \in \mathbf{R}$$

Taking expected values of both sides in x = X, we get

$$\phi(\mathbf{E}X) = \mathbf{E}[a(X - \mathbf{E}X) + \phi(\mathbf{E}X)] \le \mathbf{E}\phi(X).$$

2. Question 2

Let $\theta \in \mathbf{R}$. Let Y_1, Y_2, \ldots be random variables such that $\sqrt{n}(Y_n - \theta)$ converges in distribution to a mean zero Gaussian random variable with variance $\sigma^2 > 0$ as $n \to \infty$. Let $f : \mathbf{R} \to \mathbf{R}$. Assume that $f'(\theta)$ exists. Let Z_1, Z_2, \ldots be random variables that converge to zero in probability as $n \to \infty$. Assume that for any $n \ge 1$, we have

$$\sqrt{n}[f(Y_n) - f(\theta)] = f'(\theta)\sqrt{n}(Y_n - \theta) + Z_n. \tag{*}$$

- Prove that $\sqrt{n}(f(Y_n)-f(\theta))$ converges in distribution as $n\to\infty$ to a random variable W.
- What is the mean and variance of W? What PDF does W have?
- Prove or disprove the following statement: the variance of $\sqrt{n}(f(Y_n) f(\theta))$ converges to the variance of W as $n \to \infty$

Solution. Slutsky's Theorem (Proposition 2.36 in the notes) and (*) imply that $\sqrt{n}[f(Y_n) - f(\theta)]$ converges in distribution to a mean zero Gaussian with variance $\sigma^2(f'(\theta))^2$.

The variance of $\sqrt{n}(f(Y_n)-f(\theta))$ does not necessarily converge to that of W. For example, $f'(\theta)\sqrt{n}(Y_n-\theta)$ could have bounded variance as $n\to\infty$, but Z_1,Z_2,\ldots could have variance going to infinity as $n\to\infty$ (with Z_1,Z_2,\ldots independent of Y_1,Y_2,\ldots). (For example, suppose \mathbf{P} is uniform on (0,1) and $Z_n=n1_{[0,1/n]}-n1_{[1/n,2/n]}$. Then $\mathbf{E}Z_n=0$, $\mathbf{E}Z_n^2=2n$, so $\mathrm{var}(Z_n)=2n\to\infty$ as $n\to\infty$, while Z_1,Z_2,\ldots converges in probability to 0 as $n\to\infty$.)

3. Question 3

Let $n \geq 2$ be an integer. Let X_1, \ldots, X_n be a random sample from the Gaussian distribution with mean $\mu \in \mathbf{R}$ and variance $\sigma^2 > 0$. That is, X_1 has PDF $\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$, $\forall x \in \mathbf{R}$.

Let
$$\overline{X}_n := (X_1 + \dots + X_n)/n$$
, and let $S_n := \sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2}$.

¹February 21, 2023, © 2023 Steven Heilman, All Rights Reserved.

Show: $(n-1)S^2/\sigma^2$ is a chi-squared distributed random variable with n-1 degrees of freedom.

Hint: you can freely use the following fact:

$$nS_{n+1}^2 = (n-1)S_n^2 + \frac{n}{n+1}(X_{n+1} - \overline{X}_n)^2, \quad \forall n \ge 2.$$

You can also freely use that S_n is independent of \overline{X}_n .

Solution. We now prove the third item. Let $\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$ and let $S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$. In the case n=2, we have $S_2^2 = \frac{1}{4}(X_1 - X_2)^2 + \frac{1}{4}(X_2 - X_1)^2 = \frac{1}{2}(X_1 - X_2)^2$. From Example 1.108 in the notes $\frac{1}{\sqrt{2}}(X_1 - X_2)$ is a mean zero Gaussian random variable with variance 1. So, S_2^2 is a chi-squared distributed random variable by the definition of a chi-squared random variable with one degree of freedom. That is, the third item of this proposition holds when n=2. We now induct on n, using the hint.

From the first item, S_n is independent of \overline{X}_n . Also, X_{n+1} is independent of S_n by Proposition 1.61 in the notes, since S_n is a function of X_1, \ldots, X_n , the latter being independent of X_{n+1} . In summary, S_n is independent of $(X_{n+1} - \overline{X}_n)^2$. By the inductive hypothesis, $(n-1)S_n^2$ is a chi-squared distributed random variable with n-1 degrees of freedom. From Example 1.108 in the notes, $X_{n+1} - \overline{X}_n$ is a Gaussian random variable with mean zero and variance 1 + 1/n, so that $\sqrt{n/(n+1)}(X_{n+1} - \overline{X}_n)$ is a mean zero Gaussian with variance 1. The definition of a chi-squared random variable then implies that nS_{n+1} is a chi-squared random variable with n degrees of freedom, completing the inductive step.

4. Question 4

Let X_1, \ldots, X_n be i.i.d. random variables, so that X_1 has PDF $f_\theta \colon \mathbf{R} \to [0, \infty)$, where $\theta = (\theta_1, \theta_2) \in \mathbf{R}^2$ is an unknown parameter.

Let Y be a statistic (so that Y is a function of X_1, \ldots, X_n). In all cases below, as usual, you must **justify your answer**.

- (i) Suppose Y is sufficient for θ . Is it true that Y is sufficient for θ_1 ?
- (ii) Suppose Y is sufficient for θ_1 , and Y is sufficient for θ_2 . Is it true that Y is sufficient for θ ?
- (iii) Suppose Y is minimal sufficient for θ_1 , and Y is minimal sufficient for θ_2 . Is it true that Y is minimal sufficient for θ ?

Solution. Let $X = (X_1, ..., X_n)$. For (i), by assumption the PDF of X|Y = y does not depend on θ . In particular the PDF of X|Y = y does not depend on θ_1 . So, yes, Y is sufficient for θ_1 .

For (ii), by assumption the PDF of X|Y=y does not depend on θ_1 , and the PDF of X|Y=y does not depend on θ_2 . Therefore, the PDF of X|Y=y does not depend on θ . So, yes, Y is sufficient for θ .

For (iii), note that Y is sufficient for θ by part (ii). Now, by minimal sufficiency, if Z is sufficient for θ_1 , then Y is a function of Z. Now let W be sufficient for θ . We need to show that Y is a function of W. By part (i), W is sufficient for θ_1 , so Y is a function of W.

5. Question 5

Let X_1, \ldots, X_n be i.i.d. random variables, so that X_1 has PDF $f_\theta \colon \mathbf{R} \to [0, \infty)$, where $\theta \in \mathbf{R}$ is an unknown parameter.

Let Y be a statistic (so that Y is a function of X_1, \ldots, X_n). Answer the following questions. In all cases below, as usual, you must **justify your answer**.

- (i) Does a statistic Y always exist such that Y is sufficient for θ ?
- (ii) Does a statistic Y always exist such that Y is a minimal sufficient statistic?
- (iii) Does a statistic Y always exist such that Y is complete and ancillary for θ ?

Solution. For (i), note that the whole sample $Y = (X_1, \ldots, X_n)$ is always sufficient for θ . For (ii), yes this was a theorem in the notes.

For (iii), note that a constant function is both complete and ancillary.