
541A Midterm 1 Solutions1

1. Question 1

Let φ : R → R. We say that φ is convex if, for any y ∈ R, there exists a constant a
and there exists a function L : R→ R defined by L(x) = a(x− y) + φ(y), x ∈ R, such that
L(x) ≤ φ(x) for all x ∈ R.

Let X : Ω → [−∞,∞] be a random variable. Let φ : R → R be convex. Assume that
E |X| <∞ and E |φ(X)| <∞. Prove that

φ(EX) ≤ Eφ(X).

Solution. Choose y := EX. Then there exists a ∈ R such that

a(x− EX) + φ(EX) ≤ φ(x), ∀x ∈ R.

Taking expected values of both sides in x = X, we get

φ(EX) = E[a(X − EX) + φ(EX)] ≤ Eφ(X).

2. Question 2

Let θ ∈ R. Let Y1, Y2, . . . be random variables such that
√
n(Yn − θ) converges in dis-

tribution to a mean zero Gaussian random variable with variance σ2 > 0 as n → ∞. Let
f : R → R. Assume that f ′(θ) exists. Let Z1, Z2, . . . be random variables that converge to
zero in probability as n→∞. Assume that for any n ≥ 1, we have

√
n[f(Yn)− f(θ)] = f ′(θ)

√
n(Yn − θ) + Zn. (∗)

• Prove that
√
n(f(Yn)−f(θ)) converges in distribution as n→∞ to a random variable

W .
• What is the mean and variance of W? What PDF does W have?
• Prove or disprove the following statement: the variance of

√
n(f(Yn)−f(θ)) converges

to the variance of W as n→∞
Solution. Slutsky’s Theorem (Proposition 2.36 in the notes) and (∗) imply that

√
n[f(Yn)−

f(θ)] converges in distribution to a mean zero Gaussian with variance σ2(f ′(θ))2.
The variance of

√
n(f(Yn)−f(θ)) does not necessarily converge to that of W . For example,

f ′(θ)
√
n(Yn− θ) could have bounded variance as n→∞, but Z1, Z2, . . . could have variance

going to infinity as n → ∞ (with Z1, Z2, . . . independent of Y1, Y2, . . .). (For example,
suppose P is uniform on (0, 1) and Zn = n1[0,1/n]− n1[1/n,2/n]. Then EZn = 0, EZ2

n = 2n, so
var(Zn) = 2n→∞ as n→∞, while Z1, Z2, . . . converges in probability to 0 as n→∞.)

3. Question 3

Let n ≥ 2 be an integer. Let X1, . . . , Xn be a random sample from the Gaussian dis-

tribution with mean µ ∈ R and variance σ2 > 0. That is, X1 has PDF 1
σ
√
2π
e−

(x−µ)2

2σ2 , ∀
x ∈ R.

Let Xn := (X1 + · · ·+Xn)/n, and let Sn :=
√

1
n−1

∑n
i=1(Xi −Xn)2.
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Show: (n − 1)S2/σ2 is a chi-squared distributed random variable with n − 1 degrees of
freedom.

Hint: you can freely use the following fact:

nS2
n+1 = (n− 1)S2

n +
n

n+ 1
(Xn+1 −Xn)2, ∀n ≥ 2.

You can also freely use that Sn is independent of Xn.
Solution. We now prove the third item. Let Xn := 1

n

∑n
i=1Xi and let S2

n := 1
n−1

∑n
i=1(Xi−

Xn)2. In the case n = 2, we have S2
2 = 1

4
(X1 − X2)

2 + 1
4
(X2 − X1)

2 = 1
2
(X1 − X2)

2.

From Example 1.108 in the notes 1√
2
(X1 − X2) is a mean zero Gaussian random variable

with variance 1. So, S2
2 is a chi-squared distributed random variable by the definition of

a chi-squared random variable with one degree of freedom. That is, the third item of this
proposition holds when n = 2. We now induct on n, using the hint.

From the first item, Sn is independent of Xn. Also, Xn+1 is independent of Sn by Propo-
sition 1.61 in the notes, since Sn is a function of X1, . . . , Xn, the latter being independent
of Xn+1. In summary, Sn is independent of (Xn+1 − Xn)2. By the inductive hypothesis,
(n− 1)S2

n is a chi-squared distributed random variable with n− 1 degrees of freedom. From
Example 1.108 in the notes, Xn+1 −Xn is a Gaussian random variable with mean zero and
variance 1 + 1/n, so that

√
n/(n+ 1)(Xn+1 − Xn) is a mean zero Gaussian with variance

1. The definition of a chi-squared random variable then implies that nSn+1 is a chi-squared
random variable with n degrees of freedom, completing the inductive step.

4. Question 4

Let X1, . . . , Xn be i.i.d. random variables, so that X1 has PDF fθ : R → [0,∞), where
θ = (θ1, θ2) ∈ R2 is an unknown parameter.

Let Y be a statistic (so that Y is a function of X1, . . . , Xn). In all cases below, as usual,
you must justify your answer.

(i) Suppose Y is sufficient for θ. Is it true that Y is sufficient for θ1?
(ii) Suppose Y is sufficient for θ1, and Y is sufficient for θ2. Is it true that Y is sufficient

for θ?
(iii) Suppose Y is minimal sufficient for θ1, and Y is minimal sufficient for θ2. Is it true

that Y is minimal sufficient for θ?

Solution. Let X = (X1, . . . , Xn). For (i), by assumption the PDF of X|Y = y does not
depend on θ. In particular the PDF of X|Y = y does not depend on θ1. So, yes, Y is
sufficient for θ1.

For (ii), by assumption the PDF of X|Y = y does not depend on θ1, and the PDF of
X|Y = y does not depend on θ2. Therefore, the PDF of X|Y = y does not depend on θ. So,
yes, Y is sufficient for θ.

For (iii), note that Y is sufficient for θ by part (ii). Now, by minimal sufficiency, if Z is
sufficient for θ1, then Y is a function of Z. Now let W be sufficient for θ. We need to show
that Y is a function of W . By part (i), W is sufficient for θ1, so Y is a function of W .

5. Question 5

Let X1, . . . , Xn be i.i.d. random variables, so that X1 has PDF fθ : R → [0,∞), where
θ ∈ R is an unknown parameter.
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Let Y be a statistic (so that Y is a function of X1, . . . , Xn). Answer the following questions.
In all cases below, as usual, you must justify your answer.

(i) Does a statistic Y always exist such that Y is sufficient for θ?
(ii) Does a statistic Y always exist such that Y is a minimal sufficient statistic?

(iii) Does a statistic Y always exist such that Y is complete and ancillary for θ?

Solution. For (i), note that the whole sample Y = (X1, . . . , Xn) is always sufficient for θ.
For (ii), yes this was a theorem in the notes.
For (iii), note that a constant function is both complete and ancillary.
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