Math 541a, Spring 2022, USC		Instructor: Steven Heilma
Name:	USC ID:	Date:
Signature: (By signing here, I certify that I		

Exam 2

This exam contains 7 pages (including this cover page) and 4 problems. Enter all requested information on the top of this page.

You may *not* use your books, notes, or any calculator on this exam.

You are required to show your work on each problem on this exam. The following rules apply:

- You have 50 minutes to complete the exam, starting at the beginning of class.
- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit.
- If you need more space, use the back of the pages; clearly indicate when you have done this. Scratch paper appears at the end of the document.

Do not write in the table to the right. Good luck!^a

Problem	Points	Score
1	5	
2	10	
3	10	
4	15	
Total:	40	

 $[^]a\mathrm{April}$ 5, 2022, © 2021 Steven Heilman, All Rights Reserved.

Reference sheet

Below are some definitions that may be relevant.

We say that a sequence of random variables $X_1, X_2, \ldots : \Omega \to \mathbf{R}$ converges in probability to a random variable $X : \Omega \to \mathbf{R}$ if: for all $\varepsilon > 0$

$$\lim_{n \to \infty} \mathbf{P}(|X_n - X| > \varepsilon) = 0.$$

We say that a sequence of real-valued random variables X_1, X_2, \ldots converges in distribution to a real-valued random variable X if, for any $t \in \mathbf{R}$ such that $\mathbf{P}(X \leq t)$ is continuous at t,

$$\lim_{n \to \infty} \mathbf{P}(X_n \le t) = \mathbf{P}(X \le t).$$

We say that a sequence of random variables $X_1, X_2, \ldots : \Omega \to \mathbf{R}$ converges almost surely to a random variable $X : \Omega \to \mathbf{R}$ if

$$\mathbf{P}(\lim_{n\to\infty} X_n = X) = 1.$$

Suppose $X = (X_1, ..., X_n)$ is a random sample of size n from a distribution f where $f \in \{f_\theta : \theta \in \Theta\}$ is a family of densities (such as an exponential family). Let $t : \mathbf{R}^n \to \mathbf{R}^k$, so that $Y := t(X_1, ..., X_n)$ is a statistic.

We say that Y is a **sufficient statistic** for θ if, for every $y \in \mathbf{R}^k$ and for every $\theta \in \Theta$, the conditional distribution of (X_1, \ldots, X_n) given Y = y (with respect to probabilities given by f_{θ}) does not depend on θ .

We say Y is **minimal sufficient** for θ if Y is sufficient for θ and, for every statistic $Z \colon \Omega \to \mathbb{R}^m$ that is sufficient for θ , there exists a function $r \colon \mathbb{R}^m \to \mathbb{R}^k$ such that Y = r(Z).

We say Y is **complete** for $\{f_{\theta} \colon \theta \in \Theta\}$ if the following holds:

For any $f: \mathbf{R}^m \to \mathbf{R}$ such that $\mathbf{E}_{\theta} f(Y) = 0 \quad \forall \theta \in \Theta$, it holds that f(Y) = 0.

We say Y is **ancillary** for θ if the distribution of Y does not depend on θ .

Let $X, Y, Z: \Omega \to \mathbf{R}$ be discrete or continuous random variables. Let A be the range of Y. Define $g: A \to \mathbf{R}$ by $g(y) := \mathbf{E}(X|Y=y)$, for any $y \in A$. We then define the **conditional expectation** of X given Y, denoted $\mathbf{E}(X|Y)$, to be the random variable g(Y).

Let $\{f_{\theta} : \theta \in \Theta\}$ be a family of multivariable probability densities or probability mass functions. Assume $\Theta \subseteq \mathbf{R}$. Let X be a random vector with distribution f_{θ} . Define the **Fisher information** of the family to be

$$I(\theta) = I_X(\theta) := \mathbf{E}_{\theta} (\frac{d}{d\theta} \log f_{\theta}(X))^2, \quad \forall \theta \in \Theta,$$

if this quantity exists and is finite.

1. (5 points) Let Y, Z be a statistics, and suppose Z is sufficient for $\{f_{\theta} \colon \theta \in \Theta\}$. Show that $W := \mathbf{E}_{\theta}(Y|Z)$ does not depend on θ . That is, there is a function $t \colon \mathbf{R}^n \to \mathbf{R}$ that does not depend on θ such that W = t(X), where X is the random sample. (You may assume that X, Y, Z are all discrete.)

2. (10 points) Let X,Y be random variables such that (X,Y) is uniformly distributed in the region

$$\{(x,y) \in \mathbf{R}^2 : y \ge 0, x + y \le 1, -x + y \le 1\}.$$

Compute

$$\mathbf{E}(X|Y)$$
.

3. (10 points)

- Let $X := (X_1, \ldots, X_n)$ be a random sample of size n from a Gaussian distribution with unknown mean $\mu \in \mathbf{R}$ and unknown variance $\sigma^2 > 0$. (That is, X_1, \ldots, X_n are i.i.d. and X_1 is a Gaussian with mean μ and variance σ^2 .)

 Computer the Fisher information $I_X(\sigma)$ for any $\sigma > 0$. (Consider $\mu \in \mathbf{R}$ to be fixed.)
- Give an example of a random variable Z whose distribution depends on a parameter $\theta \in \Theta$ such that $I_Z(\theta)$ does not exist for some $\theta \in \Theta$.

4. (15 points) Let X_1, \ldots, X_n be a random sample from the Bernoulli distribution with unknown parameter $0 , so that, for all <math>1 \le i \le n$,

$$P(X_i = 1) = p,$$
 $P(X_i = 0) = 1 - p.$

- Find a complete sufficient statistic for p. (As usual, justify your answer.)
- Find the UMVU for p^3 . (You may assume $n \geq 3$.) (Hint: $X_1X_2X_3$ is an estimator for p^3 .)

(Scratch paper)