541A Midterm 2 Solutiond]

1. QUESTION 1

Let X,Y be random variables such that (X,Y") is uniformly distributed in the region
{(z,y) e R*: 2* + > < 1}.

Compute the following quantities:

e E(X|Y).
e E[E(X]Y)].

Solution. If y € [—1, 1], then
< =1
frly) = /_OO fxy(z,y)de = /x:—\/@ ;daz = 1— 2.
Otherwise, fy(y) = 0. So, if 2% +y? <1

EX|Y =y) = /_OO zfxy(z,y)de = /_OO x%(xy’)y)dx

e kyl/—ﬁxx_ L1
_/gg_\/m(g/ﬁ) o = (=)’ -~ w-1)5— =0

And E(X|Y = y) is undefined when y ¢ [—1, 1], since fy(y) =0 when y ¢ [—1,1].
Then, by definition of E(X|Y"), we have

E(X|Y) = 0.
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2. (QUESTION 2

Let X := (Xy,...,X,) be a random sample of size n from a binomial distribution with
parameters n and p. Here n is a positive (known) integer and 0 < p < 1 is unknown. (That
is, X1,...,X, are i.i.d. and X; is a binomial random variable with parameters n and p, so

that P(X; = k) = (})p"(1 — p)"~* for all integers 0 < k < n.)
You can freely use that EX; = np and VarX; = np(1 — p).

e Computer the Fisher information Ix(p) for any 0 < p < 1.
(Consider n to be fixed.)

e Let Z be an unbiased estimator of p (assume that Z is a function of Xj,..., X,,).
State the Cramér-Rao inequality for Z.
e Let TV be an unbiased estimator of p* (assume that W is a function of X1, ..., X,,).

State the Cramér-Rao inequality for W.

Solution. Using that the information of independent random variables is the sum of the
informations, using the alternate definition of Fisher information using the variance, and
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using that the variance is unchanged by adding a constant inside the variance,

Ie(p) = nlx () = Ve, (- og (( ;1)10)“(1 -2 )

_ nVarp(dip [log ( ) + Xilogp + (n — X1 log(1 — p)|)

_ nVarp<dip [Xl logp + (n — X;)log(1 — p)]>

- nVarp<Z—17 - (- Xy)) = nVarp([% + %p}xl)
[1 + 2Vaprl —n| i )]27749(1 -p)= p<1ni )

The Cramér-Rao inequality says, if g(p) := E,Z, then

vz IO
P T Ix(p)
If g(p) = p, then ¢'(p) = 1, so we get
1 p(1—p)
Var,(Z) > =
p( ) - [X(p) n2
If g(p) = p?, then ¢'(p) = 3p?, so we get
9p* (1 —p)
Var,(Z) > — gt Y/
D2

3. QUESTION 3

Let X be a binomial random variable with parameters n and p. Here n is a positive
(known) integer and 0 < p < 1 is unknown. That is, P(X = k) = (})p*(1 — p)"* for all
integers 0 < k < n.)

Prove that no UMVU exists for the quantity 1/p. (The sample size in this case is one.)

Solution. No unbiased estimate exists for the quantity 1/p. Write Y = ¢(X;). Then
Eot(X,) = Z?:o (?)t(])pj(l —p)" I and this is a polynomial in p. In particular, this quantity
is bounded as p — 0. However, the quantity 1/p is unbounded as p — 0. Therefore, there
is no choice of ¢ such that > 7, (T;)t(])p](l —p)"7 =1/pfor all 0 < p < 1. That is, no
unbiased estimator exists for 1/p. In particular, no UMVU exists for 1/p.

4. QUESTION 4

Let n > 2. Let Xy,...,X, be a random sample from the Gaussian distribution with
unknown mean g € R and unknown variance o2 > 0.

Find the UMVU for p3.

(When you find the UMVU, denote it by Y,,, and you must assume that Y,, is a function
of X17 .. 7Xn)

(In this question you can freely cite facts from the homework.)
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(You can freely use the following computations: EYi = p?® + 0%/n, and EYi = ud +
3uc?/n), and ES? = 02.)

(Recall that X, =13"  X; and S, := \/ﬁ S (X = Xa)2)
Solution. Using the provided computations, consider
Y, = 72 —3X,,8%/n.
Recalling that X,, and S, are independent, we have
EY, = EYi —3EX,ES?/n = pi* 4+ 3uc?/n — 3uc?/n = 1.

From the Factorization Theorem and an exercise from the homework, (X, S?) is complete
sufficient for (u,0?). So Y, is UMVU for p? (with fixed o) , since Y,, is a function of the
complete sufficient statistic Z = (X, S?). So, the Lehmann-Scheffé Theorem implies that
Y, = E(Y,|Z) is UMVU for p? (since Y, is unbiased for 3.
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