
541A Final Solutions1

1. Question 1

Let X1, X2, . . . be real-valued random variables that converge in probability to a constant
a ∈ R.

Let h : R→ R be a continuous function. (For any x ∈ R, for any ε > 0, there exists δ > 0
such that, if y ∈ R satisfies |x− y| < δ, then |f(x)− f(y)| < ε.)

Show that h(X1), h(X2), . . . converges in probability to h(a).
Solution. Let ε > 0. We are required to show that

lim
n→∞

P(|h(Xn)− h(a)| ≤ ε) = 1. (∗∗)

Since h is continuous, there exists δ > 0 such that, if b ∈ R satisfies |a− b| ≤ δ, then
|h(b)− h(a)| < ε/2

Since X1, X2, . . . converges in probability,

lim
n→∞

P(|Xn − a| ≤ δ) = 1. (∗)

If |Xn − a| ≤ δ, the continuity of h says that |h(Xn)− h(a)| < ε/2. That is,

P(|Xn − a| ≤ δ) ≤ P(|h(Xn)− h(a)| ≤ ε/2).

So, (∗) implies (∗∗), as desired.

2. Question 2

Let X1, . . . , Xn be i.i.d. random variables, so that X1 has PDF fθ : R → [0,∞), where
θ = (θ1, θ2) ∈ R2 is an unknown parameter.

Let Y be a statistic (so that Y is a function of X1, . . . , Xn). In all cases below, as usual,
you must justify your answer.

(i) Suppose Y is sufficient for θ. Is it true that Y is sufficient for θ1?
(ii) Suppose Y is sufficient for θ1, and Y is sufficient for θ2. Is it true that Y is sufficient

for θ?
(iii) Suppose Y is minimal sufficient for θ1, and Y is minimal sufficient for θ2. Is it true

that Y is minimal sufficient for θ?

Solution. Let X = (X1, . . . , Xn). For (i), by assumption the PDF of X|Y = y does not
depend on θ. In particular the PDF of X|Y = y does not depend on θ1. So, yes, Y is
sufficient for θ1.

For (ii), by assumption the PDF of X|Y = y does not depend on θ1, and the PDF of
X|Y = y does not depend on θ2. Therefore, the PDF of X|Y = y does not depend on θ. So,
yes, Y is sufficient for θ.

For (iii), note that Y is sufficient for θ by part (ii). Now, by minimal sufficiency, if Z is
sufficient for θ1, then Y is a function of Z. Now let W be sufficient for θ. We need to show
that Y is a function of W . By part (i), W is sufficient for θ1, so Y is a function of W .
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3. Question 3

Find real-valued random variables X, Y, X1, X2, . . . and Y1, Y2, . . . such that the following
holds.

• X1, X2, . . . converges in distribution to X.
• Y1, Y2, . . . converges in distribution to Y .
• X1 + Y1, X2 + Y2, . . . does NOT converges in distribution to any random variable.

Solution. Let X be a standard Gaussian random variable. Let X1, X2, . . . be the sequence
X,X,X, . . .. Then X1, X2, . . . converges in distribution to X. Let Y1, Y2, . . . be the sequence
X,−X,X,−X, . . .. Then Y1, Y2, . . . converges in distribution to X =: Y (since −X and X
have the same distribution). However,

X1 + Y1, X2 + Y2, . . . = 2X, 0, 2X, 0, 2X, 0, . . . .

So, X1 +Y1, X2 +Y2, . . . does not converge in distribution, since its odd subsequence is equal
in distribution to two times a fixed Gaussian, whereas its even subsequence is equal to zero.

4. Question 4

Let X1, . . . , Xn be i.i.d. random variables, so that X1 has PDF fθ : R → [0,∞), where
θ > 0 is an unknown parameter and

fθ(x) :=
θ2

2
e−θ

2|x|, ∀x ∈ R.

• Find the MLE Yn of θ. [Warning: do NOT find the MLE of θ2.]
• Compute the Fisher information IX1(θ).

(You can freely use without proof that EX2
1 = 2θ−4 and E |X1| = θ−2.)

• Find a random variable Z such that
√
n(Yn− θ) converges in distribution to Z. (You

can freely use without proof that Y1, Y2, . . . converges in probability to θ.)

Solution. We have

log
n∏
i=1

fθ(xi) = log
(
θ2n2−ne−θ

2
∑n

i=1|xi|
)

= 2n log θ − n log 2− θ2
n∑
i=1

|xi| .

Differentiating in θ gives

d

dθ
log

n∏
i=1

fθ(xi) =
2n

θ
− 2θ

n∑
i=1

|xi| . (∗)

When θ > 0 is small, the first term is large and positive and the second term is close to
zero. So, this derivative is positive when θ > 0 is small. And both terms are decreasing in
θ, with the first term going to zero as θ → ∞ and the second term going to −∞ (unless
x1 = · · · = xn = 0.) So, the first derivative test implies that the log likelihood increases and
then decreases, and it has a unique maximum when

2n = 2θ2
n∑
i=1

|xi| .

That is, (using also θ > 0)

θ =

√
n∑n

i=1 |xi|
.
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In the case x1 = · · · = xn = 0, the MLE does not exist, since fθ(x) = θ2n2−n in that case.
Squaring (∗) with n = 1 and taking the variance,

IX1(θ) = Varθ(2/θ − 2θ |X1|) = 4θ2Varθ(X1) = 4θ2[EX2
1 − (E |X1|)2] = 4θ2[θ−4] = 4θ−2.

Here we used

EX2
1 =

∫
R

x2
θ2

2
e−θ

2|x|dx =

∫ ∞
0

x2θ2e−θ
2xdx =

∫ ∞
0

x2(−1)
d

dx
e−θ

2xdx =

∫ ∞
0

2xe−θ
2xdx

=
−1

θ2

∫ ∞
0

2x
d

dx
e−θ

2xdx =
1

θ2
2

∫ ∞
0

e−θ
2xdx =

2

θ4
.

E |X1| =
∫
R

|x| θ
2

2
e−θ

2|x|dx =

∫ ∞
0

xθ2e−θ
2xdx =

∫ ∞
0

x(−1)
d

dx
e−θ

2xdx

=

∫ ∞
0

e−θ
2xdx =

1

θ2
.

Finally, we would like to apply the Theorem about the limiting distribution of the MLE.
Let us verify a few assumptions. Note that {x ∈ R : fθ(x) > 0} = R, and this set does not
depend on θ. Also, the joint PDF is twice continuously differentiable in θ > 0. Moreover,
for any θ > 0, if we choose ε := θ/2, then

Eθ sup
θ′∈[θ−ε,θ+ε]

∣∣∣∣ d2

d[θ′]2
log fθ′(X1)

∣∣∣∣ = Eθ sup
θ′∈[θ/2,3θ/2]

∣∣−2[θ′]−2 − 2 |X1|
∣∣

= Eθ max
(
|8θ + 2 |X1|| , |8θ/9 + 2 |X1||

)
≤ Eθ |8θ + 2 |X1|| ≤ 8θ + 2Eθ |X1| = 8θ + 2θ−2 <∞.

So, Theorem 6.53 from the notes applies. We conclude that
√
n(Yn − θ)

converges in distribution to a mean zero Gaussian random variable with variance

1

IX1(θ)
=
θ2

4
.

Solution 2. The last part of the problem can also be proven using the Delta Method. The
random variable |X1| satisfies E |X1| = θ−2 and EX2

1 = 2θ−4 with Var(X1) = θ−4. The CLT
then says that ∑n

i=1 |Xi| − nθ−2√
nθ−2

converges in distribution to a mean zero variance one Gaussian as n→∞. That is,

√
n
( 1

n

n∑
i=1

|Xi| − θ−2
)

converges in distribution to a mean zero variance θ−4 Gaussian as n → ∞. So, using
f(t) := t−1/2 with the Delta Method,

√
n

(
f

(
1

n

n∑
i=1

|Xi|

)
− f(θ−2)

)
=
√
n
(√ n∑n

i=1 |Xi|
− θ
)
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converges in distribution to a mean zero Gaussian with variance

θ−4(f ′(θ−2))2 = θ−4(1/4)(θ−2(3/2))2 = (1/4)θ−2.

5. Question 5

Let X1, . . . , Xn be i.i.d. random variables, so that X1 has PDF fθ : R → [0,∞), where
θ > 0 is an unknown parameter and

fθ(x) :=
2x

θ2
, ∀ 0 ≤ x ≤ θ.

• Find the method of moments estimator Yn of θ. Is Yn unbiased?
• Find constants an, bn such that an(Yn − bn) converges in distribution as n→∞ to a

mean zero variance one Gaussian random variable.
(Hint: you should find that VarX1 = θ2/18.)

Solution. We have

EX1 =

∫ θ

0

2x

θ2
xdx = θ−2[(2/3)x3]x=θx=0 = θ−2(2/3)θ3 = (2/3)θ.

So, θ = (3/2)EX1, and the MoM estimator of θ is

Yn :=
3

2

1

n

n∑
i=1

Xi.

Since EYn = 3
2
EX1 = θ, Yn is unbiased.

Also,

EX2
1 =

∫ θ

0

2x

θ2
x2dx = θ−2[(1/2)x4]x=θx=0 = θ−2(1/2)θ4 = (1/2)θ2.

So,
Var(X1) = (1/2)θ2 − [(2/3)θ]2 = θ2[1/2− 4/9] = θ2/18.

From the central limit theorem,

X1 + · · ·+Xn − nEX1√
n
√
θ2/18

=
X1 + · · ·+Xn − n(2/3)θ

√
nθ/[3

√
2]

=
√
n

(
1
n

∑n
i=1Xi

)
− (2/3)θ

θ/[3
√

2]

=
√
n

3
2

(
1
n

∑n
i=1Xi

)
− θ

θ/[2
√

2]
=
√
n

2
√

2

θ
(Yn − θ).

converges in distribution to a standard Gaussian random variable (mean zero variance one)
as n→∞.

6. Question 6

Let X1, . . . , Xn be i.i.d. Gaussian random variables with unknown mean µ ∈ R and
(known) variance 1.

In this problem, you can freely use that the sample mean Mn := 1
n

∑n
i=1Xi is complete

and sufficient for µ.

• Find a minimal sufficient statistic for µ.
• Find an unbiased estimator Yn of the quantity Pµ(X1 ≤ 0).
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• Using any method you want to use, find the UMVU of the quantity Pµ(X1 ≤ 0).

Solution. By Bahadur’s Theorem 5.25 in the notes, Mn is minimal sufficient for µ.
Let Yn := 1X1≤0. Then EYn = P(X1 ≤ 0). That is, Yn is unbiased.
Now, we know Mn is complete and sufficient for µ. We claim also that Mn is complete and

sufficient for Pµ(X1 ≤ 0) =
∫ 0

−∞ e
−(s−µ)2/2ds/

√
2π =

∫ µ
−∞ e

−s2/2ds/
√

2π =: Φ(µ). Note that

Φ(µ) is strictly increasing in µ, and therefore it is invertible with inverse Φ−1. It follows that
Mn is complete and sufficient for Φ(µ). (We have Z|(Y1, . . . , Yn) does not depend on µ if and
only if Z|(Y1, . . . , Yn) does not depend on Φ(µ) since Φ is invertible, hence the sufficiency.
Similarly, the condition for completeness of a statistic Z holds for all µ ∈ R if and only if it
holds for all Φ(µ) with µ ∈ R.)

To find the UMVU of P(X1 ≤ 0), we use the conditioning method, i.e. the Lehmann-
Scheffé Theorem 6.14 in the notes to conclude that E(1X1≤0|Mn) is the UMVU. To find an
explicit formula for the UMVU, we compute this conditional expectation explicitly. For any
t ∈ R, we have

E(1X1 ≤ 0 |Mn ≤ t)

= P(X1 ≤ 0 |X1 + · · ·+Xn ≤ nt)

= P(X1 + · · ·+Xn ≤ nt |X1 ≤ 0)
P(X1 ≤ 0)

P(X1 + · · ·+Xn ≤ nt)

=

∫ 0

−∞
P(X1 + · · ·+Xn ≤ nt |X1 = u)fX1(u)du · P(X1 ≤ 0)

P(X1 + · · ·+Xn ≤ nt)

=

∫ 0

−∞
P(X2 + · · ·+Xn ≤ nt− u)fX1(u)du · P(X1 ≤ 0)

P(X1 + · · ·+Xn ≤ nt)

=

∫ 0

−∞

∫ nt−u

−∞

e−(s−µ)
2/[2(n−1)]√

2π(n− 1)
ds
e−(u−µ)

2/2

√
2π

du

∫ 0

−∞ e
−(s−µ)2/2 ds√

2π∫ nt
−∞ e

−(s−µ)2/[2n] ds√
2πn

.

Denote g(t) := P(X1 ≤ 0 | [X1 + · · · + Xn]/n ≤ t). Using Bayes rule P(A|B) =
P(B|A)P(A)/P(B), we have

g(t) =
P([X1 + · · ·+Xn]/n ≤ t |X1 ≤ 0)P(X1 ≤ 0)

P([X1 + · · ·+Xn]/n ≤ t
.
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Then, using the quotient rule and Bayes rule again,

g′(t) = P(X1 ≤ 0)
P([X1 + · · ·+Xn]/n ≤ t)P([X1 + · · ·+Xn]/n = t |X1 ≤ 0)

[P([X1 + · · ·+Xn]/n ≤ t)]2

−P(X1 ≤ 0)
P([X1 + · · ·+Xn]/n ≤ t |X1 ≤ 0)P([X1 + · · ·+Xn]/n = t)

[P([X1 + · · ·+Xn]/n ≤ t)]2

= P(X1 ≤ 0)
P([X1 + · · ·+Xn]/n = t |X1 ≤ 0)

P([X1 + · · ·+Xn]/n ≤ t)
− g(t)

P([X1 + · · ·+Xn]/n = t)

P([X1 + · · ·+Xn]/n ≤ t)

= P(X1 ≤ 0)
P([X1 + · · ·+Xn]/n = t |X1 ≤ 0)

P([X1 + · · ·+Xn]/n ≤ t)
− g(t)

P([X1 + · · ·+Xn]/n = t)

P([X1 + · · ·+Xn]/n ≤ t)

=
[
P(X1 ≤ 0 | [X1 + · · ·+Xn]/n = t)− g(t)

]P([X1 + · · ·+Xn]/n = t)

P([X1 + · · ·+Xn]/n ≤ t)

=
[
E(1X1≤0|Mn = t)− g(t)

]P([X1 + · · ·+Xn]/n = t)

P([X1 + · · ·+Xn]/n ≤ t)

=
[
E(1X1≤0|Mn = t)− g(t)

] e−(n/2)(t−µ)
2∫ t

−∞ e
−(n/2)(s−µ)2ds

So,

E(1X1≤0 |Mn = t) = g(t) + g′(t)

∫ t
−∞ e

−(n/2)(s−µ)2ds

e−(n/2)(t−µ)2

=

∫ 0

−∞

∫ nt−u

−∞

e−(s−µ)
2/[2(n−1)]√

2π(n− 1)
ds
e−(u−µ)

2/2

√
2π

du ·
∫ 0

−∞ e
−(s−µ)2/2 ds√

2π∫ nt
−∞ e

−(s−µ)2/[2n] ds√
2πn

+

∫ t
−∞ e

−(n/2)(s−µ)2ds

e−(n/2)(t−µ)2
d

dt

[ ∫ 0

−∞

∫ nt−u

−∞

e−(s−µ)
2/[2(n−1)]√

2π(n− 1)
ds
e−(u−µ)

2/2

√
2π

du

∫ 0

−∞ e
−(s−µ)2/2 ds√

2π∫ nt
−∞ e

−(s−µ)2/[2n] ds√
2πn

]
.

And the UMVU is

E(1X1≤0 |Mn) =

∫ 0

−∞

∫ nMn−u

−∞

e−(s−µ)
2/[2(n−1)]√

2π(n− 1)
ds
e−(u−µ)

2/2

√
2π

du ·
∫ 0

−∞ e
−(s−µ)2/2 ds√

2π∫ nMn

−∞ e−(s−µ)2/[2n] ds√
2πn∫Mn

−∞ e
−(n/2)(s−µ)2ds

e−(n/2)(Mn−µ)2
d

dt

∣∣∣
t=Mn

[ ∫ 0

−∞

∫ nt−u

−∞

e−(s−µ)
2/[2(n−1)]√

2π(n− 1)
ds
e−(u−µ)

2/2

√
2π

du

∫ 0

−∞ e
−(s−µ)2/2 ds√

2π∫ nt
−∞ e

−(s−µ)2/[2n] ds√
2πn

]
.

(Even though a bunch of µ terms appear here, this expression should not depend on µ.)

7. Question 7

LetX1, . . . , Xn be i.i.d. random variables that are uniformly distributed in [θ−1/2, θ+1/2],
where θ ∈ R is unknown. Note that EX1 = θ, EX2

1 = θ2 + 1/12.

• Give two different method of moments estimators that estimate θ.
• Show that an MLE for θ is not unique. That is, describe two different maximum

likelihood estimators for θ.
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• Is the Fisher information IX1(θ) well-defined? Explain.
• Show that any MLE for θ is consistent.

Solution. Since θ = 2EX1, one MoM estimator is 2 1
n

∑n
i=1Xi. Since θ =

√
|−1/12 + EX2

1 |,
another MoM estimator is

√∣∣−1/12 + 1
n

∑n
i=1X

2
i

∣∣.
The joint PDF of X1, . . . , Xn is

∏n
i=1 1Xi∈[θ−1/2,θ+1/2] = 1X(1),X(n)∈[θ−1/2,θ+1/2]. So, any θ

satisfying

θ − 1/2 ≤ X(1) ≤ X(n) ≤ θ + 1/2

is an MLE for θ, since the value of the joint PDF there is 1, and otherwise the value is zero.
That is, the MLE can take any value in the open interval (X(n) − 1/2, X(1) + 1/2). To see
that this interval can be nonempty, suppose for example that n = 1, so that X(1) = X(n).
The MLE is then not unique.

The Fisher information is not well-defined since the derivative of the joint PDF (viewed as
a function of θ) is not well-defined (since the region where the PDF is nonzero does depend
on θ). In particular, the derivative of the joint PDF does not exist

Finally, note that the joint PDF ofX1, . . . , Xn is
∏n

i=1 1Xi∈[θ−1/2,θ+1/2] = 1X(1),X(n)∈[θ−1/2,θ+1/2].
So, any θ satisfying

θ − 1/2 ≤ X(1) ≤ X(n) ≤ θ + 1/2

is an MLE for θ. As n→∞, X(1) converges in probability to θ− 1/2, and X(n) converges in
probability to θ + 1/2, so as n→∞ any MLE for θ converges to θ. (For example, we know
that P(X(n) ≤ t) = P(X1 ≤ t)n which converges to 1t≤θ+1/2 as n→∞.)

Note that we cannot use the consistency theorem for MLEs that we discussed in class,
since the set of parameters Θ = R is not compact. Similarly, Theorem 9.11 in the Keener
book is not applicable since the PDF is not continuous in θ.

8. Question 8

Prove the Cramér-Rao inequality:
Let X : Ω → Rn be a random variable with distribution from a family of multivariable

PDFs {fθ : θ ∈ Θ} with Θ ⊆ R. Let t : Rn → R and let Y := t(X) be statistic. For any
θ ∈ Θ let g(θ) := EθY . Then

Varθ(Y ) ≥ |g
′(θ)|2

IX(θ)
, ∀ θ ∈ Θ.

Moreover, if IX(θ) = 0, then g′(θ) = 0.
(You are allowed to differentiate under any integral in your proof. Also, we assume that
{x ∈ Rn : fθ(x) > 0} does not depend on θ, and for a.e. x ∈ Rn, (d/dθ)fθ(x)) exists and is
finite, and the Fisher information satisfies any identity we have ever shown it to satisfy in
this course.)

Solution. Before the proof, we prove two facts
Fact 1. E d

dθ
log fθ(X) = 0.

7



Proof of Fact 1.

E
d

dθ
log fθ(X) =

∫
Rn

d
dθ
fθ(x)

fθ(x)
fθ(x) dx =

∫
Rn

d

dθ
fθ(x) dx

=
d

dθ

∫
Rn

fθ(x) dx =
d

dθ
(1) = 0.

Fact 2. If EW = 0, then E(WZ) = cov(W,Z).
Proof of Fact 2. For the first equality, note that, since EW = 0,

cov(W,Z) = E(W − EW )(Z − EZ) = E(WZ)− EWEZ = EWZ.

Fact 3. cov(W,Z) ≤
√

Var(W )
√

Var(Z). This inequality follows from the Cauchy-
Schwarz Inequality.

|g′(θ)| =
∣∣∣∣ ddθ

∫
Rn

fθ(x)t(x)dx

∣∣∣∣ =

∣∣∣∣∫
Rn

d

dθ
log fθ(x)t(x)fθ(x)dx

∣∣∣∣ =

∣∣∣∣Eθ
d

dθ
log fθ(X)t(X)

∣∣∣∣
(1)∧(2)

=

∣∣∣∣Covθ

( d
dθ

log fθ(X), t(X)
)∣∣∣∣ (3)≤

√
Varθ

( d
dθ

log fθ(X)
)

Varθ(t(X))

=
√
IX(θ)Varθ(t(X)).

The last equality uses the definition of Fisher Information.
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