
Graduate Mathematical Statistics Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due January 18, at the beginning of class.

Homework 1

Exercise 1. As needed, refresh your knowledge of proofs and logic by reading the following
document by Michael Hutchings: http://math.berkeley.edu/∼hutching/teach/proofs.pdf

Exercise 2. As needed, take the following quizzes on logic and set theory:

http://scherk.pbworks.com/w/page/14864234/Quiz%3A%20Logic
http://scherk.pbworks.com/w/page/14864241/Quiz%3A%20Sets

(These quizzes are just for your own benefit; you don’t need to record your answers any-
where.)

Exercise 3. Two people take turns throwing darts at a board. Person A goes first, and
each of her throws has a probability of 1/4 of hitting the bullseye. Person B goes next, and
each of her throws has a probability of 1/3 of hitting the bullseye. Then Person A goes, and
so on. With what probability will Person A hit the bullseye before Person B does?

Exercise 4. Two people are flipping fair coins. Let n be a positive integer. Person I flips
n + 1 coins. Person II flips n coins. Show that the following event has probability 1/2:
Person I has more heads than Person II.

Exercise 5. Suppose a test for a disease is 99.9% accurate. That is, if you have the disease,
the test will be positive with 99.9% probability. And if you do not have the disease, the
test will be negative with 99.9% probability. Suppose also the disease is fairly rare, so that
roughly 1 in 20, 000 people have the disease. If you test positive for the disease, with what
probability do you actually have the disease?

Exercise 6 (Inclusion-Exclusion Formula). In the Properties for Probability laws, we showed
that P(A ∪ B) = P(A) + P(B) − P(A ∩ B). The following equality is a generalization of
this fact. Let Ω be a discrete sample space, and let P be a probability law on Ω. Prove the
following. Let A1, . . . , An ⊆ Ω. Then:

P(∪ni=1Ai) =
n∑

i=1

P(Ai)−
∑

1≤i<j≤n

P(Ai ∩ Aj) +
∑

1≤i<j<k≤n

P(Ai ∩ Aj ∩ Ak)

· · ·+ (−1)n+1P(A1 ∩ · · · ∩ An).

(Hint: begin with the identity 0 = (1 − 1)m =
∑m

k=0(−1)k
(
m
k

)
, which follows from the

Binomial Theorem. That is, 1 =
∑m

k=1(−1)k+1
(
m
k

)
. Now, let x ∈ Ω such that x is in exactly

m of the sets A1, . . . , An. Compute the “number of times” that the element x ∈ Ω is counted
for both sides of the Inclusion-Exclusion Formula.)

http://math.berkeley.edu/~hutching/teach/proofs.pdf
http://scherk.pbworks.com/w/page/14864234/Quiz%3A%20Logic
http://scherk.pbworks.com/w/page/14864241/Quiz%3A%20Sets


2

Exercise 7 (Stein Identity). Let X be a standard Gaussian random variable, so that X

has density x 7→ e−x
2/2/
√

2π, ∀ x ∈ R. Let g : R → R be a continuously differentiable
function such that g and g′ have polynomial volume growth. That is, ∃ a, b > 0 such that
|g(x)| , |g′(x)| ≤ a(1 + |x|)b, ∀ x ∈ R. Prove the Stein identity

EXg(X) = Eg′(X).

Using this identity, recursively compute EXk for any positive integer k.

Alternatively, for any t > 0, show that EetX = et
2/2, i.e. compute the moment generating

function of X. Then, using dk

dtk
|t=0Ee

tX = EXk and using the power series expansion of the

exponential, compute EXk directly from the identity EetX = et
2/2.

Exercise 8 (MAX-CUT). The probabilistic method is a very useful way to prove the ex-
istence of something satisfying some properties. This method is based upon the following
elementary statement: If α ∈ R and if a random variable X : Ω→ R satisfies EX ≥ α, then
there exists some ω ∈ Ω such that X(ω) ≥ α. We will demonstrate this principle in this
exercise.

Let G = (V,E) be an undirected graph on the vertices V = {1, . . . , n} so that the edge set
E is a subset of unordered pairs {i, j} such that i, j ∈ V and i 6= j. Let S ⊆ V and denote
Sc := V r S. We refer to (S, Sc) as a cut of the graph G. The goal of the MAX-CUT
problem is to maximize the number of edges going between S and Sc over all cuts of the
graph G.

Prove that there exists a cut (S, Sc) of the graph such that the number of edges going
between S and Sc is at least |E| /2. (Hint: define a random S ⊆ V such that, for every
i ∈ V , P(i ∈ S) = 1/2, and the events 1 ∈ S, 2 ∈ S, . . . , n ∈ S are all independent. If
{i, j} ∈ E, show that P(i ∈ S, j /∈ S) = 1/4. So, what is the expected number of edges
{i, j} ∈ E such that i ∈ S and j /∈ S?)

Exercise 9. Let n ≥ 2 be a positive integer. Let x = (x1, . . . , xn) ∈ Rn. For any x, y ∈ Rn,
define 〈x, y〉 :=

∑n
i=1 xiyi and ||x|| := 〈x, x〉1/2. Let Sn−1 := {x ∈ Rn : ||x|| = 1} be the

sphere of radius 1 centered at the origin. Let x ∈ Sn−1 be fixed. Let v be a random vector
that is uniformly distributed in Sn−1. Prove:

E |〈x, v〉| ≥ 1

10
√
n
.

Exercise 10 (The Power Method). This exercise gives an algorithm for finding the eigen-
vectors and eigenvalues of a symmetric matrix. In modern statistics, this is often a useful
thing to do. The Power Method described below is not the best algorithm for this task, but
it is perhaps the easiest to describe and analyze.

Let A be an n× n real symmetric matrix. Let λ1 ≥ · · · ≥ λn be the (unknown) eigenvalues
of A, and let v1, . . . , vn ∈ Rn be the corresponding (unknown) eigenvectors of A such that
||vi|| = 1 and such that Avi = λivi for all 1 ≤ i ≤ n.

Given A, our first goal is to find v1 and λ1. For simplicity, assume that 1/2 < λ1 < 1, and
0 ≤ λn ≤ · · · ≤ λ2 < 1/4. Suppose we have found a vector v ∈ Rn such that ||v|| = 1 and
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|〈v, v1〉| > 1/n. (From Exercise 9, a randomly chosen v satisfies this property.) Let k be a
positive integer. Show that

Akv

approximates v1 well as k becomes large. More specifically, show that for all k ≥ 1,∣∣∣∣Akv − 〈v, v1〉λk1v1
∣∣∣∣2 ≤ n− 1

16k
.

(Hint: use the spectral theorem for symmetric matrices.)

Since |〈v, v1〉|λk1 > 2−k/n, this inequality implies that Akv is approximately an eigenvector
of A with eigenvalue λ1. That is, by the triangle inequality,∣∣∣∣A(Akv)− λ1(Akv)

∣∣∣∣ ≤ ∣∣∣∣Ak+1v − 〈v, v1〉λk+1
1 v1

∣∣∣∣+ λ1
∣∣∣∣〈v, v1〉λk1v1 − Akv

∣∣∣∣ ≤ 2

√
n− 1

4k
.

Moreover, by the reverse triangle inequality,∣∣∣∣Akv
∣∣∣∣ =

∣∣∣∣Akv − 〈v, v1〉λk1v1 + 〈v, v1〉λk1v1
∣∣∣∣ ≥ 1

n
2−k −

√
n− 1

4k
.

In conclusion, if we take k to be large (say k > 10 log n), and if we define z := Akv, then z
is approximately an eigenvector of A, that is∣∣∣∣∣∣∣∣A Akv

||Akv||
− λ1

Akv

||Akv||

∣∣∣∣∣∣∣∣ ≤ 4n3/22−k ≤ 4n−4.

And to approximately find the first eigenvalue λ1, we simply compute

zTAz

zT z
.

That is, we have approximately found the first eigenvector and eigenvalue of A.

Remarks. To find the second eigenvector and eigenvalue, we can repeat the above procedure,
where we start by choosing v such that 〈v, v1〉 = 0, ||v|| = 1 and |〈v, v2〉| > 1/(10

√
n). To

find the third eigenvector and eigenvalue, we can repeat the above procedure, where we start
by choosing v such that 〈v, v1〉 = 〈v, v2〉 = 0, ||v|| = 1 and |〈v, v3〉| > 1/(10

√
n). And so on.

Google’s PageRank algorithm uses the power method to rank websites very rapidly. In
particular, they let n be the number of websites on the internet (so that n is roughly 109).
They then define an n× n matrix C where Cij = 1 if there is a hyperlink between websites
i and j, and Cij = 0 otherwise. Then, they let B be an n × n matrix such that Bij is 1
divided by the number of 1’s in the ith row of C, if Cij = 1, and Bij = 0 otherwise. Finally,
they define

A = (.85)B + (.15)D/n

where D is an n× n matrix all of whose entries are 1.

The power method finds the eigenvector v1 of A, and the size of the ith entry of v1 is
proportional to the “rank” of website i.
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Exercise 11. Let X1, Y1 be random variables with joint PDF fX1,Y1 . Let X2, Y2 be random
variables with joint PDF fX2,Y2 . Let T : R2 → R2 and let S : R2 → R2 so that ST (x, y) =
(x, y) and TS(x, y) = (x, y) for every (x, y) ∈ R2. Let J(x, y) denote the determinant of the
Jacobian of S at (x, y). Assume that (X2, Y2) = T (X1, Y1). Using the change of variables
formula from multivariable calculus, show that

fX2,Y2(x, y) = fX1,Y1(S(x, y)) |J(x, y)| .

Exercise 12. Suppose I tell you that the following list of 20 numbers is a random sample
from a Gaussian random variable, but I don’t tell the mean or standard deviation.

5.1715, 3.2925, 5.2172, 6.1302, 4.9889, 5.5347, 5.2269, 4.1966, 4.7939, 3.7127

5.3884, 3.3529, 3.4311, 3.6905, 1.5557, 5.9384, 4.8252, 3.7451, 5.8703, 2.7885

To the best of your ability, determine what the mean and standard deviation are of this
random variable. (This question is a bit open-ended, so there could be more than one
correct way of justifying your answer.)

Exercise 13. Suppose I tell you that the following list of 20 numbers is a random sample
from a Gaussian random variable, but I don’t tell you the mean or standard deviation. Also,
around one or two of the numbers was corrupted by noise, computational error, tabulation
error, etc., so that it is totally unrelated to the actual Gaussian random variable.

−1.2045, −1.4829, −0.3616, −0.3743, −2.7298, −1.0601, −1.3298, 0.2554, 6.1865, 1.2185

−2.7273, −0.8453, −3.4282, −3.2270, −1.0137, 2.0653, −5.5393, −0.2572, −1.4512, 1.2347

To the best of your ability, determine what the mean and standard deviation are of this
random variable. Supposing you had instead a billion numbers, and 5 or 10 percent of
them were corrupted samples, can you come up with some automatic way of throwing out
the corrupted samples? (Once again, there could be more than one right answer here; the
question is intentionally open-ended.)

Exercise 14. Let b1, . . . , bn be distinct numbers, representing the quality of n people. Sup-
pose n people arrive to interview for a job, one at a time, in a random order. That is, every
possible arrival order of these people is equally likely. We can think of an arrival ordering of
the people as an ordered list of the form a1, . . . , an, where the list a1, . . . , an is a permutation
of the numbers b1, . . . , bn. Moreover, we interpret a1 as the rank of the first person to arrive,
a2 as the rank of the second person to arrive, and so on. And all possible permutations of
the numbers b1, . . . , bn are equally likely to occur.

For each i ∈ {1, . . . , n}, upon interviewing the ith person, if ai > aj for all 1 ≤ j < i, then
the ith person is hired. That is, if the person currently being interviewed is better than the
previous candidates, she will be hired. What is the expected number of hirings that will
be made? (Hint: let Xi = 1 if the ith person to arrive is hired, and let Xi = 0 otherwise.
Consider

∑n
i=1Xi.)


