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1. Homework 1

Exercise 1.3. Two people take turns throwing darts at a board. Person A goes first, and
each of her throws has a probability of 1/4 of hitting the bullseye. Person B goes next, and
each of her throws has a probability of 1/3 of hitting the bullseye. Then Person A goes, and
so on. With what probability will Person A hit the bullseye before Person B does?

Solution. Person A hits the bullseye on her first try with probability 1/4. If both A and B
miss their first throw, then Person A hits the bullseye on her second try with probability
(1− 1/4)(1− 1/3)(1/4). If both A and B miss their first two throws, then Person A hits the
bullseye on her third try with probability (1− 1/4)2(1− 1/3)2(1/4). For any positive integer
k, let Ck be the event that both A and B miss their first k throws, and Person A hits the
bullseye on the (k+1)st try. Then P(Ck) = (1−1/4)k(1−1/3)k(1/4) = (3/4)k(2/3)k(1/4) =
(1/2)k(1/4). Let C be the event that person A hits the bullseye before person B. Then
C = ∪k≥0Ck, and Ck ∩ Ck′ = ∅ if k 6= k′. So, from the axioms for a probability law,

P(C) = P(∪k≥0Ck) =
∞∑
k=0

P(Ck) = (1/4)
∞∑
k=0

(1/2)k = (1/4)(2) = 1/2.

�

Exercise 1.4. Two people are flipping fair coins. Let n be a positive integer. Person I flips
n + 1 coins. Person II flips n coins. Show that the following event has probability 1/2:
Person I has more heads than Person II.
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Solution 1. Let A be the event that Person I has more heads than Person II. Let SI
be the number of heads from the first n coin flips of person I. Let SII be the number of
heads from the first n coin flips of person II. Let B1 be the event that the (n + 1)st coin
flip of person I is heads. Let B2 be the event that the (n + 1)st coin flip of person I is
tails. Then B1 ∩B2 = ∅ since the (n+ 1)st coin flip of cannot be both heads and tails. And
B1 ∪ B2 = Ω, since the (n + 1)st coin flip must be either heads or tails. So, by the total
probability theorem,

P(A) = P(A|B1)P(B1) + P(A|B2)P(B2).

Now, since the (n+ 1)st coin flip is a fair coin, P(B1) = P(B2) = 1/2. That is,

P(A) =
1

2
(P(A|B1) + P(A|B2)) .

Given that B1 occurs, the event A is equal to the event that SI ≥ SII . Given that B2 occurs,
the event A is equal to the event SI > SII . So,

P(A) =
1

2
(P(SI ≥ SII) + P(SI > SII)) .

Now, P(SI > SII) = P(S1 < SII) by symmetry (with respect to interchanging the roles of
person I and person II). So,

P(A) =
1

2
(P(SI ≥ SII) + P(SI < SII)) =

1

2
.

In the last line, we used that the events SI ≥ SII and SI < SII are disjoint, and their union
is all of Ω, so P(SI ≥ SII) + P(SI < SII) = 1.

Solution 2. Let A be the event that Person I has more heads than Person II. Let B be
the event that person I has more heads than person II after they both flip n coins. Let C
be the event that person I has less heads than person II after they both flip n coins. Let D
be the event that person I has the same number of heads as person II after they both flip
n coins. Then B ∩ C = C ∩D = B ∩D = ∅, since any such intersection involves mutually
exclusive events. Also, B ∪ C ∪D = Ω, since after the players each flip n coins, one of the
three events B,C,D must occur.

So, by the total probability theorem,

P(A) = P(A|B)P(B) + P(A|C)P(C) + P(A|D)P(D).

Given that B has occurred, we already know that A has occurred, so that P(A|B) = 1.
Given that C has occurred, it is impossible for A to occur, so that P(A|C) = 0. And given
that D has occurred, person I has only one more coin flip; if it is a heads, then A occurs, and
if it is tails, then A does not occur. Since the coin is fair, we conclude that P(A|C) = 1/2.
That is,

P(A) = P(B) +
1

2
P(C) =

1

2
(2P(B) + P(C)).

To conclude, it remains to show that 2P(B)+P(C) = 1. As noted already, B∩C = C∩D =
B ∩D = ∅, and B ∪ C ∪D = Ω, so Axiom (ii) for Probability Laws says that

P(B) + P(C) + P(D) = P(B ∪ C ∪D) = P(Ω) = 1.

Now, events B and D are symmetric with respect to relabeling the players I and II. Con-
sequently, P(B) = P(D). That is, 2P(B) + P(C) = 1, as desired.
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Solution 3. Let C1 be the number of heads of Person I. Let C2 be the number of heads of
Person II. Let A = {C1 > C2} . Since A∪Ac = Ω and A∩Ac = ∅, we have P(A)+P(Ac) = 1.
Note that Ac = {C1 ≤ C2}. Since the coins are fair, the probability P(Ac) can be equivalently
stated by relabeling the head and tail of the coin. That is, P(Ac) is equal to the probability
of the event that Person I has less than or equal to the number of tails of Person II. The
latter event is equal to {C1 > C2}. That is, P(Ac) = P(C1 > C2) = P(A). So, 2P(A) = 1,
and P(A) = 1/2.

Exercise 1.5. Suppose a test for a disease is 99.9% accurate. That is, if you have the
disease, the test will be positive with 99.9% probability. And if you do not have the disease,
the test will be negative with 99.9% probability. Suppose also the disease is fairly rare, so
that roughly 1 in 20, 000 people have the disease. If you test positive for the disease, with
what probability do you actually have the disease?

Solution. Let A be the event that you have the disease, and let B be the event that you test
positive for the disease. We want to compute P(A|B). From Bayes’ Rule,

P(A|B) =
P(A)

P(B)
P(B|A) =

P(A)P(B|A)

P(B|A)P(A) + P(B|Ac)P(Ac)
.

It is given that P(A) = 2 · 10−4, P(B|A) = .999, P(B|Ac) = .001. Since P(Ac) + P(A) = 1,
we have P(Ac) = 1− 2 · 10−4. So,

P(A|B) =
2 · 10−4(.999)

.999(2 · 10−4) + .001(1− 2 · 10−4)
≈ 2 · 10−4

.0012
≈ 1

6
.

�

Exercise 1.6 (Inclusion-Exclusion Formula). In the Properties for Probability laws, we
showed that P(A∪B) = P(A)+P(B)−P(A∩B). The following equality is a generalization
of this fact. Let Ω be a discrete sample space, and let P be a probability law on Ω. Prove
the following. Let A1, . . . , An ⊆ Ω. Then:

P(∪ni=1Ai) =
n∑
i=1

P(Ai)−
∑

1≤i<j≤n

P(Ai ∩ Aj) +
∑

1≤i<j<k≤n

P(Ai ∩ Aj ∩ Ak)

· · ·+ (−1)n+1P(A1 ∩ · · · ∩ An).

(Hint: begin with the identity 0 = (1 − 1)m =
∑m

k=0(−1)k
(
m
k

)
, which follows from the

Binomial Theorem. That is, 1 =
∑m

k=1(−1)k+1
(
m
k

)
. Now, let x ∈ Ω such that x is in exactly

m of the sets A1, . . . , An. Compute the “number of times” that the element x ∈ Ω is counted
for both sides of the Inclusion-Exclusion Formula.)

Solution. Let X := 1∪ni=1Ai
and let Xi := 1Ai for all 1 ≤ i ≤ n. We first show that

X = 1−
n∏
i=1

(1−Xi). (∗)

To see this, note that X(ω) = 1 if ω ∈ ∪ni=1Ai and X(ω) = 0 otherwise. If ω ∈ ∪ni=1Ai, then
ω ∈ Ai for some 1 ≤ i ≤ n, hence Xi(ω) = 1 for some 1 ≤ i ≤ n. Therefore the product is
equal to zero, so the right-hand side is also equal to 1.
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On the other hand, if ω /∈ ∪ni=1Ai, then Xi(ω) = 0 for all 1 ≤ i ≤ n. Therefore the product
is equal to 1, so the right-hand side is equal to zero.

Since each ω ∈ Ω is contained in either ∪ni=1Ai or its complement, this shows that X =
1−

∏n
i=1(1−Xi).

We deduce the inclusion-exclusion formula by taking the expected value of both sides of
(∗). On the left side, we get

EX = P(X = 1) = P(∪ni=1Ai)

For the right-hand side, expanding out the product and using the linearity of expectation
shows that

E
[
1−

n∏
i=1

(1−Xi)
]

= 1−
[
1−

n∑
i=1

E[Xi] +
∑

1≤i<j≤n

E[XiXj] + · · ·+ (−1)nE[X1 · · ·Xn]
]

Moreover, E[Xi] = P(Xi = 1) = P(Ai) for all 1 ≤ i ≤ n, E[XiXj] = P(XiXj = 1) =
P(Ai ∩ Aj) for all 1 ≤ i < j ≤ n, and so on. Therefore the above expression simplifies to

n∑
i=1

P(Ai)−
∑

1≤i<j≤n

P(Ai ∩ Aj) + · · ·+ (−1)n−1P(A1 ∩ · · · ∩ An)

The proof is therefore concluded by (∗).

Exercise 1.7 (Stein Identity). Let X be a standard Gaussian random variable, so that

X has density x 7→ e−x
2/2/
√

2π, ∀ x ∈ R. Let g : R → R be a continuously differentiable
function such that g and g′ have polynomial volume growth. That is, ∃ a, b > 0 such that
|g(x)| , |g′(x)| ≤ a(1 + |x|)b, ∀ x ∈ R. Prove the Stein identity

EXg(X) = Eg′(X).

Using this identity, recursively compute EXk for any positive integer k.
Alternatively, for any t > 0, show that EetX = et

2/2, i.e. compute the moment generat-

ing function of X. Then, using dk

dtk
|t=0Ee

tX = EXk and using the power series expansion

of the exponential, compute EXk directly from the identity EetX = et
2/2.

Solution. From the “Change of Variables” formula and integration by parts

EXg(X) =

∫ ∞
−∞

xg(x)e−x
2/2 dx√

2π
= −

∫ ∞
−∞

g(x)
d

dx
[e−x

2/2]
dx√
2π

=

∫ ∞
−∞

d

dx
g(x)e−x

2/2 dx√
2π

= Eg′(X).

The fact that no boundary terms arise at ±∞ follows since g, g′ have polynomial volume
growth.

For any odd positive integer k, we have EXk =
∫∞
−∞ x

ke−x
2/2 dx√

2π
= 0 since the integrand

is odd. When k is an even positive integer, we apply the Stein identity to get

EXk = EXXk−1 = (k − 1)EXk−2 = (k − 1)(k − 3)EXk−4 = · · · = (k − 1)!!.
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Alternatively, for any t ∈ R, we complete the square to get

EetX =

∫ ∞
−∞

etxe−x
2/2 dx√

2π

=

∫ ∞
−∞

et
2/2e−(x−t)2/2 dx√

2π
= et

2/2

∫ ∞
−∞

e−x
2/2 dx√

2π
= et

2/2.

We now claim that the derivative of the function on the left exists in t ∈ R. Fix t ∈ R and
h > 0 and observe

h−1[Ee(t+h)X − etX ] = h−1

∫ ∞
−∞

[e(t+h)x − etx]e−x2/2 dx√
2π

=

∫ ∞
−∞

etx
(ehx − 1

h

)
e−x

2/2 dx√
2π
.

By the Dominated Convergence Theorem, the limit exists as h→ 0 and

d

dt
EetX =

∫ ∞
−∞

etxxe−x
2/2 dx√

2π
.

(By the Mean Value Theorem, | ehx−1
h
| =

∣∣x0e
hx0
∣∣ ≤ |x|max(ehx, 1) for some x0 ∈ [0, x], so

the Dominated Convergence Theorem applies.) In particular, setting t = 0 we get

d

dt
|t=0Ee

tX =

∫ ∞
−∞

xe−x
2/2 dx√

2π
= EX.

Repeating this argument, we see that EetX is infinitely differentiable in t and for any k > 0,

dk

dtk
|t=0Ee

tX =

∫ ∞
−∞

xke−x
2/2 dx√

2π
= EXk.

Meanwhile, using the power series expansion of et
2/2, we get

EetX = et
2/2 =

∞∑
k=0

(t2/2)k

k!
.

Equating the kth derivatives at zero of both sides gives

EX2k =
d2k

dt2k
|t=0

(t2/2)k

k!
=

(2k)!

2kk!
.

�

Exercise 1.8 (MAX-CUT). The probabilistic method is a very useful way to prove the
existence of something satisfying some properties. This method is based upon the following
elementary statement: If α ∈ R and if a random variable X : Ω→ R satisfies EX ≥ α, then
there exists some ω ∈ Ω such that X(ω) ≥ α. We will demonstrate this principle in this
exercise.

Let G = (V,E) be an undirected graph on the vertices V = {1, . . . , n} so that the edge
set E is a subset of unordered pairs {i, j} such that i, j ∈ V and i 6= j. Let S ⊆ V and
denote Sc := V rS. We refer to (S, Sc) as a cut of the graph G. The goal of the MAX-CUT
problem is to maximize the number of edges going between S and Sc over all cuts of the
graph G.

Prove that there exists a cut (S, Sc) of the graph such that the number of edges going
between S and Sc is at least |E| /2. (Hint: define a random S ⊆ V such that, for every
i ∈ V , P(i ∈ S) = 1/2, and the events 1 ∈ S, 2 ∈ S, . . . , n ∈ S are all independent. If
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{i, j} ∈ E, show that P(i ∈ S, j /∈ S) = 1/4. So, what is the expected number of edges
{i, j} ∈ E such that i ∈ S and j /∈ S?)

Solution. Define S as noted above. (Recall that these random variables can exist by a
Corollary of the Kolmogorov Extension Theorem.) If {i, j} ∈ E, then by independence we
have P(i ∈ S, j /∈ S) = P(i ∈ S)P(j /∈ S) = (1/2)2 = 1/4. Similarly, P(i /∈ S, j ∈ S) = 1/4.
And the event that one of i, j is in S and the other is not in S is the disjoint union {i ∈
S, j /∈ S} ∪ {i /∈ S, j ∈ S}. So, the probability that one of i, j is in S and the other is not in
S is 1/4 + 1/4 = 1/2. By linearity of expected value, the expected number of cut edges is

E
∑
{i,j}∈E

1{i∈S,j /∈S}∪{i/∈S,j∈S} =
∑
{i,j}∈E

E1{i∈S,j /∈S}∪{i/∈S,j∈S} = |E| · (1/2).

�

Exercise 1.9. Let n ≥ 2 be a positive integer. Let x = (x1, . . . , xn) ∈ Rn. For any
x, y ∈ Rn, define 〈x, y〉 :=

∑n
i=1 xiyi and ‖x‖ := 〈x, x〉1/2. Let Sn−1 := {x ∈ Rn : ‖x‖ = 1}

be the sphere of radius 1 centered at the origin. Let x ∈ Sn−1 be fixed. Let v be a random
vector that is uniformly distributed in Sn−1. Prove:

E |〈x, v〉| ≥ 1

10
√
n
.

Solution. We first claim that it suffices to assume that x = (1, 0, . . . , 0). To see this,
note that the uniform distribution on Sn−1 is rotation invariant. That is, for any rotation
R : Rn → R, and for any x ∈ Sn−1, we have

E |〈x, v〉| = E |〈x,Rv〉| .
The Euclidean inner product is itself invariant under rotations, that is

E |〈x, v〉| = E |〈x,Rv〉| = E
∣∣〈R−1x,R−1Rv〉

∣∣ = E
∣∣〈R−1x, v〉

∣∣ .
So, if we choose the rotation R such that R−1x = (1, 0, . . . , 0), we then

E |〈x, v〉| = E |〈(1, 0, . . . , 0), v〉| .
That is, it suffices to prove the statement when x = (1, 0, . . . , 0).

Now, using hyperspherical coordinates, we can write this expected value as

E |〈(1, 0, . . . , 0), v〉| =
∫ 2π

φn−1=0

∫ π
φn−2=0

· · ·
∫ π
φ1=0
|cosφ1| sinn−2 φ1 sinn−3 φ2 · · · sinφn−2dφ1 · · · dφn−1∫ 2π

φn−1=0

∫ π
φn−2=0

· · ·
∫ π
φ1=0

sinn−2 φ1 sinn−3 φ2 · · · sinφn−2dφ1 · · · dφn−1

.

The outermost integrals are the same on the top on bottom, so they cancel and we are left
with

E |〈(1, 0, . . . , 0), v〉| =
∫ π
φ1=0
|cosφ1| sinn−2 φ1dφ1∫ π
φ1=0

sinn−2 φ1dφ1

=

∫ π/2
φ1=0

cosφ1 sinn−2 φ1dφ1∫ π/2
φ1=0

sinn−2 φ1dφ1

.

The upper integral can be computed exactly by the substitution u = sinφ1 so that du =
cosφ1dφ1 and ∫ π/2

φ1=0

cosφ1 sinn−2 φ1dφ1 =

∫ 1

0

un−2du =
1

n− 1
.
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There are many ways to upper bound the lower integral. We use the inequality cos(x) ≤
e−x

2/2 valid for all 0 ≤ x ≤ π/2 [Proof: −(d/dt) log(cos(x)) = tan(x) ≥ x by e.g. the power
series expansion of tan(x) = x+ x3/3 + 2x5/15 + · · · having all nonnegative coefficients, so

log(cos(x)) ≤ −x2/2, so cos(x) ≤ e−x
2/2 for all 0 ≤ x ≤ π/2.], so that∫ π/2

φ1=0

sinn−2 φ1dφ1 =

∫ π/2

φ1=0

cosn−2 φ1dφ1 ≤
∫ π/2

φ1=0

e−φ
2
1(n−2)/2dφ1

≤
∫ ∞
φ1=0

e−φ
2
1(n−2)/2dφ1 =

∫ ∞
φ1=0

e−φ
2
1(n−2)/2dφ1

= (n− 2)−1/2

∫ ∞
x=0

e−x
2/2dx = (n− 2)−1/2

√
2π.

Putting everything together,

E |〈(1, 0, . . . , 0), v〉| ≥ 1/(n− 1)

(n− 2)−1/2
√

2π
=

1√
2π

√
n− 2

n− 1
≥ 1

10
√
n
.

Exercise 1.10 (The Power Method). This exercise gives an algorithm for finding the
eigenvectors and eigenvalues of a symmetric matrix. In modern statistics, this is often a
useful thing to do. The Power Method described below is not the best algorithm for this
task, but it is perhaps the easiest to describe and analyze.

Let A be an n×n real symmetric matrix. Let λ1 ≥ · · · ≥ λn be the (unknown) eigenvalues
of A, and let v1, . . . , vn ∈ Rn be the corresponding (unknown) eigenvectors of A such that
‖vi‖ = 1 and such that Avi = λivi for all 1 ≤ i ≤ n.

Given A, our first goal is to find v1 and λ1. For simplicity, assume that 1/2 < λ1 < 1, and
0 ≤ λn ≤ · · · ≤ λ2 < 1/4. Suppose we have found a vector v ∈ Rn such that ‖v‖ = 1 and
|〈v, v1〉| > 1/n. (From Exercise 3.1, a randomly chosen v satisfies this property.) Let k be a
positive integer. Show that

Akv

approximates v1 well as k becomes large. More specifically, show that for all k ≥ 1,∥∥Akv − 〈v, v1〉λk1v1

∥∥2 ≤ n− 1

16k
.

(Hint: use the spectral theorem for symmetric matrices.)
Since |〈v, v1〉|λk1 > 2−k/n, this inequality implies that Akv is approximately an eigenvector

of A with eigenvalue λ1. That is, by the triangle inequality,∥∥A(Akv)− λ1(Akv)
∥∥ ≤ ∥∥Ak+1v − 〈v, v1〉λk+1

1 v1

∥∥+ λ1

∥∥〈v, v1〉λk1v1 − Akv
∥∥ ≤ 2

√
n− 1

4k
.

Moreover, by the reverse triangle inequality,∥∥Akv∥∥ =
∥∥Akv − 〈v, v1〉λk1v1 + 〈v, v1〉λk1v1

∥∥ ≥ 1

n
2−k −

√
n− 1

4k
.

In conclusion, if we take k to be large (say k > 10 log n), and if we define z := Akv, then
z is approximately an eigenvector of A, that is∥∥∥∥A Akv

‖Akv‖
− λ1

Akv

‖Akv‖

∥∥∥∥ ≤ 4n3/22−k ≤ 4n−4.

7



And to approximately find the first eigenvalue λ1, we simply compute

zTAz

zT z
.

That is, we have approximately found the first eigenvector and eigenvalue of A.
Remarks. To find the second eigenvector and eigenvalue, we can repeat the above proce-

dure, where we start by choosing v such that 〈v, v1〉 = 0, ‖v‖ = 1 and |〈v, v2〉| > 1/(10
√
n).

To find the third eigenvector and eigenvalue, we can repeat the above procedure, where we
start by choosing v such that 〈v, v1〉 = 〈v, v2〉 = 0, ‖v‖ = 1 and |〈v, v3〉| > 1/(10

√
n). And

so on.
Google’s PageRank algorithm uses the power method to rank websites very rapidly. In

particular, they let n be the number of websites on the internet (so that n is roughly 109).
They then define an n× n matrix C where Cij = 1 if there is a hyperlink between websites
i and j, and Cij = 0 otherwise. Then, they let B be an n × n matrix such that Bij is 1
divided by the number of 1’s in the ith row of C, if Cij = 1, and Bij = 0 otherwise. Finally,
they define

A = (.85)B + (.15)D/n

where D is an n× n matrix all of whose entries are 1.
The power method finds the eigenvector v1 of A, and the size of the ith entry of v1 is

proportional to the “rank” of website i.

Solution. From the spectral theorem for real symmetric matrices, there exists a basis of
Rn of eigenvectors of A as stated in the exercise. That is, any v ∈ Rn can be written as

v =
n∑
i=1

〈v, vi〉vi.

Since Avi = λivi for all 1 ≤ i ≤ n, we then have

Av =
n∑
i=1

〈v, vi〉Avi =
n∑
i=1

〈v, vi〉λivi

More generally, for any integer k ≥ 1,

Akv =
n∑
i=1

〈v, vi〉Akvi =
n∑
i=1

〈v, vi〉λiAk−1vi = · · · =
n∑
i=1

〈v, vi〉λki vi.

That is, ∥∥Akv − 〈v, v1〉λk1v1

∥∥ =

∥∥∥∥∥
n∑
i=2

〈v, vi〉λki vi

∥∥∥∥∥ .
Using the stated inequality in the exercise, namely that |λi| ≤ 1/2, we have |λi|k ≤ 2−k for
all 2 ≤ i ≤ n, so that∥∥Akv − 〈v, v1〉λk1v1

∥∥2 ≤ 4−k
n∑
i=2

|〈v, vi〉| ‖vi‖ ≤ 4−k
n∑
i=2

‖vi‖ = (n− 2)4−k.

In the middle inequalities, we used the triangle inequality for the norm, and also the Cauchy-
Schwarz inequality: |〈v, vi〉| ≤ ‖v‖ ‖vi‖ = 1 · 1 = 1 for all 1 ≤ i ≤ n.
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Exercise 1.11. Let X1, Y1 be random variables with joint PDF fX1,Y1 . Let X2, Y2 be random
variables with joint PDF fX2,Y2 . Let T : R2 → R2 and let S : R2 → R2 so that ST (x, y) =
(x, y) and TS(x, y) = (x, y) for every (x, y) ∈ R2. Let J(x, y) denote the determinant of the
Jacobian of S at (x, y). Assume that (X2, Y2) = T (X1, Y1). Using the change of variables
formula from multivariable calculus, show that

fX2,Y2(x, y) = fX1,Y1(S(x, y)) |J(x, y)| .

Solution. According to the change of variables theorem, if U is a “nice” subset of R2 and
φ is an injective differentiable function on U , then∫

φ(U)

f(u, v) dudv =

∫
U

f(φ(x, y))|Jφ(x, y)|dxdy

where Jφ(x, y) is the Jacobian of φ at (x, y). Since (X2, Y2) = T (X1, Y1), it follows that

P((X2, Y2) ∈ U) = P(S(X2, Y2) ∈ SU) = P((X1, Y1) ∈ S(U)) =

∫
S(U)

fX1,Y1(u, v) dudv

=

∫
U

fX1,Y1(S(x, y))|J(x, y)| dxdy

The last two lines used the definition of the joint density of X1, X1. Also, by definition of
the joint density of X2, Y2, we have

P((X2, Y2) ∈ U) =

∫
U

fX2,Y2(x, y) dxdy

Combining these observations, we have shown that∫
U

fX2,Y2(x, y) dxdy =

∫
U

fX1,Y1(S(x, y))|J(x, y)| dxdy

for all “nice” subsets U ⊆ R2, which implies that fX2,Y2 = fX1,Y1(S(x, y))|J(x, y)| for all
(x, y) ∈ R2.

Exercise 1.12. Suppose I tell you that the following list of 20 numbers is a random sample
from a Gaussian random variable, but I don’t tell the mean or standard deviation.

5.1715, 3.2925, 5.2172, 6.1302, 4.9889, 5.5347, 5.2269, 4.1966, 4.7939, 3.7127

5.3884, 3.3529, 3.4311, 3.6905, 1.5557, 5.9384, 4.8252, 3.7451, 5.8703, 2.7885

To the best of your ability, determine what the mean and standard deviation are of this
random variable. (This question is a bit open-ended, so there could be more than one correct
way of justifying your answer.)

Solution. As stated, this one was open ended, but it was a Gaussian with mean 4.5 and
standard deviation 1. One reasonable answer for determining the mean would be to just
average all 20 values to get 4.4426. And one reasonable answer for determining the standard
deviation is to sum the squares differences of the values to 4.4426, divide by 20, then take
the square root, getting an answer of 1.1784. One could also justify dividing by 19 in the
last quantity instead of 20. We will discuss that more later in the course.
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Exercise 1.13. Suppose I tell you that the following list of 20 numbers is a random sample
from a Gaussian random variable, but I don’t tell you the mean or standard deviation. Also,
around one or two of the numbers was corrupted by noise, computational error, tabulation
error, etc., so that it is totally unrelated to the actual Gaussian random variable.

−1.2045, −1.4829, −0.3616, −0.3743, −2.7298, −1.0601, −1.3298, 0.2554, 6.1865, 1.2185

−2.7273, −0.8453, −3.4282, −3.2270, −1.0137, 2.0653, −5.5393, −0.2572, −1.4512, 1.2347

To the best of your ability, determine what the mean and standard deviation are of this
random variable. Supposing you had instead a billion numbers, and 5 or 10 percent of
them were corrupted samples, can you come up with some automatic way of throwing out
the corrupted samples? (Once again, there could be more than one right answer here; the
question is intentionally open-ended.)

Solution. As stated, this one was open ended, but it was a Gaussian with mean −1 and
standard deviation 2. I would say a reasonable answer here is to do the same thing as
the previous exercise but then eliminate the two “outliers” which were 6.1865 and -5.5393.
Determining whether or not these are outliers could be tricky, and it is an important part
of doing statistics in the real world. How do we say for sure what is and is not an outlier,
and how can be convince ourselves what to do with such data?

Exercise 1.14. Let b1, . . . , bn be distinct numbers, representing the quality of n people.
Suppose n people arrive to interview for a job, one at a time, in a random order. That
is, every possible arrival order of these people is equally likely. We can think of an arrival
ordering of the people as an ordered list of the form a1, . . . , an, where the list a1, . . . , an is
a permutation of the numbers b1, . . . , bn. Moreover, we interpret a1 as the rank of the first
person to arrive, a2 as the rank of the second person to arrive, and so on. And all possible
permutations of the numbers b1, . . . , bn are equally likely to occur.

For each i ∈ {1, . . . , n}, upon interviewing the ith person, if ai > aj for all 1 ≤ j < i, then
the ith person is hired. That is, if the person currently being interviewed is better than the
previous candidates, she will be hired. What is the expected number of hirings that will be
made?

Solution. Let Xi = 1 if the ith person to arrive is hired, and let Xi = 0 otherwise.
Person 1 will always be hired, i.e. P(X1 = 1) = 1, so EX1 = 1. Since any arrival order is
equally likely, P(X2 = 1) = 1/2. So, EX2 = 1/2. In general, if i is a positive integer, then
P(Xi = 1) = 1/i. This follows since any ordering of the people is equally likely, so there
is a probability of 1/i of the ith person having the largest number ai among the numbers
a1, . . . , ai. So, EXi = 1/i. (More formally, fix i ∈ {1, . . . , n}, and let j ∈ {1, . . . , i}. Let
Aj be the event that aj > ak for every k ∈ {1, . . . , i} such that k 6= j. Then ∪ij=1Aj = Ω,

and Aj ∩ Aj′ = ∅ for every j, j′ ∈ {1, . . . , i} with j 6= j′. So, 1 = P(Ω) =
∑i

j=1 P(Aj). We

now claim that P(Aj) = P(Aj′) for every j, j′ ∈ {1, . . . , i} with j 6= j′. Given that this is
true, it immediately follows that P(Ai) = 1/i, as desired. To prove our claim, suppose we
write any arrival order of the people as c1, . . . , cn where c1, . . . , cn are distinct elements of
{1, . . . , n}. Then for any k < i, any arrival order c1, . . . , cn where aci exceeds ac1 , . . . , aci−1

can be uniquely associated to the arrival order c1, . . . , ck−1, ci, ck+1, . . . , ci−1, ck, ci+1, . . . , cn.
That is, the number of orderings where the ith number exceeds the previous ones is equal
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to the number of orderings where the kth number exceeds the first i numbers. That is,
P(Ai) = P(Ak).)

2. Homework 2

Exercise 2.1. You want to complete a set of 100 baseball cards. Cards are sold in packs of
ten. Assume that each individual card in the pack has a uniformly random chance of being
any element in the full set of 100 baseball cards. (In particular, there is a chance of getting
identical cards in the same pack.) How many packs of cards should you buy in order to get
a complete set of cards? That is, what is the expected number of cards you should buy in
order to get a complete set of cards (rounded up to a multiple of ten)? (Hint: First, just
forget about the packs of cards, and just think about buying one card at a time. Let N be
the number of cards you need to buy in order to get a full set of cards, so that N is a random
variable. More generally, for any 1 ≤ i ≤ 100, let Ni be the number of cards you need to
buy such that you have exactly i distinct cards in your collection (and before buying the last
card, you only had i−1 distinct cards in your collection). Note that N1 = 1. Define N0 = 0.
Then N = N100 =

∑100
i=1(Ni −Ni−1). You are required to compute EN . You should be able

to compute E[Ni −Ni−1]. This is the expected number of additional cards you need to buy
after having already collected i− 1 distinct cards, in order to see your ith new card.)

Solution. As suggested, consider the random variable Ni − Ni−1. This random variable is

geometrically distributed with parameter p = 100−(i−1)
100

= 101−i
100

, hence

E[Ni −Ni−1] =
100

101− i
Also, as suggested, note that

N = N100 =
100∑
i=1

(Ni −Ni−1).

So, taking expected values,

E[N100] =
100∑
i=1

E[Ni −Ni−1] =
100∑
i=1

100

101− i
= 100

100∑
j=1

1

j
≈ 518.7

by setting j = 101 − i. Finally, to account for the fact that the cards come in packs of 10,
round up to the nearest multiple of 10 to obtain 520. �

Exercise 2.2. You are trapped in a maze. Your starting point is a room with three doors.
The first door will lead you to a corridor which lets you exit the maze after three hours of
walking. The second door leads you through a corridor which puts you back to the starting
point of the maze after seven hours of walking. The third door leads you through a corridor
which puts you back to the starting point of the maze after nine hours of walking. Each
time you are at the starting point, you choose one of the three doors with equal probability.

Let X be the number of hours it takes for you to exit the maze. Let Y be the number of
the door that you initially choose.

• Compute E(X|Y = i) for each i ∈ {1, 2, 3}, in terms of EX.
• Compute EX.
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Solution. By definition of X and Y , E(X|Y = 1) = 3, E(X|Y = 2) = 7 + EX E(X|Y =
3) = 9 + EX. From the Total Expectation Theorem,

EX = EX1Y=1 + EX1Y=2 + EX1Y=3

= E(X|Y = 1)P(Y = 1) + E(X|Y = 2)P(Y = 2) + E(X|Y = 3)P(Y = 3).

That is,

3EX = 3 + 7 + EX + 9 + EX.

That is, EX = 19. �

Exercise 2.3. Let X1, . . . , Xn be continuous random variables with joint PDF f : Rn →
[0,∞). Assume that

fX1,...,Xn(x1, . . . , xn) =
n∏
i=1

fXi(xi), ∀x1, . . . , xn ∈ R.

Show that X1, . . . , Xn are independent.

Solution. Let A1, . . . , An ⊆ R. By the definition of a joint distribution, and then using our
assumption,

P(X1 ∈ A1, . . . , Xn ∈ An) =

∫
A1×···×An

fX1,...,Xn(x1, . . . , xn)dx1 · · · dxn

=

∫
A1

· · ·
∫
An

fX1(x1) · · · fXn(xn)dx1 · · · dxn

=
n∏
i=1

∫
Ai

fXi(xi)dxi =
n∏
i=1

P(Xi ∈ Ai).

Therefore, X1, . . . , Xn are independent. �

Exercise 2.4. Let φ : R → R. We say that φ is convex if, for any x, y ∈ R and for any
t ∈ [0, 1], we have

φ(tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y).

Let φ : R→ R. Show that φ is convex if and only if: for any y ∈ R, there exists a constant
a and there exists a function L : R→ R defined by L(x) = a(x− y) +φ(y), x ∈ R, such that
L(y) = φ(y) and such that L(x) ≤ φ(x) for all x ∈ R. (In the case that φ is differentiable,
the latter condition says that φ lies above all of its tangent lines.)

(Hint: Suppose φ is convex. If x is fixed and y varies, show that φ(y)−φ(x)
y−x increases as y

increases. Draw a picture. What slope a should L have at x?)

Solution. Assume φ is convex.

Now, fix x ∈ R and let b < x < c. Let MR := {φ(c)−φ(x)
c−x : c > x}, ML := {φ(x)−φ(b)

x−b : b < x}
be the slopes of the secant lines through φ using points to the right and left of x, respectively.
We claim that for anym ∈MR, p ∈ML, we havem ≥ p. Letm ∈MR, p ∈ML. By definition,

there exist b < x < c such that m = φ(c)−φ(x)
c−x and p = φ(x)−φ(b)

x−b . Let t ∈ (0, 1) such that
tb+(1−t)c = x. Since φ is convex, tφ(b)+(1−t)φ(c) ≥ φ(x). The following list of statements
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are all equivalent:

m ≥ p⇐⇒ φ(c)− φ(x)

c− x
≥ φ(x)− φ(b)

x− b
⇐⇒ (x− b)(φ(c)− φ(x) ≥ (c− x)(φ(x)− φ(b))

⇐⇒ (x− b)φ(c) + bφ(x) ≥ cφ(x)− (c− x)φ(b)

⇐⇒ (1− t)(c− b)φ(c) + bφ(x) ≥ cφ(x)− t(c− b)φ(b)

, using (x− b) = (1− t)(c− b), c− x = t(c− b)
⇐⇒ (1− t)(c− b)φ(c) ≥ (c− b)φ(x)− t(c− b)φ(b)

⇐⇒ (1− t)φ(c) + tφ(b) ≥ φ(x)

We verified that the last line holds. We conclude that m ≥ p. So, if x ∈ R is fixed, we can
choose some a ∈ R such that p ≤ a ≤ m for all p ∈ ML,m ∈ MR. Consider the function
L(z) = a(z− x) + φ(x), z ∈ R. Then L(x) = φ(x). We claim that L(z) ≤ φ(z) for all z ∈ R.
We argue by contradiction. Suppose there is some z ∈ R with L(z) > φ(z). Without loss of

generality, z > x. By definition of L, a(z − x) + φ(x) > φ(z), so a > φ(z)−φ(x)
z−x . But z > x,

so φ(z)−φ(x)
z−x ∈ MR, and by choice of a, we must have a ≤ φ(z)−φ(x)

z−x , a contradiction. Having
found a contradiction, we conclude that L(z) ≤ φ(z), as desired.

Now, assume: for any y ∈ R, there exists a constant a and there exists a function L : R→ R
defined by L(x) = a(x− y) +φ(y), x ∈ R, such that L(y) = φ(y) and such that L(x) ≤ φ(x)
for all x ∈ R. We now show that φ is convex.

Fix b, c ∈ R. Let t ∈ (0, 1). Set y := tb + (1 − t)c. By assumption, there is a function
L(x) = a(x− y) + φ(y) such that L(x) ≤ φ(x) for all x ∈ R. In particular,

a(b− y) + φ(y) ≤ φ(b), a(c− y) + φ(y) ≤ φ(c).

Multiplying by t > 0 and (1− t) > 0 respectively,

ta(b− y) + tφ(y) ≤ tφ(b), (1− t)a(c− y) + (1− t)φ(y) ≤ (1− t)φ(c)

Note that t(b− y) + (1− t)(c− y) = tb+ (1− t)c− y = 0 by definition of y. So, adding the
inequalities,

tφ(b) + (1− t)φ(c) ≥ φ(y) + a[t(b− y) + (1− t)(c− y)] = φ(y) = φ(tb+ (1− t)c).

�

Exercise 2.5 (Jensen’s Inequality). Let X : Ω → [−∞,∞] be a random variable. Let
φ : R→ R be convex. Assume that E |X| <∞ and E |φ(X)| <∞. Then

φ(EX) ≤ Eφ(X).

(Hint: use Exercise 2.4 with y := EX.) Deduce the triangle inequality:

|EX| ≤ E |X| .

Solution. From Exercise 2.4, for any y ∈ R, there exists a constant a and there exists a
function L : R→ R defined by L(x) = a(x− y) + φ(y), x ∈ R, such that L(x) ≤ φ(x) for all
x ∈ R. So, choose y := EX. Then there exists a ∈ R such that

a(x− EX) + φ(EX) ≤ φ(x), ∀x ∈ R.
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Taking expected values of both sides in x = X, we get

φ(EX) = E[a(X − EX) + φ(EX)] ≤ Eφ(X).

�

Exercise 2.6 (Markov’s Inequality). Let X : Ω→ [−∞,∞] be a random variable. Then

P(|X| ≥ t) ≤ E |X|
t

, ∀ t > 0.

(Hint: multiply both sides by t and use monotonicity of E.)

Solution. Let t > 0. Then t1|X|>t ≤ |X|, so taking expected values of both sides gives

tP(|X| > t) = Et1|X|>t ≤ E |X| .
�

Exercise 2.7 (The Chernoff Bound). Let X be a random variable and let r > 0. Define
MX(t) := EetX for any t ∈ R. Show that, for any t > 0,

P(X > r) ≤ e−trMX(t).

Consequently, if X1, . . . , Xn are independent random variables with the same CDF, and if
r, t > 0,

P

(
1

n

n∑
i=1

Xi > r

)
≤ e−trn(MX1(t))

n.

For example, if X1, . . . , Xn are independent Bernoulli random variables with parameter 0 <
p < 1, and if r, t > 0,

P

(
X1 + · · ·+Xn

n
− p > r

)
≤ e−trn(e−tp[pet + (1− p)])n.

And if we choose t appropriately, then the quantity P
(

1
n

∑n
i=1(Xi − p) > r

)
becomes expo-

nentially small as either n or r become large. That is, 1
n

∑n
i=1Xi becomes very close to its

mean. Importantly, the Chernoff bound is much stronger than either Markov’s or Cheyshev’s
inequality, since they only respectively imply that

P

(∣∣∣∣X1 + · · ·+Xn

n
− p
∣∣∣∣ > r

)
≤ 2p(1− p)

r
, P

(∣∣∣∣X1 + · · ·+Xn

n
− p
∣∣∣∣ > r

)
≤ p(1− p)

nr2
.

Solution. Since the exponential function is strictly increasing, if t > 0, then X > r if and
only if tX > tr if and only if eX > er. That is,

P(X > r) = P(tX > tr) = P(etX > etr) ≤ e−trEetX .

The last line used Markov’s inequality. �

Exercise 2.8 (Confidence Intervals). Among 625 members of a bank chosen uniformly
at random among all bank members, it was found that 25 had a savings account. Give
an interval of the form [a, b] where 0 ≤ a, b ≤ 625 are integers, such that with about 95%
certainty, if we sample 625 bank members independently and uniformly at random (from a
very large bank membership), then the number of these people with savings accounts lies in
the interval [a, b]. (Hint: if Y is a standard Gaussian random variable, then P(−2 ≤ Y ≤
2) ≈ .95.)
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Solution. For any 1 ≤ i ≤ 625, let Xi = 1 if the ith sampled bank member has a savings
account, and Xi = 0 otherwise. We assume that X1, . . . , X625 are iid with P(X1 = 1) =
25/625 = 1/25 =: p, EX1 = 1/25 and var(X1) = p(1 − p) = (1/25)(1 − (1/25)) = 24/625.
Using the Central Limit Theorem as an approximation, we have

P

(
−2 ≤ X1 + · · ·+X625 − 625p√

625p(1− p)
≤ 2

)
≈ .95

That is,

P(25− 2
√

24 ≤ X1 + · · ·+X625 ≤ 25 + 2
√

24) ≈ .95

So, the number of bank members with a savings account is in the interval [15.2, 39.4] with
about 95% certainty. Rounding to integers, we choose [a, b] = [15, 40]. �

Exercise 2.9 (Hypothesis Testing). Suppose we run a casino, and we want to test whether
or not a particular roulette wheel is biased. Let p be the probability that red results from one
spin of the roulette wheel. Using statistical terminology, “p = 18/38” is the null hypothesis,
and “p 6= 18/38” is the alternative hypothesis. (On a standard roulette wheel, 18 of the 38
spaces are red.) For any i ≥ 1, let Xi = 1 if the ith spin is red, and let Xi = 0 otherwise.

Let µ := EX1 and let σ :=
√

var(X1). If the null hypothesis is true, and if Y is a standard
Gaussian random variable

lim
n→∞

P

( ∣∣∣∣X1 + · · ·+Xn − nµ
σ
√
n

∣∣∣∣ ≥ 2

)
= P(|Y | ≥ 2) ≈ .05.

To test the null hypothesis, we spin the wheel n times. In our test, we reject the null
hypothesis if |X1 + · · ·+Xn − nµ| > 2σ

√
n. Rejecting the null hypothesis when it is true is

called a type I error. In this test, we set the type I error percentage to be 5%. (The type I
error percentage is closely related to the p-value.)

Suppose we spin the wheel n = 3800 times and we get red 1868 times. Is the wheel biased?
That is, can we reject the null hypothesis with around 95% certainty?

Solution. If the null hypothesis is true, then σ =
√
p(1− p) =

√
(18/38)(20/38). Plugging

in the same values, we have∣∣(X1 + · · ·+Xn − np)/(σ
√
n)
∣∣ =

∣∣∣(1868− 3800(18/38))/
√

(18/38)(20/38)
√

3800
∣∣∣ ≈ 2.2 > 2.

So, we can reject the null hypothesis with above 95% certainty. �

Exercise 2.10. A community has m > 0 families. Each family has at least one child. The
largest family has k > 0 children. For each i ∈ {1, . . . , k}, there are ni families with i
children. So, n1 + · · ·+ nk = m. Choose a child randomly in the following two ways.

Method 1. First, choose one of the families uniformly at random among all of the families.
Then, in the chosen family, choose one of the children uniformly at random.

Method 2. Among all of the n1 + 2n2 + 3n3 + · · · + knk children, choose one uniformly
at random.

What is the probability that the chosen child is the first-born child in their family, if you
use Method 1?

What is the probability that the chosen child is the first-born child in their family, if you
use Method 2?

15



Solution. In Method 1, if the family has i children, then the probability of choosing the
first-born is 1/i. By conditioning on each of the m families being chosen (each being equally
likely), the probability that any chosen child is first born is

1

m

k∑
i=1

ni/i.

In Method 2, the probability is the number of families divided by the number of children,
i.e.

m∑k
i=1 ini

.

�

Exercise 2.11. Let 0 < p ≤ ∞. Show that, if Y1, Y2, . . . : Ω→ R converge to Y : Ω→ R in
Lp, then Y1, Y2, . . . converges to Y in probability.

Then, show that the converse is false.

Solution. Let ε > 0 and let 0 < p <∞. From Markov’s inequality,

P(|Yn − Y | > ε) = P(|Yn − Y |p > εp) ≤ ε−pE |Yn − Y |p .

By assumption, the right side converges to 0. Therefore, Y1, Y2, . . . converges to Y in proba-
bility.

The case p =∞ follows from any case p <∞ by Jensen’s inequality, since e.g. E |Yn − Y |2 ≤
‖Yn − Y ‖∞.

To see that the converse is false, fix 0 < p < ∞, let Ω := [0, 1] with P uniform on Ω and
consider Yn := n1/p1[0,1/n]. Then Y1, Y2, . . . converges in probability to 0, since if 1 > ε > 0,
then P(|Yn − 0| > ε) ≤ P([0, 1/n]) = 1/n → 0 as n → ∞. However, Y1, Y2, . . . does not
converge in Lp to 0 since E |Yn − 0|p = n/n = 1 for all n ≥ 1. �

Exercise 2.12. Prove the following statement. Almost sure convergence does not imply
convergence in L2, and convergence in L2 does not imply almost sure convergence. That
is, find random variables that converge in L2 but not almost surely. Then, find random
variables that converge almost surely but not in L2.

Solution. Let Ω := [0, 1] with P uniform on Ω.
For any integer n ≥ 1, write n = 2j + k, where 0 ≤ k < 2j, so that the integers j, k are

uniquely determined by n. For example, 3 = 21 + 1 and 6 = 22 + 2
Let Y1, Y2, . . . so that for any n ≥ 1, Yn := 1[k2−j ,(k+1)2−j ]. Then Y1, Y2, . . . converges in

L2 to zero, since E(Yn − 0)2 = EY 2
n = 2−2j → 0 as n → ∞. However, Y1, Y2, . . . does not

converge almost surely to 0, since any ω ∈ Ω has infinitely many n ≥ 1 such that Yn(ω) = 1.
Finally, let Zn := n1[0,1/n]. Then Z1, Z2, . . . converges almost surely to 0 since limn→∞ Zn =

0 for all ω ∈ (0, 1], but it does not converge in L2, since E(Zn − 0)2 = EZ2
n = n2E1[0,1/n] =

n→∞ as n→∞. �

Exercise 2.13. Estimate the probability that 1000000 coin flips of fair coins will result in
more than 501, 000 heads, using the Central Limit Theorem. (Some of the following integrals

may be relevant:
∫ 0

−∞ e
−t2/2dt/

√
2π = 1/2,

∫ 1

−∞ e
−t2/2dt/

√
2π ≈ .8413,

∫ 2

−∞ e
−t2/2dt/

√
2π ≈

.9772,
∫ 3

−∞ e
−t2/2dt/

√
2π ≈ .9987.) (Hint: use Bernoulli random variables.)
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Casinos do these kinds of calculations to make sure they make money and that they do
not go bankrupt. Financial institutions and insurance companies do similar calculations for
similar reasons.

Solution. For any 1 ≤ 1, let Xi = 1 if the ith coin flip is heads and Xi = 0 otherwise. We
assume that X1, . . . are iid with P(X1 = 1) = 1/2, EX1 = 1/2 and var(X1) = 1/4. We want
to know the probability that

X1 + · · ·+X107 > 501000.

Equivalently, we want the probability of the event{
X1 + · · ·+X107 − 107/2 > 1000

}
=
{X1 + · · ·+X107 − 107/2√

106
√

1/4
> 2
}

=

Using the Central Limit Theorem as an approximation, we have the approximation

P

(
X1 + · · ·+X107 − 107/2√

106
√

1/4
> 2

)
≈
∫ ∞

2

e−x
2/2dx/

√
2π

= 1−
∫ 2

∞
e−x

2/2dx/
√

2π ≈ 1− .9772 = .0228.

�

3. Homework 3

Exercise 3.1. Let n ≥ 2 be a positive integer. Let x = (x1, . . . , xn) ∈ Rn. For any
x, y ∈ Rn, define 〈x, y〉 :=

∑n
i=1 xiyi and ‖x‖ := 〈x, x〉1/2. Let Sn−1 := {x ∈ Rn : ‖x‖ = 1}

be the sphere of radius 1 centered at the origin. Let x ∈ Sn−1 be fixed. Let v be a random
vector that is uniformly distributed in Sn−1.

In modern statistics and data science, data can arise as vectors on high-dimensional
spheres. A high-dimensional sphere is rather different from a low-dimensional one, so our
intuition about the data in low dimensions may not apply any more in high dimensions. For
example, any “equator” of the sphere has most of the mass near it, in the following sense:

For any t > 0, and for any x ∈ Sn−1 that is fixed,

P(v ∈ Sn−1 : |〈v, x〉| > t/
√
n) ≤ 10

t
.

(Hint: it might be helpful to use Markov’s inequality.)

Solution. Argue as in Exercise 3.1 and compute an upper bound for E |〈x, v〉|. We first
claim that it suffices to assume that x = (1, 0, . . . , 0). To see this, note that the uniform
distribution on Sn−1 is rotation invariant. That is, for any rotation R : Rn → R, and for any
x ∈ Sn−1, we have

E |〈x, v〉| = E |〈x,Rv〉| .
The Euclidean inner product is itself invariant under rotations, that is

E |〈x, v〉| = E |〈x,Rv〉| = E
∣∣〈R−1x,R−1Rv〉

∣∣ = E
∣∣〈R−1x, v〉

∣∣ .
So, if we choose the rotation R such that R−1x = (1, 0, . . . , 0), we then

E |〈x, v〉| = E |〈(1, 0, . . . , 0), v〉| .
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That is, it suffices to compute the expected value when x = (1, 0, . . . , 0).
Now, using hyperspherical coordinates, we can write this expected value as

E |〈(1, 0, . . . , 0), v〉| =
∫ 2π

φn−1=0

∫ π
φn−2=0

· · ·
∫ π
φ1=0
|cosφ1| sinn−2 φ1 sinn−3 φ2 · · · sinφn−2dφ1 · · · dφn−1∫ 2π

φn−1=0

∫ π
φn−2=0

· · ·
∫ π
φ1=0

sinn−2 φ1 sinn−3 φ2 · · · sinφn−2dφ1 · · · dφn−1

.

The outermost integrals are the same on the top on bottom, so they cancel and we are left
with

E |〈(1, 0, . . . , 0), v〉| =
∫ π
φ1=0
|cosφ1| sinn−2 φ1dφ1∫ π
φ1=0

sinn−2 φ1dφ1

=

∫ π/2
φ1=0

cosφ1 sinn−2 φ1dφ1∫ π/2
φ1=0

sinn−2 φ1dφ1

.

The upper integral can be computed exactly by the substitution u = sinφ1 so that du =
cosφ1dφ1 and ∫ π/2

φ1=0

cosφ1 sinn−2 φ1dφ1 =

∫ 1

0

un−2du =
1

n− 1
.

There are many ways to lower bound the lower integral. We use the inequality cos(x) ≥ e−x
2

valid for all 0 ≤ x ≤ 1/5 [Proof: By e.g. Taylor series expansion, cos(x) = 1−x2/2+c(x)x4/24

where |c(x)| ≤ 1 and e−x
2

= 1 − x2 + 2x4b(x) where |b(x)| ≤ 1 for all 0 ≤ x ≤ 1/5, so
x2/2 ≥ 3x4 for all 0 ≤ x ≤ 1/5.], so that∫ π/2

φ1=0

sinn−2 φ1dφ1 =

∫ π/2

φ1=0

cosn−2 φ1dφ1

≥
∫ 1/5

φ1=0

e−φ
2
1(n−2)dφ1 = (n− 2)−1/2

∫ √n−2/5

φ1=0

e−φ
2
1dφ1

≥ 1

10
(n− 2)−1/2.

Putting everything together,

E |〈(1, 0, . . . , 0), v〉| ≤ 10/(n− 1)

(n− 2)−1/2
√

2π
=

10√
2π

√
n− 2

n− 1
≤ 10√

n
.

Markov’s inequality completes the proof

Exercise 3.2. Let X be uniformly distributed on [0, 1]. Show that the location family of X is
not an exponential family in the following sense. The corresponding densities {f(x+µ)}µ∈R
cannot be written in the form

h(x) exp(w(µ)t(x)− a(w(µ)))

where h : R → [0,∞), w : R → R, t : R → R, x ∈ R and a(w(µ)) is a real number chosen
so that the integral of the density is one. (Hint: Argue by contradiction. Assume that the
location family is a one-parameter exponential family. Compare where the different densities
are zero or nonzero as the parameter changes.)

Solution. The exponential term is positive, so h must be zero whenever f(x + µ) is zero,
for every µ ∈ R. So, it is impossible to write the location family in this way.
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Exercise 3.3. Suppose we have a k-parameter exponential family in canonical form so that

fw(x) := h(x) exp
( k∑
i=1

witi(x)− a(w)
)
,

a(w) := log

∫
Rn
h(x) exp

( k∑
i=1

witi(x)
)
dµ(x).

W := {w ∈ Rk : a(w) <∞}.

Show that a(w) is a convex function. That is, for any w1, w2 ∈ Rk and for any t ∈ (0, 1),

a(tw1 + (1− t)w2) ≤ ta(w1) + (1− t)a(w2).

(Hint: use Hölder’s inequality of the form
∫
|fg| dµ ≤ (

∫
|f |p dµ)1/p(

∫
|g|q dµ)1/q where 1/p+

1/q = 1, where p = t−1.)
Conclude that the set W is a convex set. (That is, if w1, w2 ∈ W then for any t ∈ [0, 1],

tw1 + (1− t)w2 ∈ W .)

Solution. Let p = 1/t so that 1/p′ = 1− 1/p = 1− t

a(tw1 + (1− t)w2) = log

∫
Rn
h(x) exp

( k∑
i=1

(tw1,i + ((1− t)w2,i))ti(x)
)
dµ(x)

= log

∫
Rn

[h(x)]
1
p

+ 1
p′ exp

( k∑
i=1

tw1,iti(x)
)

exp
( k∑
i=1

(1− t)w2,iti(x)
)
dµ(x)

≤ log
[( ∫

Rn
h(x) exp

(
p

k∑
i=1

tw1,iti(x)
)
dµ(x)

)1/p

·
(∫

Rn
h(x) exp

(
p′

k∑
i=1

(1− t)w2,iti(x)
)
dµ(x)

)1/p]
=

1

p
log
(∫

Rn
h(x) exp

(
p

k∑
i=1

tw1,iti(x)
)
dµ(x)

+
1

p′
log

∫
Rn
h(x) exp

(
p′

k∑
i=1

(1− t)w2,iti(x)
)
dµ(x)

]
=

1

p
log
(∫

Rn
h(x) exp

( k∑
i=1

w1,iti(x)
)
dµ(x)

+
1

p′
log

∫
Rn
h(x) exp

( k∑
i=1

w2,iti(x)
)
dµ(x)

]
= ta(w1) + (1− t)a(w2).

Exercise 3.4. Using a two parameter exponential family for a Gaussian random variable
(with mean µ and variance σ2), compute both sides of the following identity in terms of µ
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and σ:

e−a(w) ∂2

∂wi∂wj
ea(w) =

∫
R
ti(x)tj(x)h(x) exp

( 2∑
i=1

witi(x)− a(w)
)
dµ(x), ∀ 1 ≤ i, j ≤ 2.

Recall that in this case,

t1(x) := x, t2(x) := x2, w1 :=
µ

σ2
, w2 := − 1

2σ2
,

a(w) := − w2
1

4w2

− 1

2
log(−2w2).

Solution. For i = j = 1, we have

e−a(w) ∂2

∂wi∂wj
ea(w) =

∂2

∂w2
1

a(w) +
( ∂

∂w1

a(w)
)2

= − 1

2w2

+
w2

1

4w2
2

=

∫
R
x2h(x) exp

( 2∑
i=1

witi(x)− a(w)
)
dµ(x) = EX2,

So, EX2 = σ2 + µ2σ−4σ4 = σ2 + µ2, where X is a Gaussian with mean µ and variance σ2.
For i = j = 2, we have

e−a(w) ∂2

∂wi∂wj
ea(w) =

∂2

∂w2
2

a(w) +
( ∂

∂w2

a(w)
)2

= − w2
1

2w3
2

+
1

2
w−2

2 + (
w2

1

4w2
2

− 1

2
w−1

2 )2

=

∫
R
x4h(x) exp

( 2∑
i=1

witi(x)− a(w)
)
dµ(x) = EX4,

So, EX4 = µ2σ−44σ6 + 2σ4 + (µ2 + σ2)2 = 4µ2σ2 + 2σ4 + (µ2 + σ2)2 = µ4 + 6σ2µ2 + 3σ4,
where X is a Gaussian with mean µ and variance σ2.

For i = 1, j = 2, we have

e−a(w) ∂2

∂wi∂wj
ea(w) =

∂2

∂w1∂w2

a(w) +
∂

∂w1

a(w)
∂

∂w2

a(w) =
w1

2w2
2

− w1

2w2

( w2
1

4w2
2

− 1

2w2

)
=

∫
R
x3h(x) exp

( 2∑
i=1

witi(x)− a(w)
)
dµ(x) = EX3,

So, EX3 = 2µσ2 +µ(µ2 +σ2) = µ3 +3µσ2, where X is a Gaussian with mean µ and variance
σ2.

Exercise 3.5. Let X : Ω→ Rn be a random variable with the standard Gaussian distri-
bution:

P(X ∈ A) :=

∫
A

e−(x21+···+x2n)/2dx(2π)−n/2, ∀A ⊆ Rn measurable.

Let v1, . . . , vm be vectors in Rn. Let 〈·, ·〉 : Rn × Rn → R be the standard inner product
on Rn, so that 〈x, y〉 :=

∑n
i=1 xiyi for any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn.

First, let v ∈ Rn and show that 〈X, v〉 is a mean zero Gaussian with variance 〈v, v〉.
Then, show that the random variables 〈X, v1〉, . . . , 〈X, vm〉 are independent if and only if

the vectors v1, . . . , vm are pairwise orthogonal.
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(Hint: use the rotation invariance of the Gaussian.)

Solution. Without loss of generality, all of the vectors are nonzero. Suppose for now that
m ≤ n. Suppose the vectors v1, . . . , vm are pairwise orthogonal. For any 1 ≤ i ≤ n, let
ei ∈ Rn be the vector with a 1 in the ith entry and zeros in all other entries. Let Q be any
n × n real orthogonal matrix such that Qei = vi/ ‖vi‖ for all 1 ≤ i ≤ m (this is possible
since m ≤ n). Specifically, we let the first m columns of Q be v1/ ‖v1‖ , . . . , vm/ ‖vm‖.
Suppose the remaining columns of Q are Qm+1, . . . , Qn. Recall that Q−1 = QT so that
QQT = QTQ = In, where In denotes the n × n identity matrix. Note the rows of QT are
v1/ ‖v1‖ , . . . , vm/ ‖vm‖ , Qm+1, . . . , Qn, so

Q



〈X, v1
‖v1‖〉
...

〈X, vm
‖vm‖〉

〈X,Qm+1〉
...

〈X,Qn〉


= QQTX = X. (∗)

So, if A1, . . . , Am ⊆ R, we have

P(〈X, v1〉 ∈ A1, . . . , 〈X, vm〉 ∈ Am) = P( (〈X, v1〉, . . . , 〈X, vm〉) ∈ A1 × · · · × Am)

= P( (〈X, v1〉, . . . , 〈X, vm〉, 〈X,Qm+1〉, . . . , 〈X,Qn〉) ∈ A1 × · · · × Am × Rn−m)

= P( (〈X, v1

‖v1‖
〉, . . . , 〈X, vm

‖vm‖
〉, 〈X,Qm+1〉, . . . , 〈X,Qn〉) ∈

A1

‖v1‖
× · · · × Am

‖vm‖
× Rn−m)

= P(QTQ(〈X, v1

‖v1‖
〉, . . . , 〈X, vm

‖vm‖
〉, 〈X,Qm+1〉, . . . , 〈X,Qn〉)T ∈

A1

‖v1‖
× · · · × Am

‖vm‖
× Rn−m)

= P(Q(〈X, v1

‖v1‖
〉, . . . , 〈X, vm

‖vm‖
〉, 〈X,Qm+1〉, . . . , 〈X,Qn〉)T ∈ Q(

A1

‖v1‖
× · · · × Am

‖vm‖
× Rn−m))

= P(X ∈ Q(
A1

‖v1‖
× · · · × Am

‖vm‖
× Rn−m)) , by (∗)

=

∫
Q(

A1
‖v1‖
×···× Am

‖vm‖
×Rn−m)

e−(x21+···+x2n)/2dx(2π)−n/2 , by definition of X

=

∫
A1
‖v1‖
×···× Am

‖vm‖
×Rn−m

e−x
TQTQx/2dx(2π)−n/2 , changing variables

=

∫
A1
‖v1‖
×···× Am

‖vm‖
×Rn−m

e−‖x‖
2/2dx(2π)−n/2 =

m∏
i=1

∫
Ai/‖vi‖

e−x
2
i /2dxi/

√
2π , by Fubini’s Theorem

=
m∏
i=1

P(〈X, vi
‖vi‖
〉 ∈ Ai
‖vi‖

) =
m∏
i=1

P(〈X, vi〉〉 ∈ Ai).

In the penultimate equality, we used that 〈X, vi
‖vi‖〉 is a standard one-dimensional Gaussian

random variable. This follows from the m = 1 case of the above.
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More generally, for any linearly independent vectors v1, . . . , vm, we construct Q as above,
where now Q may not be orthogonal, and

(QQT )−1Q



〈X, v1
‖v1‖〉
...

〈X, vm
‖vm‖〉

〈X,Qm+1〉
...

〈X,Qn〉


= (QQT )−1QQTX = X. (∗)

So we then get

P(〈X, v1〉 ∈ A1, . . . , 〈X, vm〉 ∈ Am) = P( (〈X, v1〉, . . . , 〈X, vm〉) ∈ A1 × · · · × Am)

= P( (〈X, v1〉, . . . , 〈X, vm〉, 〈X,Qm+1〉, . . . , 〈X,Qn〉) ∈ A1 × · · · × Am × Rn−m)

= P( (〈X, v1

‖v1‖
〉, . . . , 〈X, vm

‖vm‖
〉, 〈X,Qm+1〉, . . . , 〈X,Qn〉) ∈

A1

‖v1‖
× · · · × Am

‖vm‖
× Rn−m)

= P((QQT )−1Q(〈X, v1

‖v1‖
〉, . . . , 〈X, vm

‖vm‖
〉, 〈X,Qm+1〉, . . . , 〈X,Qn〉)T

∈ (QQT )−1Q(
A1

‖v1‖
× · · · × Am

‖vm‖
× Rn−m))

= P(X ∈ (QQT )−1Q(
A1

‖v1‖
× · · · × Am

‖vm‖
× Rn−m)) , by (∗)

=

∫
(QQT )−1Q(

A1
‖v1‖
×···× Am

‖vm‖
×Rn−m)

e−(x21+···+x2n)/2dx(2π)−n/2 , by definition of X

= |det(Q)|−1

∫
A1
‖v1‖
×···× Am

‖vm‖
×Rn−m

e−x
TQT (QQT )−2Qx/2dx(2π)−n/2 , changing variables

Letting D be the diagonal matrix with diagonal entries ‖v1‖−1 , . . . , ‖vm‖−1 , 1, . . . , 1,

P(〈X, v1〉 ∈ A1, . . . , 〈X, vm〉 ∈ Am)

= |det(Q)|−1

∫
D(A1×···×Am×Rn−m)

e−x
TQT (QQT )−2Qx/2dx(2π)−n/2

= |det(Q)|−1 |det(D)|
∫
A1×···×Am×Rn−m

e−x
TDQT (QQT )−2QDx/2dx(2π)−n/2

So, the joint density of 〈X, v1〉, . . . , 〈X, vm〉 is

|det(Q)|−1 |det(D)|
∫
Rn−m

e−x
TDQT (QQT )−2QDx/2dxn−m+1 · · · dxn(2π)−n/2.

In the special case n = m = 2 with ‖v1‖ = ‖v2‖ = 1, the joint density becomes

|det(Q)|−1 e−x
TQT (QQT )−2Qx/2(2π)−n/2.
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In this case Q is the matrix whose columns are v1, v2. Let B := QT (QQT )−2Q. Suppose we
write Q in its singular value decomposition as Q = UDV where U, V are orthogonal and D
is diagonal. If v1 = ±v2, then 〈X, v1〉, 〈X, v2〉 are dependent, so we may assume that v1 6= v2

and v1 6= −v2. Then Q has rank 2, so D has nonzero diagonal entries. Since QT = V TDUT ,
using UUT = I and V V T = I, we get

QT (QQT )−2Q = V TD−2V.

If v1, v2 are not orthogonal, D 6= I, so QT (QQT )−2Q is not a diagonal matrix. Therefore,

|det(Q)|−1 e−x
TQT (QQT )−2Qx/2(2π)−n/2 is not a product function, so 〈X, v1〉, 〈X, v2〉 are not

independent. The general case then follows from the m = n = 2 case.
�

Exercise 3.6. Recall that the gamma distribution has two parameters α, β > 0.

• Show that the gamma distribution is a 2-parameter exponential family.
• Find the mean and variance of a gamma distributed random variable by differentiat-

ing the exponential family.
• Find the moment generating function of a gamma distributed random variable, and

use it to find the distribution of
∑n

i=1Xi where X1, . . . , Xn are independent, and Xi

has gamma distribution with parameters αi and β for all 1 ≤ i ≤ n.
You may use without proof the following uniqueness result about moment gener-

ating functions (MGFs): If Y and Z are two random variables whose MGFs coincide
in a neighborhood of 0 (∃δ > 0 for which MY (u) = MZ(u) < ∞ for all u ∈ [−δ, δ]),
then Y and Z have the same distribution.

Solution. Let α, β > 0. Recall that the gamma distribution has density

f(x) :=

{
xα−1e−x/β

βαΓ(α)
, ifx > 0

0, ifx ≤ 0.

We write
xα−1e−x/β = e−x/β+(α−1) log x.

Then, if h(x) = 1x>0, we have

f(x) = h(x)e−x/β+(α−1) log x−α log β−log Γ(α).

So, if we define w1(α, β) := −1/β, w2(α, β) := α − 1, t1(x) := x, t2(x) := log x, and
a(w(α, β)) := α log β + log Γ(α), then we have

f(x) = h(x) exp
( 2∑
i=1

wi(α, β)ti(x)− a(w(α, β))
)
.

That is, the Gamma distribution is a two-parameter exponential family, where α, β > 0
From Example 3.13 in the notes, we have

∂

∂β
a(w(α, β)) = Eα,β(

2∑
i=1

∂wi
∂β

ti) = Eα,β(β−2x)

So, the expected value of the Gamma distributed random variable is

β2 ∂

∂β
a(w(α, β)) = β2β−1α = αβ.

23



Recall that

a(w(α, β)) = log

∫
R
h(x) exp

( 2∑
i=1

wi(α, β)ti(x)
)
dµ(x).

By differentiating a(w(α, β)) twice, we get

e−a(w(α,β)) ∂
2

∂β2
ea(w(αβ)) = Eα,β

(
(

2∑
i=1

∂wi
∂β

ti)
2 +

2∑
i=1

∂2wi
∂β2

ti

)
= Eα,β

(
(β−2x)2 − 2β−3x

)
.

That is,

β−4Eα,βx
2 = e−a(w(α,β)) ∂

2

∂β2
ea(w(α,β)) + 2β−3Eα,βx

=
∂2

∂β2
a(w(α, β)) +

( ∂

∂β
a(w(α, β))

)2

+ 2β−3αβ

= −αβ−2 + α2β−2 + 2β−3αβ = αβ−2 + α2β−2.

So, the second moment is αβ2 + α2β2. Therefore, the variance is

αβ2 − (αβ)2 = αβ2 + α2β2 − α2β2 = αβ2.

We find the moment generating function directly. Let z ∈ R with z < 1/β. Then

Eα,βe
zX =

∫ ∞
0

xα−1e−x/β

βαΓ(α)
ezxdx =

∫ ∞
0

xα−1e−x(−z+1/β)

βαΓ(α)
dx

= (1− zβ)−α
∫ ∞

0

xα−1e−x
1

β/(1−tβ)

βα(1− zβ)−αΓ(α)
dx = (1− zβ)−α.

The last equality used that the integral of the gamma density is one.
If X1, . . . , Xn are independent and gamma distributed with parameters α1, . . . , αn > 0

and β > 0, then by independence, for any z < 1/β,

Eez(
∑n
i=1Xi) =

n∏
i=1

ezXi =
n∏
i=1

(1− zβ)−αi = (1− zβ)−
∑n
i=1 αi .

Inverting the moment generating function (by Theorem 9.2 in the notes), we conclude that∑n
i=1Xi is gamma distributed with parameters

∑n
i=1 αi and β, since this random variable

has this moment generating function.
�

Exercise 3.7. Let n ≥ 2 be an integer. Let X1, . . . , Xn be a random sample of size n.
Assume that µ := EX ∈ R and σ :=

√
var(X) <∞. Let X be the sample mean and let S

be the sample standard deviation of the random sample. Show the following

• Var(X) = σ2/n.
• ES2 = σ2.
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Solution. The first equation follows since the random variables are independent, so the
variances add, so that

Var(X) = n−2

n∑
i=1

Var(Xi) = n−2nσ2 = σ2/n.

For the second identity, we have

ES2 =
1

n− 1

n∑
i=1

E(Xi −X)2 =
1

n− 1

n∑
i=1

EX2
i − 2EXiX + EX

2

=
1

n− 1

n∑
i=1

σ2 − (2/n)(σ2 + (n− 1)µ2) + (1/n)2(nσ2 + n(n− 1)µ2)

=
n

n− 1

(
σ2 − (2/n)(σ2 + (n− 1)µ2) + (1/n)2(nσ2 + n(n− 1)µ2)

)
=
n− 2 + 1

n− 1
σ2 − µ2 + µ2 = σ2.

�

Exercise 3.8. Let X : Ω→ R be a random variable with EX2 <∞. Show that the quantity
E(X − t)2 is minimized for t ∈ R uniquely when t = EX.

Solution. We write

E(X − t)2 = E(X − EX + EX − t)2 = E(X − EX)2 + (EX − t)2 + 2E(X − EX)(EX − t)
= E(X − EX)2 + (EX − t)2.

The right quantity is uniquely minimized when t = EX.
Alternatively, note that (d/dt)E(X − t)2 = 2t − 2EX and (d/dt)2E(X − t)2 = 2. So,

the function t 7→ E(X − t)2 is strictly concave with a unique critical point at t = EX, and
limt→±∞E(X − t)2 =∞, so the critical point t = EX is the unique global minimum of the
function. �

Exercise 3.9. Let X be a chi squared random variables with p degrees of freedom. Let
Y be a chi squared random variable with q degrees of freedom. Assume that X and Y
are independent. Show that (X/p)/(Y/q) has the following density, known as Snedecor’s
f-distribution with p and q degrees of freedom

f(X/p)/(Y/q)(t) :=
t(p/2)−1(p/q)p/2Γ((p+ q)/2)

Γ(p/2)Γ(q/2)

(
1 + t(p/q)

)−(p+q)/2

, ∀ t > 0.
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Proof. First note that f(X/p)(t) = pfX(tp) for all t ∈ R. Then, starting as in the previous
proof we have

f(X/p)/(Y/q)(t) =

∫ ∞
0

afX/p(at)fY/q(a)da =

∫ ∞
0

apfX(atp)qfY (qa)da

=
t(p/2)−1pp/2qq/2

2(p+q)/2Γ(p/2)Γ(q/2)

∫ ∞
0

ap/2e−atp/2a(q/2)−1e−aq/2da

=
t(p/2)−1pp/2qq/2

2(p+q)/2Γ(p/2)Γ(q/2)

∫ ∞
0

a[(p+q)/2]−1e−a(q+tp)/2da

The integrand is the density of a gamma distributed random variable with parameters α, β
where α = (p + q)/2 and β = 2/(q + tp); so that if we divide and multiply by βαΓ(α), we
have

fX/Y (t) =
t(p/2)−1pp/2qq/2

2(p+q)/2Γ(p/2)Γ(q/2)
βαΓ(α) · (1)

=
t(p/2)−1pp/2qq/2Γ((p+ q)/2)

2(p+q)/2Γ(p/2)Γ(q/2)

( 2

q + tp

)(p+q)/2

=
t(p/2)−1pp/2qq/2Γ((p+ q)/2)

Γ(p/2)Γ(q/2)

(
q + tp

)−(p+q)/2

=
t(p/2)−1(p/q)p/2Γ((p+ q)/2)

Γ(p/2)Γ(q/2)

(
1 + t(p/q)

)−(p+q)/2

�

4. Homework 4

Exercise 4.1 (Order Statistics). Let X : Ω → R be a random variable. Let X1, . . . , Xn

be a random sample of size n from X. Define X(1) := min1≤i≤nXi, and for any 2 ≤ i ≤ n,
inductively define

Xi := min
{
{X1, . . . , Xn}r {X(1), . . . , X(i−1)}

}
,

so that

X(1) ≤ X(2) ≤ · · · ≤ X(n) = max
1≤i≤n

Xi.

The random variables X(1), . . . , X(n) are called the order statistics of X1, . . . , Xn.

• Suppose X is a discrete random variable and we can order the values that X takes
as x1 < x2 < · · · . For any i ≥ 1, define pi := P(X ≤ xi). Show that, for any
1 ≤ i, j ≤ n,

P(X(j) ≤ xi) =
n∑
k=j

(
n

k

)
pki (1− pi)n−k.

(Hint: Let Y be the number of indices 1 ≤ j ≤ n such that Xj ≤ xi. Then Y is a
binomial random variable with parameters n and pi.)
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You don’t have to show it, but if X is a continuous random variable with density fX
and cumulative distribution function FX , then for any 1 ≤ j ≤ n, FX(j)

has density

fX(j)
(x) :=

n!

(j − 1)!(n− j)!
fX(x)(FX(x))j−1(1− FX(x))n−j, ∀x ∈ R.

(This follows by differentiating the above identity for the cumulative distribution
function.)
• Let X be a random variable uniformly distributed in [0, 1]. For any 1 ≤ j ≤ n, show

that X(j) is a beta distributed random variable with parameters j and n − j + 1.
Conclude that (as you might anticipate)

EX(j) =
j

n+ 1
.

• Let a, b ∈ R with a < b. Let U be the number of indices 1 ≤ j ≤ n such that
Xj ≤ a. Let V be the number of indices 1 ≤ j ≤ n such that a < Xj ≤ b. Show
that the vector (U, V, n − U − V ) is a multinomial random variable, so that for any
nonnegative integers u, v with u+ v ≤ n, we have

P(U = u, V = v, n− U − V = n− u− v)

=
n!

u!v!(n− u− v)!
FX(a)u(FX(b)− FX(a))v(1− FX(b))n−u−v.

Consequently, for any 1 ≤ i, j ≤ n,

P(X(i) ≤ a,X(j) ≤ b) = P(U ≥ i, U + V ≥ j) =

j−1∑
k=i

n−k∑
m=j−k

P(U = k, V = m) + P(U ≥ j).

So, it is possible to write an explicit formula for the joint distribution of X(i) and
X(j) (but you don’t have to write it yourself).

Solution. We prove the last assertion only. For any 1 ≤ j ≤ n, the random vector
(1Xj≤a, 1a<Xj≤b, 1Xj>b) is equal to (1, 0, 0) with probability FX(a), it is equal to (0, 1, 0)
with probability FX(b)−FX(a), and it is equal to (0, 0, 1) with probability 1−FX(b). Also,
the set of random vectors {(1Xj≤a, 1a<Xj≤b, 1Xj>b)}nj=1 are all independent, since X1, . . . , Xn

are independent. It follows from the definition of a multinomial random variable that the
random vector(

sumn
j=11Xj≤a,

n∑
j=1

1a<Xj≤b,
n∑
j=1

1b<Xj

)
= (U, V, n− U − V )

is a multinomial random variable with the stated parameters. �

Exercise 4.2. Using Matlab (or any other mathematical system on a computer), verify that
its random number generator agrees with the law of large numbers and central limit theorem.
For example, average 107 samples from the uniform distribution on [0, 1] and check how close
the sample average is to 1/2. Then, sum up n samples from the uniform distribution on
[0, 1], construct this sum n times, make a histogram of the different values of the sum, and
check how close the histogram is to a Gaussian (when n = 104). If you want a challenge, try
n = 105 or n = 106.
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Exercise 4.3. Let X : Ω → R be a random variable on a sample space Ω equipped with a
probability law P. For any t ∈ R let F (t) := P(X ≤ t). For any s ∈ (0, 1) define

Y (s) := sup{t ∈ R : F (t) < s}.
Then Y is a random variable on (0, 1) with the uniform probability law on (0, 1). Show that
X and Y are equal in distribution. That is, P(Y ≤ t) = F (t) for all t ∈ R.

Solution. For any t ∈ R, let At := {s ∈ (0, 1) : sup{v ∈ R : F (v) < s} ≤ t}. And
for any s ∈ (0, 1), let cs := sup{v ∈ R : F (v) < s}. If a, b ∈ (0, 1) satisfy a < b, then
cb ≥ ca since F is monotone. So, if b ∈ At and a < b, then a ∈ At. Therefore, At is
an interval. Also, since F is monotone and right-continuous, F−1(F (t)) is either a single
point or an interval that includes its left endpoint. Denote x(t) as the smallest element of
F−1(F (t)). Then F (x(t)) = F (t) and by definition of x(t), cF (t) = x(t). And if a < x(t), then
cF (t) > cF (a), so that F (a) ∈ At. So, At contains the interval (0, lima→x(t)− F (a)). It could
occur that this set is strictly inside (0, F (t)). Since F is monotone, this only occurs when
lima→x(t)− F (a) < lima→x(t)+ F (a) = F (t). If y is between these two values, then y ∈ At,
since cy < cF (x(t)). So, At contains (0, F (t)). And for any ε > 0, F (t) + ε /∈ At. So, either
At = (0, F (t)) or At = (0, F (t)]. In either case, P(At) = F (t)− 0 = F (t). �

Exercise 4.4 (Box-Muller Algorithm). Let U1, U2 be independent random variables uni-
formly distributed in (0, 1). Define

R :=
√
−2 logU1, Ψ := 2πU2.

X := R cos Ψ, Y := R sin Ψ.

Show that X, Y are independent standard Gaussian random variables. So, we can simulate
any number of independent standard Gaussian random variables with this procedure.

Now, let {aij}1≤i,j≤n be an n×n symmetric positive semidefinite matrix. That is, for any
v ∈ Rn, we have

vTav =
n∑

i,j=1

vivjaij ≥ 0.

We can simulate a Gaussian random vector with any such covariance matrix {aij}1≤i,j≤n
using the following procedure.

• Let X = (X1, . . . , Xn) be a vector of i.i.d. standard Gaussian random variables
(which can be sampled using the Box-Muller algorithm above).
• Write the matrix a in its Cholesky decomposition a = rr∗, where r is an n × n real

matrix. (This decomposition can be computed efficiently with about n3 arithmetic
operations.)
• Let e(1), . . . , e(n) be the rows of r. For any 1 ≤ i ≤ n, define

Zi := 〈X, e(i)〉.
Show that Z := (Z1, . . . , Zn) is a mean zero Gaussian random vector whose covariance matrix
is {aij}1≤i,j≤n, so that

E(ZiZj) = aij, ∀ 1 ≤ i, j ≤ n.

Solution. We use Exercise 1.11. We have T : R2 → R2 such that T (U1, U2) = (X, Y ). By
Exercise 1.11,

fX,Y (x, y) = fU1,U2(S(x, y)) |J(x, y)| , ∀x, y ∈ R,
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where S = T−1 and J(x, y) is the determinant of the Jacobian of S at (x, y). Note that
TS(x, y) = (x, y) for all x, y ∈ R, so solving this equation for S yields

S(x, y) = (e−
x2+y2

2 ,
1

2π
tan−1(y/x)), ∀x, y > 0.

So, when x, y > 0, we have

2π |J(x, y)| =

∣∣∣∣∣det

(
−xe−x

2+y2

2 −ye−x
2+y2

2

− yx−2

1+(y/x)2
1/x

1+(y/x)2

)∣∣∣∣∣
=

∣∣∣∣∣det

(
−xe−x

2+y2

2 −ye−x
2+y2

2

− y
x2+y2

x
x2+y2

)∣∣∣∣∣ = e−(x2+y2)/2.

A similar calculation holds for all other nonzero x, y. So,

fX,Y (x, y) =
1

2π
e−(x2+y2)/2fU1,U2(S(x, y)) =

1

2π
e−(x2+y2)/2, ∀x, y ∈ R,

So, X, Y are independent standard Gaussians since

fX,Y (x, y) =
1√
2π
e−x

2/2 1√
2π
e−y

2/2 = fX(x)fY (y), ∀x, y ∈ R,

Now

E(ZiZj) = E〈X, e(i)〉〈X, e(j)〉 = E
n∑

k,`=1

Xke
(i)
k X`e

(j)
` =

n∑
k=1

e
(i)
k e

(j)
k = aij.

�

Exercise 4.5. In the notes we showed that the Delta Method works only assuming that
f ′(θ) exists. In fact, the method works even when f ′(θ) does not exist. In this exercise, we
assume that

f ′(θ+) := lim
y→θ+

f(y)− f(θ)

y − θ
, f ′(θ−) := lim

y→θ−

f(y)− f(θ)

y − θ
,

exist. For example, consider

f(y) := max(y, 0), ∀ y ∈ R.

Then f ′(0+) = 1 while f ′(0−) = 0, so f ′(0) does not exist.
For simplicity, we assume that θ = 0 and f(θ) = 0.
Let Y1, Y2, . . . be random variables such that

√
n(Yn − θ) converges in distribution to a

mean zero Gaussian random variable with variance σ2 > 0.

• Argue as in the notes, and show that for all y ∈ R, there exists a function h with
limz→0 h(z)/z = 0, and

f(y) = f ′(0+)y1y>0 + f ′(0−)y1y<0 + h(y).

• Conclude that
√
nf(Yn) =

√
n
(
f ′(0+)Yn1Yn>0 + f ′(0−)Yn1Yn<0 + h(Yn)

)
.
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• Deduce that, as n→∞,
√
nf(Yn) converges in distribution to(

σf ′(θ+)1Z>0 + σf ′(θ−)1Z<0

)
Z.

(Note that f ′(0+)Yn1Yn>0 and f ′(0−)Yn1Yn<0 have disjoint supports; this could be
useful to prove convergence in distribution as n→∞.)

Solution. Since f ′(0+) exists, limy→0+
f(y)−f(0)

y
exists. That is, there exists h+ : R→ R such

that limz→0+
h+(z)
z

= 0 and, for all y > 0,

f(y) = f(0) + f ′(0+)(y − θ) + h+(y − θ) = f ′(0+)(y) + h+(y).

Similarly, since f ′(0−) exists, limy→0−
f(y)−f(0)

y
exists. That is, there exists h− : R→ R such

that limz→0−
h−(z)
z

= 0 and, for all y < 0,

f(y) = f ′(0−)(y) + h−(y).

So, adding these two equalities, we have, for all y 6= 0,

f(y) = f ′(0+)y1y>0 + f ′(0−)y1y<0 + 1y>0h+(y) + 1y<0h−(y).

Define h(y) := 1y>0h+(y) + 1y<0h−(y). Then the first property holds: for all y ∈ R,

f(y) = f ′(0+)y1y>0 + f ′(0−)y1y<0 + h(y).

(Note that both sides are zero when y = 0.) Note also that limz→0
h(z)
z

= 0, since this
property holds for h+, h− separately.

Plugging in y = Yn, we then obtain
√
nf(Yn) =

√
n
(
f ′(0+)Yn1Yn>0 + f ′(0−)Yn1Yn<0 + h(Yn)

)
. (∗)

By assumption, ∀ s, t > 0, limn→∞P(|Yn − θ| > st/
√
n) = 2

∫∞
st
e−y

2/[2σ2] dy

σ
√

2π
. So, ∀

n ≥ 1,

P(
√
n |h(Yn)| > t) = P(

√
n |h(Yn)| > t, |Yn| > st/

√
n)

+ P(
√
n |h(Yn)| > t, |Yn| ≤ st/

√
n)

≤ P(|Yn| > st/
√
n) + P(

√
n |h(Yn)| > t, |Yn| ≤ st/

√
n).

As n → ∞, the first term converges to 2
∫∞
st
e−

y2

2σ2
dy

σ
√

2π
, and the second term goes to zero

since limz→0(h(z)/z) = 0. So, for any s, t > 0, limn→∞P(
√
n |h(Yn)| > t) ≤ 2

∫∞
st
e−

y2

2σ2
dy

σ
√

2π
.

Since this holds for any s > 0, we can let s → ∞ to get limn→∞P(
√
n |h(Yn)| > t) = 0.

That is,
√
nh(Yn) converges in probability to zero as n→∞.

So, by Slutksy’s Theorem and (∗),
√
n[f(Yn)] converges in distribution to(

σf ′(θ+)1Z>0 + σf ′(θ−)1Z<0

)
Z,

where Z is a standard Gaussian random variable. (Since
√
nYn converges in distribution to

a mean zero Gaussian with variance σ2 as n→∞, if t > 0, we have

lim
n→∞

P
(√

n
(
f ′(0+)Yn1Yn>0+f ′(0−)Yn1Yn<0

)
≥ t
)

= P
(√

nf ′(0+)Yn1Yn>0 ≥ t
)

= P(σZ > t).
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Similarly, if t < 0

lim
n→∞

P
(√

n
(
f ′(0+)Yn1Yn>0+f ′(0−)Yn1Yn<0

)
< t
)

= P
(√

nf ′(0−)Yn1Yn<0 < t
)

= P(σZ < t).

It follows that √
n
(
f ′(0+)Yn1Yn>0 + f ′(0−)Yn1Yn<0

)
converges in distribution to (

σf ′(θ+)1Z>0 + σf ′(θ−)1Z<0

)
Z.

) �

Exercise 4.6. Let A,B,Ω be sets. Let u : Ω→ A and let t : Ω→ B. Assume that, for every
x, y ∈ Ω, if u(x) = u(y), then t(x) = t(y). Show that there exists a function s : A→ B such
that

t = s(u).

Solution. Let a in the range of u. That is, there exists ω ∈ Ω such that u(ω) = a. For any
a in the range of u, define then

s(a) := t(ω).

Then s(a) = t(ω) and s(a) = s(u(ω)), so t(ω) = s(u(ω)), as desired. It remains to show that
s(a) is well-defined. To see this, let ω′ ∈ Ω such that u(ω′) = u(ω). We need to show that
s(a) is well-defined, i.e. that t(ω) = t(ω′). This follows immediately from our assumption.
So, s(a) is well-defined.

Finally, for any a ∈ A that is not in the range of u, define s(a) to be an arbitrary element
of B. Then t = s(u) still holds. �

Exercise 4.7. Let {fθ : θ ∈ Θ} be a k-parameter exponential family {fθ : θ ∈ Θ, a(w(θ)) <
∞} of probability density functions or probability mass functions, where

fθ(x) := h(x) exp
( k∑
i=1

wi(θ)ti(x)− a(w(θ))
)
, ∀x ∈ R.

For any θ ∈ Θ, let w(θ) := (w1(θ), . . . , wk(θ)). Assume that the following subset of Rk is
k-dimensional:

{w(θ)− w(θ′) ∈ Rk : θ, θ′ ∈ Θ}.
That is, if x ∈ Rk satisfies 〈x, y〉 = 0 for all y in this set, then x = 0. (Note that the
assumption of the exercise is always satisfied for an exponential family in canonical form.)

Let X = (X1, . . . , Xn) be a random sample of size n from fθ. Define t : Rn → Rn by

t(X) :=
n∑
j=1

(t1(Xj), . . . , tk(Xj)) .

Show that t(X) is minimal sufficient for θ. (Hint: if you get stuck, look at Example 3.12 in
Keener.)

Conclude that if we sample from a Gaussian with unknown mean µ and variance σ2 > 0,
then X is minimal sufficient for µ and (X,S) is minimal sufficient for (µ, σ2).
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Warning: the fθ exponential family mentioned here is a function of one variable. If you
use the Theorem from class about checking the ratio of fθ(x)/fθ(y), the functions there are
joint density functions (i.e. the product of n copies of the same function).

Optional: If the fθ functions are always positive, you should be able to change the as-
sumption to the following. For any θ ∈ Θ, let w(θ) := (w1(θ), . . . , wk(θ)). Assume that the
following subset of Rk is k-dimensional:

{w(θ) ∈ Rk : θ, θ′ ∈ Θ}.

Solution. The first proof appears in Keener. We instead prove the Optional part.
We use Theorem 5.8 from the notes. Fix x, y ∈ Rn. Define w(θ) := (w1(θ), . . . , wk(θ)).

We examine the ratio∏n
j=1 fθ(xj)∏n
j=1 fθ(yj)

=

∏n
j=1 fθ(xj)∏n
j=1 fθ(yj)

= exp
( k∑
i=1

wi(θ)
n∑
j=1

[ti(xj)−ti(yj)]
)

= exp
(
〈w(θ), t(x)−t(y)〉

)
.

If this ratio is constant for all θ ∈ Θ, then it follows by our assumption that t(x)− t(y) = 0,
i.e. t(x) = t(y). Conversely, if t(x) = t(y), then the ratio is constant for all θ ∈ Θ. By
Theorem 5.8, we conclude that t(X) is a minimal sufficient statistic.

In the Gaussian case, we conclude that (
∑n

i=1Xi,
∑n

i=1X
2
i ) is a minimal sufficient statistic.

Since (X,S) is a function of (
∑n

i=1 Xi,
∑n

i=1X
2
i ), minimal sufficiency of (X,S) follows from

sufficiency of (X,S). Technically we did not show sufficiency of (X,S) for (µ, σ2). Let us
show it now. Let x ∈ Rn. Then

fµ,σ2(x) =
n∏
i=1

σ−1(2π)−1/2e−(xi−µ)2/(2σ2)

= σ−n(2π)−n/2 exp
(
− 1

2σ2

n∑
i=1

x2
i −

n

2σ2
µ2 +

µ

σ2

n∑
i=1

xi

)
= σ−n(2π)−n/2 exp

(
− 1

2σ2

n∑
i=1

(xi − EXi + EXi)
2 − n

2σ2
µ2 +

µ

σ2

n∑
i=1

xi

)
= σ−n(2π)−n/2 exp

(
− 1

2σ2

n∑
i=1

[
(xi − EXi)

2 + (EXi)
2 + 2(xi − EXi)EXi

]
− n

2σ2
µ2 +

µ

σ2

n∑
i=1

xi

)
= σ−n(2π)−n/2 exp

(
− 1

2σ2

n∑
i=1

(xi − EXi)
2 + nµ2 + 2µ

n∑
i=1

xi − 2nµ2 − n

2σ2
µ2 +

µ

σ2

n∑
i=1

xi

)

We have exhibited fµ,σ2(x) as a function of t(x) := (
∑n

i=1 xi,
∑n

i=1(xi − EXi)
2), as in the

Factorization Theorem. We conclude that (X,S) is sufficient for (µ, σ2). �

Exercise 4.8. Let P1,P2 be two probability laws on the sample space Ω = R. Suppose
these laws have densities f1, f2 : R→ [0,∞) so that

Pi(A) =

∫
A

fi(x)dx, ∀ i = 1, 2, ∀A ⊆ R.
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Show that

sup
A⊆R
|P1(A)−P2(A)| = 1

2

∫
R
|f1(x)− f2(x)| dx.

(Hint: consider A := {x ∈ R : f1(x) > f2(x)}.)
Similarly, if P1,P2 are probability laws on Ω = Z, show that

sup
A⊆Z
|P1(A)−P2(A)| = 1

2

∑
z∈Z

|P1(z)−P2(z)| .

Solution. As suggested in the hint, consider A := {x ∈ R : f1(x) > f2(x)}. Then

|P1(A)−P2(A)| =
∣∣∣∣∫
A

f1(x)dx−
∫
A

f2(x)dx

∣∣∣∣ =

∫
A

(f1(x)− f2(x))dx

=

∫
A

|f1(x)− f2(x)| dx. (∗)

By definition of A, we have∫
Ac
|f1(x)− f2(x)| dx =

∫
Ac

(f2(x)− f1(x))dx.

So, ∫
A

|f1(x)− f2(x)| dx−
∫
Ac
|f1(x)− f2(x)| dx

=

∫
A

(f1(x)− f2(x))dx−
∫
Ac

(f2(x)− f1(x))dx

=

∫
R
(f1(x)− f2(x))dx = 0.

The last equality follows since f1, f2 are PDFs. In summary,∫
A

|f1(x)− f2(x)| dx =

∫
Ac
|f1(x)− f2(x)| dx (∗∗)

So, ∫
R
|f1(x)− f2(x)| dx = 2

∫
A

|f1(x)− f2(x)| dx (∗ ∗ ∗).

We can then rewrite (∗) as

|P1(A)−P2(A)| = 1

2

∫
R
|f1(x)− f2(x)| dx.

That is, we have shown that

sup
A⊆R
|P1(A)−P2(A)| ≥ 1

2

∫
R
|f1(x)− f2(x)| dx.
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It remains to show the reverse inequality. This follows by repeating the above reasoning.
For any A ⊆ R we have

|P1(A)−P2(A)|

=

∣∣∣∣∫
A

f1(x)dx−
∫
A

f2(x)dx

∣∣∣∣
=

∣∣∣∣∫
{x∈A : f1(x)>f2(x)}

(f1(x)− f2(x))dx+

∫
{x∈A : f1(x)<f2(x)}

(f1(x)− f2(x))dx

∣∣∣∣
=

∣∣∣∣∫
{x∈A : f1(x)>f2(x)}

(f1(x)− f2(x))dx−
∫
{x∈A : f1(x)<f2(x)}

(f2(x)− f1(x))dx

∣∣∣∣
=

∣∣∣∣∫
{x∈A : f1(x)>f2(x)}

|f1(x)− f2(x)| dx−
∫
{x∈A : f1(x)<f2(x)}

|f2(x)− f1(x)| dx
∣∣∣∣

≤ max
(∫
{x∈A : f1(x)>f2(x)}

|f1(x)− f2(x)| dx,
∫
{x∈A : f1(x)<f2(x)}

|f2(x)− f1(x)| dx
)

≤ max
(∫
{x∈R : f1(x)>f2(x)}

|f1(x)− f2(x)| dx,
∫
{x∈R : f1(x)<f2(x)}

|f2(x)− f1(x)| dx
)
.

The first inequality used |a− b| ≤ max(a, b), valid for all a, b > 0. Both terms in the
maximum are equal to each other by (∗∗), so the proof is completed by (∗ ∗ ∗) since we
showed that, for any A ⊆ R, we have

|P1(A)−P2(A)| ≤ 1

2

∫
R
|f1(x)− f2(x)| dx.

�

Exercise 4.9. Give an example of a statistic Y that is complete and nonconstant, but such
that Y is not sufficient.

Solution. Let X1, . . . , Xn be Bernoulli random variables with unknown parameter 0 < θ < 1.
Define t(x1, . . . , xn) := x1. We claim that Y := t(X1, . . . , Xn) is complete but not sufficient.
Completeness follows since if f : R → R satisfies Eθf(Y ) = 0 for all 0 < θ < 1, then
θf(1) + (1 − θ)f(0) for all 0 < θ < 1, so that f(0) = f(1) = 0, so that f(Y ) = 0, i.e. Y is
complete. However, Y is not sufficient since X1, . . . , Xn conditioned on X1 does depend on
θ. For example,

P(X1 = 1, X2 = 1|X1 = 1) = P(X2 = 1) = θ.

�

Exercise 4.10. This exercise shows that a complete sufficient statistic might not exist.
Let X1, . . . , Xn be a random sample of size n from the uniform distribution on the three

points {θ, θ + 1, θ + 2}, where θ ∈ Z.

• Show that the vector Y := (X(1), X(n)) is minimal sufficient for θ.
• Show that Y is not complete by considering X(n) −X(1).
• Using minimal sufficiency, conclude that any sufficient statistic for θ is not complete.

Solution. We apply Theorem 5.8 from the notes. Suppose x, y ∈ Zn satisfy fθ(x) =
c(x, y)fθ(y) for some c(x, y) and for all θ ∈ Z, and there exists θ1, θ2 ∈ Z such that
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fθ1(x) > 0 and fθ2(y) > 0. Then c(x, y) > 0, x1, . . . , xn ∈ {θ1, θ1 + 1, θ1 + 2} and
y1, . . . , yn ∈ {θ2, θ2 + 1, θ2 + 2}. Since fθ(x) = c(x, y)fθ(y) for all θ ∈ Θ (including θ1),
we may assume that y1, . . . , yn ∈ {θ1, θ1 + 1, θ1 + 2}. Note that the number of θ ∈ Z such
that fθ(x) > 0 is equal to 4 minus the maximum of x plus the minimum of x, and similarly
for y. So, fθ(x) = c(x, y)fθ(y) for all θ ∈ Z implies that

max
1≤i≤n

xi − min
1≤i≤n

xi = max
1≤i≤n

yi − min
1≤i≤n

yi, (∗)

If max1≤i≤n xi > max1≤i≤n yi, then fθ(x) > 0 while fθ(y) = 0 for θ = max1≤i≤n xi. We there-
fore conclude that max1≤i≤n xi ≤ max1≤i≤n yi. Interchanging the roles of x, y we conclude
also that max1≤i≤n xi ≥ max1≤i≤n yi. That is,

max
1≤i≤n

xi = max
1≤i≤n

yi, (∗∗)

Then (∗) implies that

min
1≤i≤n

xi = min
1≤i≤n

yi, (∗ ∗ ∗)

This equality and (∗∗) imply that t(x) = t(y). This argument can be reversed. If t(x) = t(y),
then (∗∗) and (∗ ∗ ∗) hold, so (∗) holds, so fθ(x) = c(x, y)fθ(y) for some c(x, y) and for all
θ ∈ Z. So, by Theorem 5.8, Y is minimal sufficient.

Now, Y is not complete since if f(y1, y2) = y2 − y1 for all y1, y2 ∈ R, then f(Y ) 6= 0 but
f(Y ) does not depend on θ, so there exists c ∈ R such that Eθ[f(Y )− c] = 0 for all θ ∈ Z,
so Y is not complete.

Let Z be any sufficient statistic for θ. Since Y is minimal sufficient, there exists a function
r such that Y = r(Z). Therefore, with f as just defined, we have Eθ[f(r(Z))− c] = 0 for all
θ ∈ Z, so Z is not complete. �

Exercise 4.11 ((Optional) This exercise requires some measure theory so it is optional.).
Let {fθ : θ ∈ Θ} be a k-parameter exponential family {fθ : θ ∈ Θ, a(w(θ)) < ∞} of joint
probability density functions or probability mass functions in canonical form, where

fw(x) := h(x) exp
( k∑
i=1

witi(x)− a(w)
)
, ∀x ∈ Rn, ∀w ∈ {w ∈ Rk : a(w) <∞}.

Assume that the following subset of Rk contains an open set in Rk:

{w ∈ Rk : a(w) <∞}.

Assume also that there is no redundancy in the functions t1, . . . , tk, i.e. assume: if ∃
α1, . . . , αk ∈ R such that

∑k
i=1 αiti(x) = 0 for all x ∈ Rn, then α1 = · · · = αk = 0.

Let X be a random sample of size 1 from fθ (so X = (X1, . . . , Xn), and X1, . . . , Xn are
all real valued). Define t : Rn → Rn by

t(X) := (t1(X), . . . , tk(X)).

Show that t(X) is complete for θ.
Hint: if you get stuck, look at Theorem 4.3.1 in Lehmann-Romano. An early step in the

proof uses the change of variables formula for the pushforward measure.
Once we know the above statement, we can deduce the following about repeated random

samples from a single variable exponential family.
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Let {fθ : θ ∈ Θ} be a k-parameter exponential family {fθ : θ ∈ Θ, a(w(θ)) < ∞} of
probability density functions or probability mass functions in canonical form, where

fw(x) := h(x) exp
( k∑
i=1

witi(x)− a(w)
)
, ∀x ∈ R, ∀w ∈ {w ∈ Rk : a(w) <∞}.

Assume that the following subset of Rk contains an open set in Rk:

{w ∈ Rk : a(w) <∞}.
Assume also that there is no redundancy in the functions t1, . . . , tk, i.e. assume: if ∃
α1, . . . , αk ∈ R such that

∑k
i=1 αiti(x) = 0 for all x ∈ R, then α1 = · · · = αk = 0.

Let X1, . . . , Xn be a random sample of size n from fθ. Define t : Rn → Rn by

t(X) :=
n∑
j=1

(t1(Xj), . . . , tk(Xj)) .

Show that t(X) is complete for θ.

5. Homework 5

Exercise 5.1 (Conditional Expectation as a Random Variable). Let X, Y, Z : Ω→ R
be discrete or continuous random variables. Let A be the range of Y . Define g : A → R by
g(y) := E(X|Y = y), for any y ∈ A. We then define the conditional expectation of X
given Y , denoted E(X|Y ), to be the random variable g(Y ).

(i) LetX, Y be random variables such that (X, Y ) is uniformly distributed on the triangle
{(x, y) ∈ R2 : x ≥ 0, y ≥ 0, x+ y ≤ 1}. Show that

E(X|Y ) =
1

2
(1− Y ).

(ii) Prove the following version of the Total Expectation Theorem

E(E(X|Y )) = E(X).

• If X is a random variable, and if f(t) := E(X − t)2, t ∈ R, then the function
f : R→ R is uniquely minimized when t = EX. A similar minimizing property holds
for conditional expectation. Let h : R → R. Show that the quantity E(X − h(Y ))2

is minimized among all functions h : R → R when h(Y ) = E(X|Y ). (Hint: use the
previous item.)

(iii) Show the following:

E(Xh(Y )|Y ) = h(Y )E(X|Y ).

E([E(X|h(Y ))] |Y ) = E(X|h(Y )).

(iv) Show the following
E(X|X) = X.

E(X + Y |Z) = E(X|Z) + E(Y |Z).

(v) If Z is independent of X and Y , show that

E(X|Y, Z) = E(X|Y ).

(Here E(X|Y, Z) is notation for E(X|(Y, Z)) where (Y, Z) is interpreted as a random
vector, so that X is conditioned on the random vector (Y, Z).)

36



Solution. (i) If y ∈ [0, 1],

fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx =

∫ x=1−y

x=0

2dx = 2(1− y).

Otherwise, fY (y) = 0. So, if y ∈ [0, 1]

E(X|Y = y) =

∫ ∞
−∞

xfX|Y (x, y)dx =

∫ ∞
−∞

x
fX,Y (x, y)

fY (y)
dx =

∫ x=1−y

x=0

1

1− y
xdx =

1

2
(1− y).

And E(X|Y = y) is undefined when y /∈ [0, 1], since fY (y) = 0 when y /∈ [0, 1].
Then, by definition of E(X|Y ), we have

E(X|Y ) =
1

2
(1− Y ).

Below, we only consider discrete random variables, the discrete case being similar.
(ii) Using our definitions, E(X|Y ) takes the value y ∈ R with probability P(Y = y), so

that

E(E(X|Y )) =
∑
y∈R

E(X|Y = y)P(Y = y) =
∑
y∈R

EX1Y=y = EX
∑
y∈R

1Y=y = EX.

Using Property (iii) below,

E(X − h(Y ))2 = EE[(X − h(Y ))2|Y ] = EE[X2 − 2Xh(Y ) + (h(Y ))2|Y ]

= EX2 − 2E[h(Y )E(X|Y )] + E(h(Y ))2.

The last two terms can be written as∑
y∈R

[−2h(y)E(X|Y = y) + (h(y))2]P(Y = y)

For fixed y ∈ R, the quantity [−2h(y)E(X|Y = y) + (h(y))2] is minimized when h(y) =
E(X|Y = y). So, the quantity −2E[h(Y )E(X|Y )] + E(h(Y ))2 is minimized when h(y) =
E(X|Y = y) for all y ∈ R. That is, h(Y ) = E(X|Y ).

(iii) Let y ∈ R. We are required to show that

E(Xh(y)|Y = y) = h(y)E(X|Y = y)

This is a property of conditional expectation from elementary probability. Now, let y ∈ R.
Recall that W := E(X|h(Y )) takes the value E(X|h(Y ) = z) with probability P(h(Y ) = z).
In particular, E(X|h(Y )) is constant on any set of the form {h(Y ) = z}, with z ∈ R fixed.
So, E(X|h(Y )) is constant on any set of the form {Y = y}, with y ∈ R fixed. Similarly,
E(W |Y ) is constant on any set of the form {Y = y}, with y ∈ R fixed. So, it suffices to
show that both constants are the same, i.e. that E(W |Y = y) = E(X|h(Y ) = h(y)). But by
definition of W , we have

E(W |Y = y) =
1

P(Y = y)
EW1Y=y = E(X|h(Y ) = h(y))

(iv) For any x ∈ R, we know that E(X|X = x) = x, so E(X|X) = X, by definition
of conditional expectation. Also, we take it as given that E(X + Y |Z = z) = E(X|Z =
z)+E(Y |Z = z), so that, by the definition of conditional expectation (as a random variable),

E(X + Y |Z) = E(X|Z) + E(Y |Z).
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(v) If Z is independent of X and Y , we know that

E(X|Y = y, Z = z) = E(X|Y = y).

Therefore, by definition of conditional expectation (as a random variable),

E(X|Y, Z) = E(X|Y ).

�

Exercise 5.2 (Conditional Jensen Inequality). Prove Jensen’s inequality for the condi-
tional expectation. Let X, Y : Ω → R be random variables that are either both discrete or
both continuous. Let φ : R→ R be convex. Then

φ(E(X|Y )) ≤ E(φ(X)|Y )

If φ is strictly convex, then equality holds only if X is constant on any set where Y is
constant. That is, (by an Exercise from the previous homework) equality holds only if X is
a function of Y .

(Hint: first show that if X ≥ Z then E(X|Y ) ≥ E(Z|Y ).)

Proof. If X ≥ Z, then X1Y=y ≥ Z1Y=y, so E(X|Y = y) ≥ E(Z|Y = y), so E(X|Y ) ≥
E(Z|Y ). Let L : R→ R be any linear function such that L(x) ≤ φ(x) for all x ∈ R. Then

L(X) ≤ φ(X), E(L(X)|Y ) ≤ E(φ(X)|Y ).

Since L is linear, E(L(X)|Y ) = L(E(X|Y )). So, for any linear L satisfying L(x) ≤ φ(x) for
all x ∈ R,

L(E(X|Y )) ≤ E(φ(X)|Y ). (∗)
Since φ is convex, φ(x) is the supremum of L(x) over all linear functions L satisfying L(y) ≤
φ(y) for all y ∈ R. So, taking the supremum of both sides of (∗) over all L shows that

φ(E(X|Y )) ≤ E(φ(X)|Y ).

�

Exercise 5.3. Let Y, Z be a statistics, and suppose Z is sufficient for {fθ : θ ∈ Θ}. Show
that W := Eθ(Y |Z) does not depend on θ. That is, there is a function t : Rn → R that does
not depend on θ such that W = t(X), where X is the random sample.

Solution. We consider the discrete case only. Since Z is sufficient for θ, the conditional
distribution of the sample X conditioned on Z does not depend on θ. So, if h : Rn → R and
if Y = h(X), then

Eθ(h(X)|Z = z) =
∑
x∈R

h(x)Pθ(X = x|Z = z) =: g(z),

and the expression on the right does not depend on θ, by assumption. So, Eθ(h(X)|Z) =
g(Z), and since Z is a statistic, we can write Z = f(X), so that Eθ(h(X)|Z) = g(f(X)),
where both g, f have no dependence on θ. �

Exercise 5.4. Let X1, . . . , Xn be a random sample of size n, so that X1 is a sample from
the uniform distribution on the interval [θ − 1/2, θ + 1/2], where θ ∈ R is unknown.

• Show that (X(1), X(n)) is minimal sufficient but not complete.
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• The sample mean X might seem to be a reasonable estimator for θ, but it is not
a function of the minimal sufficient statistic, so maybe it is not so good. Find an
unbiased estimator for θ with smaller variance than X (for all θ). Then, examine the
ratio of the variances (i.e. relative efficiency) for X and your estimator. (Don’t try
to find a UMVU; it does not exist! We will show this on the next homework.)

Solution.
Minimal sufficiency follows by Theorem 5.8 in the notes. Note that

fθ(x1, . . . , xn) = 1x1,...,xn∈[θ−1/2,θ+1/2] = 1x(1),x(n)∈[θ−1/2,θ+1/2].

So, fθ(x) = c(x, y)fθ(y) for all θ ∈ R if and only if, for all θ ∈ R, we have the dichotomy
that either

• x(1), x(n), y(1), y(n) ∈ [θ − 1/2, θ + 1/2], or
• x(1), x(n), y(1), y(n) /∈ [θ − 1/2, θ + 1/2].

The last condition holds if and only if x(1) = y(1) and x(n) = y(n). (The converse is clear,
and for the forward direction, note e.g. if x(1) < y(1), then choosing θ := y(1) + 1/2, we get
x(1) /∈ [θ − 1/2, θ + 1/2] but y(1) ∈ [θ − 1/2, θ + 1/2].)

For the unbiased estimator, consider

Y :=
X(1) +X(n)

2
.

Note that the sample mean has variance 1
12n

. To compute the variance of Y , note that

Pθ(X(n) < t) = [Pθ(X1 < t)]n =


0 if t < θ − 1/2

(t− θ + 1/2)n if t ∈ [θ − 1/2, θ + 1/2]

1 if t > θ + 1/2

.

Pθ(X(1) > t) = [Pθ(X1 > t)]n =


1 if t < θ − 1/2

(θ + 1/2− t)n if t ∈ [θ − 1/2, θ + 1/2]

0 if t > θ + 1/2

..

EθX(n) =

∫ θ+1/2

0

Pθ(X(n) > t)dt = θ + 1/2−
∫ θ+1/2

θ−1/2

Pθ(X(n) < t)dt

= θ + 1/2−
∫ θ+1/2

θ−1/2

(t− θ + 1/2)ndt = θ + 1/2− 1

n+ 1
.

EθX(1) =

∫ θ+1/2

0

Pθ(X(1) > t)dt = θ − 1/2 +

∫ θ+1/2

θ−1/2

Pθ(X(1) > t)dt

= θ − 1/2 +

∫ θ+1/2

θ−1/2

(θ + 1/2− t)ndt = θ − 1/2 +
1

n+ 1
.

Therefore,

Eθ(X(1) + (X(n)))/2 = θ, ∀ θ ∈ Θ.

For the variance of Y , we compute
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EθX
2
(n) =

∫ θ+1/2

0

2tPθ(X(n) > t)dt = (θ + 1/2)2 −
∫ θ+1/2

θ−1/2

2tPθ(X(n) < t)dt

= (θ + 1/2)2 −
∫ θ+1/2

θ−1/2

2t(t− θ + 1/2)ndt

= (θ + 1/2)2 − 2(θ + 1/2)

n+ 1
+

∫ θ+1/2

θ−1/2

2

n+ 1
(t− θ + 1/2)n+1dt

= (θ + 1/2)2 − 2(θ + 1/2)

n+ 1
+

2

(n+ 1)(n+ 2)
.

EθX
2
(1) =

∫ θ+1/2

0

2tPθ(X(1) > t)dt = (θ − 1/2)2 +

∫ θ+1/2

θ−1/2

2tPθ(X(1) > t)dt

= (θ − 1/2)2 +

∫ θ+1/2

θ−1/2

2t(θ + 1/2− t)ndt

= (θ − 1/2)2 +
2(θ − 1/2)

n+ 1
+

∫ θ+1/2

θ−1/2

2

n+ 1
(θ + 1/2− t)ndt

= (θ − 1/2)2 +
2(θ − 1/2)

n+ 1
+

2

(n+ 1)(n+ 2)
.

From Theorem 5.4.6 in the book, the joint density of X(1) and X(n) is (when n > 1)

fX(1),X(n)
(u, v) = n(n− 1)1u∈[θ−1/2,θ+1/2]1v∈[θ−1/2,θ+1/2]1u<v[FX1(v)− FX1(u)]n−2,

where FX is the cumulative distribution function of X1, so that FX1 = P(X1 > t) =
1t<θ+1/2 min(1, (θ + 1/2− t)). So,

EX(1)X(n) = n(n− 1)

∫∫
R2

uvfX(1),X(n)
(u, v)dudv

= n(n− 1)

∫ u=θ+1/2

u=θ−1/2

∫ v=θ+1/2

v=θ−1/2

uv1u<v[1v<θ+1/2 min(1, (θ + 1/2− v))

− 1u<θ+1/2 min(1, (θ + 1/2− u))]n−2dvdu

= n(n− 1)

∫ u=θ+1/2

u=θ−1/2

∫ v=θ+1/2

v=θ−1/2

uv1u<v[(θ + 1/2− v)− (θ + 1/2− u)]n−2dvdu

= n(n− 1)

∫ u=θ+1/2

u=θ−1/2

∫ v=θ+1/2

v=θ−1/2

1u<vuv[v − u]n−2dvdu

According to the computer, this integral is

θ2 − n− 2

4n+ 8
.
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In summary,

Varθ
X(1) +X(n)

2
= Eθ

(X(1) +X(n)

2
− θ
)2

=
1

4
EθX

2
(1) +

1

4
EθX

2
(1) +

1

2
EθX(1)X(n) − θ2

=
1

4

(
(θ − 1/2)2 +

2(θ − 1/2)

n+ 1
+

2

(n+ 1)(n+ 2)

)
+

1

4

(
(θ + 1/2)2 − 2(θ + 1/2)

n+ 1
+

2

(n+ 1)(n+ 2)

)
+

1

2
(θ2 − n− 2

4n+ 8
)− θ2

= −4

8

1

n+ 1
+

1

8
− 1

8

n− 2

n+ 2
+

1

(n+ 1)(n+ 2)

= −4

8

1

n+ 1
+

1

8

4

n+ 2
+

1

(n+ 1)(n+ 2)

=
1

2

−(n+ 2) + (n+ 1)

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)
=

1

2

1

(n+ 1)(n+ 2)
.

�

Exercise 5.5. Let X1, . . . , Xn be a random sample of size n = 2, so that X1 is a sample from
exponential distribution with unknown parameter θ > 0, so that X1 has density θe−xθ1x>0.

Suppose we want to estimate the mean

g(θ) := 1/θ.

• Using the Rao-Blackwell Theorem (or any other method), find the UMVU for g(θ).
• Show that

√
X1X2 has smaller mean squared error than the UMVU.

• Find an estimator with even smaller mean squared error, for all θ ∈ Θ.

Solution.
We try to write the joint density

fθ(x1, x2) = θ2e−θ(x1+x1)1x1>0,x2>0 = 1x1>0,x2>0e
−θ(x1+x2)−(−2 log θ)

as an exponential family, in order to find the complete sufficient statistics. To this end, let
t(x1, x2) := x1 + x2. Then t(X1, X2) = X1 +X2 is complete and sufficient for θ by Exercises
4.7 and 4.11 (since θ 7→ 1/θ is a bijection on the domain θ ∈ (0,∞), X1 + X2 is also
complete and sufficient for 1/θ). The statistic X1 +X2 is also unbiased if we divide by 2, so
that Y := (X1 +X2)/2 is unbiased, complete and sufficient for 1/θ. So, by Lehman-Scheffé’s
Theorem, the UMVU for 1/θ is

Eθ(Y |Y ) = Y =
1

2
(X1 +X2).

The variance of Y is

Varθ(Y ) =
1

4
Varθ(X1) +

1

4
Varθ(X2) =

1

2
Varθ(X1) =

1

2θ2
.
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On the other hand, Z :=
√
X1X2 satisfies

Eθ(Z − θ−1)2 = EθX1X2 − 2θ−1Eθ

√
X1

√
X2 + θ−2

= (EθX1)2 − 2θ−1(Eθ

√
X1)2 + θ−2

= θ−2 − 2θ−1(θ−1/2
√
π/2)2 + θ−2 = θ−2[1− (π/2) + 1] = θ−2(2− π/2) < θ−2/2.

Here we used

Eθ

√
X1 =

∫ ∞
0

x1/2θe−θxdx = θ−1/2

∫ ∞
0

x1/2e−xdx = θ−1/2
√
π/2.

There are a few ways to get a further improvement. Let t > 0 and consider t
√
X1X2.

Then

Eθ(t
√
X1X2 − θ−1)2 = t2EθX1X2 − 2tθ−1Eθ

√
X1

√
X2 + θ−2

= t2(EθX1)2 − 2tθ−1(Eθ

√
X1)2 + θ−2

= t2θ−2 − 2tθ−1(θ−1/2
√
π/2)2 + θ−2 = θ−2[t2 − t(π/2) + 1].

The minimum value of t2− tπ/2 + 1 occurs when t = π/4, and in this case the mean squared
error is

θ−2(1− π2/16) ≈ (.3831)θ−2.

�

6. Homework 6

Exercise 6.2. Let X1, . . . , Xn be a random sample of size n, so that X1 is a sample from
the uniform distribution on the interval [θ− 1/2, θ+ 1/2], where θ ∈ R is unknown. From a
previous homework, we tried to find a low variance estimator for θ, but the UMVU seemed
to not exist. In this exercise, you are asked to show that a UMVU does not exist, using
the following outline, in the case n = 1. Moreover, if g(θ) is a nonconstant differentiable
function of θ ∈ R, show that no UMVU of g(θ) exists when n = 1:

• Let U = u(X1) be an unbiased estimator of 0, where u : R → R. By differentiating
the definition of unbiasedness with respect to θ, conclude that

u(x+ 1) = u(x), for a.e. x ∈ R.

Give an example of an unbiased estimator U of 0 such that u(x) 6= 0 for all x ∈ R.
• Argue by contradiction. Assume that W is UMVU for g(θ). Using the characteriza-

tion from class, conclude that EθWU = 0, so that if W = w(X1) with w : R → R,
then

w(x+ 1)u(x+ 1) = w(x)u(x), for a.e. x ∈ R.
Then conclude that

w(x+ 1) = w(x), for a.e. x ∈ R.

• To complete the exercise, what can you say about the condition that W is unbiased
for g(θ)?

(Optional) Can you make the same conclusion for a sample of size 2? Hint: Fourier series.
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Solution. We have
∫ θ+1/2

θ−1/2
u(x)dx = 0 for all θ ∈ R. Differentiating this condition and

applying the Fundamental Theorem of Calculus, we get u(θ + 1/2) = u(θ − 1/2) for a.e.
θ ∈ R. (It is assumed that Eθ |U | <∞ for all θ ∈ R in order to be an unbiased estimator of
0.) For an example of an unbiased estimator of 0, consider e.g. u(x) := sign(sin(2πx)) for
all x ∈ R.

Assume that W is UMVU. By Theorem 6.18, an Alternate Characterization of UMVU,
we must have EθWU = 0 for all θ ∈ R when U is unbiased for 0. That is, EθWU = 0 for all
θ ∈ R. By step one, we conclude that

w(x+ 1)u(x+ 1) = w(x)u(x), for a.e. x ∈ R.
Using the u we produced there, we can divided both sides by u to conclude that

w(x+ 1) = w(x), for a.e. x ∈ R.

Now, since W is unbiased for g(θ), we have g(θ) =
∫ θ+1/2

θ−1/2
w(x)dx. Differentiating both

sides, we get

g′(θ) = w(θ + 1/2)− w(θ − 1/2) = 0,

so that g(θ) is constant in θ. �

Exercise 6.3. Let X1, . . . , Xn be a random sample of size n, so that X1 is a sample from the
uniform distribution on the interval [θ − 1/2, θ + 1/2], where θ ∈ R is unknown. Although
the UMVU for θ does not exist and unbiased estimators do exist, if we instead restrict to
location equivariant estimators, then there is a minimum variance estimator of θ among this
class. We say that an Y := t(X1, . . . , Xn) with t : Rn → R is location equivariant if

t(x1, . . . , xn) + a = t(x1 + a, . . . , xn + a), ∀ (x1, . . . , xn) ∈ Rn, ∀ a ∈ R.
• Using location equivariance for the density f := 1[−1/2,1/2], and letting fθ(x) :=
f(x− θ), show that

Eθ(W − θ)2 =

∫
Rn

[t(x)]2
n∏
i=1

f(xi)dx1 · · · dxn, ∀ θ ∈ Θ.

(Note that the expression on the right does not depend on θ.)
• Let H := {x ∈ Rn : 〈x, (1, . . . , 1)〉 = 0}, where as usual 〈(x1, . . . , xn), (y1, . . . , yn)〉 =∑n

i=1 xiyi. Using location equivariance again, show that

E(W − θ)2 =

∫
H

(∫
R
|t(x)− a|2

n∏
i=1

f(xi − a)da
)
dH(x).

(Here dH(x) denotes integration on the hypersurface H, i.e. dH(x) is not the same
as dx1 · · · dxn)
• So, to minimize E(W − θ)2, it suffices to minimize

∫
R[a− t(x)]2

∏n
i=1 f(xi− a)da, for

any fixed x ∈ H. What choice of t(x) minimizes
∫
R[a− t(x)]2

∏n
i=1 f(xi− a)da, when

x ∈ H is fixed?
• Conclude that the W minimizing E(W−θ)2 for all θ ∈ R, over all location equivariant

estimators satisfies

W =

∫
R a
∏n

i=1 f(Xi − a)da∫
R
∏n

i=1 f(Xi − a)da
.
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• So, in our original example when f = 1[−1/2,1/2], show that W =
X(1)+X(n)

2
achieves

the minimum variance among location equivariant estimators, despite the UMVU
not existing. This estimator is also unbiased, but this was not guaranteed to occur
in our construction.
• (Optional) Perform the above analysis for fθ(x) := θ−1f(x/θ), θ > 0 to find the

variance minimizer among scale-equivariant estimators

t(ax1, . . . , axn) = at(x), ∀x = (x1, . . . , xn) ∈ Rn, ∀ a > 0.

You should find the optimal estimator to be

t(x) :=

∫
R a

n
∏n

i=1 f(axi)da∫
R a

n+1
∏n

i=1 f(axi)da

Solution. Applying the equivariance property, changing variables, using Fubini’s Theorem,
then using equivariance again

Eθ(W − θ)2 =

∫
Rn
|t(x)− θ|2

n∏
i=1

f(xi − θ)dx1 · · · dxn

=

∫
Rn
|t(x1 − θ, . . . , xn − θ)|2

n∏
i=1

f(xi − θ)dx1 · · · dxn

=

∫
Rn
|t(x)|2

n∏
i=1

f(xi)dx1 · · · dxn

We now change variables, so that y1 = x1 + a, y2 = x2 + a, . . . , yn−1 = xn−1 + a and a = xn.
Then the Jacobian determinant of this change of variables is 1, so

Eθ(W − θ)2 =

∫
Rn
|t(y1 − a, . . . , yn−1 − a, a)|2

n−1∏
i=1

f(yi − a)f(a)dy1 · · · dyn−1da

Changing variables again so that z = xn − a

=

∫
H

(∫
R
|t(x1 − z, . . . , xn−1 − z, z)|2

n−1∏
i=1

f(xi − z)f(z)dz
)
dH(x)

=

∫
H

(∫
R
|t(x1 − a, . . . , xn − a)|2

n∏
i=1

f(xi − a)da
)
dH(x)

=

∫
H

(∫
R
|t(x)− a|2

n∏
i=1

f(xi − a)da
)
dH(x).

Now, write∫
R
|t(x)− a|2

n∏
i=1

f(xi − a)da =

∫
R
([t(x)]2 − 2at(x) + a2)

n∏
i=1

f(xi − a)da.

With all other quantities fixed, the value of t(x) minimizing this expression is

t(x) :=

∫
R a
∏n

i=1 f(xi − a)da∫
R
∏n

i=1 f(xi − a)da
, ∀x ∈ H.
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We can write any y ∈ Rn as y = b(1, . . . , 1) + (y − b(1, . . . , 1)) where b := (
∑n

i=1 yi) and
x := (y − b(1, . . . , 1)) ∈ H so that, by the equivariance property,

t(y) = t(x+ (b, . . . , b)) = t(x) + b =

∫
R a
∏n

i=1 f(yi − a− b)da∫
R
∏n

i=1 f(yi − a− b)da
+ b

=

∫
R(a− b)

∏n
i=1 f(yi − a)da∫

R
∏n

i=1 f(yi − a)da
+ b =

∫
R a
∏n

i=1 f(yi − a)da∫
R
∏n

i=1 f(yi − a)da
+ b− b

=

∫
R a
∏n

i=1 f(yi − a)da∫
R
∏n

i=1 f(yi − a)da
.

When f = 1[−1,2/1/2], we have

n∏
i=1

f(xi − a) = 1x1,...,xn∈[a−1/2,a+1/2] = 1x(1),x(n)∈[a−1/2,a+1/2]

= 1a−1/2≤x(1)≤x(n)≤a+1/2 = 1a≤x(1)+1/2≤x(n)+1/2≤a+1.

So,

∫
R
a

n∏
i=1

f(xi − a)da =

∫
R
a1a≤x(1)+1/2≤x(n)+1/2≤a+1da

=

∫ x(1)+1/2

x(n)−1/2

ada =
[x(1) + 1/2]2 − [x(n) − 1/2]2

2
.

∫
R

n∏
i=1

f(xi − a)da =

∫
R

1a≤x(1)+1/2≤x(n)+1/2≤a+1da =

∫ x(1)+1/2

x(n)−1/2

da = x(1) − x(n) + 1.

t(x) =

∫
R a
∏n

i=1 f(xi − a)∫
R
∏n

i=1 f(xi − a)
=

1

2

x2
(1) − x2

(n) + x(1) + x(n)

x(1) − x(n) + 1
=

1

2
[x(1) + x(n)].

�

Solution. [Optional]
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Applying the equivariance property, changing variables, changing to hyperspherical coor-
dinates, then using equivariance again

Eθ(W − θ)2 =

∫
Rn
|t(x)− θ|2

n∏
i=1

θ−1f(xi/θ)dx1 · · · dxn

=

∫
Rn
|t(θx)− θ|2

n∏
i=1

f(xi)dx1 · · · dxn

= θ2

∫
Rn
|t(x)− 1|2

n∏
i=1

f(xi)dx1 · · · dxn

= θ2

∫
Sn−1

(∫ ∞
0

an−1 |t(ax)− 1|2
n∏
i=1

f(axi)da
)
dS(x)

= θ2

∫
Sn−1

(∫ ∞
0

an−1 |at(x)− 1|2
n∏
i=1

f(axi)da
)
dS(x)

Now, write∫ ∞
0

an−1 |at(x)− 1|2
n∏
i=1

f(axi)da =

∫ ∞
0

an−1[a2[t(x)]2 − 2at(x) + 1]
n∏
i=1

f(axi)da.

With all other quantities fixed, the value of t(x) minimizing this expression is

t(x) :=

∫
R a

n
∏n

i=1 f(axi)da∫
R a

n+1
∏n

i=1 f(axi)da
, ∀x ∈ H.

We can write any y ∈ Rn as y = ‖y‖ [y/ ‖y‖] so that, by the equivariance property

t(y) = ‖y‖ t(y/ ‖y‖) = ‖y‖
∫
R a

n
∏n

i=1 f(ayi/ ‖y‖)da∫
R a

n+1
∏n

i=1 f(ayi/ ‖y‖)da

=

∫
R a

n
∏n

i=1 f(ayi)da∫
R a

n+1
∏n

i=1 f(ayi)da
.

�

Exercise 6.4. Let f : Rn → R be a convex function. Let x ∈ Rn be a local minimum of f .
Show that x is in fact a global minimum of f .

Now suppose additionally that f is a C1 function (all derivatives of f exist and are con-
tinuous), and x ∈ Rn satisfies ∇f(x) = 0. Show that x is a global minimum of f .

Solution. Let y ∈ Rn with y 6= x. Let t ∈ (0, 1). Assume for the sake of contradiction that
f(y) < f(x). By convexity of f ,

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) < (t+ (1− t))f(x) = f(x).

Letting t → 1− shows that points near x have smaller f values than x, contradicting the
local minimality of x. We conclude that f(y) ≥ f(x) for all y ∈ Rn, so that x is a global
minimum of f .
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In the case that f is C1, ∇f(x) = 0 implies that x is a local minimum of f , so that the
first assertion implies that x is a global minimum of f . To see this, note that the definition
of convexity of f implies that the function f lies above the horizontal tangent plane of f at
x. �

Exercise 6.5. Let A be a real m × n matrix. Let x ∈ Rn and let b ∈ Rm. Show that the
function f : Rn → R defined by f(x) = 1

2
‖Ax− b‖2 is convex. Moreover, show that

∇f(x) = AT (Ax− b), D2f(x) = ATA.

(Here D2f denotes the matrix of second derivatives of f .)
So, if ∇f(x) = 0, i.e. if ATAx = AT b, then x is the global minimum of f . And if A has

full rank, then ATA is invertible, so that x = (ATA)−1AT b is the global minimum of f .

Solution. We have

f(x) =
1

2
(xTATAx−xTAT b−bTAx+bT b) =

1

2

n∑
i,k=1

m∑
j=1

xiajiajkxk−
n∑
i=1

m∑
j=1

xiajibj +
1

2

m∑
i=1

b2
i .

So convexity follows since, if t ∈ (0, 1) and x, y ∈ Rn,

2[tf(x) + (1− t)f(y)− f(tx+ (1− t)y)]

= txTATAx+ (1− t)yTATAy − (tx+ (1− t)y)TATA(tx+ (1− t)y)

= (t− t2)xTATAx+ [(1− t)− (1− t)2]yTATAy − 2t(1− t)xTATAy

= t(1− t)
(
xTATAx+ yTATAy − 2xTATAy

)
= t(1− t)(x− y)TATA(x− y) ≥ 0.

The last inequality uses that ATA is a positive semidefinite matrix, so (x−y)TATA(x−y) ≥ 0.
We use the coordinate expression to differentiate f , so that

∂

∂xi′
f(x) =

m∑
j=1

xi′a
2
ji′ +

∂

∂xi′

∑
k∈{1,...,n} : k 6=i′

m∑
j=1

xi′aji′ajkxk −
∂

∂xi′

m∑
j=1

xi′aji′bj

=
m∑
j=1

xi′a
2
ji′ +

∑
k∈{1,...,n} : k 6=i′

m∑
j=1

aji′ajkxk −
m∑
j=1

aji′bj

=
n∑
k=1

m∑
j=1

aji′ajkxk −
m∑
j=1

aji′bj

= (ATAx)i′ − (AT b)i′ = [AT (Ax− b)]i′ .

Therefore, ∇f(x) = AT (Ax− b). Similarly,

∂

∂xi′

∂

∂xj′
f(x) =

∂

∂xj′

( n∑
k=1

m∑
j=1

aji′ajkxk −
m∑
j=1

aji′bj

)
=

m∑
j=1

aji′ajj′ = (ATA)i′j′

Therefore, D2f(x) = ATA. �
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Exercise 6.6 (Least Squares/ Ridge Regression). Let Z1, . . . , Zn be independent iden-
tically distributed Gaussian random variables with zero mean and known variance σ2 > 0.
Suppose w ∈ Rk is an unknown vector, and for all 1 ≤ i ≤ n, there are known vectors
x(1), . . . , x(n) ∈ Rk. Our observed data are

Xi := 〈x(i), w〉+ Zi, ∀ 1 ≤ i ≤ n.

Here Z1, . . . , Zn represent experimental noise. The goal is to determine w.
So, our data are X = (X1, . . . , Xn)T . In this exercise we restrict attention to linear

estimators, i.e. we only consider statistics of the form

Y := BX,

where B is a k × n real matrix.

• Let A be the n× k matrix so that the ith row of A is the row vector x(i)) . Assume
that k ≤ n and the matrix A has full rank. Find the value of w ∈ Rk that minimizes
the quantity

n∑
i=1

(Xi − 〈x(i), w〉)2

(considering w as a variable, with all other quantities fixed.)
• Find the unbiased estimator of w with minimal variance, among all linear estimators.

That is, minimize

E ‖Y − w‖2 = E
k∑
j=1

(Yj − wj)2

over all choices of B such that EY = w, where Y is an arbitrary linear estimator.
(Hint: If EY = w, what does the matrix B satisfy? Can you come up with some B
that satisfies EBX = w? Also, it might be easier to first compute the expected value
of a matrix E(Y − w)(Y − w)T )

Solution. Define f(w) :=
∑n

i=1(Xi−〈x(i), w〉)2 = ‖X − Aw‖2. From Exercise 6.5, the global
minimum of f is w = (ATA)−1ATX.

Xi := 〈x(i), w〉+ Zi, ∀ 1 ≤ i ≤ n.

Since EY = w, and EX = Aw, we have w = EY = EBX = BEX = BAw, so that
BA is the identity matrix I. (Since A is n × k and k ≤ n, this does not imply that B is
the inverse of A; indeed the inverse of a matrix is only formally defined for square matrices,
though we could say that B is a left inverse in this case.) Note that we can write B as
B = (ATA)−1AT + C, where C satisfies CA = 0. Now,

E(Y − w)(Y − w)T = E(BX − w)(BX − w)T = EBXXTBT − EBXwT − Ew(BX)T + wTw

= B(AwwTA+ I)BT − wTw = BBT .
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The last equality used BA = I. Also, since X = Aw + Z, we have EXXT = E(Aw +
Z)(Aw + Z)T = AwwTAT + I. Then

E(Y − w)(Y − w)T = BBT = ((ATA)−1AT + C)((ATA)−1AT + C)T

= (AAT )−1 + (ATA)−1ATCT + CA(AAT )−1 + CCT

= (AAT )−1 + CCT .

The last equality used CA = 0. So, we have

E ‖Y − w‖2 = TrE(Y − w)(Y − w)T = Tr((AAT )−1) + Tr(CCT ) ≥ Tr((AAT )−1).

with equality when C = 0, i.e. when B = (ATA)−1AT , as desired. The inequality used that
CCT is positive semidefinite. �

Exercise 6.7. Let X1, . . . , Xn be a random sample of size n, so that X1 has the Poisson
distribution with parameter θ, i.e.

Pθ(X1 = x) = θxe−θ/x!, ∀ nonnegative integers x.

Suppose we want to estimate Pθ(X1 = 0) = e−θ.

• One way we can try to estimate e−θ is to count the fraction of zeros in the sample of
size n. Define

Yn :=
1

n
|{1 ≤ i ≤ n : Xi = 0}| .

Find the limiting distribution of Yn as n→∞.
• Give an explicit formula for the MLE Zn of e−θ. Find the limiting distribution of Zn

as n→∞.
• Compute the relative efficiency of these two estimators as n→∞.

Solution. Since Yn = 1
n

∑n
i=1 1Xi=0 and P(Xi = 0) = e−θ, the random variables 1Xi=0 are

Bernoulli random variables with parameter e−θ, so that Yn satisfies the conclusion of the LLN
and CLT, i.e. Yn converges almost surely to e−θ as n→∞, and

√
n(Yn − e−θ) converges to

a mean zero Gaussian with variance e−θ(1− e−θ) as n→∞.
The MLE of θ is a value of θ maximizing

log
n∏
i=1

θXie−θ/Xi! = log
(
θ
∑n
i=1Xie−nθ

n∏
i=1

[Xi!]
)

=
n∑
i=1

log(Xi!)− nθ + log θ
n∑
i=1

Xi.

Taking a derivative in θ, we get −n + 1
θ

∑n
i=1 Xi. From the first derivative test, there is a

unique maximum value of θ when θ = 1
n

∑n
i=1Xi, so the MLE for θ is 1

n

∑n
i=1Xi. By the

functional equivariance property of the MLE, the MLE for e−θ is then

Zn = e−
1
n

∑n
i=1Xi .

Denote f(θ) := e−θ. Note that
√
n
[(

1
n

∑n
i=1Xi

)
− θ
]

converges in distribution by the CLT

to a mean zero Gaussian with variance θ as n→∞. From the Delta Method,
√
n(Zn−f(θ))

converges in distribution as n→∞ to a mean zero Gaussian with variance

θ(f ′(θ))2 = θe−2θ.
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So, the relative efficiency of these estimators as n→∞ is the ratio of the variances, i.e.

θe−2θ

e−θ(1− e−θ)
=

θe−θ

1− e−θ
=

θ

eθ − 1
.

This quantity is less than 1 when θ > 0, so that the MLE has strictly smaller variance (better
efficiency) as n→∞. �

Exercise 6.8. Let X1, . . . , Xn be a random sample of size n, so that X1 has the Laplace
density 1

2
e−|x−θ| for all x ∈ R, where θ ∈ R is unknown. Find the MLE of θ.

Solution. The log likelihood satisfies

log `(θ) = log
n∏
i=1

(1/2)e−|xi−θ| = n log 2−
n∑
i=1

|xi − θ| .

For each 1 ≤ i ≤ n, the function θ 7→ |xi − θ| is convex in θ. Since a sum of convex
functions is convex, the function θ 7→

∑n
i=1 |xi − θ| is also a convex function in θ. Moreover,

(d/dθ) log `(θ) < 0 as θ → ∞ and (d/dθ) log `(θ) > 0 as θ → ∞. Since additionally log `(θ)
is concave, it has a maximum value.

Let Yn be any median of X1, . . . , Xn, so that half of the values of X1, . . . , Xn are at least
Yn, and half of the values of X1, . . . , Xn are at most Yn. At values of θ where log `(θ) is
differentiable, we have

d

dθ
log `(θ) = −

n∑
i=1

sign(xi − θ) = #{1 ≤ i ≤ n : xi < θ} −#{1 ≤ i ≤ n : xi > θ}.

Consequently, (d/dθ) log `(θ) ≤ 0 for θ ≤ Yn and (d/dθ) log `(θ) ≥ 0 for θ ≥ Yn. It follows
that Yn is an MLE for θ. �

7. Homework 7

Exercise 7.1. Consistency of a continuous method of moments estimator follows from the
following statement, which you are required to prove.

Fix k ≥ 1. For any 1 ≤ j ≤ k, let Mj,1,Mj,2, . . . be real-valued random variables that
converge in probability to a constant cj ∈ R. Let h : Rk → R be continuous. Then, as
n→∞,

h(M1,n, . . . ,Mj,n)

converges in probability to the constant h(c1, . . . , cj).

Solution. Since h is continuous, for any ε > 0, there exists δ > 0 such that, if
∑k

i=1 |ci −mi| <
δ, then |h(c1, . . . , ck)− h(m1, . . . ,mk)| < ε.

Let ε > 0, and then let δ > 0 as above. By assumption, for any 1 ≤ i ≤ k, we have

lim
n→∞

P(|Mi,n − ci| > δ) = 0. (∗)
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We therefore write

P(|h(c1, . . . , ck)− h(M1,n, . . . ,Mk,n)| > ε)

= P(|h(c1, . . . , ck)− h(M1,n, . . . ,Mk,n)| > ε,
k∑
i=1

|ci −Mi,n| < δ)

+ P(|h(c1, . . . , ck)− h(M1,n, . . . ,Mk,n)| > ε,
k∑
i=1

|ci −Mi,n| ≥ δ)

≤ P(|h(c1, . . . , ck)− h(M1,n, . . . ,Mk,n)| > ε,
k∑
i=1

|ci −Mi,n| < δ)

+ P(
k∑
i=1

|ci −Mi,n| ≥ δ)

The first probability is zero, by definition of δ (since h is continuous, this event is the empty

set). The second probability is bounded by
∑k

i=1 P(|ci −Mi,n| ≥ δ), which goes to zero as
n→∞ by (∗). Therefore, for any ε > 0, we have shown that

lim
n→∞

P(|h(c1, . . . , ck)− h(M1,n, . . . ,Mk,n)| > ε) = 0.

�

Exercise 7.2. This exercise demonstrates that the MLE might not be consistent.
Let Z be a Gaussian random variable with mean µ ∈ R and variance σ2 > 0. Then

X := eZ has the lognormal distribution with parameters µ and σ2. Let γ ∈ R and define

X ′ := γ + eZ .

In this case X ′ is said to have the three-parameter lognormal distribution with parame-
ters γ, µ ∈ R, and σ2 > 0. Let X1, . . . , Xn be i.i.d. from this three-parameter lognormal
distribution.

• Find the density of X1.
• Suppose γ is known. Find the maximum likelihood estimator (M,T ) of (µ, σ2).

(Assume γ < X(1).)
• Let `(γ, µ, σ2) denote the log-likelihood function. The MLE of (γ, µ, σ2) if it exists,

will maximize `(γ,M, T ) over γ. Determine

lim
γ↑X(1)

`(γ,M, T ).

Hint: Show first that as γ ↑ X(1),

M = M(γ) ∼ 1

n
log(X(1) − γ), and T = T (γ) ∼ n− 1

n2
log2(X(1) − γ),

where the notation f(γ) ∼ g(γ) means f(γ)/g(γ)→ 1 as γ ↑ X(1).
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Solution. The density of X1 is

d

dx
P(γ + eZ ≤ x) =

d

dx
P(Z ≤ log(x− γ)) =

d

dx

∫ log(x−γ−)

−∞
e−(y−µ)2/2σ2

dy/
√

2σ2π

=
1

x− γ
e−[log(x−γ)−µ]2/2σ2 1

σ
√

2π
.

So, the log likelihood for n samples is

log
n∏
i=1

1

Xi − γ
e−[log(Xi−γ)−µ]2/2σ2 1

σ
√

2π
=

n∑
i=1

− log(Xi−γ)− (log(Xi − γ)− µ)2

2σ2
−log(σ

√
2π).

The µ derivative is
n∑
i=1

log(Xi − γ)− µ
σ2

.

The σ derivative is
n∑
i=1

σ−3(log(Xi − γ)− µ)2 − 1

σ
.

Solving for µ, σ when both derivatives are zero gives

nσ2 =
n∑
i=1

(log(Xi − γ)− µ)2,
n∑
i=1

log(Xi − γ) = nµ,

µ =
1

n

n∑
i=1

log(Xi − γ), σ2 =
1

n

n∑
i=1

(
log(Xi − γ)− 1

n

n∑
j=1

log(Xj − γ)
)2

.

As argued in the notes, this is the unique global maximum of the likelihood function. As
suggested in the hint, these formulas imply that as γ ↑ X(1),

M = M(γ) ∼ 1

n
log(X(1) − γ), and T = T (γ) ∼ n− 1

n2
log2(X(1) − γ),

We then examine the asymptotic behavior of ` as γ ↑ X(1). The first term in the definition
of ` behaves like − log(X(1) − γ). The second term is of constant order times n. The last
term behaves like log n − 2 log log(X(1) − γ). So, the first term dominates the other two
(for fixed n as γ ↑ X(1)), and the log likelihood converges to plus infinity. In particular,

E sup(γ′,µ′,σ2′ )∈Θ

∣∣∣log f(γ′,µ′,σ2′ )(X1, . . . , Xn)
∣∣∣ = ∞, i.e. this assumption of the consistency

theorem is violated. Also, an MLE does not exist (since no maximum of ` exists), so we
cannot assert that an MLE converges in probability to (γ, µσ2). �

Exercise 7.3 (Least Squares/ Ridge Regression, Part 2). Suppose w ∈ Rk is an
unknown vector, and for all 1 ≤ i ≤ n, there are known vectors x(1), . . . , x(n) ∈ Rk. Our
observed data are X1, . . . , Xn ∈ R. In linear least squares regression, we try to determine
the best linear relationship between the vectors x(1), . . . , x(n) and the data X1, . . . , Xn. Let
A be the n × k matrix so that the ith row of A is the row vector x(i). Assume that k ≤ n
and the matrix A has full rank. In a previous homework, we found w ∈ Rk that minimizes
the quantity

n∑
i=1

(Xi − 〈x(i), w〉)2
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We also interpreted the minimal w as an estimator. In some cases, the estimator for w could
have large variance, which is undesirable. To deal with this issue, let c > 0 and consider the
quantity

n∑
i=1

(Xi − 〈x(i), w〉)2 + c ‖w‖2 . (∗)

Find the value of w ∈ Rk that minimizes this quantity.
The term ‖w‖2 penalizes w from having large entries. By Lagrange Multipliers, a critical

point w of the constrained minimization problem

minimize
n∑
i=1

(Xi − 〈x(i), w〉)2 subject to ‖w‖2 ≤ 1

is equivalent to the existence of a c ∈ R such that w is a critical point of (∗).
The L2 penalization term in (∗) sometimes still allows w to have large entries. So, let

c > 0 and consider the quantity
n∑
i=1

(Xi − 〈x(i), w〉)2 + c
n∑
i=1

|wi| . (∗∗)

Prove that there exists a w ∈ Rk that minimizes this quantity (this w is known as the
LASSO, or least absolute shrinkage and selection operator). The L1 penalization term in
(∗∗) is better at penalizing large entries of w (a similar observation applies in the compressed
sensing literature). Unfortunately, there is no closed form solution to (∗∗) in general. The
constrained minimization problem

minimize
n∑
i=1

(Xi − 〈x(i), w〉)2 subject to sumn
i=1 |wi| ≤ 1

is morally equivalent to (∗∗), but technically Lagrange Multipliers does not apply since the
constraint is not differentiable everywhere.

Solution. Define f(w) :=
∑n

i=1(Xi − 〈x(i), w〉)2 = ‖X − Aw‖2 + ‖w‖2. From Exercise 6.5,
∇f = AT (Ax − b) + cx, so if ∇f = 0, (ATA + cI)x = AT bthe global minimum of f is
w = (ATA+ cI)−1ATX.

Xi := 〈x(i), w〉+ Zi, ∀ 1 ≤ i ≤ n.

�

Exercise 7.4 (Second Order Jackknife). Let X1, X2, . . . : Ω→ Rn be i.i.d random vari-
ables so that X1 has distribution fθ : Rn → [0,∞), θ ∈ Θ. Let Y1, Y2, . . . be a sequence of

estimators for θ so that for any n ≥ 1, Yn = tn(X1, . . . , Xn) for some tn : Rn2 → Θ. For any
n ≥ 1, define the second order jackknife estimator of Yn to be

Zn :=
n2

2
Yn −

(n− 1)2

n

n∑
i=1

tn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn)

+
(n− 2)2

n(n− 1)

n∑
1≤i<j≤n

tn−2(X1, . . . , Xi−1, Xi+1, . . . , Xj−1, Xj+1, . . . , Xn).
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Assume that Y1, Y2, . . . are asymptotically unbiased, so that there exists a, b, c, d ∈ R such
that

EYn = θ + a/n+ b/n2 +
c

n3
+

d

n4
+O(1/n5), ∀n ≥ 1. (∗)

Show that
EZn = θ +O(1/n3).

And if c = d = 0 and the O(1/n5) term is zero in (∗), then Zn is unbiased.

EZn
(∗)
= n2θ/2 + na/2 + b/2 + c/(2n) + d/(2n2) +O(1/n5)

− (n− 1)2
(
θ + a/(n− 1) + b/(n− 1)2 +

c

(n− 1)3
+

d

(n− 1)4
+O(1/n5)

)
+ (n− 2)2/2

(
θ + a/(n− 2) + b/(n− 2)2 +

c

(n− 2)3
+

d

(n− 2)4
+O(1/n5)

)
= n2θ/2 + na/2 + b/2 + c/(2n) + d/(2n2) +O(1/n3)

− (n− 1)2θ − a(n− 1)− b− c/(n− 1)− d/(n− 1)2 +O(1/n3)

+ (n− 2)2θ/2 + a(n− 2)/2 + b/2 + c/2(n− 2) + d/2(n− 2)2 +O(1/n3)

= θ + c
( 1

2n
− 1

n− 1
+

1

2(n− 2)

)
+ d
( 1

2n2
− 1

(n− 1)2
+

1

2(n− 2)2

)
+O(1/n3)

= θ + c
((n− 1)(n− 2)− 2n(n− 2) + n(n− 1)

2n(n− 1)(n− 2)

)
+ d
((n− 1)2(n− 2)2 − 2n2(n− 2)2 + n2(n− 1)2

2n2(n− 1)2(n− 2)2

)
+O(1/n3)

= θ + c
(−(n+ 1)(n− 2) + n(n− 1)

2n(n− 1)(n− 2)

)
+ d
(−2n2(n− 2)2 + [n2 + (n− 2)2](n− 1)2

2n2(n− 1)2(n− 2)2

)
+O(1/n3)

Exercise 7.5. Do Question 1 on the Fall 2011 qualifying exam here:
https://dornsife.usc.edu/mgsa/statistics-a/

Solution. We have fY1(y) = 2y
θ2

1y∈[0,θ] for all y ∈ R, for all θ > 0, where θ > 0 is an unknown
parameter that we would like to estimate. Denote Y = (Y1, . . . , Yn). Both IY (θ) and IY1(θ)
are not well-defined, since the region where the PDF of Y1 is nonzero is a function of θ. So,
we could state a Cramér-Rao inequality here, but since the Fisher information is not well-
defined, the Cramér-Rao inequality is vacuous in this case (the inequality does not apply
since the Fisher information is not well-defined).

When n = 1, note that EY1 = θ−2
∫ θ

0
2y2dy = (2/3)θ, so E(3/2)Y1 = θ, i.e. (3/2)Y1 is an

unbiased estimator of θ, which is also UMVU for θ by Lehmann-Scheffé when n = 1 since Y1

is sufficient for θ. So, at least when n = 1, we have a lower bound for unbiased estimators
Z of θ of the form

Var(Z) ≥ Var(Y1) = θ2/18.
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And if we try to näıvely compute the Fisher information of Y1, we will get a different
inequality than this one when n = 1. �

USC Department of Mathematics, Los Angeles, CA
E-mail address: stevenmheilman@gmail.com
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