
Graduate Mathematical Statistics Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due March 10, 9AM, to be submitted in blackboard, under the Assignments tab.

Homework 4

Exercise 1 (Order Statistics). Let X : Ω → R be a random variable. Let X1, . . . , Xn be
a random sample of size n from X. Define X(1) := min1≤i≤nXi, and for any 2 ≤ i ≤ n,
inductively define

Xi := min
{
{X1, . . . , Xn}r {X(1), . . . , X(i−1)}

}
,

so that

X(1) ≤ X(2) ≤ · · · ≤ X(n) = max
1≤i≤n

Xi.

The random variables X(1), . . . , X(n) are called the order statistics of X1, . . . , Xn.

• Suppose X is a discrete random variable and we can order the values that X takes
as x1 < x2 < · · · . For any i ≥ 1, define pi := P(X ≤ xi). Show that, for any
1 ≤ i, j ≤ n,

P(X(j) ≤ xi) =
n∑
k=j

(
n

k

)
pki (1− pi)n−k.

(Hint: Let Y be the number of indices 1 ≤ j ≤ n such that Xj ≤ xi. Then Y is a
binomial random variable with parameters n and pi.)

You don’t have to show it, but if X is a continuous random variable with density fX
and cumulative distribution function FX , then for any 1 ≤ j ≤ n, FX(j)

has density

fX(j)
(x) :=

n!

(j − 1)!(n− j)!
fX(x)(FX(x))j−1(1− FX(x))n−j, ∀x ∈ R.

(This follows by differentiating the above identity for the cumulative distribution
function.)
• Let X be a random variable uniformly distributed in [0, 1]. For any 1 ≤ j ≤ n, show

that X(j) is a beta distributed random variable with parameters j and n − j + 1.
Conclude that (as you might anticipate)

EX(j) =
j

n+ 1
.

• Let a, b ∈ R with a < b. Let U be the number of indices 1 ≤ j ≤ n such that
Xj ≤ a. Let V be the number of indices 1 ≤ j ≤ n such that a < Xj ≤ b. Show
that the vector (U, V, n − U − V ) is a multinomial random variable, so that for any



2

nonnegative integers u, v with u+ v ≤ n, we have

P(U = u, V = v, n− U − V = n− u− v)

=
n!

u!v!(n− u− v)!
FX(a)u(FX(b)− FX(a))v(1− FX(b))n−u−v.

Consequently, for any 1 ≤ i, j ≤ n,

P(X(i) ≤ a,X(j) ≤ b) = P(U ≥ i, U + V ≥ j) =

j−1∑
k=i

n−k∑
m=j−k

P(U = k, V = m) + P(U ≥ j).

So, it is possible to write an explicit formula for the joint distribution of X(i) and
X(j) (but you don’t have to write it yourself).

Exercise 2. Using Matlab (or any other mathematical system on a computer), verify that
its random number generator agrees with the law of large numbers and central limit theorem.
For example, average 107 samples from the uniform distribution on [0, 1] and check how close
the sample average is to 1/2. Then, sum up n samples from the uniform distribution on
[0, 1], construct this sum n times, make a histogram of the different values of the sum, and
check how close the histogram is to a Gaussian (when n = 104). If you want a challenge, try
n = 105 or n = 106.

Exercise 3. Let X : Ω → R be a random variable on a sample space Ω equipped with a
probability law P. For any t ∈ R let F (t) := P(X ≤ t). For any s ∈ (0, 1) define

Y (s) := sup{t ∈ R : F (t) < s}.
Then Y is a random variable on (0, 1) with respect to the uniform probability law on (0, 1).
(That is, we can consider Y as a random variable Y (S) where S is uniform on (0, 1).) Show
that X and Y are equal in distribution. That is, P(Y ≤ t) = F (t) for all t ∈ R.

Exercise 4 (Box-Muller Algorithm). Let U1, U2 be independent random variables uniformly
distributed in (0, 1). Define

R :=
√
−2 logU1, Ψ := 2πU2.

X := R cos Ψ, Y := R sin Ψ.

Show that X, Y are independent standard Gaussian random variables. So, we can simulate
any number of independent standard Gaussian random variables with this procedure.

Now, let {aij}1≤i,j≤n be an n × n symmetric positive semidefinite matrix. That is, for any
v ∈ Rn, we have

vTav =
n∑

i,j=1

vivjaij ≥ 0.

We can simulate a Gaussian random vector with any such covariance matrix {aij}1≤i,j≤n
using the following procedure.

• Let X = (X1, . . . , Xn) be a vector of i.i.d. standard Gaussian random variables
(which can be sampled using the Box-Muller algorithm above).
• Write the matrix a in its Cholesky decomposition a = rr∗, where r is an n × n real

matrix. (This decomposition can be computed efficiently with about n3 arithmetic
operations.)

https://en.wikipedia.org/wiki/Cholesky_decomposition#The_Cholesky_algorithm
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• Let e(1), . . . , e(n) be the rows of r. For any 1 ≤ i ≤ n, define

Zi := 〈X, e(i)〉.

Show that Z := (Z1, . . . , Zn) is a mean zero Gaussian random vector whose covariance matrix
is {aij}1≤i,j≤n, so that

E(ZiZj) = aij, ∀ 1 ≤ i, j ≤ n.

Exercise 5 (Optional). In the notes we showed that the Delta Method works only assuming
that f ′(θ) exists. In fact, the method works even when f ′(θ) does not exist. In this exercise,
we assume that

f ′(θ+) := lim
y→θ+

f(y)− f(θ)

y − θ
, f ′(θ−) := lim

y→θ−

f(y)− f(θ)

y − θ
,

exist. For example, consider

f(y) := max(y, 0), ∀ y ∈ R.

Then f ′(0+) = 1 while f ′(0−) = 0, so f ′(0) does not exist.

For simplicity, we assume that θ = 0 and f(θ) = 0.

Let Y1, Y2, . . . be random variables such that
√
n(Yn− θ) converges in distribution to a mean

zero Gaussian random variable with variance σ2 > 0.

• Argue as in the notes, and show that for all y ∈ R, there exists a function h with
limz→0 h(z)/z = 0, and

f(y) = f ′(0+)y1y>0 + f ′(0−)y1y<0 + h(y).

• Conclude that
√
nf(Yn) =

√
n
(
f ′(0+)Yn1Yn>0 + f ′(0−)Yn1Yn<0 + h(Yn)

)
.

• Deduce that, as n→∞,
√
nf(Yn) converges in distribution to(

σf ′(θ+)1Z>0 + σf ′(θ−)1Z<0

)
Z.

(Note that f ′(0+)Yn1Yn>0 and f ′(0−)Yn1Yn<0 have disjoint supports; this could be
useful to prove convergence in distribution as n→∞.)

Exercise 6. Let A,B,Ω be sets. Let u : Ω→ A and let t : Ω→ B. Assume that, for every
x, y ∈ Ω, if u(x) = u(y), then t(x) = t(y). Show that there exists a function s : A→ B such
that

t = s(u).

Exercise 7. Let {fθ : θ ∈ Θ} be a k-parameter exponential family {fθ : θ ∈ Θ, a(w(θ)) <∞}
of probability density functions or probability mass functions, where

fθ(x) := h(x) exp
( k∑
i=1

wi(θ)ti(x)− a(w(θ))
)
, ∀x ∈ R.

For any θ ∈ Θ, let w(θ) := (w1(θ), . . . , wk(θ)). Assume that the following subset of Rk is
k-dimensional:

{w(θ)− w(θ′) ∈ Rk : θ, θ′ ∈ Θ}.
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That is, if x ∈ Rk satisfies 〈x, y〉 = 0 for all y in this set, then x = 0. (Note that the
assumption of the exercise is always satisfied for an exponential family in canonical form.)

Let X = (X1, . . . , Xn) be a random sample of size n from fθ. Define t : Rn → Rn by

t(X) :=
n∑
j=1

(t1(Xj), . . . , tk(Xj)) .

Show that t(X) is minimal sufficient for θ. (Hint: if you get stuck, look at Example 3.12 in
Keener.)

Conclude that if we sample from a Gaussian with unknown mean µ and variance σ2 > 0,
then X is minimal sufficient for µ and (X,S) is minimal sufficient for (µ, σ2).

Warning: the fθ exponential family mentioned here is a function of one variable. If you use
the Theorem from class about checking the ratio of fθ(x)/fθ(y), the functions there are joint
density functions (i.e. the product of n copies of the same function).

Optional: If the fθ functions are always positive, you should be able to change the assumption
to the following. For any θ ∈ Θ, let w(θ) := (w1(θ), . . . , wk(θ)). Assume that the following
subset of Rk is k-dimensional:

{w(θ) ∈ Rk : θ, θ′ ∈ Θ}.

Exercise 8. Let P1,P2 be two probability laws on the sample space Ω = R. Suppose these
laws have densities f1, f2 : R→ [0,∞) so that

Pi(A) =

∫
A

fi(x)dx, ∀ i = 1, 2, ∀A ⊆ R.

Show that

sup
A⊆R
|P1(A)−P2(A)| = 1

2

∫
R

|f1(x)− f2(x)| dx.

(Hint: consider A := {x ∈ R : f1(x) > f2(x)}.)

Similarly, if P1,P2 are probability laws on Ω = Z, show that

sup
A⊆Z
|P1(A)−P2(A)| = 1

2

∑
z∈Z

|P1(z)−P2(z)| .

Exercise 9. Give an example of a statistic Y that is complete and nonconstant, but such
that Y is not sufficient.

Exercise 10. This exercise shows that a complete sufficient statistic might not exist.

Let X1, . . . , Xn be a random sample of size n from the uniform distribution on the three
points {θ, θ + 1, θ + 2}, where θ ∈ Z.

• Show that the vector Y := (X(1), X(n)) is minimal sufficient for θ.
• Show that Y is not complete by considering X(n) −X(1).
• Using minimal sufficiency, conclude that any sufficient statistic for θ is not complete.
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Warning: An earlier version of this exercise considered all θ ∈ R, whereas now we only
consider θ ∈ Z. The case θ ∈ R was unintentionally difficult.

Exercise 11 ((Optional) This exercise requires some measure theory so it is optional.).
Let {fθ : θ ∈ Θ} be a k-parameter exponential family {fθ : θ ∈ Θ, a(w(θ)) < ∞} of joint
probability density functions or probability mass functions in canonical form, where

fw(x) := h(x) exp
( k∑
i=1

witi(x)− a(w)
)
, ∀x ∈ Rn, ∀w ∈ {w ∈ Rk : a(w) <∞}.

Assume that the following subset of Rk contains an open set in Rk:

{w ∈ Rk : a(w) <∞}.
Assume also that there is no redundancy in the functions t1, . . . , tk, i.e. assume: if ∃
α1, . . . , αk ∈ R such that

∑k
i=1 αiti(x) = 0 for all x ∈ Rn, then α1 = · · · = αk = 0.

Let X be a random sample of size 1 from fθ (so X = (X1, . . . , Xn), and X1, . . . , Xn are all
real valued). Define t : Rn → Rn by

t(X) := (t1(X), . . . , tk(X)).

Show that t(X) is complete for θ.

Hint: if you get stuck, look at Theorem 4.3.1 in Lehmann-Romano. An early step in the
proof uses the change of variables formula for the pushforward measure.

Once we know the above statement, we can deduce the following about repeated random
samples from a single variable exponential family.

Let {fθ : θ ∈ Θ} be a k-parameter exponential family {fθ : θ ∈ Θ, a(w(θ)) < ∞} of proba-
bility density functions or probability mass functions in canonical form, where

fw(x) := h(x) exp
( k∑
i=1

witi(x)− a(w)
)
, ∀x ∈ R, ∀w ∈ {w ∈ Rk : a(w) <∞}.

Assume that the following subset of Rk contains an open set in Rk:

{w ∈ Rk : a(w) <∞}.
Assume also that there is no redundancy in the functions t1, . . . , tk, i.e. assume: if ∃
α1, . . . , αk ∈ R such that

∑k
i=1 αiti(x) = 0 for all x ∈ R, then α1 = · · · = αk = 0.

Let X1, . . . , Xn be a random sample of size n from fθ. Define t : Rn → Rn by

t(X) :=
n∑
j=1

(t1(Xj), . . . , tk(Xj)) .

Show that t(X) is complete for θ.

https://www.stat.washington.edu/jaw/COURSES/580s/582/HO/Lehmann_and_Romano-TestingStatisticalHypotheses.pdf
https://en.wikipedia.org/wiki/Pushforward_measure

