
Graduate Mathematical Statistics Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due April 14, 9AM, to be submitted in blackboard, under the Assignments tab.

Homework 6

Exercise 1. For any random variables X, Y define

Var(X|Y ) := E[(X − E(X|Y ))2|Y ].

In this exercise you can freely use the identity

Var(X) = E[Var(X|Y )] + Var[E(X|Y )].

Using this identity, give a different proof of the Rao-Blackwell Theorem, when the loss
function is mean squared error. (In some sense, this new proof is better, since you can
explicitly quantify the improvement in the variance that results from conditioning; on the
other hand, this proof only seems to work for the quadratic loss function.)

(Hint: starting from the mean squared error E(X − g(θ))2, add and subtract the mean of X
inside the parentheses.)

Exercise 2. Let X1, . . . , Xn be a random sample of size n, so that X1 is a sample from the
uniform distribution on the interval [θ − 1/2, θ + 1/2], where θ ∈ R is unknown. From a
previous homework, we tried to find a low variance estimator for θ, but the UMVU seemed
to not exist. In this exercise, you are asked to show that a UMVU does not exist, using
the following outline, in the case n = 1. Moreover, if g(θ) is a nonconstant differentiable
function of θ ∈ R, show that no UMVU of g(θ) exists when n = 1:

• Let U = u(X1) be an unbiased estimator of 0, where u : R → R. By differentiating
the definition of unbiasedness with respect to θ, conclude that

u(x+ 1) = u(x), for a.e. x ∈ R.

Give an example of an unbiased estimator U of 0 such that u(x) 6= 0 for all x ∈ R.
• Argue by contradiction. Assume that W is UMVU for g(θ). Using the characteriza-

tion from class, conclude that EθWU = 0, so that if W = w(X1) with w : R → R,
then

w(x+ 1)u(x+ 1) = w(x)u(x), for a.e. x ∈ R.

Then conclude that

w(x+ 1) = w(x), for a.e. x ∈ R.

• To complete the exercise, what can you say about the condition that W is unbiased
for g(θ)?

(Optional) Can you make the same conclusion for a sample of size 2? Hint: Fourier series.
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Exercise 3. Let X1, . . . , Xn be a random sample of size n, so that X1 is a sample from the
uniform distribution on the interval [θ − 1/2, θ + 1/2], where θ ∈ R is unknown. Although
the UMVU for θ does not exist and unbiased estimators do exist, if we instead restrict to
location equivariant estimators, then there is a minimum variance estimator of θ among this
class. We say that an W := t(X1, . . . , Xn) with t : Rn → R is location equivariant if

t(x1, . . . , xn) + a = t(x1 + a, . . . , xn + a), ∀ (x1, . . . , xn) ∈ Rn, ∀ a ∈ R.

• Using location equivariance for the density f := 1[−1/2,1/2], and letting fθ(x) :=
f(x− θ), show that

Eθ(W − θ)2 =

∫
Rn

[t(x)]2
n∏
i=1

f(xi)dx1 · · · dxn, ∀ θ ∈ Θ.

(Note that the expression on the right does not depend on θ.)
• Let H := {x ∈ Rn : 〈x, (1, . . . , 1)〉 = 0}, where as usual 〈(x1, . . . , xn), (y1, . . . , yn)〉 =∑n

i=1 xiyi. Using location equivariance again, show that

Eθ(W − θ)2 =

∫
H

(∫
R

|t(x)− a|2
n∏
i=1

f(xi − a)da
)
dH(x).

(Here dH(x) denotes integration on the hypersurface H, i.e. dH(x) is not the same
as dx1 · · · dxn)
• So, to minimize Eθ(W − θ)2, it suffices to minimize

∫
R

[a − t(x)]2
∏n

i=1 f(xi − a)da,
for any fixed x ∈ H. What choice of t(x) minimizes

∫
R

[a − t(x)]2
∏n

i=1 f(xi − a)da,
when x ∈ H is fixed?
• Conclude that the W minimizing Eθ(W − θ)2 for all θ ∈ R, over all location equi-

variant estimators satisfies

W =

∫
R
a
∏n

i=1 f(Xi − a)da∫
R

∏n
i=1 f(Xi − a)da

.

• So, in our original example when f = 1[−1/2,1/2], show that W =
X(1)+X(n)

2
achieves

the minimum variance among location equivariant estimators, despite the UMVU
not existing. This estimator is also unbiased, but this was not guaranteed to occur
in our construction.
• (Optional) Perform the above analysis for fθ(x) := θ−1f(x/θ), θ > 0 to find the

variance minimizer among scale-equivariant estimators

t(ax1, . . . , axn) = at(x), ∀x = (x1, . . . , xn) ∈ Rn, ∀ a > 0.

You should find the optimal estimator to be

t(x) :=

∫
R
an
∏n

i=1 f(axi)da∫
R
an+1

∏n
i=1 f(axi)da

Exercise 4. Let f : Rn → R be a convex function. Let x ∈ Rn be a local minimum of f .
Show that x is in fact a global minimum of f .

Show also that if f is strictly convex, then there is at most one global minimum of f .
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Now suppose additionally that f is a C1 function (all derivatives of f exist and are contin-
uous), and x ∈ Rn satisfies ∇f(x) = 0. Show that x is a global minimum of f .

Exercise 5. Let A be a real m × n matrix. Let x ∈ Rn and let b ∈ Rm. Show that the
function f : Rn → R defined by f(x) = 1

2
||Ax− b||2 is convex. Moreover, show that

∇f(x) = AT (Ax− b), D2f(x) = ATA.

(Here D2f denotes the matrix of second derivatives of f .)

So, if ∇f(x) = 0, i.e. if ATAx = AT b, then x is the global minimum of f . And if A has full
rank, then ATA is invertible, so that x = (ATA)−1AT b is the global minimum of f .

Exercise 6 (Least Squares/ Ridge Regression). Let Z1, . . . , Zn be independent identically
distributed Gaussian random variables with zero mean and known variance σ2 > 0. Suppose
w ∈ Rk is an unknown vector, and for all 1 ≤ i ≤ n, there are known vectors x(1), . . . , x(n) ∈
Rk. Our observed data are

Xi := 〈x(i), w〉+ Zi, ∀ 1 ≤ i ≤ n.

Here Z1, . . . , Zn represent experimental noise. The goal is to determine w.

So, our data are X = (X1, . . . , Xn)T . In this exercise we restrict attention to linear estima-
tors, i.e. we only consider statistics of the form

Y := BX,

where B is a k × n real matrix. (The vectors x(1), . . . , x(n) can be thought of as measure-
ment vectors, which are part of the data of the problem, but our observed data from the
“experiment” is X.)

• Let A be the n × k matrix so that the ith row of A is the row vector x(i). Assume
that k ≤ n and the matrix A has full rank. Find the unbiased estimator of w with
minimal variance, among all linear functions. That is, minimize

E ||Y − w||2 = E
k∑
j=1

(Yj − wj)2

over all choices of B such that EY = w. (The restriction EY = w says that Y is
unbiased for w.) (Hint: What condition on B guarantees that EY = w? Compute
E(Y − w)(Y − w)T , where Y and w are column vectors, so that this is the expected
value of a matrix. Note that E ||Y − w||2 is the trace of E(Y −w)(Y −w)T . Also try
doing the second part of the problem first. Whenever possible, write expressions in
terms of matrices.)
• Compare your estimator to the value of w ∈ Rk that minimizes the quantity

n∑
i=1

(Xi − 〈x(i), w〉)2

(considering w as a variable, with all other quantities fixed, i.e. for this part of the
problem, consider the Xi and x(i) as variables that have no a priori relation to each
other.)
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Part of the purpose of this problem is to explore that there is more than one way to think
about least squares minimization.

Exercise 7. Let X1, . . . , Xn be a random sample of size n, so that X1 has the Poisson
distribution with parameter θ, i.e.

Pθ(X1 = x) = θxe−θ/x!, ∀ nonnegative integers x.

Suppose we want to estimate Pθ(X1 = 0) = e−θ.

• One way we can try to estimate e−θ is to count the fraction of zeros in the sample of
size n. Define

Yn :=
1

n
|{1 ≤ i ≤ n : Xi = 0}| .

Find the limiting distribution of Yn as n → ∞. (That is, find an, bn ∈ R such that
an(Yn − bn) converges in distribution to something nonconstant as n→∞.)
• Give an explicit formula for the MLE Zn of e−θ. Find the limiting distribution of Zn

as n→∞.
• Compute the relative efficiency of these two estimators as n→∞.

Exercise 8. Let X1, . . . , Xn be a random sample of size n, so that X1 has the Laplace
density 1

2
e−|x−θ| for all x ∈ R, where θ ∈ R is unknown. Find the MLE of θ.


