
Graduate Mathematical Statistics Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due April 28, 9AM, to be submitted in blackboard, under the Assignments tab.

Homework 7

Exercise 1. Consistency of a continuous method of moments estimator follows from the
following statement, which you are required to prove.

Fix k ≥ 1. For any 1 ≤ j ≤ k, let Mj,1,Mj,2, . . . be real-valued random variables that
converge in probability to a constant cj ∈ R. Let h : Rk → R be continous. Then, as
n→∞,

h(M1,n, . . . ,Mk,n)

converges in probability to the constant h(c1, . . . , ck).

Exercise 2. This exercise demonstrates that the MLE might not be consistent.

Let Z be a Gaussian random variable with mean µ ∈ R and variance σ2 > 0. Then X := eZ

has the lognormal distribution with parameters µ and σ2. Let γ ∈ R and define

X ′ := γ + eZ .

In this case X ′ is said to have the three-parameter lognormal distribution with parameters
γ, µ ∈ R, and σ2 > 0. Let X1, . . . , Xn be i.i.d. from this three-parameter lognormal
distribution.

• Find the density of X1.
• Suppose γ is known. Find the maximum likelihood estimator (M,T ) of (µ, σ2).

(Assume γ < X(1).)
• Let `(γ, µ, σ2) denote the log-likelihood function. The MLE of (γ, µ, σ2) if it exists,

will maximize `(γ,M, T ) over γ. Determine

lim
γ↑X(1)

`(γ,M, T ).

Hint: Show first that as γ ↑ X(1),

M = M(γ) ∼ 1

n
log(X(1) − γ), and T = T (γ) ∼ n− 1

n2
log2(X(1) − γ),

where the notation f(γ) ∼ g(γ) means f(γ)/g(γ)→ 1 as γ ↑ X(1).

Why does the last conclusion violate consistency of the MLE? (Note that the point achieving
the maximum of ` might not be unique.) What assumption of the MLE Consistency Theorem
does not hold in this case?

Unless otherwise stated, all vectors are interpreted as column vectors.
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Exercise 3 (Least Squares/ Ridge Regression, Part 2). Suppose w ∈ Rk is an unknown
vector, and for all 1 ≤ i ≤ n, there are known vectors x(1), . . . , x(n) ∈ Rk. Our observed data
are X1, . . . , Xn ∈ R. In linear least squares regression, we try to determine the best linear
relationship between the vectors x(1), . . . , x(n) and the data X1, . . . , Xn. Let A be the n× k
matrix so that the ith row of A is the row vector x(i). Assume that k ≤ n and the matrix A
has full rank. In a previous homework, we found w ∈ Rk that minimizes the quantity

n∑
i=1

(Xi − 〈x(i), w〉)2

We also interpreted the minimal w as an estimator. In some cases, the estimator for w could
have large variance, which is undesirable. To deal with this issue, let c > 0 and consider the
quantity

n∑
i=1

(Xi − 〈x(i), w〉)2 + c ||w||2 . (∗)

Find the value of w ∈ Rk that minimizes this quantity.

The term ||w||2 penalizes w from having large entries. By Lagrange Multipliers, a critical
point w of the constrained minimization problem

minimize
n∑
i=1

(Xi − 〈x(i), w〉)2 subject to ||w||2 ≤ 1

is equivalent to the existence of a c ∈ R such that w is a critical point of (∗).

The L2 penalization term in (∗) sometimes still allows w to have large entries. So, let c > 0
and consider the quantity

n∑
i=1

(Xi − 〈x(i), w〉)2 + c
n∑
i=1

|wi| . (∗∗)

Prove that there exists a w ∈ Rk that minimizes this quantity (this w is known as the
LASSO, or least absolute shrinkage and selection operator). The L1 penalization term in
(∗∗) is better at penalizing large entries of w (a similar observation applies in the compressed
sensing literature). Unfortunately, there is no closed form solution to (∗∗) in general. The
constrained minimization problem

minimize
n∑
i=1

(Xi − 〈x(i), w〉)2 subject to
n∑
i=1

|wi| ≤ 1

is morally equivalent to (∗∗), but technically Lagrange Multipliers does not apply since the
constraint is not differentiable everywhere.

Exercise 4 (Second Order Jackknife). Let X1, X2, . . . : Ω → Rk be i.i.d random variables
so that X1 has distribution fθ : Rk → [0,∞), θ ∈ Θ ⊆ R. Let Y1, Y2, . . . be a sequence of
estimators for θ so that for any n ≥ 1, Yn = tn(X1, . . . , Xn) for some tn : Rnk → Θ. For any
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n ≥ 1, define the second order jackknife estimator of Yn to be

Zn :=
n2

2
Yn −

(n− 1)2

n

n∑
i=1

tn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn)

+
(n− 2)2

n(n− 1)

n∑
1≤i<j≤n

tn−2(X1, . . . , Xi−1, Xi+1, . . . , Xj−1, Xj+1, . . . , Xn).

Assume that Y1, Y2, . . . are asymptotically unbiased, so that there exists a, b, c, d ∈ R such
that

EYn = θ + a/n+ b/n2 +
c

n3
+

d

n4
+O(1/n5), ∀n ≥ 1. (∗)

Show that
EZn = θ +O(1/n3).

And if c = d = 0 and the O(1/n5) term is zero in (∗), then Zn is unbiased.

For more on the jackknife, see here

Exercise 5. Do Question 1 on the Fall 2011 qualifying exam here:

https://dornsife.usc.edu/mgsa/statistics-a/

Exercise 6. Take another qual exam.

[Please submit your solutions together with the homework.]

Remark 1. For a discussion of the estimation of a covariance matrix in the context of
rotationally equivariant estimation, see http://www.econ.uzh.ch/static/wp/econwp122.pdf

https://www.jstor.org/stable/2334280?seq=1#metadata_info_tab_contents
https://dornsife.usc.edu/mgsa/statistics-a/
http://www.econ.uzh.ch/static/wp/econwp122.pdf

