541B Midterm 2 Solutiond]

1. QUESTION 1

Let X1, X5,...: Q2 — R beii.d random variables. Let Y7,Y5,... be a sequence of estima-
tors so that for any n > 1, Y, = ¢,(X3, ..., X,,) for some t,,: R" — R. For any n > 1, define
the jackknife estimator of Y,, to be

n—1

Zy i =nY, —

Ztnfl(Xlw--7Xi717Xi+17--~7Xn)- (*)
i=1

n

e Assume that there exists 0, a,b € R such that
EY,=60+a/n, Vn>1

Show that
EZ,=0.

e The jackknife described above involves summing over all ways to delete one of the
samples from Xi,...,X,,. Write a formula for a term to add to (%) that also sums
over all ways to delete exactly two of the samples from Xy,..., X, in ¢, _».

Solution.
n—1«—
IEZn:nQ—i—a— n ;Etn—l(le---aXi—laXi—i—la--'aXn)

(%) n—1g a
= nh 225N (6
nd +a+ —— 2( +n_1>

=(Mn—(mn-1)0+(a—a)=20.
For the second part, we could use

S taa(Xis o X, X X X, X))

1<i<j<n

2. QUESTION 2

Write down the generalized likelihood ratio estimate for the following alpha particle data,
as we did in class for a slightly different data set. The corresponding test treats individual
counts of alpha particles as independent Poisson random variables, versus the alternative
that the probability of a count appearing in each box of data is a sequence of nonnegative
numbers that sum to one.

m 01,2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 >17
# Ints| 16 26 58 102 125 146 163 164 120 100 72 54 20 12 10 4

Suppose we wanted to plot the MLE for the Poisson statistic (i.e. plot the denominator
supgeo fo(X)
Supgee, fo(X)
Describe in detail how you would plot this MLE on a computer, with particular detail on

how to avoid outputting zeros or infinities that should not occur.

of the generalized likelihood ratio test statistic ) as a function of \.
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Solution. As discussed in class, the denominator of the GLR statistic is

sup fo(7)
(ASSH)
B e NG DY (e L4 A+ A2/ e 0, Ajes
:Supm?!( e /({+ )] ) (e + T /2)7 e 211'7 N
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where 1, ..., x4 are the table data values (that is s; = 16, xo = 26, ..., x4 = 4). In order

to find the MLE on a computer, we could just “plug in” this formula as a single variable
function of A, plot it, and find its maximum value. However, this does not work since both
the numerators and denominators are extremely large numbers, i.e. just plugging in the
formula would lead to either zero or infinite values for fy(x). To get around this issue, note
that the denominators are not functions of A, so for the purpose of computing the MLE, we
can ignore the x;! terms, i.e. it suffices to maximize the following function of A:
15 16
(LT WG+ D) - (€ A+ 222 - [1— e S N,
j=2 i=0
(We have dropped the 1207! term for a similar reason; it evaluates to infinity in double
precision arithmetic, and it does not matter for the purpose of optimizing fy(x))
Now the x; exponents are too large and could lead to overflow. To ameliorate this issue
we take this function to a small power (we find that 1/200 suffices), i.e. we plot

15 16
(H[e—w*l /(G + 1)!]%'/200) (eI A N+ N2 H0 [ ey N e/ 200,
j=2 1=0

This function can now be plotted on a computer without any overflow issues.

3. QUESTION 3

Let Xi,..., X, be a random sample from a Gaussian distribution with known variance
0% > 0 and unknown mean pu € R. Fix py € R. Suppose we want to test the hypothesis
Hy that p = po versus the alternative H; that pu # po. That is, © = R, ©g = {u} and
Of = {p € R: pu# po}. Also, for any x = (zq,...,2,) € R",

1 7(%‘*#)2
) = T ——e

oV 2T
=1

e Explicitly describe the rejection region of the generalized likelihood ratio test.
e Denote X = (Xj,...,X,). If Hy is true, describe the distribution of

SUPpeo fo(X)

2log
SuPgee, fo(X)
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(Hint: you can freely use the identity Y71 [(z; — + >0 ;) — (2 — po)?’] = npo —

% z?:l xj>2 - 2“(% Z?:1 Ti — NO)(% Z;‘L:1 Tj— 1))

Solution. From Example 2.63, the MLE is the sample mean, i.e. for any x € R",

sup f(a) = £ (2 ),

HEO n

Since O is just a single point, we can then write the rejection region of the generalized
likelihood ratio test as

C={zeR": sup fu,(z) > ksup f,.(x)}

HEBQ HEO

:{xER”:ﬁ - uo >I<:H (m%z}

i=1

= {x c RTL e 20_2 Zl 1[(x1 N’O) 7(931'*1‘)2] > k}

n 1 n
x € R™: E (x; — — E z;)% — (2, — NO)Z] < —20?%log k}
n
i=1 j=1

2
1 n
= {:L'ER”: -n (ﬁzlxj—uo> < —20%logk
]:

1 n
= eR": |— = >/ —2n"to?logk » .
{x n;x] Lol| > n~to?log }

So, the test rejects the null hypothesis, unless %Z;;l X is close to py. As anticipated
by Proposition 3.27, the hypothesis test corresponds to confidence intervals for the sample
mean. (Above we used the identity Y77 [(z — 5 >0 2)% — (20 — p0)?] = Yo7y (w0 — o +
Ho = Z? 1 %')2 — (2= p0)* = nlo — 7 25 %')2 —2n (5 2o (@i — 110)) (5 271 %5 — Ho) =

n(po — = j=1 z;)? = 2”(% D e Ti — Mo)(% Z? 1 Tj — Ho))-

Fmally, note that

Supee@fO( 2_ 1 - L 2
210g—sup9€90f9( = ( ZX ) = <0/\/ﬁ;[X] Mo])

has a chi-squared distribution with one degree of freedom. In fact, this holds asymptotically

4. QUESTION 4

Let X4,..., X6 denote real valued random variables with 231'21 X; = 1207. Denote X =
(X1,...,X16). Suppose we know that

X, /1207
Z;:Qlog—sup9€@f9< —2. 12072 ( i/ >
SUPgee, Jo(X) 1207 D;

for some constants pq, ..., pig > 0 with Z] 1 pj = 1. Suppose we also know that X;/1207 ~
p; forall 1 <7 <16.



Using a Taylor expansion of the function h(a) = alog(a/b), show that Z is approximately
equal to Pearson’s chi-squared statistic

i (X; — 1207p;)?
1207pj

Solution. We use a Taylor expansion round b > 0 for h(a) := alog(a/b), we have h(b) = 0,
R'(b) =1 and h"(b) = 1/b, so
1
Srla—0b)%

alog(a/b) ~ (a —b) + 5

Substituting into the above with @ = X;/1207 and b = p;), we get

%‘M(MZ)
”>+%< Y )

su e fo(X)
2logM~2 12072 (

SUPgeo, fo(X) 1207

The first term in the sum is zero since Z X; = 1207 and 23 1 pi(A) =1. So,

2
SPacoy folX) 12072 (1207 pj()‘)) _ i (X = 1207p; (A)*

2lo
& SUPgee, Jo(X) 1207p; ()

5. QUESTION 5

Let Xy, X5, X3 be ii.d. continuous random variables. Let W;, W5, W3 be a bootstrap
sample from Xi, X5, X3. Let Y denote the sample median of X;, X, X3. (That is, YV is
the middle value among X, X5, X3, which is unique with probability one since the random
variables are continuous.)

e Describe the distribution of (W), W(a), W(3)).
e Describe the bootstrap estimator of Y.

Solution. Since X7, X5, X3 are all distinct with probability one, we have
P(Wy = X;, Wy = X;,Ws = X, | X1, Xp, Xs) = (1/3)°, Vi#j,j#k<3

That is, in describing the distribution of (W), W), W3)), we may as well assume that
Xay=1,X¢ =2, X3 =3, and Wy, Wy, W3 are i.i.d. uniform in {1,2,3}. (We are satisfied
with this description of the distribution of (W, W2y, W(g)).)

Now, as covered e.g. in Exercise 2.19 in the notes, by considering Y which is the number
of indices 1 < j < 3 such that W; < X(;), we have

3
3 _
P(Wg) < Xy | X1, Xo, X3) = Z (k>pf(1 —pi)" 7,
o

where p; = i/3 for all 1 <4 < 3. (This follows since Y is a binomial random variable with
parameters 3 and p;.) That is,

3
P(We < Xq | X1, Xo, X3) = Z() F(1—i/3)"
=2
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Therefore, for all 1 < i < 3, we have
P(Woy = X | X1, X0, X3) = P(Wo) < Xy | X1, X0, X3) = P(W(e) < X1y | X1, Xy, X3)

_Z() L= (2:() (i—1)/3) (1—(i—1)/3)""“).

The bootstrap estimator of Y is then

E(W) | X1, X5, X3] = Y XoP(We) = Xy | X1, Xp, X3)

B iXm (i (2) (/3)°(1 — i/3)" (i ( ) i—1)/3)"1— (i~ 1)/3)”’“>> .

k=2
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