541B Midterm 2 Solutions¹

1. Question 1

Let $X_1, X_2, \ldots : \Omega \to \mathbf{R}$ be i.i.d random variables. Let Y_1, Y_2, \ldots be a sequence of estimators so that for any $n \geq 1$, $Y_n = t_n(X_1, \ldots, X_n)$ for some $t_n : \mathbf{R}^n \to \mathbf{R}$. For any $n \geq 1$, define the **jackknife estimator** of Y_n to be

$$Z_n := nY_n - \frac{n-1}{n} \sum_{i=1}^n t_{n-1}(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n). \tag{*}$$

• Assume that there exists $\theta, a, b \in \mathbf{R}$ such that

$$\mathbb{E}Y_n = \theta + a/n, \quad \forall n \ge 1.$$

Show that

$$\mathbb{E}Z_n = \theta.$$

• The jackknife described above involves summing over all ways to delete one of the samples from X_1, \ldots, X_n . Write a formula for a term to add to (*) that also sums over all ways to delete exactly two of the samples from X_1, \ldots, X_n in t_{n-2} .

Solution.

$$\mathbb{E}Z_{n} = n\theta + a - \frac{n-1}{n} \sum_{i=1}^{n} \mathbb{E}t_{n-1}(X_{1}, \dots, X_{i-1}, X_{i+1}, \dots, X_{n})$$

$$\stackrel{(*)}{=} n\theta + a + -\frac{n-1}{n} \sum_{i=1}^{n} \left(\theta + \frac{a}{n-1}\right)$$

$$= (n - (n-1))\theta + (a-a) = \theta.$$

For the second part, we could use

$$\sum_{1 \le i < j \le n} t_{n-2}(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_{j-1}, X_{j+1}, \dots, X_n)$$

2. Question 2

Write down the generalized likelihood ratio estimate for the following alpha particle data, as we did in class for a slightly different data set. The corresponding test treats individual counts of alpha particles as independent Poisson random variables, versus the alternative that the probability of a count appearing in each box of data is a sequence of nonnegative numbers that sum to one.

m	/ /															_
# Ints	16	26	58	102	125	146	163	164	120	100	72	54	20	12	10	4

Suppose we wanted to plot the MLE for the Poisson statistic (i.e. plot the denominator of the generalized likelihood ratio test statistic $\frac{\sup_{\theta \in \Theta} f_{\theta}(X)}{\sup_{\theta \in \Theta_0} f_{\theta}(X)}$) as a function of λ .

Describe in detail how you would plot this MLE on a computer, with particular detail on how to avoid outputting zeros or infinities that should not occur.

¹November 3, 2025, © 2025 Steven Heilman, All Rights Reserved.

Solution. As discussed in class, the denominator of the GLR statistic is

$$\sup_{\theta \in \Theta_0} f_{\theta}(x)$$

$$= \sup_{\lambda>0} 1207! \left(\prod_{j=2}^{15} \frac{\left[e^{-\lambda} \lambda^{j+1} / (j+1)! \right]^{x_j}}{x_j!} \right) \cdot \frac{\left(e^{-\lambda} \left[1 + \lambda + \lambda^2 / 2 \right] \right)^{x_1}}{x_1!} \cdot \frac{\left[e^{-\lambda} \sum_{i=17}^{\infty} \frac{\lambda^i}{i!} \right]^{x_{16}}}{x_{16}!}$$

$$= \sup_{\lambda>0} 1207! \left(\prod_{j=2}^{15} \frac{\left[e^{-\lambda} \lambda^{j+1} / (j+1)! \right]^{x_j}}{x_j!} \right) \cdot \frac{\left(e^{-\lambda} \left[1 + \lambda + \lambda^2 / 2 \right] \right)^{x_1}}{x_1!} \cdot \frac{\left[e^{-\lambda} \left(e^{\lambda} - \sum_{i=0}^{16} \frac{\lambda^i}{i!} \right) \right]^{x_{16}}}{x_{16}!}$$

$$= \sup_{\lambda>0} 1207! \left(\prod_{i=2}^{15} \frac{\left[e^{-\lambda} \lambda^{j+1} / (j+1)! \right]^{x_j}}{x_j!} \right) \cdot \frac{\left(e^{-\lambda} \left[1 + \lambda + \lambda^2 / 2 \right] \right)^{x_1}}{x_1!} \cdot \frac{\left[1 - e^{-\lambda} \sum_{i=0}^{16} \frac{\lambda^i}{i!} \right] \right]^{x_{16}}}{x_{16}!}.$$

where x_1, \ldots, x_{16} are the table data values (that is $s_1 = 16, x_2 = 26, \ldots, x_{16} = 4$). In order to find the MLE on a computer, we could just "plug in" this formula as a single variable function of λ , plot it, and find its maximum value. However, this does not work since both the numerators and denominators are extremely large numbers, i.e. just plugging in the formula would lead to either zero or infinite values for $f_{\theta}(x)$. To get around this issue, note that the denominators are not functions of λ , so for the purpose of computing the MLE, we can ignore the x_i ! terms, i.e. it suffices to maximize the following function of λ :

$$\left(\prod_{j=2}^{15} [e^{-\lambda} \lambda^{j+1}/(j+1)!]^{x_j}\right) \cdot \left(e^{-\lambda} [1+\lambda+\lambda^2/2]\right)^{x_1} \cdot [1-e^{-\lambda} \sum_{i=0}^{16} \lambda^i i!)]^{x_{16}}.$$

(We have dropped the 1207! term for a similar reason; it evaluates to infinity in double precision arithmetic, and it does not matter for the purpose of optimizing $f_{\theta}(x)$)

Now the x_i exponents are too large and could lead to overflow. To ameliorate this issue we take this function to a small power (we find that 1/200 suffices), i.e. we plot

$$\Big(\prod_{j=2}^{15}[e^{-\lambda}\lambda^{j+1}/(j+1)!]^{x_j/200}\Big)\cdot (e^{-\lambda}[1+\lambda+\lambda^2/2])^{x_1/200}\cdot [1-e^{-\lambda}\sum_{i=0}^{16}\lambda^i i!)]^{x_{16}/200}.$$

This function can now be plotted on a computer without any overflow issues.

3. Question 3

Let X_1, \ldots, X_n be a random sample from a Gaussian distribution with known variance $\sigma^2 > 0$ and unknown mean $\mu \in \mathbb{R}$. Fix $\mu_0 \in \mathbb{R}$. Suppose we want to test the hypothesis H_0 that $\mu = \mu_0$ versus the alternative H_1 that $\mu \neq \mu_0$. That is, $\Theta = \mathbb{R}$, $\Theta_0 = \{\mu_0\}$ and $\Theta_0^c = \{\mu \in \mathbb{R} : \mu \neq \mu_0\}$. Also, for any $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$,

$$f_{\mu}(x) = \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}.$$

- Explicitly describe the rejection region of the generalized likelihood ratio test.
- Denote $X = (X_1, \dots, X_n)$. If H_0 is true, describe the distribution of

$$2\log\frac{\sup_{\theta\in\Theta}f_{\theta}(X)}{\sup_{\theta\in\Theta_0}f_{\theta}(X)}$$

(Hint: you can freely use the identity $\sum_{i=1}^{n} [(x_i - \frac{1}{n} \sum_{j=1}^{n} x_j)^2 - (x_i - \mu_0)^2] = n(\mu_0 - \mu_0)^2$ $\frac{1}{n}\sum_{j=1}^{n}x_{j})^{2}-2n(\frac{1}{n}\sum_{i=1}^{n}x_{i}-\mu_{0})(\frac{1}{n}\sum_{j=1}^{n}x_{j}-\mu_{0}))$ Solution. From Example 2.63, the MLE is the sample mean, i.e. for any $x \in \mathbb{R}^{n}$,

$$\sup_{\mu \in \Theta} f_{\mu}(x) = f\left(\frac{x_1 + \dots + x_n}{n}\right)(\bar{x}).$$

Since Θ_0 is just a single point, we can then write the rejection region of the generalized likelihood ratio test as

$$C = \left\{ x \in \mathbb{R}^n \colon \sup_{\mu \in \Theta_0} f_{\mu}(x) \ge k \sup_{\mu \in \Theta} f_{\mu}(x) \right\}$$

$$= \left\{ x \in \mathbb{R}^n \colon \prod_{i=1}^n e^{-\frac{(x_i - \mu_0)^2}{2\sigma^2}} \ge k \prod_{i=1}^n e^{-\frac{(x_i - \bar{x})^2}{2\sigma^2}} \right\}$$

$$= \left\{ x \in \mathbb{R}^n \colon e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n [(x_i - \mu_0)^2 - (x_i - \bar{x})^2]} \ge k \right\}$$

$$= \left\{ x \in \mathbb{R}^n \colon \sum_{i=1}^n \left[(x_i - \frac{1}{n} \sum_{j=1}^n x_j)^2 - (x_i - \mu_0)^2 \right] \le -2\sigma^2 \log k \right\}$$

$$= \left\{ x \in \mathbb{R}^n \colon -n \left(\frac{1}{n} \sum_{j=1}^n x_j - \mu_0 \right)^2 \le -2\sigma^2 \log k \right\}$$

$$= \left\{ x \in \mathbb{R}^n \colon \left| \frac{1}{n} \sum_{j=1}^n x_j - \mu_0 \right| \ge \sqrt{-2n^{-1}\sigma^2 \log k} \right\}.$$

So, the test rejects the null hypothesis, unless $\frac{1}{n} \sum_{j=1}^{n} X_{j}$ is close to μ_{0} . As anticipated by Proposition 3.27, the hypothesis test corresponds to confidence intervals for the sample mean. (Above we used the identity $\sum_{i=1}^{n} [(x_{i} - \frac{1}{n} \sum_{j=1}^{n} x_{j})^{2} - (x_{i} - \mu_{0})^{2}] = \sum_{i=1}^{n} (x_{i} - \mu_{0} + \mu_{0} - \frac{1}{n} \sum_{j=1}^{n} x_{j})^{2} - (x_{i} - \mu_{0})^{2} = n(\mu_{0} - \frac{1}{n} \sum_{j=1}^{n} x_{j})^{2} - 2n(\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu_{0}))(\frac{1}{n} \sum_{j=1}^{n} x_{j} - \mu_{0}) = n(\mu_{0} - \frac{1}{n} \sum_{j=1}^{n} x_{j})^{2} - 2n(\frac{1}{n} \sum_{i=1}^{n} x_{i} - \mu_{0})(\frac{1}{n} \sum_{j=1}^{n} x_{j} - \mu_{0})$. Finally, note that

$$2\log \frac{\sup_{\theta \in \Theta} f_{\theta}(X)}{\sup_{\theta \in \Theta_0} f_{\theta}(X)} = \frac{n}{\sigma^2} \left(\frac{1}{n} \sum_{j=1}^n X_j - \mu_0 \right)^2 = \left(\frac{1}{\sigma/\sqrt{n}} \sum_{j=1}^n [X_j - \mu_0] \right)^2$$

has a chi-squared distribution with one degree of freedom. In fact, this holds asymptotically

4. Question 4

Let X_1, \ldots, X_{16} denote real valued random variables with $\sum_{j=1}^{16} X_j = 1207$. Denote X = (X_1,\ldots,X_{16}) . Suppose we know that

$$Z := 2 \log \frac{\sup_{\theta \in \Theta} f_{\theta}(X)}{\sup_{\theta \in \Theta_0} f_{\theta}(X)} = 2 \cdot 1207 \sum_{i=1}^{16} \frac{X_j}{1207} \log \left(\frac{X_j/1207}{p_j} \right),$$

for some constants $p_1, \ldots, p_{16} > 0$ with $\sum_{j=1}^{16} p_j = 1$. Suppose we also know that $X_j/1207 \approx$ p_j for all $1 \leq j \leq 16$.

Using a Taylor expansion of the function $h(a) = a \log(a/b)$, show that Z is approximately equal to Pearson's chi-squared statistic

$$\sum_{j=1}^{16} \frac{(X_j - 1207p_j)^2}{1207p_j}$$

Solution. We use a Taylor expansion round b > 0 for $h(a) := a \log(a/b)$, we have h(b) = 0, h'(b) = 1 and h''(b) = 1/b, so

$$a \log(a/b) \approx (a-b) + \frac{1}{2b}(a-b)^2.$$

Substituting into the above with $a = X_i/1207$ and $b = p_i$), we get

$$2\log \frac{\sup_{\theta \in \Theta_0^c} f_{\theta}(X)}{\sup_{\theta \in \Theta_0} f_{\theta}(X)} \approx 2 \cdot 1207 \sum_{j=1}^{16} \left[\left(\frac{X_j}{1207} - p_j(\lambda) \right) + \frac{1}{2} \frac{\left(\frac{X_j}{1207} - p_j(\lambda) \right)^2}{p_j(\lambda)} \right].$$

The first term in the sum is zero since $\sum_{j=1}^{16} X_j = 1207$ and $\sum_{j=1}^{16} p_j(\lambda) = 1$. So,

$$2\log \frac{\sup_{\theta \in \Theta_0^c} f_{\theta}(X)}{\sup_{\theta \in \Theta_0} f_{\theta}(X)} \approx 1207 \sum_{j=1}^{16} \frac{\left(\frac{X_j}{1207} - p_j(\lambda)\right)^2}{p_j(\lambda)} = \sum_{j=1}^{16} \frac{(X_j - 1207p_j(\lambda))^2}{1207p_j(\lambda)}.$$

5. Question 5

Let X_1, X_2, X_3 be i.i.d. continuous random variables. Let W_1, W_2, W_3 be a bootstrap sample from X_1, X_2, X_3 . Let Y denote the sample median of X_1, X_2, X_3 . (That is, Y is the middle value among X_1, X_2, X_3 , which is unique with probability one since the random variables are continuous.)

- Describe the distribution of $(W_{(1)}, W_{(2)}, W_{(3)})$.
- \bullet Describe the bootstrap estimator of Y.

Solution. Since X_1, X_2, X_3 are all distinct with probability one, we have

$$\mathbf{P}(W_1 = X_i, W_2 = X_j, W_3 = X_k \mid X_1, X_2, X_3) = (1/3)^3, \quad \forall i \neq j, j \neq k \leq 3.$$

That is, in describing the distribution of $(W_{(1)}, W_{(2)}, W_{(3)})$, we may as well assume that $X_{(1)} = 1, X_{(2)} = 2, X_{(3)} = 3$, and W_1, W_2, W_3 are i.i.d. uniform in $\{1, 2, 3\}$. (We are satisfied with this description of the distribution of $(W_{(1)}, W_{(2)}, W_{(3)})$.)

Now, as covered e.g. in Exercise 2.19 in the notes, by considering Y which is the number of indices $1 \le j \le 3$ such that $W_j \le X_{(i)}$, we have

$$\mathbf{P}(W_{(2)} \le X_{(i)} \mid X_1, X_2, X_3) = \sum_{k=2}^{3} {3 \choose k} p_i^k (1 - p_i)^{n-k},$$

where $p_i = i/3$ for all $1 \le i \le 3$. (This follows since Y is a binomial random variable with parameters 3 and p_i .) That is,

$$\mathbf{P}(W_{(2)} \le X_{(i)} \mid X_1, X_2, X_3) = \sum_{k=2}^{3} {3 \choose k} (i/3)^k (1 - i/3)^{n-k},$$

Therefore, for all $1 \le i \le 3$, we have

$$\mathbf{P}(W_{(2)} = X_{(i)} \mid X_1, X_2, X_3) = \mathbf{P}(W_{(2)} \le X_{(i)} \mid X_1, X_2, X_3) - \mathbf{P}(W_{(2)} \le X_{(i-1)} \mid X_1, X_2, X_3)$$

$$= \sum_{k=2}^{3} {3 \choose k} (i/3)^k (1 - i/3)^{n-k} - \left(\sum_{k=2}^{3} {3 \choose k} ((i-1)/3)^k (1 - (i-1)/3)^{n-k}\right).$$

The bootstrap estimator of Y is then

$$\mathbf{E}[W_{(2)} \mid X_1, X_2, X_3] = \sum_{i=1}^3 X_{(i)} \mathbf{P}(W_{(2)} = X_{(i)} \mid X_1, X_2, X_3)$$

$$= \sum_{i=1}^3 X_{(i)} \left(\sum_{k=2}^3 \binom{3}{k} (i/3)^k (1 - i/3)^{n-k} - \left(\sum_{k=2}^3 \binom{3}{k} ((i-1)/3)^k (1 - (i-1)/3)^{n-k} \right) \right).$$