
541B Midterm 2 Solutions1

1. Question 1

Let X1, X2, . . . : Ω → R be i.i.d random variables. Let Y1, Y2, . . . be a sequence of estima-
tors so that for any n ≥ 1, Yn = tn(X1, . . . , Xn) for some tn : R

n → R. For any n ≥ 1, define
the jackknife estimator of Yn to be

Zn := nYn −
n− 1

n

n∑
i=1

tn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn). (∗)

• Assume that there exists θ, a, b ∈ R such that

EYn = θ + a/n, ∀n ≥ 1.

Show that

EZn = θ.

• The jackknife described above involves summing over all ways to delete one of the
samples from X1, . . . , Xn. Write a formula for a term to add to (∗) that also sums
over all ways to delete exactly two of the samples from X1, . . . , Xn in tn−2.

Solution.

EZn = nθ + a− n− 1

n

n∑
i=1

Etn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn)

(∗)
= nθ + a+−n− 1

n

n∑
i=1

(
θ +

a

n− 1

)
= (n− (n− 1))θ + (a− a) = θ.

For the second part, we could use∑
1≤i<j≤n

tn−2(X1, . . . , Xi−1, Xi+1, . . . , Xj−1, Xj+1, . . . , Xn)

2. Question 2

Write down the generalized likelihood ratio estimate for the following alpha particle data,
as we did in class for a slightly different data set. The corresponding test treats individual
counts of alpha particles as independent Poisson random variables, versus the alternative
that the probability of a count appearing in each box of data is a sequence of nonnegative
numbers that sum to one.

m 0,1,2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ≥ 17
# Ints 16 26 58 102 125 146 163 164 120 100 72 54 20 12 10 4

Suppose we wanted to plot the MLE for the Poisson statistic (i.e. plot the denominator

of the generalized likelihood ratio test statistic
supθ∈Θ fθ(X)

supθ∈Θ0
fθ(X)

) as a function of λ.

Describe in detail how you would plot this MLE on a computer, with particular detail on
how to avoid outputting zeros or infinities that should not occur.
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Solution. As discussed in class, the denominator of the GLR statistic is

sup
θ∈Θ0

fθ(x)

= sup
λ>0

1207!
( 15∏

j=2

[e−λλj+1/(j + 1)!]xj

xj!

)
· (e

−λ[1 + λ+ λ2/2])x1

x1!
·
[e−λ

∑∞
i=17

λi

i!
]x16

x16!

= sup
λ>0

1207!
( 15∏

j=2

[e−λλj+1/(j + 1)!]xj

xj!

)
· (e

−λ[1 + λ+ λ2/2])x1

x1!
·
[e−λ(eλ −

∑16
i=0

λi

i!
)]x16

x16!

= sup
λ>0

1207!
( 15∏

j=2

[e−λλj+1/(j + 1)!]xj

xj!

)
· (e

−λ[1 + λ+ λ2/2])x1

x1!
·
[1− e−λ

∑16
i=0

λi

i!
)]x16

x16!
.

where x1, . . . , x16 are the table data values (that is s1 = 16, x2 = 26, . . ., x16 = 4). In order
to find the MLE on a computer, we could just “plug in” this formula as a single variable
function of λ, plot it, and find its maximum value. However, this does not work since both
the numerators and denominators are extremely large numbers, i.e. just plugging in the
formula would lead to either zero or infinite values for fθ(x). To get around this issue, note
that the denominators are not functions of λ, so for the purpose of computing the MLE, we
can ignore the xj! terms, i.e. it suffices to maximize the following function of λ:( 15∏

j=2

[e−λλj+1/(j + 1)!]xj

)
· (e−λ[1 + λ+ λ2/2])x1 · [1− e−λ

16∑
i=0

λii!)]x16 .

(We have dropped the 1207! term for a similar reason; it evaluates to infinity in double
precision arithmetic, and it does not matter for the purpose of optimizing fθ(x))
Now the xi exponents are too large and could lead to overflow. To ameliorate this issue

we take this function to a small power (we find that 1/200 suffices), i.e. we plot( 15∏
j=2

[e−λλj+1/(j + 1)!]xj/200
)
· (e−λ[1 + λ+ λ2/2])x1/200 · [1− e−λ

16∑
i=0

λii!)]x16/200.

This function can now be plotted on a computer without any overflow issues.

3. Question 3

Let X1, . . . , Xn be a random sample from a Gaussian distribution with known variance
σ2 > 0 and unknown mean µ ∈ R. Fix µ0 ∈ R. Suppose we want to test the hypothesis
H0 that µ = µ0 versus the alternative H1 that µ ̸= µ0. That is, Θ = R, Θ0 = {µ0} and
Θc

0 = {µ ∈ R : µ ̸= µ0}. Also, for any x = (x1, . . . , xn) ∈ Rn,

fµ(x) =
n∏

i=1

1

σ
√
2π

e−
(xi−µ)2

2σ2 .

• Explicitly describe the rejection region of the generalized likelihood ratio test.
• Denote X = (X1, . . . , Xn). If H0 is true, describe the distribution of

2 log
supθ∈Θ fθ(X)

supθ∈Θ0
fθ(X)
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(Hint: you can freely use the identity
∑n

i=1[(xi − 1
n

∑n
j=1 xj)

2 − (xi − µ0)
2] = n(µ0 −

1
n

∑n
j=1 xj)

2 − 2n( 1
n

∑n
i=1 xi − µ0)(

1
n

∑n
j=1 xj − µ0))

Solution. From Example 2.63, the MLE is the sample mean, i.e. for any x ∈ Rn,

sup
µ∈Θ

fµ(x) = f

(
x1 + · · ·+ xn

n

)
(x̄).

Since Θ0 is just a single point, we can then write the rejection region of the generalized
likelihood ratio test as

C = {x ∈ Rn : sup
µ∈Θ0

fµ(x) ≥ k sup
µ∈Θ

fµ(x)}

=

{
x ∈ Rn :

n∏
i=1

e−
(xi−µ0)

2

2σ2 ≥ k
n∏

i=1

e−
(xi−x̄)2

2σ2

}
=
{
x ∈ Rn : e−

1
2σ2

∑n
i=1[(xi−µ0)2−(xi−x̄)2] ≥ k

}
=

{
x ∈ Rn :

n∑
i=1

[
(xi −

1

n

n∑
j=1

xj)
2 − (xi − µ0)

2

]
≤ −2σ2 log k

}

=

x ∈ Rn : − n

(
1

n

n∑
j=1

xj − µ0

)2

≤ −2σ2 log k


=

{
x ∈ Rn :

∣∣∣∣∣ 1n
n∑

j=1

xj − µ0

∣∣∣∣∣ ≥√−2n−1σ2 log k

}
.

So, the test rejects the null hypothesis, unless 1
n

∑n
j=1Xj is close to µ0. As anticipated

by Proposition 3.27, the hypothesis test corresponds to confidence intervals for the sample
mean. (Above we used the identity

∑n
i=1[(xi − 1

n

∑n
j=1 xj)

2 − (xi − µ0)
2] =

∑n
i=1(xi − µ0 +

µ0− 1
n

∑n
j=1 xj)

2− (xi−µ0)
2 = n(µ0− 1

n

∑n
j=1 xj)

2−2n( 1
n

∑n
i=1(xi−µ0))(

1
n

∑n
j=1 xj −µ0) =

n(µ0 − 1
n

∑n
j=1 xj)

2 − 2n( 1
n

∑n
i=1 xi − µ0)(

1
n

∑n
j=1 xj − µ0)).

Finally, note that

2 log
supθ∈Θ fθ(X)

supθ∈Θ0
fθ(X)

=
n

σ2

(
1

n

n∑
j=1

Xj − µ0

)2

=

(
1

σ/
√
n

n∑
j=1

[Xj − µ0]

)2

has a chi-squared distribution with one degree of freedom. In fact, this holds asymptotically

4. Question 4

Let X1, . . . , X16 denote real valued random variables with
∑16

j=1Xj = 1207. Denote X =

(X1, . . . , X16). Suppose we know that

Z := 2 log
supθ∈Θ fθ(X)

supθ∈Θ0
fθ(X)

= 2 · 1207
16∑
j=1

Xj

1207
log

(
Xj/1207

pj

)
,

for some constants p1, . . . , p16 > 0 with
∑16

j=1 pj = 1. Suppose we also know that Xj/1207 ≈
pj for all 1 ≤ j ≤ 16.
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Using a Taylor expansion of the function h(a) = a log(a/b), show that Z is approximately
equal to Pearson’s chi-squared statistic

16∑
j=1

(Xj − 1207pj)
2

1207pj

Solution. We use a Taylor expansion round b > 0 for h(a) := a log(a/b), we have h(b) = 0,
h′(b) = 1 and h′′(b) = 1/b, so

a log(a/b) ≈ (a− b) +
1

2b
(a− b)2.

Substituting into the above with a = Xj/1207 and b = pj), we get

2 log
supθ∈Θc

0
fθ(X)

supθ∈Θ0
fθ(X)

≈ 2 · 1207
16∑
j=1

( Xj

1207
− pj(λ)

)
+

1

2

(
Xj

1207
− pj(λ)

)2
pj(λ)

 .

The first term in the sum is zero since
∑16

j=1Xj = 1207 and
∑16

j=1 pj(λ) = 1. So,

2 log
supθ∈Θc

0
fθ(X)

supθ∈Θ0
fθ(X)

≈ 1207
16∑
j=1

(
Xj

1207
− pj(λ)

)2
pj(λ)

=
16∑
j=1

(Xj − 1207pj(λ))
2

1207pj(λ)
.

5. Question 5

Let X1, X2, X3 be i.i.d. continuous random variables. Let W1,W2,W3 be a bootstrap
sample from X1, X2, X3. Let Y denote the sample median of X1, X2, X3. (That is, Y is
the middle value among X1, X2, X3, which is unique with probability one since the random
variables are continuous.)

• Describe the distribution of (W(1),W(2),W(3)).
• Describe the bootstrap estimator of Y .

Solution. Since X1, X2, X3 are all distinct with probability one, we have

P(W1 = Xi,W2 = Xj,W3 = Xk | X1, X2, X3) = (1/3)3, ∀i ̸= j, j ̸= k ≤ 3.

That is, in describing the distribution of (W(1),W(2),W(3)), we may as well assume that
X(1) = 1, X(2) = 2, X(3) = 3, and W1,W2,W3 are i.i.d. uniform in {1, 2, 3}. (We are satisfied
with this description of the distribution of (W(1),W(2),W(3)).)
Now, as covered e.g. in Exercise 2.19 in the notes, by considering Y which is the number

of indices 1 ≤ j ≤ 3 such that Wj ≤ X(i), we have

P(W(2) ≤ X(i) | X1, X2, X3) =
3∑

k=2

(
3

k

)
pki (1− pi)

n−k,

where pi = i/3 for all 1 ≤ i ≤ 3. (This follows since Y is a binomial random variable with
parameters 3 and pi.) That is,

P(W(2) ≤ X(i) | X1, X2, X3) =
3∑

k=2

(
3

k

)
(i/3)k(1− i/3)n−k,
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Therefore, for all 1 ≤ i ≤ 3, we have

P(W(2) = X(i) | X1, X2, X3) = P(W(2) ≤ X(i) | X1, X2, X3)−P(W(2) ≤ X(i−1) | X1, X2, X3)

=
3∑

k=2

(
3

k

)
(i/3)k(1− i/3)n−k −

(
3∑

k=2

(
3

k

)
((i− 1)/3)k(1− (i− 1)/3)n−k

)
.

The bootstrap estimator of Y is then

E[W(2) | X1, X2, X3] =
3∑

i=1

X(i)P(W(2) = X(i) | X1, X2, X3)

=
3∑

i=1

X(i)

(
3∑

k=2

(
3

k

)
(i/3)k(1− i/3)n−k −

(
3∑

k=2

(
3

k

)
((i− 1)/3)k(1− (i− 1)/3)n−k

))
.
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