Please provide complete and well-written solutions to the following exercises.

Due September 5, 9AM, to be submitted in brightspace, under the Content tab (so it actually is submitted to gradescope).

Homework 1

Exercise 1. Estimate the probability that 1000000 coin flips of fair coins will result in more than 501,000 heads, using the Central Limit Theorem. (Some of the following integrals may be relevant: $\int_{-\infty}^{0} e^{-t^2/2} dt / \sqrt{2\pi} = 1/2, \int_{-\infty}^{1} e^{-t^2/2} dt / \sqrt{2\pi} \approx .8413, \int_{-\infty}^{2} e^{-t^2/2} dt / \sqrt{2\pi} \approx .9772, \int_{-\infty}^{3} e^{-t^2/2} dt / \sqrt{2\pi} \approx .9987.$) (Hint: use Bernoulli random variables.)

Exercise 2 (Numerical Integration). In computer graphics in video games, etc., various integrations are performed in order to simulate lighting effects. Here is a way to use random sampling to integrate a function in order to quickly and accurately render lighting effects. Let $\Omega = [0,1]$, and let **P** be the uniform probably law on Ω , so that if $0 \le a < b \le 1$, we have $\mathbf{P}([a,b]) = b - a$. Let X_1, \ldots, X_n be independent random variables such that $\mathbf{P}(X_i \in [a,b]) = b - a$ for all $0 \le a < b \le 1$, for all $i \in \{1,\ldots,n\}$. Let $f:[0,1] \to \mathbf{R}$ be a continuous function we would like to integrate. Instead of integrating f directly, we instead compute the quantity

$$\frac{1}{n}\sum_{i=1}^{n}f(X_i).$$

Show that

$$\lim_{n \to \infty} \mathbf{E}\left(\frac{1}{n}\sum_{i=1}^{n} f(X_i)\right) = \int_{0}^{1} f(t)dt.$$

$$\lim_{n \to \infty} \operatorname{var}\left(\frac{1}{n}\sum_{i=1}^{n} f(X_i)\right) = 0.$$

That is, as n becomes large, $\frac{1}{n} \sum_{i=1}^{n} f(X_i)$ is a good estimate for $\int_{0}^{1} f(t)dt$.

Exercise 3. Let $X := (X_1, ..., X_n)$ be a random sample of size n from a binomial distribution with parameters n and p. Here n is a positive (known) integer and $0 is unknown. (That is, <math>X_1, ..., X_n$ are i.i.d. and X_1 is a binomial random variable with parameters n and p, so that $\mathbf{P}(X_1 = k) = \binom{n}{k} p^k (1-p)^{n-k}$ for all integers $0 \le k \le n$.)

You can freely use that $\mathbf{E}X_1 = np$ and $\mathrm{Var}X_1 = np(1-p)$.

- Computer the Fisher information $I_X(p)$ for any 0 . (Consider <math>n to be fixed.)
- Let Z be an unbiased estimator of p^2 (assume that Z is a function of X_1, \ldots, X_n). State the Cramér-Rao inequality for Z.

• Let W be an unbiased estimator of 1/p (assume that W is a function of X_1, \ldots, X_n). State the Cramér-Rao inequality for W.

Exercise 4. Let X_1, \ldots, X_n be a random sample of size n from a Poisson distribution with unknown parameter $\lambda > 0$. (So, $\mathbf{P}(X_1 = k) = e^{-\lambda} \lambda^k / k!$ for all integers $k \ge 0$.)

- Find an MLE (maximum likelihood estimator) for λ .
- Is the MLE you found unique? That is, could there be more than one MLE for this problem?