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1. Homework 1

Exercise 1.1. Estimate the probability that 1000000 coin flips of fair coins will result in
more than 501, 000 heads, using the Central Limit Theorem. (Some of the following integrals

may be relevant:
∫ 0

−∞ e−t2/2dt/
√
2π = 1/2,

∫ 1

−∞ e−t2/2dt/
√
2π ≈ .8413,

∫ 2

−∞ e−t2/2dt/
√
2π ≈

.9772,
∫ 3

−∞ e−t2/2dt/
√
2π ≈ .9987.) (Hint: use Bernoulli random variables.)

Casinos do these kinds of calculations to make sure they make money and that they do
not go bankrupt. Financial institutions and insurance companies do similar calculations for
similar reasons.

Solution. For any 1 ≤ 1, let Xi = 1 if the ith coin flip is heads and Xi = 0 otherwise. We
assume that X1, . . . are iid with P(X1 = 1) = 1/2, EX1 = 1/2 and var(X1) = 1/4. We want
to know the probability that

X1 + · · ·+X107 > 501000.

Equivalently, we want the probability of the event{
X1 + · · ·+X107 − 107/2 > 1000

}
=
{X1 + · · ·+X107 − 107/2√

106
√
1/4

> 2
}
=

Using the Central Limit Theorem as an approximation, we have the approximation

P

(
X1 + · · ·+X107 − 107/2√

106
√

1/4
> 2

)
≈
∫ ∞

2

e−x2/2dx/
√
2π

= 1−
∫ 2

∞
e−x2/2dx/

√
2π ≈ 1− .9772 = .0228.

□

Exercise 1.2 (Numerical Integration). In computer graphics in video games, etc., various
integrations are performed in order to simulate lighting effects. Here is a way to use random
sampling to integrate a function in order to quickly and accurately render lighting effects.
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Let Ω = [0, 1], and let P be the uniform probably law on Ω, so that if 0 ≤ a < b ≤ 1,
we have P([a, b]) = b − a. Let X1, . . . , Xn be independent random variables such that
P(Xi ∈ [a, b]) = b − a for all 0 ≤ a < b ≤ 1, for all i ∈ {1, . . . , n}. Let f : [0, 1] → R be a
continuous function we would like to integrate. Instead of integrating f directly, we instead
compute the quantity

1

n

n∑
i=1

f(Xi).

Show that

lim
n→∞

E

(
1

n

n∑
i=1

f(Xi)

)
=

∫ 1

0

f(t)dt.

lim
n→∞

var

(
1

n

n∑
i=1

f(Xi)

)
= 0.

That is, as n becomes large, 1
n

∑n
i=1 f(Xi) is a good estimate for

∫ 1

0
f(t)dt.

Solution. By definition ofXi we haveEf(Xi) =
∫ 1

0
f(t)dt for all i ≥ 1so thatE

(
1
n

∑n
i=1 f(Xi)

)
=

1
n
n
∫ 1

0
f(t)dt =

∫ 1

0
f(t)dt. Also, by independence we have

var

(
1

n

n∑
i=1

f(Xi)

)
=

1

n2

n∑
i=1

var(f(Xi)) =
1

n
var(f(X1)).

This quantity goes to zero as n → ∞. (Since f is continuous on [0, 1], f is bounded by some
constant c on [0, 1], i.e. |f(t)| ≤ c for all t ∈ [0, 1], so |f(X1)| ≤ c, so varf(Xi) ≤ E[f(Xi)]

2 ≤
c2 for all i ≥ 1.) □

Exercise 1.3. Let X := (X1, . . . , Xn) be a random sample of size n from a binomial dis-
tribution with parameters n and p. Here n is a positive (known) integer and 0 < p < 1
is unknown. (That is, X1, . . . , Xn are i.i.d. and X1 is a binomial random variable with
parameters n and p, so that P(X1 = k) =

(
n
k

)
pk(1− p)n−k for all integers 0 ≤ k ≤ n.)

You can freely use that EX1 = np and VarX1 = np(1− p).

• Computer the Fisher information IX(p) for any 0 < p < 1.
(Consider n to be fixed.)

• Let Z be an unbiased estimator of p2 (assume that Z is a function of X1, . . . , Xn).
State the Cramér-Rao inequality for Z.

• Let W be an unbiased estimator of 1/p (assume that W is a function of X1, . . . , Xn).
State the Cramér-Rao inequality for W .

Solution. Using that the information of independent random variables is the sum of the
informations, using the alternate definition of Fisher information using the variance, and
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using that the variance is unchanged by adding a constant inside the variance,

IX(p) = nIX1(p) = nVarp

( d

dp

[
log
(( n

X1

)
pX1(1− p)n−X1

)])
= nVarp

( d

dp

[
log

(
n

X1

)
+X1 log p+ (n−X1) log(1− p)

])
= nVarp

( d

dp

[
X1 log p+ (n−X1) log(1− p)

])
= nVarp

(1
p
X1 −

1

1− p
(n−X1)

)
= nVarp

([1
p
+

1

1− p

]
X1

)
= n

[1
p
+

1

1− p

]2
VarpX1 = n

[ 1

p(1− p)

]2
np(1− p) =

n2

p(1− p)

The Cramér-Rao inequality says, if g(p) := EpZ, then

Varp(Z) ≥
|g′(p)|2

IX(p)
.

If g(p) = p2, then g′(p) = 2p, so we get

Varp(Z) ≥
(2p)2

IX(p)
=

4p3(1− p)

n2
.

If g(p) = 1/p, then g′(p) = −p−2, so we get

Varp(Z) ≥
p−4

IX(p)
= p−31− p

n2
.

□

Exercise 1.4. Let X1, . . . , Xn be a random sample of size n from a Poisson distribution
with unknown parameter λ > 0. (So, P(X1 = k) = e−λλk/k! for all integers k ≥ 0.)

• Find an MLE (maximum likelihood estimator) for λ.
• Is the MLE you found unique? That is, could there be more than one MLE for this
problem?

Solution. The MLE of θ is a value of θ maximizing

log
n∏

i=1

θXie−θ/Xi! = log
(
θ
∑n

i=1 Xie−nθ

n∏
i=1

[Xi!]
)
=

n∑
i=1

log(Xi!)− nθ + log θ
n∑

i=1

Xi.

Taking a derivative in θ, we get −n + 1
θ

∑n
i=1 Xi. From the first derivative test, there is a

unique maximum value of θ when θ = 1
n

∑n
i=1 Xi, so the MLE for θ is 1

n

∑n
i=1 Xi. □

2. Homework 2

Exercise 2.1. The rejection regions Cα for UMP hypothesis tests of significance level at
most α ∈ (0, 1) are often nested in the sense that Cα ⊆ Cα′ for all 0 < α < α′ < 1. This
exercise demonstrates an example of UMP tests where this nesting behavior does not occur.
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Let θ0, θ1 ∈ R be unequal parameters. Let H0 denote the hypothesis {θ = θ0} and let
H1 denote the hypothesis {θ = θ1}. Suppose X ∈ {1, 2, 3} is a random variable. If θ = θ0,
assume that X takes the values 1, 2, 3 with probabilities .85, .1, .05, respectively. If θ = θ1,
assume that X takes the values 1, 2, 3 with probabilities .7, .2, .1, respectively. Let T denote
the set of hypothesis tests with significance level at most α.

• Let 0 < α < .15. Show that a UMP class T test is not unique.
• When α = .05, show there is a unique nonrandomized hypothesis UMP class T test.
• When α = .1, show there is a unique nonrandomized hypothesis UMP class T test.
• Show that the α = .05 and α′ = .1 UMP nonrandomized tests from above do not
have nested rejection regions.

• However, when α = .05 and α′ = .1, there are randomized UMP tests ϕ, ϕ′ : Rn →
[0, 1] respectively, that are nested in the sense that ϕ ≤ ϕ′.

Solution. We have

fθ1(1)

fθ0(1)
=

.7

.85
=

14

17
,

fθ1(2)

fθ0(2)
=

.2

.1
= 2,

fθ1(3)

fθ0(3)
=

.1

.05
= 2.

The Neyman-Pearson Lemma says that likelihood ratio tests ϕ : {1, 2, 3} → R of the following
form are UMP

ϕ(x) :=


1 , if fθ1(x) > kfθ0(x)

0 , if fθ1(x) < kfθ0(x)

? , if fθ1(x) = kfθ0(x).

So, let us examine those tests for all possible k > 0. After examining these different tests,
we realize that the case k = 2 is of particular interest for this problem, so let us focus on
that case.

If k = 2, then we have two points x = 2, 3 such that we can specify the value of ϕ
arbitrarily, while maintaining the UMP property. That is,

ϕ(x) :=


1 , if fθ1(x) > kfθ0(x)

0 , if fθ1(x) < kfθ0(x)

? , if fθ1(x) = kfθ0(x)

=

{
0 , ifx = 1

? , ifx = 2, 3.

More specifically, for any 0 ≤ a, b ≤ 1, ϕ : {1, 2, 3} → R is UMP where

ϕ(x) :=


0 , if x = 1

a , if x = 2

b , if x = 3

A test of this form has power function

β(θ) = Eθϕ(X).

The significance level of this test is

sup
θ∈Θ0

β(θ) = β(θ0) = .1ϕ(2) + .05ϕ(3) = (.1)a+ (.05)b.

If 0 < α < .15 is our desired significance level, then any choice of 0 ≤ a, b ≤ 1 satisfying

(.1)a+ (.05)b = α
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is a UMP with significance level α. (The Neyman-Pearson Lemma guarantees this holds.)
For a fixed 0 < α < .15, infinitely many such a, b exist. So, the UMP tests in this case are
non-unique.

If α = .05, then the set

{(a, b) : (.1)a+ (.05)b = .05, 0 ≤ a, b ≤ 1}

has a unique element where one of a, b is zero, occurring when a = 0 and b = 1. So, when
α = .05, there is a unique nonrandomized UMP test. This test rejects H0 when X = 3.

If α = .1, then the set

{(a, b) : (.1)a+ (.05)b = .1, 0 ≤ a, b ≤ 1}

has a unique element where one of a, b is zero, occurring when a = 1 and b = 0. So, when
α = .1, there is a unique nonrandomized UMP test. This test rejects H0 when X = 2.

The above rejection regions are not nested, since the events {X = 3} and {X = 2} are
disjoint.

However, there is are randomized hypothesis tests ϕ, ϕ′ with significance level α = .05, α′ =
.1 respectively, such that ϕ ≤ ϕ′. For example, we could use

ϕ(x) :=


0 , ifx = 1

1/4 , if x = 2

1/2 , if x = 3

, ϕ′(x) :=


0 , ifx = 1

1/2 , if x = 2

1 , ifx = 3

□

Exercise 2.2. Suppose X is a Gaussian distributed random variable with known variance
σ2 > 0 but unknown mean. Fix µ0, µ1 ∈ R. Assume that µ0 − µ1 > 0. We want to test the
hypothesis H0 that µ = µ0 versus the hypothesis H1 that µ = µ1. Fix α ∈ (0, 1). Explicitly
describe the UMP test for the class of tests whose significance level is at most α.

Your description of the test should use the function Φ(t) :=
∫ t

−∞ e−x2/2dx/
√
2π, Φ: R →

(0, 1), and/or the function Φ−1 : (0, 1) → R. (Recall that Φ(Φ−1(s)) = s for all s ∈ (0, 1)
and Φ−1(Φ(t)) = t for all t ∈ R.)

Solution. From the Neyman-Pearson Lemma, the UMP is a likelihood ratio test (LRT).
Let k > 0. (Since Pθ0(fθ1(X) = kfθ0(X)) = Pθ1(fθ1(X) = kfθ0(X)) = 0, the UMP is non
randomized.) In this case, the LRT has rejection region

C := {x ∈ R : fθ1(x) > kfθ0(x)}.
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More specifically,

C := {x ∈ R : fθ1(x) > kfθ0(x)}

= {x ∈ R :
1

σ
√
2π

e−
(x−µ1)

2

2σ2 > k
1

σ
√
2π

e−
(x−µ0)

2

2σ2 }

= {x ∈ R : − (x− µ1)
2

2σ2
> log(k)− (x− µ0)

2

2σ2
}

= {x ∈ R : (x− µ1)
2 < −2σ2 log(k) + (x− µ0)

2}
= {x ∈ R : (x− µ1)

2 − (x− µ0)
2 < −2σ2 log(k)}

= {x ∈ R : (2x− µ1 − µ0)(µ0 − µ1) < −2σ2 log(k)}

= {x ∈ R : 2x− µ1 − µ0 < −2σ2 log(k)

µ0 − µ1

}

= {x ∈ R : x < −σ2 log(k)

µ0 − µ1

+
µ0 + µ1

2
}.

The significance level of this test is

sup
θ∈Θ0

β(θ) = β(µ0) = Pµ0(X ∈ C) = Pµ0(X < −σ2 log(k)

µ0 − µ1

+
µ0 + µ1

2
)

= Pµ0(X − µ0 < −σ2 log(k)

µ0 − µ1

+
µ0 + µ1

2
− µ0)

= Pµ0

(X − µ0

σ
< −σ log(k)

µ0 − µ1

+
µ1 − µ0

2σ

)
= Φ

(
− σ log(k)

µ0 − µ1

+
µ1 − µ0

2σ

)
So, if we want a fixed significance level α ∈ (0, 1), then

Φ−1(α) = −σ log(k)

µ0 − µ1

+
µ1 − µ0

2σ
.

That is, we choose k such that

−Φ−1(α) +
µ1 − µ0

2σ
=

σ log(k)

µ0 − µ1

.

i.e.

k = exp
(µ1 − µ0

σ
Φ−1(α)− (µ0 − µ1)

2

2σ2

)
.

□

Exercise 2.3. This exercise demonstrates that a UMP might not always exists.
Let X1, . . . , Xn be i.i.d. Gaussian random variables with known variance and unknown

mean µ ∈ R. Fix µ0 ∈ R. Let H0 denote the hypothesis {µ = µ0} and let H1 denote the
hypothesis µ ̸= µ0. Fix 0 < α < 1. Let T denote the set of hypothesis tests with significance
level at most α. Show that no UMP class T test exists, using the following strategy.

• Let µ1 < µ0. You may take as given the following fact (that follows from the Karlin-
Rubin Theorem): the power at µ1 is maximized among class T tests by the hypothesis
test ϕ that rejects H0 when the sample mean satisfies X < c for an appropriate choice
of c ∈ R. Assume for the sake of contradiction that a UMP class T test ϕ′ exists.
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Then, using the necessity part of the Neyman-Pearson Lemma (i.e. consider testing
µ = µ0 versus µ = µ1), conclude that ϕ′ must have the same rejection region as ϕ
(just by examining the power of the tests at µ1.)

• Consider now a test in T that rejects H0 when the sample mean satisfies X > c′ for
an appropriate choice of c′ ∈ R. Repeating the previous argument, conclude that ϕ′

must reject when X > c′, leading to a contradiction.
That is, let µ2 > µ0. You may take as given the following fact (that follows from

the Karlin-Rubin Theorem): the power at µ2 is maximized among class T tests by
the hypothesis test ϕ′′ that rejects H0 when the sample mean satisfies X > c′ for an
appropriate choice of c′ ∈ R. Then, using the necessity part of the Neyman-Pearson
Lemma (i.e. consider testing µ = µ0 versus µ = µ2), conclude that ϕ′ must have the
same rejection region as ϕ′′.

Solution. Since ϕ′ is UMP class T for testing H0 versus H1, we have β′(µ1) ≥ β(µ1). (Here
β is the power function of ϕ, and β′ is the power function of ϕ′.) From the remark about
the Karlin-Rubin Theorem, β′(µ1) ≤ β(µ1). Therefore, β

′(µ1) = β(µ1).
ConsiderH ′

1 = {µ = µ1}. Suppose we are testingH0 versusH
′
1. Since β(µ1) = β′(µ1), from

the Neyman-Pearson Lemma, we must have ϕ′ = ϕ except possibly on a set of probability zero
with respect to Pµ0 and Pµ1 . (Similarly it occurs with probability zero that fθ0(X) = kfθ1(X)

for a constant k > 0.) That is, up to probability zero changes to ϕ, both ϕ and ϕ′ are
nonrandomized hypothesis tests with the same rejection region.

Now, let µ2 > µ0. Since ϕ′ is UMP class T for testing H0 versus H1, we have β′(µ2) ≥
β′′(µ2). (Here β′ is the power function of ϕ′, and β′′ is the power function of ϕ′′.) From the
remark about the Karlin-Rubin Theorem, β′(µ2) ≤ β′′(µ2). Therefore, β

′′(µ2) = β′(µ2).
Consider H ′′

1 = {µ = µ2}. Suppose we are testing H0 versus H ′′
1 . Since β′(µ2) = β′′(µ2),

from the Neyman-Pearson Lemma, we must have ϕ′′ = ϕ′ except possibly on a set of prob-
ability zero with respect to Pµ0 and Pµ1 . (Similarly it occurs with probability zero that
fθ0(X) = kfθ1(X) for a constant k > 0.) That is, up to probability zero changes to ϕ′′, both
ϕ′′ and ϕ′ are nonrandomized hypothesis tests with the same rejection region.

We now have a contradiction, since ϕ′ must reject only when X > c, and ϕ′ must reject
only when X < c′.

□

Exercise 2.4. Prove the following version of the Karlin-Rubin Theorem, with the inequali-
ties reversed in the definition of the hypotheses.

Let {fθ} be a family of PDFs with the MLR property, with respect to a real-valued
statistic Y = t(X), where θ ∈ Θ ⊆ R. Let 0 ≤ γ ≤ 1. Fix θ0 ∈ Θ. Consider the hypothesis
H0 = {θ ≥ θ0} and the hypothesis H1 = {θ < θ0}. Let c ∈ R. Consider the randomized
hypothesis test ϕ : Rn → [0, 1] defined by

ϕ(x) :=


0 , if t(x) > c

1 , if t(x) < c

γ , if t(x) = c.

Define α := Eθ0ϕ(X). Let T be the class of all randomized hypothesis tests with significance
level at most α.

(i) ϕ is UMP class T .
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(iii) β, the power function of ϕ, is nonincreasing and strictly decreasing when it takes
values in (0, 1).

Proof. We first prove (iii). Let θ1 > θ0 and consider the function r : Rn → R defined by

r(x) :=
fθ1(x)

fθ0(x)
, ∀ x ∈ Rn.

By assumption, r is a strictly increasing function of t(x). Let k ∈ R such that r(x) = k
when t(x) = c. Since r is a strictly increasing function of t(x), we can rewrite ϕ as

ϕ(x) =


0 , if r(x) > k

1 , if r(x) < k

γ , if r(x) = k.

That is, 1−ϕ is a likelihood ratio test of the hypothesis {θ = θ0} versus {θ = θ1}. Corollary
3.15 from the notes says 1− β(θ1) = Eθ1(1− ϕ(X)) > 1− α = Eθ0(1− ϕ(X)) = 1− β(θ0),
if Pθ0 ̸= Pθ1 . (If Pθ0 = Pθ1 , then Eθ1ϕ(X) = Eθ0ϕ(X) ∈ {0, 1} since ϕ is either zero or one
with probability one in this case, i.e. α ∈ {0, 1}.) Assertion (iii) follows.

We now prove (i). First, note that α = Eθ0ϕ(X) = supθ≥θ0 Eθϕ(X) from (iii), so that ϕ
is in class T . Now let θ1 < θ0, and let ϕ′ be a class T hypothesis test. By definition of
T , Eθ0ϕ

′ ≤ supθ≥θ0 Eθϕ
′(X) ≤ α. So, from the Neyman-Pearson Lemma (sufficiency), ϕ is

UMP (in the context of that Lemma), i.e. Eθ1ϕ(X) ≥ Eθ1ϕ
′(X). Since this inequality holds

for all θ1 < θ0, we conclude that ϕ is UMP class T , i.e. (i) holds. □

Exercise 2.5. Prove the following one-sided version of the Karlin-Rubin Theorem.
Let {fθ} be a family of PDFs with the MLR property, with respect to a real-valued

statistic Y = t(X), where θ ∈ Θ ⊆ R. Let 0 ≤ γ ≤ 1. Fix θ0 ∈ Θ. Consider the hypothesis
H0 = {θ = θ0} and the hypothesis H1 = {θ > θ0}. Let c ∈ R. Consider the randomized
hypothesis test ϕ : Rn → [0, 1] defined by

ϕ(x) :=


1 , if t(x) > c

0 , if t(x) < c

γ , if t(x) = c.

Define α := Eθ0ϕ(X). Let T be the class of all randomized hypothesis tests with significance
level at most α.

Then ϕ is UMP class T .

Proof. Let θ1 > θ0. From the Karlin-Rubin Theorem itself (part (iii)), we already know
that the power function β of ϕ is nondecreasing. Also, as we proved in the Karlin-Rubin
Theorem, if

r(x) :=
fθ1(x)

fθ0(x)
, ∀ x ∈ Rn,

then by assumption, r is a strictly increasing function of t(x). Let k ∈ R such that r(x) = k
when t(x) = c. Since r is a strictly increasing function of t(x), we can rewrite ϕ as

ϕ(x) =


1 , if r(x) > k

0 , if r(x) < k

γ , if r(x) = k.
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Note that α = Eθ0ϕ(X) from (iii), so that ϕ is in class T . Let ϕ′ be a class T hypothesis
test. By definition of T , Eθ0ϕ

′ ≤ α. So, from the Neyman-Pearson Lemma (sufficiency), ϕ is
UMP (in the context of that Lemma), i.e. Eθ1ϕ(X) ≥ Eθ1ϕ

′(X). Since this inequality holds
for all θ1 > θ0, we conclude that ϕ is UMP class T . □

Exercise 2.6. Let X1, . . . , Xn be i.i.d. random variables. Let X = (X1, . . . , Xn). Let θ > 0.
Assume that X1 is uniformly distributed in the interval [0, θ]. Fix θ0 > 0. Fix 0 < α < 1.
Let T denote the set of hypothesis tests with significance level at most α.

• Suppose we test H0 = {θ ≤ θ0} versus H1 = {θ > θ0}. Identify the set of all UMP
class T hypothesis tests.

• Suppose we test H0 = {θ = θ0} versus H1 = {θ ̸= θ0}. Show there is a unique UMP
class T hypothesis test in this case.

(Hint: first consider testing {θ = θ0} versus {θ = θ1} with θ1 > θ0, and apply the Neyman-
Pearson Lemma. That is, mimic the argument of the Karlin-Rubin Theorem.) (As an aside,
observe that, if you näıvely apply the Karlin-Rubin Theorem, you will not find all UMP
tests, i.e. a non-strict MLR property version of the Karlin-Rubin Theorem will neglect some
UMP tests.)

Solution. The joint distribution of X1, . . . , Xn satisfies, for any x = (x1, . . . , xn) ∈ Rn,

fθ(x) =
n∏

i=1

θ−11[0,θ](xi) = θ−n10≤max1≤i≤n xi≤θ.

Let θ1 > θ0. Then
fθ1(x)

fθ0(x)
=
(θ1
θ0

)−n

·
10≤max1≤i≤n xi≤θ1

10≤max1≤i≤n xi≤θ0

.

Since θ1 > θ0, evidently this likelihood ratio has the (non-strict) MLR property with respect
to t(x) := max1≤i≤n xi. (As t(x) increases from 0, the ratio of indicator functions is 1, then
∞, then of the form 0/0, and the latter case is not considered for the MLR property.)

For the moment, suppose we instead test {θ = θ0} versus {θ = θ1}. Then the Neyman-
Pearson Lemma says that any (nontrivial) UMP class T test is a likelihood ratio test of the
form

ϕ(x) :=

{
1 , if θ0 < x(n) < θ1
arbitrary , if x(n) ≤ θ0 or x(n) ≥ θ1.

(We find these tests by considering different thresholds k in the likelihood ratio tests that
reject when fθ1(x) > kfθ0(x).) The tests of this form that do not depend on θ1 are of the
form

ϕ(x) :=

{
1 , if θ0 < x(n)

arbitrary , if θ0 ≥ x(n).
(∗)

Since this test does not depend on θ1, we conclude that it is UMP for testing {θ = θ0}
versus {θ > θ0} (as in the proof of the Karlin-Rubin Theorem). Again, as in the proof of
the Karlin-Rubin Theorem, we conclude that this test is UMP for testing {θ ≤ θ0} versus
{θ > θ0}. Conversely, any test that is UMP for {θ ≤ θ0} versus {θ > θ0} must be UMP for
testing {θ = θ0} versus {θ = θ1} when θ1 > θ0. Consequently, any UMP for {θ ≤ θ0} versus
{θ > θ0} must be of the form (∗). The first part of the proof is concluded.
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We now prove the second part. If ϕ is UMP for {θ = θ0} versus {θ ̸= θ0}, then ϕ must
be UMP for testing {θ = θ0} versus {θ > θ0}, as in the Karlin-Rubin Theorem. That is, ϕ
must be of the form (∗).

Moreover, ϕ must be UMP for testing {θ = θ0} versus {θ = θ1} with θ1 < θ0. In this case,
the Neyman-Pearson Lemma says that any (nontrivial) UMP class T test is a likelihood
ratio test of the form

ϕ(x) :=

{
0 , if θ1 < x(n) < θ0
arbitrary , if x(n) ≤ θ1 or x(n) ≥ θ1.

(∗∗)

or

ϕ(x) :=

{
1 , if x(n) < θ1
arbitrary , if x(n) ≥ θ1.

(∗ ∗ ∗)

(We find these tests by considering different thresholds k in the likelihood ratio tests that
reject when fθ1(x) > kfθ0(x). The first type of test occurs when k = (θ0/θ1)

n. The second
type of test occurs when k = 0.)

If additionally ϕ is of the form (∗), (and ϕ does not depend on θ1) then ϕ must satisfy (for
some constant c)

ϕ(x) :=

{
1 , if θ0 < x(n) or x(n) < c

0 otherwise.

(For this particular test ϕ, note that, for any θ1 satisfying 0 < θ1 < θ0, either ϕ is of the form
(∗∗) or (∗ ∗ ∗). More specifically, if c < θ1 < θ0, then ϕ is of the form (∗∗) and if 0 < θ1 < c,
then ϕ is of the form (∗ ∗ ∗).)

As c changes, so does the significance level α. So, for fixed α, ϕ is unique, as desired.
□

Exercise 2.7. Let X1, . . . , Xn be i.i.d. random variables that are uniformly distributed in
the interval [θ, θ + 1], where θ ∈ R is an unknown parameter. Fix θ0 ∈ R. Suppose we
want to test the hypothesis that θ ≤ θ0 versus θ > θ0. For any 0 ≤ α ≤ 1, show that there
exists a UMP test among tests with significance level at most α, and this test rejects the
null hypothesis when X(1) > θ0 + c(α) or X(n) > θ0 + 1.

On the other hand, show that the joint density of X1, . . . , Xn does not have the MLR
property with respect to any statistic (when n > 1). (Hint: if it did have the MLR property,
what would the Karlin-Rubin Theorem imply about the UMP rejection regions?)

Solution.
The joint distribution of X1, . . . , Xn is

fθ(x) =
n∏

i=1

1Xi∈[θ,θ+1] = 1X(1),X(n)∈[θ,θ+1].

Let θ1 > θ0. Then
fθ1(x)

fθ0(x)
=

1X(1),X(n)∈[θ1,θ1+1]

1X(1),X(n)∈[θ0,θ0+1]

.

Observe that this ratio can be 0, 1 or ∞. More specifically, on the set where at least one of
these densities is nonzero, we have

• fθ1(x) > fθ0(x) when x(n) > θ0 + 1,
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• fθ1(x) = fθ0(x) when θ1 ≤ x(1) ≤ x(n) ≤ θ0 + 1, and
• fθ1(x) < fθ0(x) when x(1) < θ1.

For the moment, suppose we instead test {θ = θ0} versus {θ = θ1}. Then the Neyman-
Pearson Lemma says that any (nontrivial) UMP class T test is a likelihood ratio test of the
form

ϕ(x) :=


1 , if x(n) > θ0 + 1

arbitrary , if θ1 ≤ x(1) ≤ x(n) ≤ θ0 + 1

0 , if x(1) < θ1.
or

ϕ(x) :=

{
1 , if θ1 ≤ x(1)

arbitrary , if x(1) < θ1.

The tests of this form that do not depend on θ1 are of the following form, where c ∈ R is a
constant:

ϕ(x) :=

{
1 , if x(1) > θ0 + c or x(n) > θ0 + 1

0 , otherwise.

Since this test does not depend on θ1, we conclude that it is UMP for testing {θ = θ0}
versus {θ > θ0} (as in the proof of the Karlin-Rubin Theorem). Again, as in the proof of
the Karlin-Rubin Theorem, we conclude that this test is UMP for testing {θ ≤ θ0} versus
{θ > θ0}.

When n > 1, the joint density of X1, . . . , Xn does not have the MLR property. If it did,
then the Karlin-Rubin Theorem would imply that there is a UMP test defined by a single
real-valued statistic, but we just showed this is not true.

□

Exercise 2.8. Let {fθ : θ ∈ R} be a family of positive, single-variable PDFs, i.e. fθ : R →
(0,∞) for all θ ∈ R. Assume that fθ(x) is twice continuously differentiable in the parameters
θ, x.

Show that {fθ} has the MLR property with respect to the statistic t(x) = x (x ∈ R) if
and only if

∂2

∂θ∂x
log fθ(x) ≥ 0, ∀ x, θ ∈ R.

Exercise 2.9. SupposeX is a binomial distributed random variable with parameters n = 100
and θ ∈ [0, 1] where θ is unknown. Suppose we want to test the hypothesis H0 that θ = 1/2
versus the hypothesis H1 that θ ̸= 1/2. Consider the hypothesis test that rejects the null
hypothesis if and only if |X − 50| > 10.

Using e.g. the central limit theorem, do the following:

• Give an approximation to the significance level α of this hypothesis test
• Plot an approximation of the power function β(θ) as a function of θ.
• Estimate p values for this test when X = 50, and also when X = 70 or X = 90.

Solution. We have α = β(1/2) = P1/2(X ∈ C) = P1/2(|X − 50| > 10). From The Central
Limit Theorem, we have the approximation

P1/2(|X − 50| > 10) = P1/2(
|X − 50|
(1/2)(10)

> 2) ≈ P(|Z| > 2) ≈ .05.
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Here we used the Matlab command quad(@(t) (1/sqrt(2*pi))*exp(-t.^2 /2),-2,2) to
get the last probability. So, the significance level of the test is approximately .05. The
p-values for this test are roughly

p(50) = P1/2(|X − 50| > |50− 50|) ≈ 1.

p(70) = P1/2(|X − 50| > |70− 50|) = P1/2(|X − 50| > 20) = P1/2(
|X − 50|
(1/2)(10)

> 4)

≈ P(|Z| > 4) ≈ 7 · 10−5.

Here we used the Matlab command quad(@(t) (1/sqrt(2*pi))*exp(-t.^2 /2),-4,4) to
get the last probability.

p(90) = P1/2(|X − 50| > |90− 50|) = P1/2(|X − 50| > 40) = P1/2(
|X − 50|
(1/2)(10)

> 8)

≈ P(|Z| > 8) ≈ 5 · 10−7.

Here we used the Matlab command quad(@(t) (1/sqrt(2*pi))*exp(-t.^2 /2),-8,8) to
get the last probability. (I think the actual value of P(|Z| > 8) is much smaller than this,
closer to 10−13 though.)

More generally, we have the approximation

β(θ) = Pθ(X − 50 > 10) +Pθ(X − 50 < −10)

= Pθ

( X − 100θ

10
√

θ(1− θ)
>

1 + 5− 10θ√
θ(1− θ)

)
+Pθ

( X − 100θ

10
√

θ(1− θ)
<

−1 + 5− 10θ√
θ(1− θ)

)
≈ Pθ

(
Z >

6− 10θ√
θ(1− θ)

)
+P

(
Z <

4− 10θ√
θ(1− θ)

)
= 1−P

(
Z <

6− 10θ√
θ(1− θ)

)
+P

(
Z <

4− 10θ√
θ(1− θ)

)
= 1− Φ

( 6− 10θ√
θ(1− θ)

)
+ Φ

( 4− 10θ√
θ(1− θ)

)
Here we used Φ(t) = P(Z ≤ t). We can then use following plot in Matlab

theta=linspace(0,1,1000);

plot(theta,1-normcdf((6-10*theta)./sqrt(theta.*(1-theta)),0,1)...

+normcdf((4-10*theta)./sqrt(theta.*(1-theta)),0,1));

xlabel(’theta’);

ylabel(’beta(theta)’);

□

Exercise 2.10. Let X1, . . . , Xn be a real-valued random sample of size n from a family
of distributions {fθ : θ ∈ Θ}. Suppose Θ = R. Fix θ ∈ R. Denote X := (X1, . . . , Xn).
Consider a set of hypothesis tests ϕα : Rn → [0, 1], for any α ∈ [0, 1]. Assume that these
tests are nested in the sense that ϕα ≤ ϕα′ for all 0 ≤ α < α′ ≤ 1. Suppose we are testing
the hypothesis H0 that {θ ≤ θ0} versus H1 that {θ > θ0}. Suppose also that {fθ} has the
monotone likelihood ratio property with respect to a statistic Y = t(X) that is a continuous
random variable.
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• Show that the family of UMP tests with significance level at most α satisfies the
nested property mentioned above (for all α ∈ [0, 1]).

• Show that, if X = x, then the p-value p(x) satisfies

p(x) = Pθ0(t(X) > t(x)).

Solution. The Karlin-Rubin Theorem implies that the UMP tests with significance level at
most α are of the form

ϕ(x) :=


1 , if t(x) > c

0 , if t(x) < c

γ , if t(x) = c.

Since we assume that Y = t(X) is continuous, t(X) = c occurs with probability zero, i.e. we
may assume that

ϕ(x) :=

{
1 , if t(x) > c

0 , if t(x) ≤ c.

The nested property then follows, since as α increases, c decreases.
Denote cα as the constant c = cα in the above definition when ϕ = ϕα has significance

level α. Recall that significance level α means that

α = sup
θ∈Θ0

Eθϕ(X) = sup
θ≤θ0

Pθ(t(X) > cα)

Since the Karlin-Rubin Theorem implies that the power function is nondecreasing in θ, we
have

α = Pθ0(t(X) > cα). (∗)
We also have

p(x) = inf{α ∈ [0, 1] : ϕα(x) = 1} = inf{α ∈ [0, 1] : t(x) > cα}.
The nested property implies that {α ∈ [0, 1] : t(x) > c} is an interval, so that the infimum
of this set is the smaller endpoint of that interval. That is, there exists some α ∈ [0, 1] such
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that p(x) = α and t(x) = cα. So, from (∗),
α = p(x) = Pθ0(t(X) > cα) = Pθ0(t(X) > t(x)).

□
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