545 Midterm 2 Solutions¹

1. Question 1

Let $N \geq 1$. We define the **Fejér kernel** $F_N \colon \mathbf{R}/\mathbf{Z} \to \mathbf{C}$ to be the function

$$F_N(x) := \sum_{n=-N}^{N} \left(1 - \frac{|n|}{N}\right) e^{2\pi i n x}, \quad \forall x \in \mathbf{R}/\mathbf{Z}.$$

Show that $F_N(x)$ is real valued and nonnegative $\forall N \geq 1, \forall x \in \mathbf{R}/\mathbf{Z}$. Solution.

$$F_{N} = \frac{1}{N} \sum_{\ell=-N}^{N} (N - |\ell|) e_{\ell} = \frac{1}{N} \sum_{\ell=-N}^{N} \left(\sum_{-N+1 \le j \le 0 \le k \le N-1: \ j+k=\ell} e_{\ell} \right)$$

$$= \frac{1}{N} \sum_{\ell=-N}^{N} \left(\sum_{-N+1 \le j \le 0 \le k \le N-1: \ j+k=\ell} e_{j} e_{k} \right) = \frac{1}{N} \sum_{k=0}^{N-1} e_{k} \left(\sum_{j=0}^{N-1} e_{j} \right) = \frac{1}{N} \left| \sum_{n=0}^{N-1} e_{n} \right|^{2}. \tag{*}$$

2. Question 2

Let $f: \mathbf{R}/\mathbf{Z} \to \mathbf{C}$ with $||f||_1 := \int_0^1 |f(x)| dx < \infty$. Show that

$$\lim_{n \to +\infty} \widehat{f}(n) = 0,$$

Solution. If $||f||_2 < \infty$, then Plancherel's Theorem says $\sum_{n \in \mathbb{Z}} |\widehat{f}(n)|^2 < \infty$, so $\lim_{n \to \pm \infty} \widehat{f}(n) = 0$. In particular, if f is continuous, then f is bounded, so $||f||_2 < \infty$, hence $\lim_{n \to \pm \infty} \widehat{f}(n) = 0$. Let $\varepsilon > 0$. By e.g. the Weierstrass approximation theorem, let $g \colon \mathbb{R}/\mathbb{Z} \to \mathbb{C}$ be a continuous function such that $||f - g||_1 < \varepsilon$. Note that

$$|\widehat{f}(n) - \widehat{g}(n)| = \left| \int_0^1 (f(x) - g(x))e^{-2\pi i nx} dx \right| \le ||f - g||_1 < \varepsilon.$$

So,

$$\limsup_{n \to \pm \infty} |\widehat{f}(n)| \le \limsup_{n \to \pm \infty} |\widehat{g}(n)| + \varepsilon = \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we conclude that $\limsup_{n \to \pm \infty} |\widehat{f}(n)| = 0$, as desired.

3. Question 3

Let $\{Z_n\}_{n\in\mathbb{Z}}$ be WN(0,1). Consider the MA(1) process $\{X_n\}_{n\in\mathbb{Z}}$ defined by

$$X_n = Z_n - 3Z_{n-1}, \quad \forall n \in \mathbf{Z}.$$

- Show that this process is not invertible (with respect to $\{Z_n\}_{n\in\mathbf{Z}}$).
- Find polynomials $\widetilde{\phi}$, $\widetilde{\psi}$ and find $\widetilde{\sigma} > 0$, $\{\widetilde{Z}_n\}_{n \in \mathbb{Z}}$ that are $WN(0, \widetilde{\sigma}^2)$ such that

$$\widetilde{\phi}(S)X_n = \widetilde{\theta}(S)\widetilde{Z}_n, \quad \forall n \in \mathbf{Z}.$$

and such that $\{X_n\}_{n\in\mathbf{Z}}$ is invertible (with respect to $\{\widetilde{Z}_n\}_{n\in\mathbf{Z}}$.)

¹March 27, 2020, © 2020 Steven Heilman, All Rights Reserved.

Solution. We have $\theta(1/3) = 0$. So, this process it not invertible by Proposition 7.17 in the notes. (Invertibility means θ must have no zeros in the unit disc.) By repeating the argument of Theorem 7.19 in the notes, we define

$$\widetilde{Z}_n := (1 - S/3)^{-1} (1 - 3S) Z_n = (1 - S/3)^{-1} X_n = \sum_{j=0}^{\infty} (S/3)^j X_n = \sum_{j=0}^{\infty} 3^{-j} X_{n-j}, \quad \forall n \in \mathbf{Z}.$$

It then follows from Theorem 7.19 that $\{X_n\}_{n\in\mathbf{Z}}$ is invertible (with respect to $\{\widetilde{Z}_n\}_{n\in\mathbf{Z}}$. So, the polynomials we use are $\widetilde{\phi}(z) := \phi(z) = 1$ and $\widetilde{\theta}(z) = (1 - z/3)$ for all $z \in \mathbf{C}$.

4. Question 4

Let p, q be positive integers. Let $\{X_n\}_{n \in \mathbb{Z}}$ be a real-valued $\mathbf{ARMA}(p, q)$ process. Assume that $\phi(z) \neq 0$ on $\{z \in \mathbb{C} : |z| = 1\}$. Show that the autocovariance function $\gamma : \mathbb{Z} \to \mathbb{R}$ satisfies

$$\sum_{n \in \mathbf{Z}} |\gamma(n)| < \infty.$$

Solution. Theorem 7.14 in the notes says that there exist constants $\{c_n\}_{n\in\mathbf{Z}}$ with $\sum_{j\in\mathbf{Z}}|c_j|<\infty$ such that $X_n=\sum_{j\in\mathbf{Z}}c_jZ_{n-j}$ for all $n\in\mathbf{Z}$. (The sum converges in L_2 by Proposition 7.5 in the notes.) From Proposition 7.7 in the notes, γ satisfies

$$\gamma(n) = \sum_{j,k \in \mathbf{Z}} c_j c_k \gamma_Z(n - j + k) = \sigma^2 \sum_{j \in \mathbf{Z}} c_j c_{j-n}, \quad \forall n \in \mathbf{Z}$$

So,
$$\sum_{n \in \mathbf{Z}} |\gamma(n)| \le \sigma^2 (\sum_{j \in \mathbf{Z}} c_j)^2 < \infty$$
.