
Graduate Time Series Steven Heilman

Spring 2020, Math 545, Take-Home Final Exam

Due: 5PM PST on May 8th, 2020.

Instructions.

• You can use your book, notes, and previous homeworks on this exam.
• You cannot use the internet or internet search resources such as google,

mathoverflow, etc. to complete the exam.
• You are required to show your work on each problem on the exam.
• For exercises involving coding, submit all of your code, and submit all output that is

relevant to that exercise.
• The exam is due at 5PM PST on May 8th, 2020.
• You must submit the exam, via email, to stevenmheilman@gmail.com. This is the

only email address at which the exam will be accepted.
• The exam must be submitted as a single PDF file. Submitting separate files will

be penalized.
• If you use a theorem or proposition from class or the notes or the book you

must explicitly cite the theorem/proposition number from the book/notes
and explain why the theorem may be applied. (Since this particular exam is open
note and open book, this extra requirement should be reasonable.)
• Organize your work, in a reasonably neat and coherent way. Work scattered all

over the page without a clear ordering will receive very little credit.
• Mysterious or unsupported answers will not receive full credit. A correct

answer, unsupported by calculations, explanation, or algebraic work will receive no
credit; an incorrect answer supported by substantially correct calculations and ex-
planations might still receive partial credit.

Exercise 1. Let 0 < σ < ∞. Let {Zn}n∈Z be real-valued WN(0, σ2). Let {Xn}n∈Z be a
real-valued mean zero ARMA(1, 1) process defined by

Xn −
1

3
Xn−1 = Zn +

1

3
Zn−1, ∀n ∈ Z.

• Prove that there exist c0, c1, . . . ∈ R such that

Xn =
∑
j≥0

cjZn−j, ∀n ∈ Z.

Also, explicitly find the constants c0, c1, . . ..
• Write down an explicit formula for the autocovariance function γ : Z→ R of {Xn}n∈Z.
• Find the value of the partial autocorrelation function α(1). Also, find the one-step

prediction error E(X2 − Y2)2.
• Write down an explicit formula for the spectral density function f : R/Z → C of
{Xn}n∈Z.
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Exercise 2 (Financial Data Analysis, Version 2). In this exercise, we will attempt to model
financial data by ARMA processes. You can create a spreadsheet of financial data if you
open up a spreadsheet in google spreadsheets, and input the following command into one of
the cells in the spreadsheet (and then press enter):

=GOOGLEFINANCE("GOOG", "price", "1/1/2010", "12/31/2019", "DAILY")

The first argument in the command is the stock price ticker symbol (which corresponds to
google stock). The closing price of the stock is then listed every day, starting from January
1st, 2010, and ending on December 31st, 2019. Once you have the spreadsheet data, you
should be able to import it into Matlab or your favorite mathematical software.

A classic barometer of the US economy is the ten year US treasury note yield. You can
access this data with the command

=GOOGLEFINANCE("TNX", "price", DATE(2005,1,1), DATE(2019,12,31), "DAILY")

That is, we are analyzing this data from 2005 to 2019. Let j be the (non-weekend) day
occurring after January 1, 2005, so e.g. j = 6 corresponds to the sixth non-weekend day
after January 1, 2005, and denote Yj as the corresponding ten year US treasure note yield
on day j. There should be 3, 767 entries in the data.

In a previous homework exercise, we examined the Yule-Walker estimators and autoregres-
sive parameters for this data. In this exercise, we will try to find the trend and seasonal
components of the data.

• In order to find the trend and seasonal components, first take the Fourier transform of the
data, i.e. examine the function

Ŷ (s) =
3767∑
j=1

Yje
2πisj, ∀ s ∈ R/Z

It should just have a large spike near zero, indicating a trend component, with perhaps no
observed seasonal component. Plot the inverse Fourier transform of the large spike. That
is, determine the frequencies s where the large spike is supported in the Fourier transform
(say it is an interval of the form [−a, a]), and then plot

Sj :=

∫ a

−a
Ŷ (r)e−2πirjdr, ∀ 1 ≤ j ≤ 3767.

Your choice of a should make Sj resemble the original data, but a should not be so large
that it matches the small oscillations of the data too closely. (The exact choice of a might
be a subjective choice.)

• The Fourier transform Ŷ (s) should look fairly “jagged.” So, let’s smooth it out to get a
better picture of it (and verify whether or not a seasonal component exists). Recall that the
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nth periodogram of Y1, . . . , Yn is the function In : R/Z→ [0,∞) defined by

In(t) :=
1

n

∣∣∣∣∣
n∑
j=1

Yje
2πitj

∣∣∣∣∣
2

, ∀ t ∈ R/Z.

Define wn : Z → [0,∞) so that wn(j) := c if |j| ≤
√
n, wn(j) := 0 if |j| >

√
n, and c > 0 is

chosen so that
∑

j∈Zwn(j) = 1. Recall that the smoothed periodogram is defined to be

In,w(t) :=
∑
j∈Z

wn(j)In(t− j/n), ∀ t ∈ R.

Plot the smoothed periodogram of the data. Does the result help you determine where the
large spike is in the Fourier transform of the data? If so, amend the first part of the problem.
Do you observe any seasonal component, i.e. a spike in the Fourier transform away from 0?
If so, plot the seasonal component on its own.

• Finally, plot the data, with the trend (and seasonal component, if you found one) subtracted
from the data. Call the resulting data {Wj}j=1,2,...,3767. We anticipate that {Wj}j=1,2,...,3767

should then be weakly stationary. Try to fit an autoregressive model AR(p) to {Wj}j=1,2,...,3767.
That is, use the Yule-Walker estimators for the autoregressive parameters. Examine the val-
ues of the partial autocorrelation function, to try to determine a good value of p for the
model. (Optional: use the AICC criterion to estimate the values of p, q in an ARMA(p, q)
model for the data.)

• The (smoothed) periodogram of {Wj}j=1,2,...,3767 gives a good estimate for the spectral
density of {Wj}j=1,2,...,3767. Using the MLARMA estimate (or any other estimate for the
ARMA parameters of the process which are then plugged into an estimate of φ and θ,
which then determine an estimate of the spectral density of the form σ2 |θ/φ|2), compare
that estimate of the spectral density of {Wj}j=1,2,...,3767 to the smoothed periodogram of
{Wj}j=1,2,...,3767. Do they appear similar to each other? To get a third comparison, plot the
lag window spectral density estimator

Fn,u(t) :=
∑
j∈Z

u(j/m)Γn(j)e2πitj, ∀ t ∈ R/Z,

with u(x) := 2(1 − |2x|)1|x|<1/2 for any x ∈ R, and mn := b
√
nc for all n ≥ 1. Does this

estimate of the spectral density resemble the other two? If not, adjust the parameters of the
estimators, such as the smoothing function wn for the smoothed periodogram, try changing
the function mn, or try other choices of u, as described in the book. Ideally, all of the
estimators will be in agreement with each other, and they should agree with Theorem 8.9 in
the notes, but in practice, this might not happen.

• Repeat all steps above for the logarithmically differenced google stock data from 2005 to
2019, i.e. using the command

=GOOGLEFINANCE("GOOG", "price", "1/1/2005", "12/31/2019", "DAILY")

That is, if Xn denotes the google stock price on day n, then consider

Yn := log(Xn+1/Xn) = logXn+1 − logXn
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and apply the above steps to Yn. The behavior you examine here might be different than
the behavior for the ten year treasury note yield.

Exercise 3 (Sunspot Data, Version 4). This exercise deals with sunspot data from the
following files (the same data appears in different formats)

txt file csv (excel) file

These files are taken from http://www.sidc.be/silso/datafiles#total

To work with this data, e.g. in Matlab you can use the command

x=importdata(’SN_d_tot_V2.0.txt’)

to import the .txt file.

The format of the data is as follows.

• Columns 1-3: Gregorian calendar date (Year, Month, then Day)
• Column 4: Date in fraction of year
• Column 5: Daily total number of sunspots observed on the sun. A value of -1 indicates

that no number is available for that day (missing value).
• Column 6: Daily standard deviation of the input sunspot numbers from individual

stations.
• Column 7: Number of observations used to compute the daily value.
• Column 8: Definitive/provisional indicator. A blank indicates that the value is de-

finitive. A ’*’ symbol indicates that the value is still provisional and is subject to a
possible revision (Usually the last 3 to 6 months)

In two previous exercises, we examined the number of sunspots Ut at time t, where t is
measured in years. We also took the Fourier transform of U , and defined

Û(r) :=
∑

t∈Z/365

Ute
2πitr, ∀ r ∈ R/365Z.

We found that the seasonal component of U closely matched the following function of t ∈
Z/365

St :=
1

365

∫ .105

.08

Û(r)e−2πirtdr +
1

365

∫ −.08
−.105

Û(r)e−2πirtdr.

We also found that the trend component of U closely matched the following function of
t ∈ Z/365

Mt :=
1

365

∫ .016

−.016
Û(r)e−2πirtdr.

In this exercise, we will smooth out the Fourier transform to get a better picture of it.

• Plot the periodogram and smoothed periodogram of the sunspot data (using the same
smoothing function wn as in the previous Exercise). Compare the two plots. Does the

http://www.sidc.be/silso/DATA/SN_d_tot_V2.0.txt
http://www.sidc.be/silso/INFO/sndtotcsv.php
http://www.sidc.be/silso/datafiles#total
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smoothed periodogram have a spike around frequency 1/11? What is the exact frequency of
the highest value of the spike in the Fourier transform?

• The (smoothed) periodogram of Ut−St−Mt gives a good estimate for the spectral density
of Ut − St − Mt. Using the MLARMA estimate (or any other estimate for the ARMA
parameters of the process which are then plugged into an estimate of φ and θ, which then
determine an estimate of the spectral density of the form σ2 |θ/φ|2), compare that estimate
of the spectral density to the smoothed periodogram. Do they appear similar to each other?
To get a third comparison, plot the lag window spectral density estimator

Fn,u(t) :=
∑
j∈Z

u(j/m)Γn(j)e2πitj, ∀ t ∈ R/Z,

with u(x) := 2(1 − |2x|)1|x|<1/2 for any x ∈ R, and mn := b
√
nc for all n ≥ 1. Does this

estimate of the spectral density resemble the other two? If not, adjust the parameters of the
estimators, such as the smoothing function wn for the smoothed periodogram, try changing
the function mn, or try other choices of u, as described in the book. Ideally, all of the
estimators will be in agreement with each other, and they should agree with Theorem 8.9 in
the notes, but in practice, this might not happen.


