Graduate Time Series Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due January 24, at the beginning of class.

Homework 1

Exercise 1. Let A, B be events in a sample space. Let C_1, \ldots, C_n be events such that $C_i \cap C_j = \emptyset$ for any $i, j \in \{1, \ldots, n\}$ with $i \neq j$, and such that $\bigcup_{i=1}^n C_i$ is the whole sample space. Show:

$$\mathbf{P}(A|B) = \sum_{i=1}^{n} \mathbf{P}(A|B, C_i)\mathbf{P}(C_i|B).$$

(Hint: consider using the Total Probability Theorem and that $\mathbf{P}(\cdot|B)$ is a probability law.)

Exercise 2. By definition, a random vector $Z = (Z_1, \ldots, Z_d) \in \mathbf{R}^d$ is **Gaussian** if, for any $v_1, \ldots, v_d \in \mathbf{R}$, the random variable $\sum_{i=1}^d v_i Z_i$ is a Gaussian random variable. Equivalently, for any $v \in \mathbf{R}^d$, the random variable $\langle v, Z \rangle$ is a Gaussian random variable. The covariance matrix $(a_{ij})_{1 \le i,j \le d}$ of Z is defined by

$$a_{ij} := \mathbf{E}((Z_i - \mathbf{E}Z_i)(Z_j - \mathbf{E}Z_j)).$$

Let $Z = (Z_1, \ldots, Z_d) \in \mathbf{R}^d$ be a Gaussian random vector.

• Show that the covariance matrix $(a_{ij})_{1 \leq i,j \leq d}$ of Z is symmetric, positive semidefinite. That is, for any $v \in \mathbf{R}^d$, we have

$$v^T a v = \sum_{i,j=1}^d v_i v_j a_{ij} \ge 0.$$

• Given any symmetric positive semidefinite matrix $(b_{ij})_{1 \leq i,j \leq d}$, show that there exists a Gaussian random vector Z such that the covariance matrix of Z is $(b_{ij})_{1 \leq i,j \leq d}$. (Hint: write the matrix b in its Cholesky decomposition $b = rr^*$, where r is a $d \times d$ real matrix. Let $e^{(1)}, \ldots, e^{(d)}$ be the rows of r. Let X_1, \ldots, X_d be independent standard Gaussian random variables. Let $X := (X_1, \ldots, X_d)$. Define $Z_i := \langle X, e^{(i)} \rangle$ for any $1 \leq i \leq d$.)

Exercise 3. Let Y_0, Y_1, \ldots be independent standard Gaussian random variables (so that they each have mean zero and variance one). Let $a, b \in \mathbf{R}$ be unknown (deterministic) parameters. For any $n \geq 0$, define

$$X_n := a + bY_n$$
.

Suppose the data X_0, X_1, \dots, X_{30} are given by the following

 $0.7118\ 0.7587\ 0.9143\ -0.3666\ 2.2630\ 1.5951\ 0.9470\ 2.2222\ 0.3731\ 1.3387\ 1.2551\ 1.5915$ $1.5877\ 0.8811\ 1.3820\ 1.3011\ 1.7766\ 2.0560\ 2.0656\ 0.8818\ 1.4464\ 0.6715\ 0.7319\ 1.3959$ To the best of your ability, estimate a and b.

Exercise 4. Let μ be a probability measure on \mathbb{R}^n , where \mathbb{R}^n has the Borel σ -algebra. Define the **distribution function** $F \colon \mathbb{R}^n \to [0,1]$ associated to μ by

$$F(t_1, \dots, t_n) := \mu((-\infty, t_1] \times \dots \times (-\infty, t_n])$$

= $\mu(\{(x_1, \dots, x_n) \in \mathbf{R}^n : -\infty < x_i \le t_i, \forall 1 \le i \le n\}), \forall t_1, \dots, t_n \in \mathbf{R}.$

Show the following properties of F:

- F is nondecreasing. $(F(t_1,\ldots,t_n) \leq F(t'_1,\ldots,t'_n)$ whenever $t_i \leq t'_i \ \forall \ 1 \leq i \leq n.)$
- $\lim_{t_1,\dots,t_n\to-\infty} F(t_1,\dots,t_n) = 0$ and $\lim_{t_1,\dots,t_n\to\infty} F(t_1,\dots,t_n) = 1$.
- F is right continuous, i.e. $F(t_1, \ldots, t_n) = \lim_{(s_1, \ldots, s_n) \to (t_1, \ldots, t_n)^+} F(s_1, \ldots, t_n)$ for all $t_1, \ldots, t_n \in \mathbf{R}$, where the limit restricts that $s_i \geq t_i \ \forall \ 1 \leq i \leq n$.
- If $t_{i,0} \leq t_{i,1} \ \forall \ 1 \leq i \leq n$, then

$$\sum_{(\omega_1,\dots,\omega_n)\in\{0,1\}^n} (-1)^{\omega_1+\dots+\omega_n+n} F(t_{1,\omega_1},\dots,t_{n,\omega_n}) \ge 0.$$

Exercise 5. A finite Markov Chain is a stochastic process $(X_0, X_1, X_2, ...)$ together with a finite set Ω , which is called the **state space** of the Markov Chain, and an $|\Omega| \times |\Omega|$ real matrix P. The random variables $X_0, X_1, ...$ take values in the finite set Ω . The matrix P is **stochastic**, that is all of its entries are nonnegative and

$$\sum_{y \in \Omega} P(x, y) = 1, \quad \forall x \in \Omega.$$

And the stochastic process satisfies the following **Markov property**: for all $x, y \in \Omega$, for any $n \ge 1$, and for all events H_{n-1} of the form $H_{n-1} = \bigcap_{k=0}^{n-1} \{X_k = x_k\}$, where $x_k \in \Omega$ for all $0 \le k \le n-1$, such that $\mathbf{P}(H_{n-1} \cap \{X_n = x\}) > 0$, we have

$$\mathbf{P}(X_{n+1} = y \mid H_{n-1} \cap \{X_n = x\}) = \mathbf{P}(X_{n+1} = y \mid X_n = x) = P(x, y).$$

That is, the next location of the Markov chain only depends on its current location. And the transition probability is defined by P(x, y).

Suppose we have a Markov Chain with state space Ω . Let $n \geq 0$, $\ell \geq 1$, let $x_0, \ldots, x_n \in \Omega$ and let $A \subseteq \Omega^{\ell}$. Using the (usual) Markov property, show that

$$\mathbf{P}((X_{n+1}, \dots, X_{n+\ell}) \in A \mid (X_0, \dots, X_n) = (x_0, \dots, x_n))$$

= $\mathbf{P}((X_{n+1}, \dots, X_{n+\ell}) \in A \mid X_n = x_n).$

Then, show that

$$\mathbf{P}((X_{n+1},\ldots,X_{n+\ell})\in A\,|\,X_n=x_n)=\mathbf{P}((X_1,\ldots,X_\ell)\in A\,|\,X_0=x_n).$$

(Hint: it may be helpful to use the Multiplication Rule for conditional probabilities.)

Exercise 6. Let P, Q be stochastic matrices of the same size. Show that PQ is a stochastic matrix. Conclude that, if r is a positive integer, then P^r is a stochastic matrix.

Exercise 7. Let $Y_1, Y_2, \ldots : \Omega \to \mathbf{R}$ be random variables that converge almost surely to a random variable $Y : \Omega \to \mathbf{R}$. Show that Y_1, Y_2, \ldots converges in probability to Y in the following way.

• For any $\varepsilon > 0$ and for any positive integer n, let

$$A_{n,\varepsilon} := \bigcup_{m=n}^{\infty} \{ \omega \in \Omega \colon |Y_m(\omega) - Y(\omega)| > \varepsilon \}.$$

Show that $A_{n,\varepsilon} \supseteq A_{n+1,\varepsilon} \supseteq A_{n+2,\varepsilon} \supseteq \cdots$.

• Show that $\mathbf{P}(\bigcap_{n=1}^{\infty} A_{n,\varepsilon}) = 0$.

- Using Continuity of the Probability Law, deduce that $\lim_{n\to\infty} \mathbf{P}(A_{n,\varepsilon}) = 0$.

Now, show that the converse is false. That is, find random variables Y_1, Y_2, \ldots that converge in probability to Y, but where Y_1, Y_2, \ldots do not converge to Y almost surely.

Exercise 8. Suppose random variables $Y_1, Y_2, \ldots : \Omega \to \mathbf{R}$ converge in probability to a random variable $Y: \Omega \to \mathbf{R}$. Prove that Y_1, Y_2, \ldots converge in distribution to Y.

Then, show that the converse is false.