
Graduate Time Series Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due January 24, at the beginning of class.

Homework 1

Exercise 1. Let A,B be events in a sample space. Let C1, . . . , Cn be events such that
Ci ∩ Cj = ∅ for any i, j ∈ {1, . . . , n} with i 6= j, and such that ∪ni=1Ci is the whole sample
space. Show:

P(A|B) =
n∑

i=1

P(A|B, Ci)P(Ci|B).

(Hint: consider using the Total Probability Theorem and that P(·|B) is a probability law.)

Exercise 2. By definition, a random vector Z = (Z1, . . . , Zd) ∈ Rd is Gaussian if, for any

v1, . . . , vd ∈ R, the random variable
∑d

i=1 viZi is a Gaussian random variable. Equivalently,
for any v ∈ Rd, the random variable 〈v, Z〉 is a Gaussian random variable. The covariance
matrix (aij)1≤i,j≤d of Z is defined by

aij := E((Zi − EZi)(Zj − EZj)).

Let Z = (Z1, . . . , Zd) ∈ Rd be a Gaussian random vector.

• Show that the covariance matrix (aij)1≤i,j≤d of Z is symmetric, positive semidefinite.
That is, for any v ∈ Rd, we have

vTav =
d∑

i,j=1

vivjaij ≥ 0.

• Given any symmetric positive semidefinite matrix (bij)1≤i,j≤d, show that there exists a
Gaussian random vector Z such that the covariance matrix of Z is (bij)1≤i,j≤d. (Hint:
write the matrix b in its Cholesky decomposition b = rr∗, where r is a d × d real
matrix. Let e(1), . . . , e(d) be the rows of r. Let X1, . . . , Xd be independent standard
Gaussian random variables. Let X := (X1, . . . , Xd). Define Zi := 〈X, e(i)〉 for any
1 ≤ i ≤ d.)

Exercise 3. Let Y0, Y1, . . . be independent standard Gaussian random variables (so that
they each have mean zero and variance one). Let a, b ∈ R be unknown (deterministic)
parameters. For any n ≥ 0, define

Xn := a+ bYn.

Suppose the data X0, X1, . . . , X30 are given by the following

0.7118 0.7587 0.9143 − 0.3666 2.2630 1.5951 0.9470 2.2222 0.3731 1.3387 1.2551 1.5915

1.5877 0.8811 1.3820 1.3011 1.7766 2.0560 2.0656 0.8818 1.4464 0.6715 0.7319 1.3959
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2.3196 0.9382 1.6228 1.2646 2.0704 0.7466 1.4195

To the best of your ability, estimate a and b.

Exercise 4. Let µ be a probability measure on Rn, where Rn has the Borel σ-algebra.
Define the distribution function F : Rn → [0, 1] associated to µ by

F (t1, . . . , tn) := µ((−∞, t1]× · · · × (−∞, tn])

= µ({(x1, . . . , xn) ∈ Rn : −∞ < xi ≤ ti, ∀ 1 ≤ i ≤ n}), ∀ t1, . . . , tn ∈ R.

Show the following properties of F :

• F is nondecreasing. (F (t1, . . . , tn) ≤ F (t′1, . . . , t
′
n) whenever ti ≤ t′i ∀ 1 ≤ i ≤ n.)

• limt1,...,tn→−∞ F (t1, . . . , tn) = 0 and limt1,...,tn→∞ F (t1, . . . , tn) = 1.
• F is right continuous, i.e. F (t1, . . . , tn) = lim(s1,...,sn)→(t1,...,tn)+ F (s1, . . . , tn) for all
t1, . . . , tn ∈ R, where the limit restricts that si ≥ ti ∀ 1 ≤ i ≤ n.
• If ti,0 ≤ ti,1 ∀ 1 ≤ i ≤ n, then∑

(ω1,...,ωn)∈{0,1}n
(−1)ω1+···+ωn+nF (t1,ω1 , . . . , tn,ωn) ≥ 0.

Exercise 5. A finite Markov Chain is a stochastic process (X0, X1, X2, . . .) together with
a finite set Ω, which is called the state space of the Markov Chain, and an |Ω| × |Ω| real
matrix P . The random variables X0, X1, . . . take values in the finite set Ω. The matrix P is
stochastic, that is all of its entries are nonnegative and∑

y∈Ω

P (x, y) = 1, ∀x ∈ Ω.

And the stochastic process satisfies the following Markov property: for all x, y ∈ Ω, for
any n ≥ 1, and for all events Hn−1 of the form Hn−1 = ∩n−1

k=0{Xk = xk}, where xk ∈ Ω for all
0 ≤ k ≤ n− 1, such that P(Hn−1 ∩ {Xn = x}) > 0, we have

P(Xn+1 = y |Hn−1 ∩ {Xn = x}) = P(Xn+1 = y |Xn = x) = P (x, y).

That is, the next location of the Markov chain only depends on its current location. And
the transition probability is defined by P (x, y).

Suppose we have a Markov Chain with state space Ω. Let n ≥ 0, ` ≥ 1, let x0, . . . , xn ∈ Ω
and let A ⊆ Ω`. Using the (usual) Markov property, show that

P((Xn+1, . . . , Xn+`) ∈ A | (X0, . . . , Xn) = (x0, . . . , xn))

= P((Xn+1, . . . , Xn+`) ∈ A |Xn = xn).

Then, show that

P((Xn+1, . . . , Xn+`) ∈ A |Xn = xn) = P((X1, . . . , X`) ∈ A |X0 = xn).

(Hint: it may be helpful to use the Multiplication Rule for conditional probabilities.)

Exercise 6. Let P,Q be stochastic matrices of the same size. Show that PQ is a stochastic
matrix. Conclude that, if r is a positive integer, then P r is a stochastic matrix.

Exercise 7. Let Y1, Y2, . . . : Ω → R be random variables that converge almost surely to
a random variable Y : Ω → R. Show that Y1, Y2, . . . converges in probability to Y in the
following way.
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• For any ε > 0 and for any positive integer n, let

An,ε :=
∞⋃

m=n

{ω ∈ Ω: |Ym(ω)− Y (ω)| > ε}.

Show that An,ε ⊇ An+1,ε ⊇ An+2,ε ⊇ · · · .
• Show that P(∩∞n=1An,ε) = 0.
• Using Continuity of the Probability Law, deduce that limn→∞P(An,ε) = 0.

Now, show that the converse is false. That is, find random variables Y1, Y2, . . . that converge
in probability to Y , but where Y1, Y2, . . . do not converge to Y almost surely.

Exercise 8. Suppose random variables Y1, Y2, . . . : Ω → R converge in probability to a
random variable Y : Ω→ R. Prove that Y1, Y2, . . . converge in distribution to Y .

Then, show that the converse is false.


