Graduate Time Series Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due February 7, at the beginning of class.

Homework 2

Exercise 1. Recall that a random variable T is exponential with parameter λ if T has the density function given by $f_T(t) = \lambda e^{-\lambda t}$ for all $t \ge 0$, and $f_T(t) = 0$ otherwise.

Let $\lambda > 0$. Let τ_1, τ_2, \ldots be independent exponential random variables with parameter λ . Let $T_0 = 0$, and for any $n \ge 1$, let $T_n := \tau_1 + \cdots + \tau_n$. A **Poisson Process** with parameter $\lambda > 0$ is a set of integer-valued random variables $\{N(s)\}_{s\ge 0}$ defined by $N(s) := \max\{n \ge 0 : T_n \le s\}$.

Figure 1. One Sample Path of a Poisson Process.

We can think of N(s) as the total number of customers that have arrived in a store, or the total number of people that have visited a website, where the time between each visit is an exponential random variable with an unknown parameter $\lambda > 0$. The use of the exponential distribution in this model is reasonable due to the memoryless property of the exponential random variable. (If τ is an exponential and t, s > 0, then $\mathbf{P}(\tau > t + s \mid \tau > t) = \mathbf{P}(\tau > s)$.)

Suppose we have observed that $\tau_1 = t_1, \ldots, \tau_m = t_m$ for some $t_1, \ldots, t_m > 0$. The goal of this exercise is to estimate the unknown parameter $\lambda > 0$. One way to estimate λ is via the maximum likelihood. The maximum likelihood estimator is $Y = r(\tau_1, \ldots, \tau_m)$, where $r : \mathbf{R}^m \to \mathbf{R}$, and $r(t_1, \ldots, t_m)$ is defined to be any value of $\lambda > 0$ that maximizes

$$\prod_{i=1}^{m} \lambda e^{-\lambda t_i}$$

Show that the maximum likelihood estimator of λ has the form

$$Y = \frac{1}{\frac{1}{m} \sum_{i=1}^{m} \tau_i}.$$

For example, suppose $\tau_1, \ldots, \tau_{17}$ are observed to be

138 257 418 263 134 336 145 36 94 213 171 407 69 19 16 215 96.

Estimate λ .

Exercise 2. This exercise deals with sunspot data from the following files (the same data appears in different formats)

These files are taken from http://www.sidc.be/silso/datafiles#total

To work with this data, e.g. in Matlab you can use the command

x=importdata('SN_d_tot_V2.0.txt')

to import the .txt file.

The format of the data is as follows.

- Columns 1-3: Gregorian calendar date (Year, Month, then Day)
- Column 4: Date in fraction of year
- Column 5: Daily total number of sunspots observed on the sun. A value of -1 indicates that no number is available for that day (missing value).
- Column 6: Daily standard deviation of the input sunspot numbers from individual stations.
- Column 7: Number of observations used to compute the daily value.
- Column 8: Definitive/provisional indicator. A blank indicates that the value is definitive. A '*' symbol indicates that the value is still provisional and is subject to a possible revision (Usually the last 3 to 6 months)

It is known that the number of sunspots on the sun follows an approximately 11-year sinusoidal pattern. So, if we plot the number of sunspots over several years, the distance between the highest observed numbers of sunspots should be around 11 years.

Let U_t be the number of sunspots at time t, where t is measured in years. We model U_t as

$$U_t = m_t + a\cos(2\pi\theta t) + b\sin(2\pi\omega t) + Y_t, \quad \forall t \in \mathbf{R},$$

where $a, b, \theta, \omega \in \mathbf{R}$ are unknown (deterministic) parameters, m_t is an unknown deterministic function of t that is assumed to be a "slowly varying" function of t, and $\{Y_t\}_{t \in \mathbf{R}}$ are i.i.d. mean zero random variables. The quantity m_t is called the **trend** and the quantity $s_t := a\cos(2\pi\theta t) + b\sin(2\pi\omega t)$ is called the **seasonal component** of the time series $\{U_t\}_{t \in \mathbf{R}}$.

Since the 11-year sinusoidal pattern is known, we assume for now that $\theta = \omega = 1/11$. Note that

$$\sum_{s=t,t+1/365,t+2/365,\dots,t+11} \cos(2\pi\theta s) \approx 0, \qquad \sum_{s=t,t+1/365,t+2/365,\dots,t+11} \cos(2\pi\theta s) \approx 0, \qquad \forall t \in \mathbf{R}.$$

So, if m_t is slowly varying in the sense that $m_t \approx \sum_{s=t-5.5,t-5.5+1/365,t+2/365,...,t+5.5} m_s$, an unbiased estimator for m_t is

$$M_t := \frac{1}{11 \cdot 365.25} \sum_{s=t-5.5, t-5.5+1/365, t+2/365, \dots, t+5.5} U_s.$$

 M_t defined in this way is called a **moving average**.

• Plot M_t versus t. Do you observe any fluctuations in M_t or does it seem to be roughly constant? If so, what is this constant?

Once we have the estimate M_t , we can then use the approximation

$$U_t - M_t \approx a\cos(2\pi\theta t) + b\sin(2\pi\omega t) + Y_t, \quad \forall t \in \mathbf{R},$$

and then try to estimate a, b. A general way to estimate $s_t := a\cos(2\pi\theta t) + b\sin(2\pi\omega t)$ is to use a (smaller) moving average such as

$$S_t := \frac{1}{11} \sum_{s=t-5/365, t-4/365, \dots, t+5/365} [U_s - M_s].$$

Note that S_t is unbiased.

• Plot S_t versus t. Does it look like a sinusoidal curve? Note that S_t removed the trend from the time series.

Another way to estimate s_t is to estimate the constants a and b directly. By the double angle formula, note that

$$\sum_{s=t,t+1/365,t+2/365,\dots,t+11} \cos(2\pi\theta s) \sin(2\pi\theta s) = \sum_{s=t,t+1/365,t+2/365,\dots,t+11} \frac{1}{2} \sin(4\pi\theta s) \approx 0.$$

Also,

$$\frac{1}{365.25} \sum_{s=t,t+1/365,t+2/365,\dots,t+11} \cos^2(2\pi s/11) \approx \int_0^{11} \cos^2(2\pi x/11) dx \approx 11/2.$$

So, an unbiased estimator for a is

$$A_t := \frac{2}{11 \cdot 365.25} \sum_{s=t,t+1/365,t+2/365,\dots,t+11} (U_s - M_s) \cos(2\pi\theta s), \quad \forall t \in \mathbf{R}.$$

Similarly, an unbiased estimator for b is

$$B_t := \frac{2}{11 \cdot 365.25} \sum_{s=t,t+1/365,t+2/365,\dots,t+11} (U_s - M_s) \sin(2\pi\theta s), \quad \forall t \in \mathbf{R}.$$

• Plot A_t versus t. Plot B_t versus t. Are they close to being constant in t?

- Plot $U_t [M_t + A_t \cos(2\pi t/11) + B_t \sin(2\pi t/11))]$ versus t. This is the time series with the trend and seasonal components removed. Does this plot "resemble" a stationary process?
- Our modeling assumptions used a period of 11 for the seasonal component of the time series. Does the data reflect this assumption? For example, would it be more accurate to have $\theta = \omega = 1/(10.9)$ in our modeling assumption?

Exercise 3.

• Let X, Y be real-valued random variables with $\mathbf{E}|X| < \infty$. Let $f: \mathbf{R} \to \mathbf{R}$ be a bounded (measurable) function. Using the definition of conditional expectation, show that

$$\mathbf{E}(Xf(Y) | Y) = f(Y)\mathbf{E}(X|Y).$$

• Let X, Y be independent, real-valued random variables with $\mathbf{E}|X| < \infty$. Using the definition of conditional expectation, show that

$$\mathbf{E}(X|Y) = \mathbf{E}X.$$

Exercise 4. Let H be a Hilbert space. Let $g, h \in H$. Prove the Cauchy-Schwarz inequality $|\langle g, h \rangle| \leq ||g|| \, ||h||$.

Show also the triangle inequality $||g+h|| \le ||g|| + ||h||$, and the parallelogram law $||g+h||^2 + ||g-h||^2 = 2 ||g||^2 + 2 ||h||^2$.

Exercise 5. Let H be a Hilbert space. Let $h \in H$. Let $h_1, h_2, \ldots \in H$ be a sequence in H such that $\lim_{n\to\infty} ||h_n - h|| = 0$ (i.e. the sequence converges to h). Conclude that the sequence h_1, h_2, \ldots converges weakly to h, in the sense that

$$\lim_{n \to \infty} \langle h_n, g \rangle = \langle h, g \rangle, \qquad \forall g \in G.$$

Put another way, the inner product function is continuous. in one argument.

More generally, if $g_1, g_2, \ldots \in H$ satisfies $\lim_{n \to \infty} ||g_n - g|| = 0$, then

$$\lim_{n \to \infty} \langle h_n, g_n \rangle = \langle h, g \rangle.$$

That is, the inner product function is continuous in both arguments.